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Perturbation of polynomials and

applications to the Hough transform ∗

M. Torrente, M.C. Beltrametti and J.R. Sendra

Abstract

Let f and g be complex polynomials of the same degree. We provide a new
lower bound on the Euclidean distance of points belonging to their zero-loci in terms
of Bombieri’s norm. We also present a minimization of the Bombieri’s norm of the
difference g−λf , for λ ∈ C∗ . In the real case, we apply the results above in the setting
of the Hough transform, a standard technique to detect curves in images, suggesting
a Bombieri’s norm based recognition algorithm.

Introduction

Let’s start briefly describing the applied idea from which the paper grew up. Image analysis
nowadays can be performed by a validated method (see [2, 14]) based on a generalization
of the Hough transform technique, a standard pattern recognition method to detect curves
in images. According to the original definition [7], given a point p = (xp, yp) in the image
plane A2

(x,y)(R) satisfying the equation of a straight line

y = ax+ b, (1)

with a, b independent real parameters, the Hough transform of p, with respect to the
family of lines F = {`a,b : y = ax+ b}, is the straight line

yp = Axp +B, (2)

in the parameter plane A2
(A,B)(R). The usual point-line duality of projective plane implies

that all points of the line (1) have as Hough transforms lines in the parameter plane that
all intersect in the unique point (a, b) uniquely identifying the original straight line. This
duality correspondence between the image and the parameters planes holds not only for the
family of straight lines, but also for several families of algebraic curves (see equation (11)).

A key result (see [2, Lemma 2.3] and also [15, Section 2]) characterizes those families F
for which the following general Hough-type correspondence between the image space and
the parameter space holds true: each point p of a curve from the family in the image space
is transformed into a curve Γp(F) in the parameter space in such a way that all curves
Γp(F) meet in one and only one point uniquely identifying the original curve in the image
space.
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Such a key result in [2] theoretically supports the formulation of a novel, rather general
and effective pattern recognition algorithm. The basic ingredient of this algorithm is
the construction of a catalogue of families of algebraic plane curves satisfying the above
conditions. A pre-processing step of the algorithm consists of the application of a standard
edge detection technique on the image. This step reduces the number of points of which one
has to compute the Hough transform and, furthermore, eliminates the degree of freedom
represented by the grey level in the image out of the game of the recognition task. Then
a discretization of the parameter space is required, which possibly exploits bounds on
the parameter values computed by utilizing either the cartesian or the parametric form
of the curve in the image space. A last step constructs the accumulator function in the
discretized parameter space, such that the value of the accumulator in a cell of such space
corresponds to the number of the Hough transforms of the selected points crossing that
cell. As a final outcome of the algorithm, the parameter values characterizing the curve,
to be detected in the image space, corresponds to the parameter values identifying the cell
where the accumulator function reaches its maximum.

Practical experimentation yields the following question, somehow underlying the whole
recognition process.

In the Hough transform technique, taking different values of the discretization
step, say δ, may imply very different answers. Are there methods to estimate
or bound the quantity δ with respect to a given context?

According to our knowledge, there are no general results in this direction, the choice
of δ being done by ad hoc arguments depending on geometrical properties of the curves
from the particular family one deals with. A novelty of the present paper is to address the
above question from an algebraic geometric method based on perturbation results on the
zero-locus of a polynomial and the behaviour of Bombieri’s norm, ideally following results
and methods as in [20] and [21].

The paper is organized as follows. Let P = C[x1, . . . , xn] be the polynomial ring over
the complex field. In Section 2, for polynomials f, g ∈ P , with the same degree, we
address the question to determine the value of λ ∈ C \ {0} which minimizes the Bombieri
norm ‖g − λf‖(deg(g−λf)) (see Theorem 2.1, a main result of the paper). This question
naturally comes from the results of [21] and, specifically, allows us to refine the bound for
the Euclidean distance ‖q − p‖2 where p ∈ AnC is a real point of f = 0 and q ∈ AnC is a
point belonging to g = 0. In this way, we improve [21, Theorem 3.4] for f, g ∈ P , restating
as well the result in the real case (see Theorem 2.2).

Section 3 is devoted to state perturbation results on the zero-locus of a polynomial,
which can be considered as reverse type results of [21] (see, in particular, Theorem 4.1 loc.
cit.) More precisely, we provide a new lower bound on the Euclidean distance of points
belonging to the zero-loci of complex multivariate degree d polynomials f and g in terms
of Bombieri’s norm ‖g − f‖(d′), with d′ = deg(g − f) ≤ d.

In Section 4 we recall the Hough transform technique elements we need to suggest
an application of our Bombieri’s norm based result to pattern recognition setting, with
particular regard to the Hough-type duality correspondence between the image space and
the parameter space.

In Section 5 we specialize [21, Lemma 3.3 and Theorem 3.4] (Theorem 1.4 in the
paper) to the case when the polynomials f , g are the defining polynomials of the Hough
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transforms of two (general) points of the image space. This allows us to propose a heuristic
suggestion to lower bound the discretization step δ, as described in Algorithm 5.12.

In Section 6 we describe a Bombieri’s norm based recognition algorithm, providing
examples which validate our results, also using the minimization results from Section 2 as
well as the lower bounds for the discretization step suggested in Section 5.

We would like to thank the anonymous referee for helpful comments.

1 Background material

We follow standard notation in algebraic geometry, in particular, we keep those as in
[19, 20, 21]. Let P = C[x1, . . . , xn] be the polynomial ring over the complex field. First,
recall that, for polynomials f , g in P , the inner product 〈f, g〉 is the scalar product 〈f, g〉 =
vf · vg, where vf , vg are the coefficient vectors of f , g, respectively. We also use the 2-
norm of a polynomial f , defined as ‖f‖2 := ‖vf‖2. Bombieri–Weyl’s norm on the space
of polynomials is defined as follows (see [1]).

Definition 1.1 Let F =
∑
|α|=d cαx

α0
0 . . . xαnn and G =

∑
|α|=d c

′
αx

α0
0 . . . xαnn be two ho-

mogeneous polynomials of P of degree d. Then the Bombieri scalar product of F and G
is defined as

(F,G)(d) =
∑
|α|=d

α0! . . . αn!

d!
cαc′α,

where “ · ” denotes the conjugate of complex numbers.
Such a scalar product induces an inner product on the linear space of all the de-

gree d homogeneous polynomials of P . We can then consider the canonically associated
Bombieri’s norm, defined as

‖F‖(d) =

∑
|α|=d

α0! . . . αn!

d!
|cα|2

1/2

.

Moreover, for degree d polynomials f and g of P , the Bombieri scalar product of f and g
is defined as Bombieri’s scalar product of the homogenization of f and g, that is,

(f, g)(d) = (fhom, ghom)(d).

And the Bombieri norm of f is defined as the Bombieri norm of the homogenization of f ,
that is,

‖f‖(d) = ‖fhom‖(d).

Let us stress the fact that in Bombieri’s scalar product the polynomials must be of the
same degree d (or considered so) and that the scalar product depends on d.

Let us recall the definition of some norms we need. For m, n positive integers, we let
Matm×n(R) be the set of m× n matrices with entries in R. For any M ∈ Matm×n(R), we
will denote by MT its transpose.

3



Definition 1.2 Let v be an element of Matn×1(R) and let r ≥ 1 be a real number. Set
vT := (v1, . . . , vn). The r-norm1 of v is defined by

‖v‖r :=

(
n∑
i=1

|vi|r
) 1

r

.

In particular, if r = 1, we get the expression ‖v‖1 =
∑n

i=1 |vi|. If r = 2 we get the well-

known Euclidean norm ‖v‖2 =
(∑n

i=1 |vi|2
)1/2

. While, if r → ∞, the r-norm approaches
the ∞-norm defined by ‖v‖∞ := maxi=1,...,n

{
|vi|
}
.

Definition 1.3 Let M = (mij) be a matrix in Matm×n(R). The r-matrix norm is the
norm on Matm×n(R) induced by the r-norm on Matn×1(R), and defined by the formula

‖M‖r := max
‖v‖r=1

‖Mv‖r,

where v ∈ Matn×1(R). In particular, one has ‖M‖1 = maxj=1,...,n

{∑
i=1,...,m |mij |

}
for r = 1. If r = 2, denoting by λj(·) the j-th eigenvalue, we have ‖M‖2 =(

maxj=1,...,n λj(M
TM)

)1/2
. Moreover, for any vector w ∈ Mat1×n(R), one has

‖w‖1 = ‖wT ‖∞.

The following result is somehow the starting point of the paper (see [21, Lemma 3.3.
and Theorem 3.4]).

Theorem 1.4 Let f and g be polynomials of P of degree d and let d′ = deg(g − f) ≤ d.
Let p ∈ AnC be a real point of f = 0 of multiplicity s ≥ 1 such that ∂sg

∂xsi
(p) 6= 0 for some

index i. Then there exists a point q ∈ AnC belonging to g = 0 such that:

1. ‖q − p‖2 ≤

 d!

(d− s)!
(1 + ‖p‖22)d/2∥∥( ∂sg

∂xs1
(p), . . . , ∂

sg
∂xsn

(p)
)∥∥

1

1/s

‖g − f‖1/s(d′).

2. If ‖g−f‖(d′) is small enough, namely ‖g−f‖(d′) ≤
(d− s)!

2d!

∥∥(∂sf
∂xs1

(p), . . . , ∂
sf
∂xsn

(p)
)∥∥

1

(1 + ‖p‖22)
d−s

2

,

then

‖q − p‖2 ≤

 2d!

(d− s)!
(1 + ‖p‖22)d/2∥∥(∂sf

∂xs1
(p), . . . , ∂

sf
∂xsn

(p)
)∥∥

1

1/s

‖g − f‖1/s(d′).

We also use several times the following results.

I. Bombieri’s scalar product property, [21, Lemma 2.5]. Let f ∈ P be a polynomial of
degree d and let p = (p1, . . . , pn) ∈ AnC. Then

f(p) = (f, (1 + p1x1 + · · ·+ pnxn)d)(d). (3)

To simplify the notation, for p = (p1, . . . , pn) ∈ AnC, we will denote by hp the poly-

nomial (1 + p1x1 + · · ·+ pnxn)d. We recall that ‖hp‖(d) = (1 + ‖p‖22)
d
2 .

1We will only use matrix norms; however, let us mention that in the literature one also refers to this
norm as the “r-norm of the vector (v1, . . . , vn) in Rn”.
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II. Equivalence of norms, [1]. Let f ∈ P be a polynomial of degree d. Thus,( 1

d!

) 1
2 ‖f‖2 ≤ ‖f‖(d) ≤ ‖f‖2. (4)

III. Non-crossing area criterion, [19, Section 3]. Let g = g(x) be a real polynomial

of P . Following the standard notation, we denote by Jacg(x) :=
(
∂g
∂x1

, . . . , ∂g
∂xn

)
the

Jacobian (or gradient) of g, and by Hg(x) :=
(

∂2g
∂xi∂xj

)
i,j=1,...,n

the n× n symmetric

Hessian matrix of g, x = (x1, . . . , xn).

Let p ∈ AnC and fix a real number 0 < R� 1. We then have that, whenever

|g(p)| > ‖Jacg(p)‖2R+
1

2
‖Hg(p)‖2R2,

and neglecting contributions of order O(R3), the locus of equation g = 0 does not
cross

C(p) = {x ∈ Rn | ‖(x− p)T ‖2 ≤ R},

the (‖ ‖2, R)-unit ball of radius R centered at p.

2 A minimization of Bombieri’s norm

First, let us note that Bombieri’s norm is defined for polynomials f but it may be thought
to be used for hypersurfaces. This leads to a possible confusion, that is, if a point p satisfies
f = 0 it also satisfies kf = 0 with k ∈ C∗, but ||kf ||deg(f) = |k|||f ||deg(f). To this purpose,
let’s observe that whenever we consider hypersurfaces f = 0, we are indeed thinking to
pairs (f, V (f)).

In this section we refine the bound for the quantity ‖q − p‖2 given by Theorem 1.4.
For this purpose, let Φ ∈ P be a polynomial and p a point of multiplicity s such that not
all partial derivatives ∂sΦ

∂xsi
(p) are zero. Then, we introduce the quantity

α(p,Φ, s) =

(
deg(Φ)!

(deg(Φ)− s)!
(1 + ‖p‖22)deg(Φ)/2∥∥(∂sΦ
∂xs1

(p), . . . , ∂
sΦ
∂xsn

(p)
)∥∥

1

)1/s

.

We observe that, for λ ∈ C \ {0}

α(p, λΦ, s) =
1

s
√
|λ|
α(p,Φ, s). (5)

In this situation, the claims in Theorem 1.4 can be rephrased as

1. ‖q − p‖2 ≤ α(p, g, s) ‖g − f‖1/s(d′).

2. ‖q − p‖2 ≤ s
√

2α(p, f, s) ‖g − f‖1/s(d′), under the assumption that

‖g − f‖1/s(d′) ≤
√

1 + ‖p‖22
s
√

2α(p, f, s)
.
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Now, since f and g are defining polynomials of a variety, we may consider for our purposes
the product of them with any scalar. So, if in the previous inequalities we consider λg and
µf instead of f and g, with λ, µ ∈ C \ {0}, we get

1. ‖q − p‖2 ≤ α(p, λg, s) ‖λg − µf‖1/s(d′) = α(p, g, s)
∥∥g − µ

λf
∥∥1/s

(d′)
.

2. ‖q − p‖2 ≤ s
√

2α(p, µf, s) ‖λg − µf‖1/s(d′) = s
√

2α(p, f, s)
∥∥∥λµg − f∥∥∥1/s

(d′)
, under the as-

sumption that
∥∥∥λµg − f∥∥∥1/s

(d′)
≤
√

1 + ‖p‖22
s
√

2α(p, f, s)
.

Thus, the following natural question arises:

For Φ, Ψ ∈ P , with the same degree d, what is the value of λ ∈ C \ {0}
minimizing ‖Φ− λΨ‖(deg(Φ−λΨ))?

The following theorem answers the question.

Theorem 2.1 Let Φ,Ψ ∈ P with the same degree d and let Φd,Ψd be the homogeneous
forms of maximum degree of Φ and Ψ, respectively.

1. Let Φd/Ψd 6∈ C. Then

min
λ∈C∗

{
‖Φ− λΨ‖(d)

}
=

∥∥∥∥∥Φ−
(Φ,Ψ)(d)

‖Ψ‖2(d)

Ψ

∥∥∥∥∥
(d)

.

2. Let Φd/Ψd ∈ C, d∗ = deg

(
Φ− (Φ,Ψ)(d)

‖Ψ‖2
(d)

Ψ

)
and d∗∗ = deg

(
Φ− Φd

Ψd
Ψ
)

. Then

min
λ∈C∗

{
‖Φ− λΨ‖(deg(Φ−λΨ))

}
= min


∥∥∥∥∥Φ−

(Φ,Ψ)(d)

‖Ψ‖2(d)

Ψ

∥∥∥∥∥
(d∗)

,

∥∥∥∥Φ− Φd

Ψd
Ψ

∥∥∥∥
(d∗∗)

 .

Proof. Set Ψ =
∑

i ∈ Zn≥0, |i| ≤ d
aix

i and Φ =
∑

i ∈ Zn≥0, |i| ≤ d
bix

i, where i =

(i1, . . . , in), |i| =
∑n

j=1 ij , x = (x1, . . . , xn), and xi =
∏n
j=1 x

ij
j . We observe that the

degree of Φ− λΨ may drop if and only if the quotient of maximum homogeneous form of
Φ and Ψ is constant. Then there exists λ ∈ C∗ such that deg(Φ− λΨ) < d if and only if
Φd/Ψd ∈ C.

We consider the polynomial h := Φ − ZΨ, where Z is a new variable. We optimize
B(Z) := ‖h‖2(d) with Z 6= Φd/Ψd whenever Φd/Ψd ∈ C. That is,

B(Z) =
∑

i∈Zn≥0,|i|≤d

(d− |i|)! i!

d!
|bi − aiZ|2 .

Set Z = X + iY , where X, Y are real variables. Then,

B(X,Y ) =
∑

i∈Zn≥0,|i|≤d

(d− |i|)! i!

d!

(
|ai|2 (X2 + Y 2) + |bi|2 − 2Re(aibi)X + 2Im(aibi)Y

)
= ‖Ψ‖2(d)(X

2 + Y 2) + ‖Φ‖2(d) − 2XRe((Ψ,Φ)(d)) + 2Y Im((Ψ,Φ)(d)).
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Therefore,

JacB(X,Y ) =
(

2‖Ψ‖2(d)X − 2Re((Ψ,Φ)(d)), 2‖Ψ‖2(d)Y + 2Im((Ψ,Φ)(d))
)

and the Hessian matrix of B is

HB =

(
2‖Ψ‖2(d) 0

0 2‖Ψ‖2(d)

)
.

Thus, B(Z) reaches its minimum at

Z∗ =
Re((Ψ,Φ)(d))

‖Ψ‖2(d)

−
Im((Ψ,Φ)(d))

‖Ψ‖2(d)

i =
(Ψ,Φ)(d)

‖Ψ‖2(d)

=
(Φ,Ψ)(d)

‖Ψ‖2(d)

,

where the last two equalities follow recalling that (Ψ,Φ)(d) =
∑

i
(d−|i|)!|i|!

d! aibi. Q.E.D.

Noting that for real polynomials one has (g, f)(d) = (f, g)(d), Theorem 1.4 can be
restated as follows.

Theorem 2.2 Let f and g be real polynomials of P of degree d, let Fd and Gd be their
homogeneous forms of maximum degree d and let d′ = deg(g − f) ≤ d. Let p ∈ AnC be a

real point of f = 0 of multiplicity s ≥ 1 such that ∂sg
∂xsi

(p) 6= 0 for some index i. Then there

exists a point q ∈ AnC belonging to g = 0 such that the following holds true.

1. Let Gd/Fd 6∈ R. Then

1.1. ‖q − p‖2 ≤ α(p, g, s)

∥∥∥∥∥g − (f, g)(d)

‖f‖2(d)

f

∥∥∥∥∥
1
s

(d)

.

1.2. If

∥∥∥∥∥ (f, g)(d)

‖g‖2(d)

g − f

∥∥∥∥∥
1
s

(d)

≤
√

1 + ‖p‖22
s
√

2α(p, f, s)
, then

‖q − p‖2 ≤ s
√

2α(p, f, s)

∥∥∥∥∥ (f, g)(d)

‖g‖2(d)

g − f

∥∥∥∥∥
1/s

(d)

.

2. Let Gd/Fd ∈ R, d∗ = deg

(
g −

(f, g)(d)

‖f‖2(d)

f

)
, and d∗∗ = deg

(
g − Gd

Fd
f
)

. Then

2.1. ‖q − p‖2 ≤ α(p, g, s) min


∥∥∥∥∥g − (f, g)(d)

‖f‖2(d)

f

∥∥∥∥∥
1
s

(d∗)

,

∥∥∥∥g − Gd
Fd
f

∥∥∥∥ 1
s

(d∗∗)

.

2.2. If

∥∥∥∥∥ (f, g)(d)

‖g‖2(d)

g − f

∥∥∥∥∥
1
s

(d∗)

≤
√

1 + ‖p‖22
s
√

2α(p, f, s)
, then

‖q − p‖2 ≤ s
√

2α(p, f, s) min


∥∥∥∥∥(f, g)(d)

‖g‖2(d)

g − f

∥∥∥∥∥
1
s

(d∗)

,

∥∥∥∥FdGd g − f
∥∥∥∥ 1
s

(d∗∗)

 .
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A natural question would be to analyze the relationship between the bounds provided
by Theorem 2.2 and  Lojasiewicz inequality (see [12, Theorem 1.7] and [10]), or try to use
them to get estimations on the constants appearing in  Lojasiewicz inequality. Nevertheless,
we have not investigate yet in this direction, leaving the topic for future work. We thank
the referee for calling our attention to  Lojasiewicz results.

The following examples highlight the improvement given by Theorem 2.2.

Example 2.3 Let f = x+ y + 1 and g = 1.1x+ y + 0.9. Then G1/F1 6∈ C, so that

min
λ∈C∗

{
‖g − λf‖(deg(g−λf))

}
=

∥∥∥∥∥g −
(

(f, g)(1)

‖f‖2(1)

)
f

∥∥∥∥∥
(1)

= ‖g − f‖(1) = 0.1414213.

Example 2.4 Let g = x2 + x+ y + 3 and f = 2x2 + 2x+ 1. G2/F2 = 1/2 ∈ C. So,

min
λ∈C∗

{
‖g − λf‖(deg(g−λf))

}
= min


∥∥∥∥∥g − (f, g)(2)

‖f‖2(2)

f

∥∥∥∥∥
(2)

,

∥∥∥∥g − G2

F2
f

∥∥∥∥
(1)


= min

{∥∥∥∥g − 6

7
f

∥∥∥∥
(2)

,

∥∥∥∥g − 1

2
f

∥∥∥∥
(1)

}
= min

{√
29

4
,

√
287

49

}
≈ min{2.69, 2.42} = 2.42.

This quantity is slightly better than the norm value ‖g − f‖(2) =
√

6 ≈ 2.45 as in Theo-
rem 2.2(1).

Example 2.5 Let g = x2 + x+ y + 1 and f = x2 + 2x+ 3y + 3. Then, G2/F2 = 1. So,

min
λ∈C∗

{
‖g − λf‖(deg(g−λf))

}
= min


∥∥∥∥∥g − (f, g)(2)

‖f‖2(2)

f

∥∥∥∥∥
(2)

,

∥∥∥∥g − G2

F2
f

∥∥∥∥
(1)


= min

{∥∥∥∥g − 13

33
f

∥∥∥∥
(2)

, ‖g − f‖(1)

}

= min

{√
1914

66
, 3

}
≈ min{0.66, 3} = 0.66.

This quantity is now definitely better than the norm value ‖g − f‖(1) = 3.

3 Lower bounds for distance of points

This section is devoted to state perturbation results on the zero-locus of a polynomial,
which can be considered as reverse type results of Theorem 1.4 (see [21, Lemma 3.3 and
Theorem 3.4]). In particular, we provide a new lower bound on the Euclidean distance of
points belonging to the zero-loci of complex multivariate degree d polynomials f and g in
terms of Bombieri’s norm ‖g − f‖(d′), with d′ = deg(g − f) ≤ d.

Let’s summarize some notation we use throughout this section.
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• f and g are real polynomials of P of degree d ≥ 2.
Note that we have excluded hyperplanes, and this is not a loss of generality. Indeed,
let f, g be real polynomials of degree 1. Let p be a real point of f = 0. Then, the
distance of p to g = 0 is

|g(p)|
‖Jacg(p)‖2

. (6)

So, for every R smaller than the quantity above, each real point q ∈ AnC belonging
to g = 0 satisfies the condition ‖q − p‖2 ≥ R.

• Set d′ := deg(g − f).

• p = (p1, . . . , pn) ∈ AnC is a real smooth point of f = 0, and g(p) 6= 0.

• UJ , UH are (positive) upper bounds of ‖Jacg(p)‖2 and ‖Hg(p)‖2, respectively.

• Lg is a (positive) lower bound of |g(p)|.

• R is real number such that 0 < R� 1.

The following result makes use of arguments from [19, Section 3] and [21, Section 3],
from where we take the notation.

Theorem 3.1 Notation as above.

1. If ‖Hg(p)‖2 6= 0, that is, ∂2g
∂xi∂xj

(p) 6= 0 for some pair (i, j) of indices, and

R <
−UJ +

√
U2
J + 2UHLg

UH
, (7)

then, up to an error of O(R3),2 each real point q ∈ AnC belonging to g = 0 satisfies
the condition ‖q − p‖2 ≥ R.

2. If ‖Hg(p)‖2 = 0, ‖Jacg(p)‖2 6= 0, and

R <
Lg
UJ

,

then, up to an error of O(R3), each real point q ∈ AnC belonging to g = 0 satisfies
the condition ‖q − p‖2 ≥ R.

Proof. From (7), and using that UH > 0, we get that

|g(p)| ≥ Lg >
1

2
UHR

2 + UJR.

Therefore, using that UJ , UH are upper bounds, we get that

|g(p)| > 1

2
‖Hg(p)‖2R2 + ‖Jacg(p)‖2R. (8)

2We recall that, given a real value η � 1 and a real function ω : Rn → R, we write ω(x) = O(ηm),

m ∈ N, to mean that ω(x)
ηm

is bounded near the origin.
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Thus, from §1, property III, we get that the hypersurface of equation g = 0 does not
cross C(p), the (‖ ‖2, R)-unit ball of radius R centered at p, neglecting contributions of
order O(R3). This is just to say that each real point q ∈ AnC belonging to g = 0 satisfies
the condition ‖q − p‖2 ≥ R, which proves statement 1). The same argument, by using
equation (8) again, yields statement 2). Q.E.D.

Remark 3.2 We observe that if, instead of working with f , g, we take g∗ = λg with λ ∈
R \ {0}, then |g∗(p)| = |λ| |g(p)|, ‖Jacg∗(p)‖2 = |λ| ‖Jacg(p)‖2, ‖Hg∗(p)‖2 = |λ| ‖Hg(p)‖2.
Therefore, if Lg∗ , UJ∗ , UH∗ denote the corresponding bounds associated to g∗, then they
can be taken as Lg∗ = |λ| Lg, UJ∗ = |λ| UJ , UH∗ = |λ| UH . Thus, the bound for R given
in (7) will not depend on the defining polynomial g that we take. �

Theorem 3.1 provides a lower bound R for the distance between p and the (real)
variety defined by g = 0. R depends on the upper bound in (7) that varies depending
on the bounds Lg, UJ , UH . Clearly, Lg, UJ , UH can be taken as Lg = |g(p)|, UJ =
‖Jacg(p)‖2, UH = ‖Hg(p)‖2. However, in some cases, g is given as a perturbation of f , and
hence its exact coefficients are not known. In this case, the bounds Lg, UJ , UH are required.
Additionally, the question on what is the best election of these bounds appears. Because
of the geometric interpretation of R, the best option for R appears when maximizing its
upper bound in (7). This is studied in the next lemma. For this purpose, we introduce
the following real function. Let Ω = [a1, |g(p)| ]× [ ‖Jacg(p)‖2,+∞)× [ ‖Hg(p)‖2,∞) and

B : Ω −→ R

(x, y, z) 7−→ −y+
√
y2+2zx
z ,

where we assume that a1 > 0 and |g(p)| |Jacg(p)‖2 ‖Hg(p)‖2 6= 0.

Lemma 3.3 Notation as above. Let Σ := [a1, a2]×[b1, b2]×[c1, c2] ⊂ Ω. Then the absolute
maximum of B in Σ is at (a2, b1, c1).

Proof. Since ∂B
∂x = 1/

√
2xz + y2 does not vanishes at Σ, the absolute maximum has to

be on the faces of the cube Σ. Analyzing the faces one deduces that the only candidates
to absolute extrema are the eight vertices of Σ. For i, j, k ∈ {1, 2}, let

Ba,j,k(t) = B(`a(t), bj , ck) where `a(t) = ta2 + (1− t)a1 with t ∈ [0, 1]
Bi,b,k(t) = B(ai, `b(t), ck) where `b(t) = tb2 + (1− t)b1 with t ∈ [0, 1]

be the restrictions of B to the edges [a1, a2] × {bj} × {ck} and {ai} × [b1, b2] × {ck},
respectively. For t ∈ [0, 1] we get

dBa,j,k
dt

=
`
′
a(t)√

2ck`a(t) + b2j

=
a2 − a1√

2ck`a(t) + b2j

> 0,

dBi,b,k
dt

=
`
′
b(t)(`b(t)−

√
2ckai + `b(t)2)√

2ckai + `b(t)2ck
=

(b2 − b1)(`b(t)−
√

2ckai + `b(t)2)√
2ckai + `b(t)2ck

< 0.

Therefore, Ba,j,k(t) is an increasing function and Bi,b,k(t) is a decreasing function. Let us
see that B(a2, b1, c1) is the maximum of B in Σ. Indeed,

B(a2, b2, ck) = B2,b,k(1) < B2,b,k(0) = B(a2, b1, ck)
B(a1, b2, ck) = B1,b,k(1) < B1,b,k(0) = B(a1, b1, ck)
B(a1, b1, ck) = Ba,1,k(0) < Ba,1,k(1) = B(a2, b1, ck).
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So,
max{B(ai, bj , ck)}i,j,k∈{1,2} = max{B(a2, b1, c1), B(a2, b1, c2)}.

On the other hand, let us consider C(z) = B(a2, b1, z). We observe that dC
dz (z) is contin-

uous in R+, it does not vanish at R+ and

dC

dz
(b21/a2) =

1

3

(
√

3− 2)
√

3a2
2

b31
< 0.

Since b21/a2 > 0, then C(z) is a decreasing function in R+. Thus,

max{B(a2, b1, c1), B(a2, b1, c2)} = B(a2, b1, c1).

Q.E.D.

Corollary 3.4 The best choice in Theorem 3.1 is

(Lg, UJ , UH) = (|g(p)|, ‖Jacg(p)‖2, ‖Hg(p)‖2).

Proof. If ‖Hg(p)‖2 6= 0, and ‖Jacg(p)‖2 6= 0, the result follows from Lemma 3.3. If
‖Hg(p)‖2 6= 0, and ‖Jacg(p)‖2 = 0, the upper bound is

√
2Lg/UH , and if ‖Hg(p)‖2 = 0,

and ‖Jacg(p)‖2 6= 0, the upper bound is Lg/UJ . In both cases the result is obvious. Q.E.D.

The following examples illustrate Theorem 3.1.

Example 3.5 Let f(x, y) = x3 + y3 − xy, let p = (1
2 ,

1
2) and let g(x, y) = f(x, y) + 1

100 .
Obviously, we have g − f = 1

100 and d′ = 0 < 3 = d. Furthermore, g(p) = 1
100 . We apply

Theorem 3.1, taking Lg = |g(p)|, UJ = ‖Jacg(p)‖2 and UH = ‖Hg(p)‖2. Then, the bound
provided by (7) is

−‖Jacg(p)‖2 +
√
‖Jacg(p)‖22 + 2‖Hg(p)‖2|g(p)|
‖Hg(p)‖2

≈ 0.0248,

as computed below. So, we can take R = 0.024. Theorem 3.1 ensures that for each real
point q belonging to g = 0 it holds that (up to an error of O(R3))

‖q − p‖2 > 0.024.

On the other hand, the real point of g = 0 closest to p is p′ ≈ (0.478, 0.478), whose distance
from p is approximately 0.031, that is, about the approximate lower bound found above.
Indeed, direct computations give

Jacg(p) =
(

(3x2 − y, 3y2 − x)(p)
)

=
(1

4
,
1

4

)
, so that ‖Jacg(p)‖2 =

√
2

4
.

Moreover,

Hg(p) =

(
3 −1
−1 3

)
, whence ‖Hg(p)‖2 = 4.

Thus, the right-hand side of inequality (7) becomes

−
√

2
4 +

√
1
8 + 2× 4× 1

100

4
≈ 0.0248� 1.
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To compute the distance 0.031 from p to g = 0 we look at the real solution of the system
(via Lagrange multipliers)

2
(
x− 1

2

)
+ µ(3x2 − y) = 2

(
y − 1

2

)
+ µ(3y2 − x) = x3 + y3 − xy +

1

100
= 0.

Next, consider a smaller perturbation, g(x, y) = f(x, y)+ 1
1000 , so that now g(p) = 1

1000 ,
and the bound provided by Theorem 3.1 becomes

−‖Jacg(p)‖2 +
√
‖Jacg(p)‖22 + 2‖Hg(p)‖2|g(p)|
‖Hg(p)‖2

≈ 0.002784.

Therefore, we can take R = 0.0027. On the other hand, the minimum distance of p from
g = 0 is approximately 0.002851, that is about the approximate bound 0.0027 found above.

Example 3.6 Let f(x, y) = x3 + y3 − xy, and p = (1
2 ,

1
2). Let g be a perturbation of

f of the form g(x, y, ε) = f(x, y) + ε(x + y + 1). Then, we can take Lg = |g(p)| = 2ε,
UJ = ‖Jacg(p)‖2 = 1

4

√
2(4ε + 1) and UH = ‖Hg(p)‖2 = 4. Then, the bound (say B(ε))

provided in (7) is

B(ε) = −
√

2

16
(4ε+ 1) +

1

16

√
32ε2 + 272ε+ 2.

Let us consider that ε varies as 0.01 ≤ ε ≤ 0.1. Since B(ε) is an increasing function for
ε ≥ 0, we have that

0.0442 ≈ B(0.01) ≤ B(ε) ≤ B(0.1) ≈ 0.2016.

Therefore, in the Euclidean ball centered at p and radius R = 0.0442 there is (up to an error
of O(R3)) no real point of the curves {g(x, y, ε) = 0}ε∈[0.01,0.1]. In Figure 1 we plot the curve

f = 0, the ball centered at p and the curves {g(x, y, ε) = 0 | ε = 0.01 + i×0.09
40 , 0 ≤ i ≤ 40}.

Figure 1: Curve f(x, y) = 0 (red), ball centered at p, and curves {g(x, y, ε) = 0 | ε = 0.01+ i×0.09
40 ,

0 ≤ i ≤ 40} (blue)
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4 The Hough transform setting

Most of the results in this section hold over an infinite integral ring K (see [8, Section 28]).
However, let us restrict to the classical cases where either K = R, or K = C, the fields of
real or complex numbers respectively.

For every t-tuples of independent parameters λ := (λ1, . . . , λt), varying in an Euclidean
open set U ⊆ Kt, and indeterminates x, y, let

fλ(x, y) =

ρ∑
i,j=0

xiyjgij(λ1, . . . , λt), i+ j ≤ ρ, (9)

be a family G of non-constant irreducible polynomials in K[x, y], of a given degree ρ
(not depending on λ), whose coefficients gij(λ) are evaluations in the parameters λ =
(λ1, . . . , λt) of polynomials gij(Λ) ∈ K[Λ] in new variables Λ = (Λ1, . . . ,Λt). Let F be
the corresponding family of the zero-loci Cλ, and let assume that Cλ is a curve in the
affine plane A2

(x,y)(K), for each λ (of course, this is always the case if K = C). Clearly, if
K = C, the curves are irreducible, that is, they consist of a single component, since the
polynomials of the family G are assumed to be irreducible in K[x, y]. If K = R, the case
of interest in the applications, we assume that Cλ is an irreducible real curve, that is, an
irreducible curve over C with infinitely many points in the affine plane A2

(x,y)(R) (see also

[18, Chapter 7]). However, such a real curve may contain a finite set of isolated points; to
this purpose, see also [15, Remark 1.4]. So, we want F to be a family of real irreducible
curves (with possibly a finite set of isolated points) which share the degree.

Definition 4.1 Let F be a family of curves Cλ as above, and let p = (xp, yp) be a point
in the image space A2

(x,y)(K). Let Γp(F) be the locus defined in the affine t-dimensional

parameter space At(Λ1,...,Λt)
(K) by the polynomial equation

fp(Λ) :=

ρ∑
i,j=0

xipy
j
p gij(Λ1, . . . ,Λt) = 0 (10)

in the indeterminates Λ = (Λ1, . . . ,Λt). We say that Γp(F) is the Hough transform of the
point p with respect to the family F , or, simply, that Γp(F) is the Hough transform of p.

Summarizing, the polynomial family defined by (9) gives rise to a polynomial
F (x, y; Λ1, . . . ,Λt) ∈ K[x, y; Λ1, . . . ,Λt] such that, evaluating at each point λ =
(λ1, . . . , λt) ∈ Kt and at each point p = (xp, yp) ∈ A2

(x,y)(K), we obtain the equations

Cλ : fλ(x, y) = F (x, y;λ1, . . . , λt) = 0 and Γp(F) : fp(Λ) = F (xp, yp; Λ1, . . . ,Λt) = 0

of the curve Cλ and the Hough transform Γp(F), respectively. And, clearly, the “duality
condition”

p ∈ Cλ ⇐⇒ fλ(xp, yp) = 0⇐⇒ fp(λ) = 0⇐⇒ λ ∈ Γp(F) (11)

holds true.
It is convenient to introduce the notion of general points in the Hough sense, as follows.

Rewrite F (x, y; Λ1, . . . ,Λt) as a polynomial in K[x, y][Λ], in the variables Λ’s, that is,

f(x,y)(Λ) :=
∑

(i1...it)∈I

fi1...it(x, y) Λi11 · · ·Λ
it
t , (12)

13



where 0 ≤ i1 + · · · + it ≤ ρ, with ρ := degΛ(f(x,y)(Λ)). We will simplify the notation,
letting i = (i1, . . . , it) and expressing f(x,y)(Λ) as

f(x,y)(Λ) =
∑
i∈I

fi(x, y)Λi. (13)

Of course, there exists a Zariski open set U1 ⊆ A2
(x,y)(K), such that, for each point

p ∈ U1, the Hough transform Γp(F) : fp(Λ) = 0 of p is a zero locus of a polynomial of
degree ρ (not depending on p) in the parameter space. If K = C, clearly such a locus
Γp(F) will be a hypersurface. If K = R, then Γp(F) is (t − 1)-dimensional if and only
if the polynomial fp = fp(Λ) ∈ R[Λ1, . . . ,Λt] has a non-singular zero in λ ∈ Rt, that is,

the gradient
(
∂fp
∂Λ1

(λ), . . . ,
∂fp
∂Λt

(λ)
)
6= 0 (see [4, Theorem 4.5.1] for details and equivalent

conditions). Then, Γp(F) is (t− 1)-dimensional for p varying in an Euclidean open set U2

of A2
(x,y)(K). (To this purpose, see also the more general result [16, Proposition 2.25]).

Based on the argumentation above, we introduce the following affine open set (depend-
ing on F), that we will call the invariance degree open set,

U1 =

{
U1 if K = C
U1 ∩ U2 if K = R.

(14)

All the above justifies the following definition.

Definition 4.2 Notation as above. We say that a point p in the image space is general (in
the Hough sense) if p ∈ U1. That is, if the Hough transform Γp(F) of p is a hypersurface
in the parameter space of a given degree ρ not depending on p.

We refer to the first four sections of [15] for a complete, unified exposition on the
Hough transform technique with respect to families of curves.

5 Lower bounds for the discretization step

As already pointed out, bounding the discretization step is quite critical point in the
recognition algorithm based on the Hough transform technique. This section is devoted
to suggest some ideas on that issue. We keep the notation as in Section 4, and we take
K = R. In particular, we refer to expression (13) for the Hough transform f(x,y)(Λ) of
a point (x, y) varying in the image space A2

(x,y)(R), and let U1 be the invariance degree

open set (see definition (14)) of points p whose Hough transforms Γp(F) are zero loci of
polynomials fp(Λ) ∈ R[Λ] of degree ρ not depending on p.

It seems hard to express in a tractable way (compare with Proposition 5.4) the min-
imalized upper bound as given in Theorem 2.2 when applied in the parameter space to
f = fp(Λ), g = fq(Λ). This is why, in this section, we then limit ourselves to use Theorem
1.4 instead of its improvement given by Theorem 2.2. Indeed the upper bounds as in The-
orem 1.4, when applied to the parameter space, suggest lower bounds for the discretization
step δ (see Proposition 5.6 and Algorithm 5.12). We aim to understand how much the
Hough transform Γp(F) : fp(Λ) = 0 locally varies.

A first rather general result is the following proposition.
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Proposition 5.1 Let F = {Cλ} be a family of real curves. Let p and q be points of U1.
Let Γp(F) : fp(Λ) = 0, Γq(F) : fq(Λ) = 0 be the Hough transforms of p, q, respectively.

Let λ be a smooth point of Γp(F) such that
∂fq(Λ)
∂Λi

(λ) 6= 0 for some index i ∈ {1, . . . , t}.
Then there exists a point λ′ belonging to Γq(F) satisfying the following conditions.

1.

‖λ′ − λ‖2 ≤
ρ (1 + ‖λ‖22)ρ/2∥∥Jacfq(Λ)(λ)

∥∥
1

‖fq(Λ)− fp(Λ)‖(deg(fq(Λ)−fp(Λ)).

2. If ‖fq(Λ)− fp(Λ)‖(deg(fq(Λ)−fp(Λ)) is small enough, namely

‖fq(Λ)− fp(Λ)‖(deg(fq(Λ)−fp(Λ)) ≤
∥∥Jacfp(Λ)(λ)

∥∥
1

2 ρ (1 + ‖λ‖22)
ρ−1

2

,

then

‖λ′ − λ‖2 ≤
2 ρ (1 + ‖λ‖22)ρ/2∥∥Jacfp(Λ)(λ)

∥∥
1

‖fq(Λ)− fp(Λ)‖(deg(fq(Λ)−fp(Λ)).

Proof. It follows from Theorem 1.4 applied to f = fp(Λ) and g = fq(Λ), respectively.
Q.E.D.

Proposition 5.1 provides a local upper bound ‖λ′ − λ‖2 in terms of Bombieri’s norm
‖fq(Λ) − fp(Λ)‖(deg(fp(Λ)−fq(Λ)). Now, we aim to relate this last quantity to the distance
of the points p and q. To this end we need a new “ad hoc” notion of generality in the
Hough sense. For this purpose, we introduce a polynomial associated to f(x,y)(Λ) where
only the terms with non-constant coefficients are considered.

Definition 5.2 Let f =
∑

i∈I fi(x, y)Λi be expressed as in (13). Set J = {i ∈ I | fi(x, y) 6∈
K}. We define the polynomial f∗(x,y)(Λ) :=

∑
i∈J fi(x, y)Λi. We say that a collection of

points S in the image space is in relative general position if for every p, q ∈ S, p 6= q, it
holds that

fi(p) 6= fi(q) for each i ∈ J. (15)

In particular, condition (15) implies that

degΛ(fp(Λ)− fq(Λ)) = degΛ(f∗p (Λ)− f∗q (Λ)) = degΛ(f∗(x,y)(Λ)).

We denote by ρ∗(≤ ρ) the degree of f∗(x,y)(Λ), that is, ρ∗ = degΛ(f∗(x,y)(Λ)).

Definition 5.3 Let f(x,y)(Λ) be expressed as in (13) and let J be as in Definition 5.2. For
each point p in the image space, we define the polynomial

Jf,p(Λ) :=
∑
i∈J

∥∥∥Jacfi(p)
∥∥∥

2
Λi.

We observe that small perturbation of a set of points in relative general position will
generate a set of points still in relative general position. Let us also emphasize the fact
that a given set of points, not in relative general position, can be, via small perturbations,
transformed in a set in relative general position.
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In connection with Definition 5.3, let us consider the affine open set U2 (depending
on F) of the image space defined by

U2 = A2
(x,y)(R)\

⋂
i∈J,|i|=ρ∗

(
{Jacfi(x, y) = 0}

)
= {p ∈ A2

(x,y)(R) | degΛ(Jf,p(Λ)) = ρ∗}. (16)

We let
U := U1 ∩ U2, (17)

where U1 is the invariance degree open set defined in (14).
In addition, from now on through this section, having in mind pixels in the image

space, we consider perturbations of points in norm 1. �

Proposition 5.4 Let F = {Cλ} be a family of real curves. Let p = (xp, yp), q = (xp +
ε1, yp + ε2) be points in the image space A2

(x,y)(R), with q a perturbation of p under a

threshold ε, that is, 0 < |εi| ≤ ε, i = 1, 2. Assume that p ∈ U, q ∈ U1 and that p and q are
in relative general position. Then, up to a an error of O(ε2), one has

‖fq(Λ)− fp(Λ)‖(ρ∗) ≤
√

2 ε ‖Jf,p(Λ)‖(ρ∗).

Proof. According to Definition 1.3 and with clear meaning of the symbols, we have

||qT − pT ||∞ = ‖q − p‖1 = max{|ε1|, |ε2|} ≤ ε.

The Hough transforms of the points p and q are defined by the equations

Γp(F) : fp(Λ) =
∑
i∈I

fi(p) Λi, and Γq(F) : fq(Λ) =
∑
i∈I

fi(q) Λi.

Letting J as in Definition 5.2 and denoting by Λ0 the homogenizing variable in the param-
eter space, we find

fp(Λ)− fq(Λ) =
∑
i∈I

(
fi(p)− fi(q)

)
Λi =

∑
i∈J

(
fi(p)− fi(q)

)
Λi,

and (
fp(Λ)− fq(Λ)

)hom
=
∑
i∈J

(
fi(p)− fi(q)

)
Λi00 Λi11 · · ·Λ

it
t ,

with i0 = ρ∗ − (i1 + · · ·+ it). Thus,∥∥fp(Λ)− fq(Λ)
∥∥2

(ρ∗)
=

∥∥(fp(Λ)− fq(Λ)
)hom∥∥2

(ρ∗)

=
∑
i∈J

i0!i1! . . . it!

ρ∗!

∣∣fi(p)− fi(q)∣∣2. (18)

On the other hand, for each t-tuple i ∈ J, we have∣∣fi(p)− fi(q)∣∣ ≤ |Jacfi(p)(q − p)
T |+ O(‖(qT − pT )‖22).

Therefore, up to an error of O(ε2), we get (by using 2-norm)∣∣fi(p)− fi(q)∣∣2 ≤ ‖Jacfi(p)‖
2
2 ‖qT − pT ‖22

≤ ‖Jacfi(p)‖
2
2

(√
2 ‖qT − pT ‖∞

)2
≤ ‖Jacfi(p)‖

2
2 2ε2. (19)

Now the result follows from Definition 5.3, by combining (18) and (19). Q.E.D.
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Remark 5.5 In the previous result, the bound is given up to an error of O(ε2). This can
be avoided using the following argument. Since we are working with polynomials with
real coefficients, and p, q are points with real coordinates, we can apply the mean value
theorem in the proof of Proposition 5.4. More precisely, we get that, for i ∈ J, there exists
a point ξi in the segment joining p, q such that

∣∣fi(p) − fi(q)∣∣ = |Jacfi(ξi)(q − p)T |. So,∣∣fi(p) − fi(q)∣∣2 ≤ ‖Jacfi(ξi)‖22 ‖qT − pT ‖22. Therefore, by using again equality (18), one
concludes that

‖fq(Λ)− fp(Λ)‖(ρ∗) ≤
√

2 ε max
i∈J

{
max
0<t<1

{
‖Jacfi(q − t(ε1, ε2))‖2

}}∥∥∥∥∥∑
i∈J

Λi

∥∥∥∥∥
(ρ∗)

.

�

The following result provides local upper bounds in terms of (q, fq(Λ)) and (p, fp(Λ)).3

Proposition 5.6 Let F = {Cλ} be a family of real curves. Let p = (xp, yp) be a point
in the affine open set U of the image space A2

(x,y)(R), and let q = (xp + ε1, yp + ε2) be a

perturbation of p under a threshold ε, that is, 0 < |εi| ≤ ε, i = 1, 2, with q ∈ U1. Further,
assume that the points p and q are in relative general position. Let λ be a smooth point of
Γp(F). Thus, there exists a point λ′ belonging to Γq(F) such that, up to an error of O(ε2)
the following estimates hold true:

1. ‖λ′ − λ‖2 ≤
ρ
(

1+‖λ‖22
) ρ

2

‖Jacfq(Λ)(λ)‖
1

√
2 ε ‖Jf,p(Λ)‖(ρ∗) := R1.

2. If ε ≤ ‖Jacfp(Λ)(λ)‖
1

2ρ (1+‖λ‖22)
ρ−1

2
√

2 ‖Jf,p(Λ)‖(ρ∗)
, then

‖λ′ − λ‖2 ≤
2 ρ
(
1 + ‖λ‖22

) ρ
2∥∥Jacfp(Λ)(λ)
∥∥

1

√
2 ‖Jf,p(Λ)‖(ρ∗)ε := R2.

Proof. It follows from Propositions 5.1 and 5.4. Q.E.D.

Remark 5.7 The ideas in Proposition 5.6 can be used to develop global bounds. More
precisely, let M := maxτ∈T {

(
1+‖τ‖22

)
}, where T ⊂ At(Λ1,...,Λt)

(R) is the discretized region
in the parameter space. Then,

‖λ′ − λ‖2 ≤
ρ
√
Mρ

minτ∈T

{∥∥Jacfq(Λ)(τ)
∥∥

1

}√2 ‖Jf,p(Λ)‖(ρ∗) ε := R3,

and, if

ε ≤
∥∥Jacfp(Λ)(λ)

∥∥
1

2 ρ (1 + ‖λ‖22)
ρ−1

2

√
2 ‖Jf,p(Λ)‖(ρ∗)

,

then

‖λ′ − λ‖2 ≤
2 ρ
√
Mρ

minτ∈T

{∥∥Jacfp(Λ)(τ)
∥∥

1

}√2 ‖Jf,p(Λ)‖(ρ∗)ε := R4.

3Note that, dividing by 1 + ‖λ‖22, we get an approximate upper bound for the relative error ‖λ
′−λ‖2
‖λ‖2

.
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Remark 5.8 Proposition 5.6 can be formulated using in its proof Remark 5.5 instead of
Proposition 5.4. Precisely, the bound R5 corresponding to R1 (similarly for the analog of
R2) is given by

‖λ′ − λ‖2 ≤
ρ
(
1 + ‖λ‖22

) ρ
2∥∥Jacfq(Λ)(λ)
∥∥

1

√
2 εmax

i∈J

{
max
0<t<1

{
‖Jacfi(q − t(ε1, ε2))‖2

}}∥∥∥∥∥∑
i∈J

Λi

∥∥∥∥∥
(ρ∗)

:= R5.

�

Proposition 5.6 and Remark 5.7 can be at once interpreted as a criterion for the Hough
transform Γq(F) to cross the (‖ ‖2,Ri)-unit ball of radius Ri centered at λ, and therefore
the (∞,Ri)-unit cell of radius Ri centered at λ,

C(λ) = {τ ∈ T | ‖(τ − λ)T ‖2 ≤ Ri}, i = 1, 2, 3, 4, 5.

In the linear case, the above bounds specialize as follows.

Corollary 5.9 (The linear case) Notation and assumptions as in Proposition 5.6. Fur-
thermore, assume that ρ = 1 and let the equation of the curves Cλ from the family F be
expressed as

f(x,y)(λ) =

t∑
k=1

fk(x, y)λk + f0(x, y).

Let λ be a smooth point of Γp(F). Thus, there exists a point λ′ belonging to Γq(F) such
that, up to an error of O(ε2), the following estimates hold true:

1. ‖λ′ − λ‖2 ≤
(

1+‖λ‖22
) 1

2

max
{
|f1(q)|,...,|ft(q)|

}√2 ‖Jf,p(Λ)‖(ρ∗) ε := R1.

2. If ε ≤ max
{
|f1(p)|,...,|ft(p)|

}
2(1+‖λ‖22)

√
2 ‖Jf,p(Λ)‖(ρ∗)

, then

‖λ′ − λ‖2 ≤
2
(
1 + ‖λ‖22

) 1
2

max
{
|f1(p)|, . . . , |ft(p)|

}√2 ‖Jf,p(Λ)‖(ρ∗) ε := R2.

Proof. Since ρ = 1, then
∥∥Jacfp(Λ)(λ)

∥∥
1

= max
{
|f1(p)|, . . . , |ft(p)|

}
, and similarly∥∥Jacfq(Λ)(λ)

∥∥
1

= max
{
|f1(q)|, . . . , |ft(q)|

}
. Now, the result follows from Proposition 5.6.

Q.E.D.

As already noted, Proposition 5.6 may be used to suggest lower bounds for δ as dis-
cussed in the following examples.

Example 5.10 Let us consider the 3-parametrized family F = {Cλ} of cubic curves of
equation

Cλ : x2 = −λ3y
3 − λ1y + λ2,

where λ = (λ1, λ2, λ3) are real parameters and λ3 6= 0. For each point p = (xp, yp) of the
image space, the Hough transform is the plane, in the parameter space Λ = (Λ1,Λ2,Λ3),
of equation

fp(Λ) : ypΛ1 − Λ2 + y3
pΛ3 + x2

p = 0.
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Expressing f(x,y)(Λ) as in Corollary 5.9, we get that

f0(x, y) = x2, f1(x, y) = y, f2(x, y) = −1, f3(x, y) = y3.

From Definition 5.3 it follows that Jf,p(Λ) = 2|xp| + Λ1 + 3|yp|2Λ3, and therefore

‖Jf,p(Λ)‖(1) =
√

1 + 4x2
p + 9y4

p. We observe that U1 = R2, whence U = U2 (see (14)

and (17)), and U2 = R2 \ {(x, y) ∈ R2 | y = 0}. Take yp 6= 0 and let q = (xp + ε1, yp + ε2),
with 0 < |εi| ≤ ε, i = 1, 2. By taking ε1 6= −2xp, conditions (15) are satisfied, so that the
points p and q are in relative general position. Corollary 5.9(1) gives

‖λ′ − λ‖2 ≤
(
1 + ‖λ‖22

) 1
2

max
{
|yp + ε1|, 1, |(yp + ε2)3|

}√1 + 4x2
p + 9y4

p

√
2 ε := R1.

Or, applying Corollary 5.9(2), it holds that

‖λ′ − λ‖2 ≤
2
(
1 + ‖λ‖22

) 1
2

max
{
|yp|, 1, |y3

p|
}√1 + 4x2

p + 9y4
p

√
2 ε := R2.

Now, we consider the curve C(− 1
2
, 5
2
,1) ∈ F , and the point p =

(√
21
8 ,

1
2

)
∈ C(− 1

2
, 5
2
,1). We

take the threshold ε = 0.02 and the point q = (1.63, 0.51); note that p ∈ U, q ∈ U1 and p
and q are in relative general position. We have

fp(Λ) =
1

2
Λ1 − Λ2 +

1

8
Λ3 +

21

8
fq(Λ) = 0.51Λ1 − Λ2 + (0.51)3Λ3 + (1.63)2.

Therefore

‖Jf,p(Λ)‖(1) =

√
1 + 4× 21

8
+ 9× 1

16
=

√
193

4
.

Then, letting λ =
(
− 1

2 ,
5
2 , 1
)
, the local upper bounds given by Corollary 5.9 are (note

that the assumption in Corollary 5.9(2) is satisfied since we get ε ≤ 0.035) are

R1 =

√
1 + 1

4 + 25
4 + 1

max {0.51, 1, 0.513}
×
√

193
4 ×

√
2× 2

100 ≈ 0.286.

R2 =
2×

√
1 + 1

4 + 25
4 + 1

max
{

1
2 , 1,

1
8

} ×
√

193
4 ×

√
2× 2

100 ≈ 0.573 ≈ 2R1.

While the effective distance between the point λ =
(
− 1

2 ,
5
2 , 1
)

and the plane Γq(F) is

d =

∣∣fq (−1
2 ,

5
2 , 1
)∣∣√

(0.51)2 + 1 + (0.51)6
= 0.03056.

To determine R5 (see Remark 5.8) note that

maxi∈J

{
max0<t<1

{
‖Jacfi(q − t(ε1, ε2))‖2

}}
≤ max

{
max0≤t≤1{2 |1.63− t 0.02|}, 1,max0≤t≤1{3 (0.51− t 0.02)2}

}
= max{3.24, 1, 0.7803} = 3.24.
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Moreover,
∥∥∑

i∈J Λi
∥∥

(1)
= ‖1 + λ1 + λ3‖(1) =

√
3. Therefore

R5 =

√
1 + 1

4 + 25
4 + 1

max {0.51, 1, 0.513}
×
√

2× 2

100
× 3.24×

√
3 ≈ 0.4628.

Coming to the global bound, let us consider again the same points p, q and the threshold
ε = 0.02 as above. We fix the region T = [−1, 0]× [2, 3]× [0.75, 1.25] (compare with [20,

Example 6.4]). We have maxτ∈T
(
1 + ‖τ‖2

) 1
2 ≤ (1 + 1 + 9 + (1.25)2)

1
2 ≈ 3.544. Then our

global upper bounds given by Remark 5.7 are

R3 = 3.544
1 ×

√
2×

√
193
4 × 2

100 ≈ 0.347,

R4 = 2R3 ≈ 0.696.

To visualize the effective distance of any point τ ∈ T belonging to (the plane) Γp(F) :
fp(Λ) = 0 to the plane Γq(F) : fq(Λ) = 0, we argue as follows. Let τ = λ. By the above,
τ ∈ Γp(F) rewrites as fp(τ) = 1

2λ1 − λ2 + 1
8λ3 + 21

8 = 0, whence λ2 = 1
2λ1 + 1

8λ3 + 21
8 .

Therefore

d(τ,Γq(F)) =
|0.51λ1 − λ2 + (0.51)3λ3 + (1.63)2|√

(0.51)2 + 1 + (0.51)6

=
1√

(0.51)2 + 1 + (0.51)6

∣∣∣0.51λ1 + (0.51)3λ3 + (1.63)2 − 1

2
λ1 −

1

8
λ3 −

21

8

∣∣∣
=

1√
(0.51)2 + 1 + (0.51)6

∣∣∣0.01λ1 +
(
(0.51)3 − 1

8

)
λ3 + (1.63)2 − 21

8

∣∣∣
=: d(λ1, λ3).

The graph of the function d = d(λ1, λ3), when (λ1, λ3) varies in the region [−1, 0] ×
[0.75, 1.25], is a (portion of) a plane “almost” parallel to the 〈Λ1,Λ3〉 plane in the parameter
space having distance d ≈ 0.016 from the plane Γq(F) : fq(Λ) = 0.

Example 5.11 Let us consider the 2-parametrized family F = {Cλ}, where

Cλ : (x− λ1)2 + y2 = λ2.

For each point p = (xp, yp) of the image space, the Hough transform is the parabola, in
the parameter space Λ = (Λ1,Λ2), of equation

fp(Λ) : Λ2
1 − 2xpΛ1 − Λ2 + x2

p + y2
p = 0.

From Definition 5.2 we get J = {(0, 0), (1, 0)}, so that Jf,p(Λ) = 2
√
x2
p + y2

p+2 Λ1. Further,

note that f∗(x,y)(Λ) = (x2 + y2) − 2xΛ1. Then ρ∗ = 1 and ‖Jf,p(Λ)‖(1) = 2
√

1 + x2
p + y2

p.

We observe that U1 = U2 = R2 and (see (14), (16) and (17)). Let q = (xp + ε1, yp + ε2),
with 0 < |εi| ≤ ε, i = 1, 2. We assume ε1(2xp + ε1) + ε2(2yp + ε2) 6= 0, so conditions (15)
are satisfied, saying that the points p and q are in relative general position. Thus, using
Proposition 5.6, and taking into account that ρ = 2, it holds that

‖λ′ − λ‖2 ≤
4(1 + ‖λ‖22)

√
2
√

1 + x2
p + y2

p ε

max{1, 2 |λ1 − xq|}
:= R1.
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Now, we consider the curve C(1,1) ∈ F , and the point p = (1, 1) ∈ C(1,1). We take the

point q = p + 9
10(ε,−ε) with ε > 0; note that p, q are in relative general position, and

‖q − p‖1 < ε. Then, the upper bound R1 is R1(ε) =
12
√

6 ε

max
{

1, 9
5ε
} Thus, under the

assumption that 0 < ε < 5
9 , we get

R1(ε) = 12
√

6 ε.

Now, let ε vary in the set Ω =
{

0.001× i
60 | i ∈ {0, . . . , 60}

}
⊂ [0, 0.001]. It holds that

max{R1(ε) | ε ∈ Ω} = 0.029.

Therefore, for every ε ∈ Ω, the perturbed parabolas of equation fq(Λ) = 0 cross the
Euclidean ball centered at p and radius 0.029 (see Figure 2).

Figure 2: Curve fp(Λ) = 0 (red), ball centered at λ = (1, 1) and radius 0.0022, and curves
{fq(Λ) = 0 | ε ∈ Ω} (blue).

The quantities Ri in Proposition 5.6 and Remark 5.7 may be taken, up to an error
of O(ε2), as lower bound candidates for the discretization step δ of the considered dis-
cretization; note that, for δ < Ri we may not have crossing conditions, so we need δ ≥ Ri.
The following algorithmic procedure formalizes a heuristic suggestion to lower bound δ. It
is inspired by Propositions 5.1 and 5.4, and it is expressed in terms of the local bound R2

as in Proposition 5.6. Such a bound depends only on p. The experimental quantities N
and r below depend on the context, and, essentially, one needs practical experiments to
get optimal choices for them; see Examples 6.3, 6.4.

Algorithm 5.12 (Lower bound discretization algorithm) Let F = {Cλ} be a family of
real curves as in Section 4. Let P be a profile of interest in the image plane A2

(x,y)(R),

pointed by a (finite) set Q = {qj}j∈J of (exact) points qj ’s belonging to the affine open
set U defined in (17). Perform the following instructions.

1. Compute ε = 1
N min{‖qj1−qj2‖2 | j1, j2 ∈ J , j1 6= j2} for a given positive number N .

2. Let L be an empty list and let r be a positive number. For j ∈ J , do:

(a) Take r smooth points λ(i) (depending on j) of Γqj (F), i = 1, . . . , r.

(b) If ε is small enough, namely, if

ε ≤
max

{∣∣∣∂fqj (Λ)

∂Λ1

(
λ(i)
)∣∣∣ , . . . , ∣∣∣∂fqj (Λ)

∂Λt

(
λ(i)
)∣∣∣}

2 ρ
(
1 + ‖λ(i)‖22

) ρ−1
2
√

2 ‖Jf,qj (Λ)‖(ρ∗)
,

compute the bound R2 = R2(i, j) and append it to the list L. Otherwise go
ahead with the next λ(i).
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3. Compute the arithmetic mean value δmean of the entries of L and return it.

6 A Bombieri’s norm based recognition algorithm

In this section we see how Theorem 2.2 can be applied to bound the number of Hough
transforms crossing a cell of a given discretization of the parameter space T . This voting
procedure is the basic tool in the recognition algorithm on which the Hough transform
technique is founded: we refer for this to [2, Sections 6, 7], [14, Section 4] and, for a more
detailed version, to [15, Section 4]. This computation of the accumulator function and its
maximization is the most time-consuming step of the algorithm. Further, it strongly de-
pends on the number of parameters. So, in practice, the computational burden associated
to the voting procedure and optimization leads to the need of restricting to families of
curves depending on a small number of parameters. A novelty here is that our proposed
algorithm does not depend of the number t of parameters in the game.

With the notations as in Section 4, let K = R, and consider a discretization of a
given bounded region T of the parameter space At(Λ1,...,Λt)

(R), as follows. First, choose an

initializing point λ∗ = (λ∗1, . . . , λ
∗
t ) in T and let δk be the sampling distance with respect

to the component λk. Then set

λk,nk := λ∗k + nkδk, k = 1, . . . , t, nk = 0, . . . , Nk − 1, (20)

where Nk ∈ N denotes the number of considered samples for each component, and nk the
index of the sample. Then denote by

C(n) :=
{
λ = (λ1, . . . , λt) ∈ T

∣∣ λk ∈ [λk,nk − δk
2
, λk,nk +

δk
2

)
, k = 1, . . . , t

}
(21)

the cell with center in the sampling point λn := (λ1,n1 , . . . , λt,nt) of the parameter space
T , where n denotes the multi-index (n1, . . . , nt). We refer to C(n) as the cell represented
by the point λn. Then, the parameter space T is partitioned into a finite set of cells
C = {C(n)}. Now, we identify each cell with a parameter value λ, usually its center λn,
and we also write C(λ) to denote the cell containing a point λ ∈ T .

Let us stress the fact that the discretization is defined by relation (20), that is, by
the choice of the initializing point λ∗ ∈ T , the discretization step δ := (δ1, . . . , δt) and the
multi-index vector n. As soon as the region T and the discretization step δ are given, then
the multi-index vector n is determined. So, the discretization only depends on {λ∗, δ}.

Let P be a profile of interest in the image plane A2
(x,y)(R), pointed by the set Q =

{qj}j∈J of (exact) points qj ’s. In the sequel, we assume that the discretization step δ is
given by the results in Section 5, that is, we consider the output δmean of Algorithm 5.12 and
the discretization {λ∗, δ}, where the discretization step δ is defined by taking δk = δmean

for each component k = 1, . . . , t.
For each cell C(λ) ∈ C, we aim to compute the number of Hough transforms of the

points qj , j ∈ J , crossing it. That is, following the usual voting procedure as in the Hough
transform techinque recognition algorithm, we want to estimate

µ(C(λ)) := #
{
j ∈ J |Γqj (F) ∩C(λ) 6= ∅

}
.

In this situation, we then choose λ such that µ(C(λ)) is maximum, and we output as
optimal approximation of the profile P the curve Cλ from the given family F of curves.

Let’s briefly describe some preliminary input data for our recognition procedure.
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I. The setQ of points in the image space highlighting the given profile P, and belonging
to the affine open set U (see (17)).

II. The bounded region T (an hypercube) of the parameter space where we search our
solution.

III. The point λ∗ ∈ T and the discretization δmean defined as above. It may happen
that the “safety discretization value” δmean, provided by Algorithm 5.12, is bigger
than some of the sides of the “hypercube” defining the region T . In that case we
replace δ by (r/2, . . . , r/2), where r is the lenght of the smallest side of the hypercube
defining T .

IV. A pair Υ = (w1, w2) of real numbers such that 0 < wi ≤ 100. Precisely, Υ indicates
that the algorithm will work with w1% of the points in Q, and w2% of the cells in C;
both cells and points are taken randomly.

Algorithm 6.1 Let F = {Cλ} be a family of real curves as in Section 4. Let Q =
{qj | j ∈ J } be a set of points in the image space belonging to the affine open set U
(defined in (17)) and let T be a hypercube in the parameter space. Let λ∗ be a point in T
and δ be the discretization step whose components are δk = δmean, with k = 1, . . . t, where
δmean is the output of Algorithm 5.12. Let Υ = (w1, w2) be a pair of real numbers such
that 0 < wi ≤ 100. Perform the following steps.4

1. Consider the discretization {λ∗, δ} of the region T .

2. For each cell C(λ) ∈ {λ∗, δ}, perform the following steps.

(a) Let λ be the center of the cell; for each index j ∈ J , verify that
∂fqj
∂Λi

(λ) 6= 0,

for some i ∈ {1, . . . , t}. If this would not be the case, slightly perturb λ so that
the above condition is satisfied.

(b) Pick a point p ∈ U1 in the image space such that λ ∈ Γp(F): by the duality
condition (11), this is equivalent to ask Cλ 3 p. For each j ∈ J verify that
(fqj (λ))ρ

(fp(λ))ρ
/∈ R, where ρ = deg(fqj (λ)) = deg(fp(λ)) and (fqj (λ))ρ, (fp(λ))ρ are

the homogeneous components of degree ρ of fqj (λ), fp(λ).

(c) For each j ∈ J , compute the bound expressed by Theorem 2.2(1),

Bλ,qj := α(λ, fqj , 1)

∥∥∥∥∥fqj −
(
fqj , fp

)
(ρ)

‖fp‖2(ρ)

fp

∥∥∥∥∥
(ρ)

,

so that the Euclidean distance d(λ,Γqj (F)) is bounded above by Bλ,qj .

(d) Taking into account that ‖δ‖∞ > Bλ,qj implies that Γqj (F)∩C(λ) 6= ∅, compute
the quantity νλ := #{j ∈ J | Bλ,qj < ‖δ‖∞}.

3. Compute the quantity νC := maxC(λ)∈C{νλ}, which is called the crossing number
of C, and define the set Cgood := {C(λ) | νλ = νC}.

4Let us point out that, once we have the value δmean from the results of Section 5, we only use Theorem
2.2(1) in the algorithm’s steps. Thus, we only need here the assumption p ∈ U1 for the point p ∈ Cλ in the
game.
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4. If νC = 0, increase the discretization step δ (the same increase for each component)
and go to step 1. Otherwise continue with step 5.

5. While 0 < νC and νC 6= 1 do:

(a) For each C(λ) ∈ Cgood let θλ := maxj∈J {Bλ,qj | Bλ,qj < ‖δ‖∞}.
(b) Choose C(λbest) with λbest defined by the condition θλbest

:= minC(λ)∈Cgood
{θλ}.

Note: this is done to find the potentially best answer; in fact, in general, Cgood

has more than one element and, theoretically, any of them would be a suitable
answer.

(c) Set δ = 1
2δ and perform the instructions of steps 2 and 3.

6. Return λbest.

Remark 6.2 We make a few observation regarding the choice of the point p in step 2(b)
of Algorithm 6.1.

• There exist infinitely many points p that can be taken in step 2(b); indeed, all (say
real) points in the curve Cλ defined by the polynomial fλ(x, y) = F (x, y;λ). To
choose the point p, observe that Theorem 2.2(1) reads the bound

Bλ,qj = α(λ, fqj , 1)

∥∥∥∥∥fqj −
(
fqj , fp

)
(ρ)

‖fp‖2(ρ)

fp

∥∥∥∥∥
(ρ)

≤ α(λ, fqj , 1)
∥∥fqj − fp∥∥(ρ)

≤ α(λ, fqj , 1)
(∥∥fqj∥∥(ρ)

+ ‖fp‖(ρ)

)
.

Note that all quantities in the above upper bound of Bλ,qj are fixed, but the norm
‖fp‖(ρ). So, take different random points p ∈ Cλ and choose one such that ‖fp‖(ρ) is
the smallest.

• If the curve Cλ defined by fλ(x, y) = 0 (see equation (9)) over the complex field C has
genus less than or equal to six, we can take a radical parametrization to generate p
(see [17]). If not, one may use an approximation of p. If we use a parametrization
χ(t) = (x(t), y(t)) (either rational or radical) of Cλ, we will find a parameter value t0
such that ‖fλ(χ(t0)‖(ρ) is minimum (see previous item). If no parametrization is
provided, different random choices of the approximation of p are taken to finally
select the one such that ‖fp‖(ρ) is the smallest.

We finish this section illustrating these ideas with some examples; the examples are
taken from [20].

Example 6.3 We apply Algorithm 6.1 to the input given in Example 6.3. (part 1) in [20].
We consider a family of affine curves F = {Cλ}, λ = (λ1, λ2), defined by the polynomial

fλ(x, y) = (x2 + y2)3 − (λ1(x2 + y2)− λ2(x3 − 3xy2))2.

The curves in F are known as the sextic curves with 3 convexities. In this example, the
data set Q of points pointing the profile of interest in the image consists in 320 points.
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We apply our algorithm in the parameter region T = [0.35, 0.9] × [0.175, 0.5] (as in [20]
loc. cit.).

For the initializing step, we follow Algorithm 5.12 with r = N = 10, and we take

δ1 = δ := δmean = (0.28, 0.28).

As percentage vector we take Υ = (100, 100). In the first execution, Algoritm 6.1 found

Cgood = {C((0.632, 0.175))}

with θ(0.632,0.175) = 0.273 and ν(0.632,0.175) = 10 (see Figure 3, left panel). So, since the

crossing number of C is 10, a second iteration is performed. We take δ2 = 1
2δ

1, and the
algorithm generates as Cgood the set

Cgood ={(0.632, .457), (0.773, 0.316), (0.773, 0.457),

(0.773, 0.175), (0.491, 0.175), (0.491, 0.316)}.

In Table 1, we show the λ′s found by the algorithm, as well as the numbers νλ and θλ
associated to each C(λ) ∈ Cgood. We observe that the number of crossings of the new

(λ, νλ, θλ) (λ, νλ, θλ)

((0.632, 0.457), 1, 0.07869809181) ((0.773, 0.316), 1, 0.07881713181)

((0.773, 0.457) 1, 0.0804252671) ((0.773, 0.175), 1, 0.09459597765)

((0.491, 0.175), 1, 0.1243367035) ((0.491, 0.316), 1, 0.1285879526)

Table 1: List of values (λ, νλ, θλ) generated by the last iteration of Algorithm 6.1 applied to
Example 6.3.

partition is 1. Then the algorithm chooses as output the λ with minimum θλ; in this case,
it outputs λbest = (0.632, 0.457) (see Figure 3, right panel).

Figure 3: Plot of Q and Cλbest
(Left: after the first iteration; Right: after the second iteration) in

Example 6.3.
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Example 6.4 We apply our procedure to the input given in Example 6.3. (part 2) in [20].
We consider again a family F = {Cλ}, λ = (λ1, λ2, λ3), of curves with 3 convexities defined
now by the polynomial

fλ(x, y) = (λ3x
2 + y2)3 − (λ1(λ3x

2 + y2)− λ2(x3 − 3xy2))2.

In this example, the data set Q of points pointing the profile of interest in the image
consists in 132 points. We take the parameter region T = [0.7, 1]× [0, 0.18]× [0.9, 1.1] (see
[20] loc. cit.).

For the initializing step, we follow Algorithm 5.12 with r = N = 10, and we take

δ1 = δ := δmean = (1.24, 1.24, 1.24).

Since ‖δ‖∞ is bigger than the length of the sides of T , we proceed as explained in the
input data (II)-(III) of the procedure description and we replace δ by δ = (0.09, 0.09, 0.09);
note the 0.09 is half of the smallest length sides defining T . As percentage vector we take
Υ = (100, 100). In the first execution, the algorithm found

Cgood ={(0.79, 0, 0.9), (0.88, 0, 0.9), (0.970, 0, 0.9), (0.79, 0, 0.99), (0.88, 0, 0.99),

(0.97, 0, 0.99), (0.790, 0.09, 0.9), (0.88, 0.09, 0.9)}.

In Table 2, we show the λ′s found by the algorithm, as well as the numbers νλ and θλ
associated to each C(λ) ∈ Cgood. We observe that the crossings number of C is 1. So,

(λ, νλ, θλ) (λ, νλ, θλ)

((0.790, 0, 0.9), 1, 0.7217843317) ((0.880, 0, 0.9), 1, 0.7304567414)

((0.970, 0, 0.9), 1, 0.7508195658) ((0.790, 0, 0.990), 1, 0.7553552111)

((0.880, 0, 0.990), 1, 0.7586344023) ((0.970, 0, 0.990), 1, 0.7739644826)

((0.790, 009, 0.9), 1, 0.7805628033) ((0.880, 0.09, 0.9), 1, 0.7836837743)

Table 2: List of values (λ, νλ, θλ) generated by the last iteration of Algorithm 6.1 applied to
Example 6.4.

the algorithm ends choosing as output the λ with minimum θλ; in this case, it outputs
λbest = (0.790, 0, 0.9) (see Figure 4).
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