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The cissoid surface C = F �G of two surfaces F and G with respect to a reference
point O is obtained by summing up vectors of points f ∈ F and g ∈ G being collinear
with O. In that way the representations of the surfaces F , G and F �G are put into
relation by the bundle of lines through O.

Typically the construction is non rational. Conditions are studied under which ra-
tional surfaces have a cissoid admitting rational parametrizations for generic position
of the reference point. In particular, the cissoid of two augmented ruled surfaces or
an augmented ruled surface and an augmented quadratically parametrizable surface
is rationally parametrizable. Moreover, the construction for two augmented ruled
surfaces is even rational if the reference point moves on a rational surface.

keyword: Rational surface, ruled surface, quadratically parametrized surface, augmented
surface, cissoid, homotopic deformation of surfaces, symbolic computation.

1 Introduction

The development of automatic geometric design theory has come accompanied by the study
of certain geometric constructions on surfaces, many of them with origins in classical geom-
etry. Probably the most significant and successful one is the offset (parallel surfaces in the
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‡jsendra@etsist.upm.es, Dpto. Matemática Aplicada a las TIC. Universidad Politcnica de Madrid,

Spain

1

The final journal version of this paper appears in [M. Peternell, J.R.Sendra, J. Sendra.  
Computer Aided Geometric  Design 60 (2018) 1-9.] and it is avalialble at https://
doi.org/10.1016/j.cagd.2017.12.001

Cissoid Constructions of Augmented Rational Ruled 
Surfaces

J.Rafael Sendra,∗ Martin Peternell,† Juana Sendra‡

Abstract

http://ees.elsevier.com/cagd/viewRCResults.aspx?pdf=1&docID=2749&rev=0&fileID=76363&msid={57324008-90C3-4168-8205-0898654338BD}


classical language); e.g. [8]. Others used constructions are pedal, conchoid, or convolution
of surfaces (see [7], [11], [12], [16]). In this paper, we deal with a different geometric con-
struction, also with origins in former geometric studies, the cissoid construction. Given two
surfaces F,G, a reference point O, and two numbers λ, µ ∈ R, the cissoid is the geometric
locus of those points P such that

OP = λOX + µOY

for some X in F and some Y in G. Note that this formulation is equivalent to consider,
as we will do in the rest of the paper, OP = OX +OY where now X is in the augmented
surface λF and Y in the augmented surfaces µG; a similar reasoning can be done if instead
of two numbers λ, µ we consider two deformation functions. This motivates indeed our
notion of augmented surface: let T (u, v) be a rational function and f(u, v) a rational
parametrization of a surface F , we will call the surface parametrized as T (u, v)f(u, v) a
T -augmentation of the surface F . When F is ruled or quadratically parametrized we get
augmented ruled or augmented quadratically parametrized surfaces, respectively.

For potential applications, one may consider the cissoid as the expression λOX+(1−λ)OY .
In this way, when λ varies in the real close interval [0, 1], the cissoid will describe the homo-
topic deformation, from the point of view of an observer O, of a surface with initial value
F and final stage at G. This interpretation of the cissoid construction and, consequently,
its analysis, could be of help in applications as, for instance, boundary evolution (see [15])
or boundary deformations (see [6], [9]).

In this paper, we will deal with the cissoid of two rational algebraic surfaces and we study
the rationality, and actual computation of parametrizations, of the cissoid. Note that
a parametrization of the cissoid provides a differentiable map describing the homotopic
deformation of one surface into the other. More precisely, our main contribution of the
paper is as follows.

Contribution: Let F,G be rational surfaces. We prove that, if F is augmented ruled
and G is either augmented ruled or augmented quadratically parametrized, the cissoid of
F and G from any reference point O is a rational surface. Furthermore, given rational
parametrizations of F and G, we provide a rational parametrization of the cissoid. In
addition, if the both F and G are augmented ruled, then result is also valid when the
reference point O moves on a rationally given surface or space curve.

The paper is structured in three main sections. In Section 2, we introduce the basic
preliminaries on cissoids and we show how elimination theory techniques may be applied
to find the implicit equations. In Section 3, we characterize the rationality of the cissoid
by means of the rationality of an auxiliary variety. This result provides indeed a method
to check algorithmically the rationality of the cissoid of two rational surfaces. Finally, in
Section 4 we analyze the cissoid of augmented ruled surfaces.
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2 Preliminaries

In this section we recall some basic fact required in the paper. More precisely, we recall the
cissoid construction, the convolution construction and the polar representation of surfaces.

2.1 Cissoid construction

The cissoid construction is a generalization of the conchoid construction, see for instance [1].
Given two surfaces F and G, and a fixed reference point O, consider a line through O
intersecting F at X and G at Y . Then the locus of points P with OP = OX + OY
is the cissoid of F and G. The construction is analogously defined for planar curves or
hypersurfaces.

Cissoid as parametrized surface. Typically the reference point O of the cissoid con-
struction is chosen as origin O = (0, 0, 0) of a Cartesian coordinate system. Then, the
cissoid F � G is represented by vectors p = f + g, for linearly dependent position vectors
f ∈ F and g ∈ G. Consequently it is defined by

F �G = {f + g, with f ∈ F,g ∈ G, and f ‖ g}. (1)

The construction is commutative, i.e. F �G = G�F . For any point g ∈ G there is typically
a finite number of corresponding points fi ∈ F , related to the degree of F .

This definition clearly depends on the chosen reference point. Once we have chosen O, the
definition is invariant with respect to linear or affine maps fixing O. Choosing G as the
sphere of radius d, centered at the origin O, the cissoid F �G becomes the conchoid of F
with respect to O and distance d (see e.g. [7], [11]).

Cissoid as implicit surface. Since the construction is algebraic, the cissoid of two al-
gebraic surfaces F and G is algebraic. The cissoid can be computed by means of Gröbner
bases. In [1], it is shown how to determine the cissoid by means of resultants, but extra-
neous factors may appear. Let a,b, and x = (x, y, z) be vectors ∈ R3, and consider the
polynomials F (a) and G(b) defining the surfaces F and G. We do not distinguish between
polynomials and surfaces, since it should be clear from the contents, if F or G denotes a
polynomial or a surface. To define the cissoid F �G by means of an implicit equation, we
Consider the ideal

J =< x− a− b, a× b, F (a), G(b) > (2)

in the polynomial ring in C[a,b,x]. The first and the second entry in J , x − a − b, and
a× b, correspond directly to equation (1), and this construction is performed for all a in
F and b ∈ G. This implies that the cissoid F �G is the variety of the ideal J ∩ C[x].
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On the other hand, if f(u, v) and g(s, t) are respective parametrizations of F and G, we
consider the ideal

J =< numer(x− f− g), f× g, D(u, v, s, t)W − 1 >, (3)

in C[u, v, s, t,W,x], where D is the least common multiple of all denominators in f(u, v)
and g(s, t). The cissoid F �G is the variety of the ideal J ∩ C[x].

2.2 Convolution construction

Given two surfaces F and G, the convolution F ? G is defined as

F ? G = {f + g, f ∈ F, g ∈ G, with nf ‖ ng}, (4)

where nf and ng denote normal vectors of F and G at points f ∈ F and g ∈ G. The
definition is affinely invariant by substituting parallel normal vectors by parallel tangent
planes at corresponding points, and obviously F ? G = G ? F holds. According to (4),
F ?G is the envelope when G is translated with position vectors f ∈ F , or vice versa. The
curve case is illustrated in Fig. 1(a) at hand of the convolution C of a parabola F and an
ellipse arc G. Parallelity of tangents indicates corresponding points f ∈ F and g ∈ G such
that c = f + g ∈ C.

O

f

g

c

C

G

F

(a) Convolution C of parabola F and ellipse G

O

C ′

G′
F ′

f′
g′

c′

(b) Cissoid C ′ of the respective pedal curves F ′

and G′ with respect to O

Figure 1: Correspondence between the cissoid and the convolution construction

There is a close relation between the convolution and the cissoid construction which is
briefly addressed. Consider the surfaces F and G as envelopes of their tangent planes and
let F ′ = α(F ), G′ = α(G) and C ′ = α(C) be their respective pedal surfaces with respect to
the reference point O. Then the cissoid surface of F ′ and G′ is just C ′ = F ′ �G′, the pedal
surface of C = F ? G. Fig. 1(b) illustrated this property for the respective convolution
construction in Fig. 1(a). For offset and conchoid surfaces this property is investigated in
detail in [11], and analogously it holds for the convolution and cissoid construction.
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The convolution construction is algebraic, and it can be computed with Gröbner bases.
For this purpose, let J be the ideal in C[x, a,b]

J =< x− a− b, F (a), G(b), ∇F (a)×∇G(b) > . (5)

Then, the convolution F ? G is the variety of J ∩ C[x]. In the parametric case, a similar
ideal manipulation as in the cissoid case can be performed.

By using the scaled versions dG of G we mean simply the object parameterized by dg
instead of g. In this way families of convolution surfaces and cissoid surfaces, depending
on the parameter d, are constructed. This is related to offsets for different distances, which
are obtained as envelopes of spheres of radius d.

2.3 Polar representation of surfaces

In order to deal with parametric representations of cissoid surfaces, we use special para-
metrizations of surfaces. Similar to spherical coordinates, consisting of a radius function
and two angles, representing a point in space, we consider parametrizations f(u, v) =
r(u, v)n(u, v), with ‖n‖2 = 1, where r(u, v) denotes the radius function and n(u, v) is a
parametrization of the unit sphere as reference surface. The parametrization f = rn is
called a polar representation of the surface F .

By choosing the reference point of the cissoid construction as origin O = (0, 0, 0), we
assume that both surfaces F and G are represented by corresponding polar representations
(see Def. 1 in [7])

f(u, v) = r1(u, v)n(u, v), and g(u, v) = r2(u, v)n(u, v), with ‖n‖ = 1. (6)

The correspondence between points in F and G is realized by coinciding parameters u, v.
Then the cissoid (or a component of it) C = F �G is represented by the polar representation

c(u, v) = (r1 + r2)(u, v)n(u, v). (7)

The use of the unit sphere S2 as reference surface for the cissoid as well as the convolution
construction is somehow artificial. For the computation of the cissoid C = F � G of two
surfaces F and G, one might use one surface, say F , as reference surface and parameterize
the second one over that one. This avoids the dependency on the parametrization of
the unit sphere S2. The cissoid construction obviously depends essentially on the chosen
reference point. Any translation applied to the input surface will change the result. But the
construction is of course invariant to affine maps keeping the reference point O unchanged.

Theorem 1 Consider a parametrization f(u, v) of the surface F and assume that G admits
a parametrization of the form g(u, v) = m(u, v)f(u, v). In this case, G is parametrized over
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F with respect to f(u, v). Then the cissoid C = F �G (or a component of it) is represented
by

c(u, v) = (1 +m(u, v))f(u, v). (8)

3 Rationality of the cissoid surface

We have seen that a particular case of the cissoid is the conchoid construction. In [14] the
number of irreducible components is studied in case of the conchoid construction. Although
in general the cissoid will be an irreducible variety, reducible components may appear. In
the following, we use the notion ’rationality’ when one component of the cissoid is rational.

Consider two surfaces F and G, given implicitly as zero set of the respective polynomials
F (x, y, z) and G(x, y, z). Let f(u, v) be a proper rational parametrization of F . Taking the
approach presented in Theorem 1, we try to parametrize G over F . Thus, we look for a
rational function m(u, v) such that m(u, v)f(u, v) is a parametrization of G. In order to do
so we plug wf(u, v) into G(x, y, z), where w is a new variable. Consequently

H(w, u, v) := numer(G(wf(u, v)) ∈ C[w, u, v] (9)

is a polynomial in w and u, v, and H(w, u, v) = 0 is called reparametrizing variety. Formally
H depends on the chosen parametrization f(u, v) of F . The following Lemma shows that
the property that F is parametrizable over G is independent of the chosen parametrization
f(u, v). Theorem 3 characterizes the property of being parametrizable over a surface by
means of H.

Lemma 2 The property that G is parametrizable over F is independent of the chosen
proper parametrization f(u, v) of F .

Proof: Let f(u, v) and f̄(ū, v̄) be two different proper parametrizations of F . Then there
exists an invertible map ψ(ū, v̄) = (u, v) such that f̄(ū, v̄) = f(ψ(ū, v̄)). Substituting (u, v)
by ψ(ū, v̄) in g(u, v) = m(u, v)f(u, v) yields

g ◦ ψ(ū, v̄) = m ◦ ψ(ū, v̄)f ◦ ψ(ū, v̄),

ḡ(ū, v̄) = m̄(ū, v̄)̄f(ū, v̄), with x̄ = x ◦ ψ.

Thus the property that m(u, v)f(u, v) parameterizes G is equivalent to that m̄(ū, v̄)̄f(ū, v̄)
parameterizes G. �

Theorem 3 Let D be the variety defined by the the least common multiple of the denom-
inators in f(u, v). The following statements are equivalent
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1. G can be parametrized over F using f(u, v).

2. The reparametrizing variety H has a rational component, different from any ir-
reducible component of D, and this component admits a rational parametrization
q(s, t) = (q1, q2, q3)(s, t), such that the Jacobian of g(s, t) = q1(s, t)f(q2(s, t), q3(s, t))
has rank 2.

Furthermore, if (2) holds, then g(s, t) parametrizes G.

Proof: Let d(u, v) be a defining polynomial of D, and let g(u, v) := m(u, v)f(u, v) be
a rational parametrization of G, which implies m 6= 0. Then, G(g(u, v)) = 0. Thus
H(m(u, v), u, v) = 0, and hence q(u, v) = (m(u, v), u, v) parametrizes a component of
H, which is clearly different of D. Moreover, q1(u, v)f(q2(u, v), q3(u, v)) = m(u, v)f(u, v),
whose Jacobian has rank 2.

Conversely, let q(s, t) be a rational parametrization of a component of H, different of
D. Then H(q(s, t)) = 0 and d(q2, q3)(s, t) 6= 0. H can be expressed as H(w, u, v) =
G(wf(u, v))d(u, v)n for some n ∈ N. We consider the parametrization

g(s, t) = q1(s, t)f(q2(s, t), q3(s, t)),

which satisfies G(q1f(q2(s, t), q3(s, t))) = 0. Since the Jacobian of g(s, t) has rank two,
g(s, t) is a rational parametrization of G over F using f. �

Remark 1 We observe that the condition on the rank of the Jacobian in Theorem 3 cannot
be avoided, as the following example shows. Consider the planes F : x = 0 and G : y = 0.
Clearly, G cannot be parametrized over F . However, if f(u, v) = (0, u, v), then H(w, u, v) =
u and H = 0 is rational. Nevertheless, any parametrization of H(w, u, v) = 0 is of the
form (s, 0, t). But obviously the Jacobian of the parametrization sf(0, t) = s(0, 0, t) has
rank 1.

As a consequence of equation (8) and of Theorem 3, we have the following criterium for
detecting rational cissoids.

Corollary 4 [Criterium of rationality]
Let f(u, v) be proper parametrization of F and the assumptions on D according to Theorem
3. If H has a rational component q(s, t) = (q1, q2, q3)(s, t) different from any irreducible
component of D and if the Jacobian of g = q1f(q2, q3) has rank 2, then the cissoid C = F �G
has a component parametrized by

c(s, t) = f(s, t) + g(s, t) = (1 + q1(s, t))f(q2(s, t), q3(s, t)). (10)
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Example 5 Let F be the quadric defined by F (x, y, z) = −xz + y + 1 and G be the cubic
surface defined by G(x, y, z) = x2y − z + 1. F is a hyperbolic paraboloid, thus a ruled
quadric, and G is a ruled cubic surface, equivalent to the Whitney umbrella zy2 = x2, up
to a projective transformation ((x, y, z) 7→ (x/y, 1/y, z/y) composed with a translation).
Using the ideal introduced in equation (2), the cissoid C = F � G is a 10-degree surface
defined by

x5y2z3 − 3x4y3z2 − 3x4y2z2 + 3x3y4z − 2x3yz4 + 6x3y3z + 2x3yz3 − x2y5 + 4x2y2z3 +
3x3y2z− 3x2y4− 3x2z2y2− 3xy3z2 +xz5− 3x2y3 + 6x2yz2 + 3xy3z− 2xz4 + zy4− z4y−
x2y2 − 3xy2z + 2xyz2 + xz3 − y4 + y3z + yz3 − z4.

F is parametrizable by f(u, v) = (u, uv−1, v), and consequently the reparametrizing variety
H is defined by

H(w, u, v) = w3u3v − w3u2 − wv + 1.

Since H is linear in v, it is obviously parametrized as

q(u,w) =

(
w, u,

u2w3 − 1

w(u3w2 − 1)

)
= (w, u, v(u,w)).

Figure 2: F (left), G (center), F �G (right) in Example 5

By Corollary 4, the cissoid surface C = F �G is rational and can be parametrized as

c(u,w) = (1 + q1(u,w))f(q2(u,w), q3(u,w)),

= (1 + w) (u, uv(u,w)− 1, v(u,w)) ,

and the Jacobian of g(u,w) = q1(u,w)f(q2(u,w), q3(u,w)) has rank 2.

Corollary 6 Let F be a rational surface and let G be a plane, where O 6∈ G. Then, the
cissoid P = F �G is rational.
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Proof: Let f(u, v) and G = a1x + a2y + a3z + a4 = a · x + a4. O 6∈ G implies a4 6= 0.
To construct a rational parametrization g(u, v) = w(u, v)f(u, v) of G, the lines wf are
intersected with G. The unique intersection point leads to

w(u, v) = −a4/(a · f(u, v)).

This agrees with the fact that the reparametrizing variety H is the numerator of w(a ·
f(u, v)) +a4 and consequently H is parametrized by q(u, v) = (−a4/(a · f), u, v). The plane
G and the cissoid C = F �G are parametrized by

g(u, v) =
−a4

a · f(u, v)
f(u, v), and c(u, v) = f(u, v) + g(u, v) =

a · f(u, v)− a4
a · f(u, v)

f(u, v).

Depending on f, the parametrization g of G is not necessarily proper. �

4 The cissoid surface of an augmented ruled surface

Let us start this section introducing the notion of augmented ruled surface. We say that a
rational surface is an augmented ruled surface, if it admits a parametrization of the form

T (u, v) (a(u) + vb(u))

where T is a rational function in u, v.

We study the cissoid C = F �G of two rational surfaces F and G, where one, say F , is an
augmented ruled surface. At first we describe the general strategy for the analysis of the
rationality of the cissoid. Later this is applied to some special cases.

Let F and G be represented by the respective parametrizations f(u, v) = T (u, v)̃f(u, v)

where f̃(u, v) = a(u) + vb(u), and g(s, t). Consider the family of planes α(u) : x · (a(u)×
b(u)) = 0 passing through O and the generating lines of the ruled surface F̃ defined by f̃.
Intersecting G with the planes α(u) yields a family of curves a(u) = G ∩ α(u), see Fig. 3.
Inserting the parametrization g(s, t) into α(u) results in an implicit representation of these
curves a(u)

A(s, t;u) = g(s, t) · (a× b)(u) = 0. (11)

Let us assume that A(s, t;u) = 0 defines a family of rational curves in the st-plane, with
family parameter u. Then there exists a rational parametrization

ϕ(u,w) = (s(u,w), t(u,w)), with A(s(u,w), t(u,w);u) = 0. (12)

Substituting ϕ(u,w) into g(s, t) yields g(s(u,w), t(u,w)) =: g(u,w), such that the w-lines
of g(u,w) are the planar curves a(u) = G∩α(u). Consequently det(g(u,w), a(u),b(u)) = 0
holds.
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The system of equations

λg(u,w) = a(u) + vb(u) = f̃(u, v) (13)

is linear in λ and v, and has a rational solution λ(u,w), v(u,w). Substituting v(u,w) in
f(u, v) yields f(u, v(u,w)) =: f(u,w). This implies a rational parametrization f(u,w) =
T (u,w)λ(u,w)g(u,w) of F with the property that f(u,w) and g(u,w) are linearly depen-
dent. Finally the cissoid C = F �G is rationally parametrized by

c(u,w) = f(u, v(u,w)) + g(u,w)

= (1 + T (u, v(u,w))λ(u,w)g(s(u,w), t(u,w)).
(14)

α(u)O

g(u,w)

a(u) b(u) f̃(u,w)

a(u)

Figure 3: Cissoid construction of augmented ruled surfaces

Theorem 7 Let F and G be two rational surfaces where F is augmented ruled. The
respective parametrizations are f(u, v) = T (u, v)(a(u) + vb(u)) and g(s, t). If the generic
planar intersection curve a(u) = α(u) ∩ G, with a plane α(u) : x · (a(u) × b(u)) = 0, is
rational, then the cissoid surface C = F � G, with respect to any reference point O ∈ R3,
is rationally parametrized by (14).

According to this statement, a sufficient condition for a rational construction of the cissoid
surface is that the generic planar intersections of G are rational. The next sections describe
these cases in detail. For the case of ruled surfaces, i.e. T being a rational function
depending only on u, it is known that there are only two possibilities, and G has to be either
a ruled surface or it is a quadratically parametrizable surface, see for instance [3], Vol 4,
page 55. The quadratically parametrizable surfaces are projections of a Veronese surface
of degree four, and often denoted as Steiner surfaces. The most famous representative is
Steiner’s roman surface, see for instance [4], [5]. In the next section, we analyze the cases
where G is either an augmented ruled surface or an augmented quadratically parametrized
surface.
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4.1 Two augmented ruled surfaces

Let F and G be two augmented ruled surfaces, represented by the respective parametriza-
tions f(u, v) = T1(u, v)̃f(u, v) and g(s, t) = T2(s, t)g̃(s, t) where f̃(u, v) = a(u) + vb(u)
and g̃(s, t) = c(s) + td(s). The intersection curves a(u) = G ∩ α(u), with planes α(u) :

x · (a(u)× b(u)) = 0 through O and the generating lines of f̃ are determined by

A(s, t;u) = (c(s) + td(s)) · (a(u)× b(u)) = 0.

This equation can directly be solved for t by,

t(s, u) = −det(a,b, c)(s, u)

det(a,b,d)(s, u)
. (15)

Substituting t(s, u) into g̃(s, t) yields a reparametrization g̃(s, u) with the property that
det(g̃(s, u), a(u),b(u)) = 0. Thus the system λg̃(s, u) = a(u) + vb(u) has a rational
solution λ(s, u), v(s, u). Finally the cissoid C = F �G is parametrized by

c(s, u) = f(u, v(s, u)) + g(s, t(s, u))

= (λ(s, u)T1(u, v(s, u)) + T2(s, t(s, u)))g̃(s, t(s, u)).
(16)

This result can be generalized in the way that we are allowed to replace the fixed chosen
reference point O by a reference point, whose position depends rationally on parameters,
see Section 4.3.

Corollary 8 The cissoid surface F � G of two augmented ruled surfaces F and G is a
rational surface, independently of the chosen reference point.

Example 9 We consider the ruled surfaces F and G given parametrically by

f(u, v) = (v + u+ 2, u2 + v + 1, u3 + uv + 1), g(s, t) = (t+ 1, s+ 1, st+ s2 + 1)

The respective implicit equations are

F = −xy2 + y3 + 2 yx− y2 + yz − z2 − x− 2 y + z + 1 = 0,

G = yx+ y2 − x− 3 y − z + 3 = 0.

According to equation (15), one obtains

t(u, s) = −s
2u2 − su3 − s2u+ su2 − u3 − s2 + 2 su+ 2u2 − s− 1

su2 − su− s− u+ 1
.

11



Figure 4: F (left), G (center), F �G (right) in Example 9

solving the linear system corresponding to λ(u, s)g(s, u) = f(u, v(u, s)) yields

λ(u, s) =
su2 − su− s− u+ 1

2 s2 − su− u+ 1
.

Finally we compute the parametrization of the cissoid, which is of degree 11. Since the
parametrization has 144 terms, we omitted displaying it.

4.2 Augmented ruled surface and augmented quadratically parametriz-
able surface

A surface parametrized by

1

q0(s, t)
(q1, q2, q3)(s, t), (17)

where qi(s, t) are polynomials of degree at most two, and gcd(q0, q1, q2, q3) = 1 is called
quadratically parametrizable, see for instance [4] or [5]. We defined an augmented quadrat-
ically parametrizable surface, as a surface parametrized by

T (s, t)g(s, t)

where T is a rational function and g(s, t) a quadratically parametrized surface.

Let F be an augmented ruled surface given by f(u, v) = T1(u, v)̃f(u, v) where f̃(u, v) =
a(u) + vb(u), and let G be parametrized by g(s, t) = T2(s, t)g̃(s, t) with

g̃(s, t) =
1

q0(s, t)
(q1, q2, q3)(s, t), (18)

where qi(s, t) are polynomials of degree at most two, and gcd(q0, q1, q2, q3) = 1. We denote

by F̃ and G̃ the surfaces parametrized by f̃ and g̃ respectively.

12



The intersection curve a(u) = G̃∩α(u) of G̃ with a plane α(u) : x · (a×b)(u) = 0 through

O and the lines of F̃ is determined by

g̃(s, t) · (a× b)(u) = 0. (19)

For any fixed value u = u? this equation defines a curve of degree two in the st-plane. By
applying a coordinate transformation depending on u, we obtain the normal form

A(s, t;u) = r0(u) + r1(u)s2 + r2(u)t2 = 0. (20)

In case that A(s, t;u) = 0 contains real points for almost all values of u, there exists a
real rational parametrization ϕ̃(u,w) = (s̃(u,w), t̃(u,w)) satisfying (20) identically for all
u. These rational parametrizations can be computed explicitly by solving a linear system
and an additional quadratic equation, see [13].

In case that A(s, t;u) = 0 contains real points only for u ∈ [a1, a2] ∈ R, one would
have to reparametrize the family A(s, t;u) = 0 by a quadratic reparametrization u =
(a2x

2 + a1)/(x
2 + 1), in order to obtain a real curve A(s, t;x) = 0 for all x ∈ R.

Inverting the coordinate transformation one obtains a rational parametrization ϕ(u,w) =
(s(u,w), t(u,w)) of (19). Substituting ϕ(u,w) = (s, t)(u,w) into g̃(s, t) yields a one-

parameter family of rational curves g̃(s(u,w), t(u,w)) in G̃. These curves are typically of
degree four since any generic planar intersection of a quadratically parametrizable surface
has this property.

Based on the reparametrization ϕ(u,w) of G̃ we solve λg̃(ϕ(u,w)) = a(u) + vb(u) for λ
and v. A rational solution (λ(u,w), v(u,w)) implies that the cissoid surface C = F �G of
the augmented ruled surface F and the augmented quadratically parametrizable surface G
admits the probably improper rational parametrization

c(u,w) = f(u, v(u,w)) + g(u,w) =

= (λ(u,w)T1(ϕ(u,w)) + T2(u, v(u,w))) g̃(ϕ(u,w)).
(21)

The improperness may be caused by an improper real rational parametrization ϕ(u,w) of
A(s, t;u) = 0.

Corollary 10 The cissoid surface C = F � G of an augmented rational ruled surface F
and a irreducible quadric G is a rational surface, independently of the chosen reference
point.

Corollary 11 The cissoid surface F �G of an augmented rational ruled surface F and an
augmented quadratically parametrizable surface G is a rational surface, independently of
the chosen reference point.
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Example 12 We illustrate the cissoid construction for a ruled surface and a quadric.
Consider the ruled surface F : x3 − xyz − x2 + y2 = 0 that is parametrized by

f(u, v) = (vu+ 1, u2v + u, v + u).

Let the ellipsoid G : 4x2 + 4y2 + z2 − 4 = 0 be parametrized by

g(s, t) =

(
2

s

s2 + t2 + 1
, 2

t

s2 + t2 + 1
, 2
s2 + t2 − 1

s2 + t2 + 1

)
.

We get A(s, t;u) = −su + t = 0 and thus t = us. The linear system λg(u, s) = f(u, v)
results in

λ(u, s) =
(u2 − 1)(u2s2 + s2 + 1)

2 (su2 + u+ s) (us− 1)
.

Finally, we get that a parametrization of F �G is given by p(u, s) =
(

p1
p
, p2

p
, p3

p

)
, where

p1(u, s) = (u4s2 + 2u3s2 + 2us2 + u2 − s2 − 2u− 2 s− 1) s

p2(u, s) = (u4s2 + 2u3s2 + 2us2 + u2 − s2 − 2u− 2 s− 1)us

p3(u, s) = (u4s2 + 2u3s2 + 2us2 + u2 − s2 − 2u− 2 s− 1) (u2s2 + s2 − 1)

p(u, s) = (u2s+ u+ s) (us− 1) (u2s2 + s2 + 1)

We observe that in this case the cissoid has degree 8 and its defining polynomial is

C = 4x8 + z2x4 − 2z2x5 + z2x6 − 8x7 + 8x5yz + 8x4yz − 2x4yz3 + 2yx3z3

−8yzx6 + x2y2z4 − 6y2z2x2 + 4y2x6 + 4y2z2x4 + 2x3y2z2 − 4y2x4

−2xy3z3 − 8x4y3z + 4y4z2x2 − 4y4x2 + 8x3y4 + y4z2 − 8xy5z + 4y6.

Example 13 Finally we illustrate the method for a ruled surface F and a quadratically
parametrizable surface G. The surfaces have the respective parametrizations

f(u, v) = (u, v, u2 + 1), and g(s, t) = (s, s2 + t, 1 + t2).

F is a parabolic cylinder with y-parallel lines and G is obtained by translating the parabolas
(s, s2, 1) and (0, t, t2) along each other. The respective defining polynomials are

F = z − x2 − 1, and G = z − (y − x2)2 − 1.

Inserting g into the equation α(u) : (1 +u2)x−uz = 0 of the planes through the lines of G
yields A(s, t;u) = −(1+u2)s+u(1+t2), which is simply solved by s(t, u) = u(1+t2)/(1+u2).
Substituting this expression in g(s, t), and solving the linear system λg(t, u) = f(u, v) gives
λ(t, u) = (u2 + 1)/(t2 + 1) and

v(t, u) = (tu4 + 2tu2 + t+ u2t4 + 2u2t2 + u2)/(u2t2 + u2 + t2 + 1).

Finally, the cissoid F �G, of implicit degree 12, is parametrized by

c(t, u) = f(u, v(t, u)) + g(t, u) = (1 + λ(t, u))g(t, u)

=

(
u(u2 + 2 + t2)

u2 + 1
,
(u2 + 2 + t2)(tu4 + 2tu2 + t+ u2t4 + 2u2t2 + u2)

(t2 + 1)(u2 + 1)2
, u2 + 2 + t2

)
.
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4.3 Two augmented ruled surfaces and moving reference point

Let F and G be two augmented ruled surfaces, represented by the respective parametriza-
tions f(u, v) = T1(u, v)̃f(u, v) and g(s, t) = T2(s, t)g̃(s, t), where f̃(u, v) = a(u) + vb(u) and

g̃(s, t) = c(s) + td(s). Let F̃ and G̃ the ruled surfaces given by f̃ and g̃, respectively. Let
the reference point O be given by the position vector r(p), depending on parameters p in
a rational way.

The planes through O and the lines of F̃ are now given by α(u,p) : (x− r(p)) · n(u) = 0,

with n = a× b. The intersection curves a(u,p) = G̃ ∩ α(u,p) are determined by

A(s, t;u,p) = (c(s) + td(s)− r(p)) · n(u) = 0.

This equation can directly be solved for t by,

t(s, u,p) =
(r(p)− c(s)) · n(u)

d(s) · n(u)
. (22)

Substituting t(s, u,p) into g̃(s, t) yields a reparametrization g̃(s, u,p) with the property

that det(g̃(s, u,p), f̃(u, v), r(p)) = 0.

Thus the system (1−λ)r(p) +λg̃(s, u,p) = a(u) + vb(u) has a rational solution λ(s, u,p),
v(s, u,p). Finally the family of cissoids C(p) = F �G with respect to the moving reference
point O = r(p) is parametrized by

c(s, u,p) = g(s, t(s, u,p)) + T1(u, v(s, u,p))λ(s, u,p)(g̃(s, u,p)− r(p)).

Corollary 14 The family of cissoid surfaces C(p) = F � G of two augmented rational
ruled surfaces F and G with respect to the rationally moving reference point O = r(p),
consists of rational surfaces, with rational dependency on the parameters p.
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de Alcalá in the frame of the project Giner de los Rios.

15



References

[1] Albano, A. and Roggero, M., 2010. Conchoidal transform of two plane curves, Appli-
cable Algebra in Engineering, Communication and Computing, Vol.21, No.4, 309–328.

[2] Arrondo, E., Sendra, J., Sendra, J.R., 1997. Parametric Generalized Offsets to Hyper-
surfaces. Journal of Symbolic Computation 23, 267–285.

[3] Baker, H.F., 1925. Principles of geometry, Vol 4, Higher Geometry, Cambridge
Univ. Press, New York.

[4] Coffman, A., Schwartz, A. J. and Stanton, C. M., 1996. The algebra and geometry of
Steiner and other quadratically parametrizable surfaces, Computer Aided Geometric
Design 13, 257-286.

[5] Degen, W. L. F., 1996. The types of triangular Bezier surfaces, in: G.Mullineux, ed.,
The Mathematics of Surfaces VI , 153170, Oxford University Press.

[6] K. Fujimura, E. Kuo. Shape Reconstruction from Contours Using Isotopic Defor-
mation. Graphical Models and Image Processing, Volume 61, Issue 3, 1999, Pages
127–147.

[7] Gruber D., Peternell M., 2013. Conchoid surfaces of quadrics. Journal of Symbolic
Computation 59, 36–53.

[8] Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K.
Peters, Ltd. Natick, MA, USA (1993)
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