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Abstract

Parametric representations may have unnecessarily huge integer coefficients.
This can be a computational problem in practical applications. In this paper
we present an evolutionary algorithm that reduces the maximum length of the
coefficients for a proper curve parametrization with integer coefficients. This
method is tested with different families of parametrizations, and as we show the
results are very satisfactory in terms of achievable quality and runtime consump-
tion. According to our knowledge, this is the first algorithmic approach to this
problem.

Keywords: Rational curve, parametrization height, heuristic algorithm, evolutionary
algorithm, arithmetic optimality.

1 Introduction

Rational algebraic curves and surfaces are basic tools in computer graphics,
CAD/CAM, and surface/geometric modeling (see e.g. [16]) and they are applicable
in many mathematical areas as, for instance, diophantine equations (see e.g. intro-
duction in [34]) or symbolic solutions of algebraic differential equations (see e.g. [10],
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[18], [19]). One of the main advantages of these geometric objects is that they can be
represented parametrically by means of rational functions. Nevertheless, since rational
algebraic sets admit infinitely many different rational parametrizations, the power of
their applicability varies depending on which parametrization is chosen.

In order to improve the applicability of the parametric representations, several
authors have addressed the problem of transforming a given parametrization into a
new parametrization satisfying certain required optimality criterium as, for instance,
the injectivity or the surjectivity of the induced rational map, the degree (over the
ground field) of the field of parametrization, or the height, i.e., the maximal absolute
value of the integer coefficients of the parametrization (see e.g. [34]). In this paper
we put the main focus on curves; readers interested in the analysis of surfaces may
consult e.g. [3], [4], [5], [6], [9], [25], [28], [29], and [30]. Injective parametrizations are
usually called proper parametrizations and, as a consequence of Lüroth’s theorem, any
rational curve can always be parametrized properly. Algorithmically, the problem was
solved in [26]. Similarly, any rational curve can always be parametrized by means of
a surjective parametrization (see [2], [9], or [27] for algorithmic approaches), although
one may need to introduce complex numbers in the description of the parametrization.
Concerning the field of parametrization, Hilbert and Hurtwitz [11] stated that one can
always parametrize over a field algebraic extension of degree at most two over the
ground field. Algorithms to achieve such parametrizations can be found in [12], [22],
and [32]. Nevertheless, computing parametrizations with optimal height is, up to our
knowledge, a fully open problem; in [20] one can see an example of applicability of our
results. We refer to this last question as the arithmetic optimality problem, and in this
paper we explain our approach to solve it by means of evolutionary computation.

Our proposal in this paper is to approach the problem by means of evolutionary
computation improving the initial results and ideas given in [31]. Evolution strategies
have been developed since the 1960s as explained and analyzed in detail in, e.g., [23],
[24], and [7]. Since then, evolutionary computation has been applied to solve problems
in many different areas (see, e.g., [14] [15]). Nevertheless, this does not mean that
any optimization problem can be directly approached via evolutionary techniques; a
pre-analysis of a suitable search strategy is required, since otherwise the evolutionary
search may turn out to be a blind random process.

Let us briefly describe why our evolutionary strategy is suitable for the arithmetic
optimality problem. We look for different changes of parameters such that the input
proper parametrization is transformed into a better one; i.e., here, one with smaller
height. We know that all possible changes of parameters are of the form

at+ b

ct+ d
with a, b, c, d ∈ Z and ad− cb 6= 0. (1)

We visualize the space of solution candidates in 3D in so-called fitness landscapes [21]:
In the x-axis we set the numerator (namely the pair (a, b)), in the y-axis we set the
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denominator (i.e. the pair (c, d)) and the color represents the height of the resulting
parametrization; red is small height (i.e. good result) and blue is big height (i.e. bad
result). Such a direct description of the search space is not suited for the evolutionary
algorithm since it is not smooth (see Fig. 5 (left)) and small variations (for instance, due
to mutations) will produce big changes of quality in the answer. Instead, in Section 3,
we prove that one can associate to each numerator (or denominator, resp.) a quantity
that partially indicates the quality of the final answer (see eq. (27)). Thus, before
generating the x-axis and the y-axis of the fitness landscape, we order the numerators
as well as the denominators according to this partial quality. This produces fitness
landscapes (see Fig. 5 (right)) which are well suited for our purposes. In this situation,
in each region of the search space we look for improvement by optionally using strict
offspring selection.

Based on these ideas, in this paper we present an evolutionary algorithm for deal-
ing with the arithmetic optimality problem with a very satisfactory performance. The
paper is structured as follows: In Section 2 we formally state the problem we aim to
solve in the paper. Section 3 has 4 subsections: In Subsection 3.1 we analyze the search
space, in Subsection 3.2 we study the notion of partial and complete quality, Subsec-
tion 3.3 is devoted to the evolutionary strategy, and in Subsection 3.4 we present our
solution approach in detail. In the last section we empirically analyze the algorithm’s
performance: we use it for optimizing coefficients of parametrizations associated with
a random family of conics; for a random family of parametrizations; as well as of three
different families of space curves where the height of the applied Möbius transforma-
tion varies, and in all cases the results are very satisfactory. We also demonstrate the
algorithm’s performance used with varied algorithmic parameter settings, the details
of the test results are given in tables that are shown in the paper’s appendix.

2 Problem statement

In this section, we introduce the notation and terminology that will be used throughout
the paper, and we state the problem we will deal with.

Let P(t) be a proper rational parametrization (with integer coefficients) of a curve
C in the r-dimensional space Rr. We recall that proper means that the parametrization
is injective almost everywhere, i.e., almost all points in C are reached by exactly one
parameter value via P(t) (see e.g. [34]). Let us assume that P(t) is expressed as

P(t) =

(
p1(t)

q(t)
, . . . ,

pr(t)

q(t)

)
(2)

such that

1. pi, q are polynomials with integer coefficients such that gcd(p1, . . . , pr, q) = 1,
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2. no component of P(t) is constant.

It is clear that assumption (1) is always reachable. Below, we will see that condition
(2) does not imply either any loss of generality.

We recall that the height of a polynomial f(t) = a0 + · · · + amt
m ∈ R[t] is defined

as H(f) = max{|a0|, . . . , |am|}. We define the height of the parametrization P(t) as

H(P(t)) = max{H(p1), . . . ,H(pr),H(q)}. (3)

In this situation, the arithmetic optimality problem can be stated as follows:

Problem Statement (General Version). Given P(t) as above, determine a rational
change of parameter φ(t) such that Q(t) := P(φ(t)) is proper, has integer
coefficients, and H(Q(t)) is minimal.

We observe that if any component (say the first) of P(t) is a constant c ∈ R, also for
any other parametrization of C the first component equals c. Therefore, assumption
(2) does not imply loss of generality.

Since P is proper, we have φ(t) = P−1(Q(t)). Moreover, since elimination theory
techniques do not extend the ground field, P−1 has integer coefficients, and hence φ(t) ∈
Z(t). Note that the properness condition is fundamental for the previous statement:
for instance, P(t) = (1

2
t2, 1

2
t2) is a non-proper parametrization of the line y = x, and

P(
√

2t) = (t2, t2).

On the other hand, since Q(t) should also be proper, φ(t) has to be a Möbius
transformation, i.e., a rational function of the form (at+ b)/(ct+ d) with ad− bc 6= 0.
Therefore, we reach the following equivalent formulation of the problem:

Problem Statement (Equivalent Version). Given P(t) as above, determine
a, b, c, d ∈ Z, with ad− bc 6= 0, such that

H

(
P

(
at+ b

ct+ d

))
(4)

is minimal.

We will refer to the set {(a, b, c, d) ∈ Z4 | ad− bc 6= 0} as either the solution space or
the space of solutions of the here addressed problem, all the solutions of the problem
belong to this set.

Let us discuss the minimality condition. The problem, as stated, asks for Q(t)
such that any other proper parametrization of C has height greater than or equal
to H(Q(t))). However, according to our knowledge, determining the value of this
minimum is, in general, still an open problem. Alternatively, one may consider the
search for upper bounds on the minimum. Results in that direction can be found in
the field of Diophantine geometry (see e.g. [8], [13]). For instance, the local Eisenstein
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theorem for polynomials (see Corollary 11.5.16. pp. 370 in [8]) gives upper bounds
for the case of local parametrizations around a regular point. Similarly, bounds on
the height of rational points on the curves can be found (e.g. in [8], [13]), and these
bounds could be translated into lower bounds for our problem. An upper bound can
be found in [17], but it is too big. One can also derive a lower bound: Let f(x1, x2) be
the defining polynomial of the plane curve parametrically given by(

p1(t)

q(t)
,
p2(t)

q(t)

)
. (5)

Note that f is the implicit equation of the projection of C onto the first two coordinates.
Therefore, if r = 2, f is the defining polynomial of C. We assume that f is primitive,
i.e. the gcd of the coefficients of f is 1. By Theorem 8 in [33], the primitive part
of the resultant w.r.t. t of the polynomials A(x1, t) = q(t)x1 − p1(t) and B(x2, t) =
q(t)x2 − p2(t) is f . Thus, using the definition of determinant as well as the degree
bounds for f given in Theorem 5 in [33], one deduces that

H(P(t)) ≥

⌈
n

√
H(f)

n!

⌉
. (6)

where n = max{deg(p1), . . . , deg(pr), deg(q)}. Of course, this bound is trivial if H(f) ≤
n!. Also, one could consider bounding max{|a|, |b|, |c|, |d|} for (at+b)/(ct+d) providing
the minimum. Again, up to our knowledge, it is an open question.

However, the application in practice of the above theoretical results is far from
being effective. So, since the aim of this paper is more practical than theoretical,
we will transform the statement of the problem into a more tractable form. For this
purpose, we will limit the size of the space of solutions, and we will use a quantity
to control the quality of the output. We will refer to this new subset of the solution
space as a search space, i.e. the set of solutions that are potentially checked by the here
proposed algorithm.

Let us start by considering bounds on the size. For N ∈ N, we denote by Z(N) the
set

Z(N) = {−N, . . . , 0, . . . , N} ⊂ Z (7)

and by M(N) the set

M(N) = {(a, b, c, d) ∈ Z(N)4 | gcd(a, b, c, d) = 1, ad− bc 6= 0}. (8)

Then, for a fixed N ∈ N, we take M(N) as the search space. In other words, we ask
for (a, b, c, d) ∈M(N) such that

H

(
P

(
at+ b

ct+ d

))
5



is minimal. Since M(N) is a finite set, a direct approach would be to try all possible
changes of parameter (at+ b)/(ct+ d), with (a, b, c, d) ∈ M(N), and check which one
has the best height. However, if N is not small, the cardinality of M(N) is huge and
the direct method is unfeasible in practice. Alternatively, one may try a probabilistic
approach. However, the next example shows that this is not a good idea.

Example 2.1. Let P(t) be the parametrization

P(t) =

(
−54 t2 + 18 t− 6

9 t2 + 1
,

2

9 t2 + 1

)
. (9)

Let us denote by #(X) the cardinality of a set X. Then, #(M(5)) = 13216 and the
number of elements in M(5), providing a better parametrization than P(t), is 176;
hence the probability of choosing a good candidate is 0.0133. In this case, the best
choice is (−1,−1,−3, 0) yielding the parametrization

Q(t) := P

(
−t− 1

−3t

)
=

(
−6

t2 + t+ 1

2 t2 + 2 t+ 1
, 2

t2

2 t2 + 2 t+ 1

)
. (10)

Note that H(Q(t)) = 6 while H(P(t)) = 54. In addition, the number of elements in
M(5) providing height 6 is only 16.

Our approach, presented in this paper, is to use evolutionary algorithms to provide
the answer. Now, we are ready to state the problem we deal with in this paper.

Problem Statement (Practical version). Given P(t) as above, N ∈ N, and θ ∈ R+

determine (a, b, c, d) ∈M(N), such that

H

(
P

(
at+ b

ct+ d

))
≤ θ (11)

We finish this section with an example that illustrates these ideas. In order to
measure the improvement we will compute the ratio of the β-length of the heights,
where β ≥ 2 is a fixed natural number (see [35], Section 2.1). We subtract 1 from
this quantity so that the improvement is 0 if both heights are equal. If the input
parametrization is P and the output Q we will measure the improvement as

Impβ(P,Q) =
blogβ H(P)c+ 1

blogβ H(Q)c+ 1
− 1. (12)

If H(P) = H(Q) then the improvement is 0, and it increases when the H(Q) < H(P).
In the experiments we will take β = 10, and hence we will measure the ratio of the
number of decimal digits of the heights of P and Q.
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Example 2.2. The example consists in the following experiment. We take a
parametrization

P(t) =

(
−3 t2 − 9

t2 + 1
,
t2 + 2 t+ 1

t2 + 1

)
(13)

of a conic C of equation x2 + 9 y2 + 12x − 18 y + 36 = 0. Note that H(P(t)) = 9.
Now, we generate rational points Pi := P(12i), i ∈ N, on C and, using each of them,
we compute a new proper parametrization Pi(t) of C; see [34] for the parametrization
algorithm. We get

P0(t) =
(
−54 t2+18 t−6

9 t2+1
, 2
9 t2+1

)
P1(t) =

(
−3969 t2+432 t−1299

1305 t2+145
, 1089 t

2+858 t+169
1305 t2+145

)
P2(t) =

(
−559953 t2+5184 t−186627

186633 t2+20737
, 184041 t

2+124410 t+21025
186633 t2+20737

)
P3(t) =

(
−80621649 t2+62208 t−26873859

26873865 t2+2985985
, 26842761 t

2+17915898 t+2989441
26873865 t2+2985985

)
P4(t) =

(
−11609505873t2+746496 t−3869835267

3869835273 t2+429981697
, 3869462025 t

2+2579890170 t+430023169
3869835273 t2+429981697

)
Now, the question is whether we can improve the coefficients in the new parametriza-
tions Pi(t). For this purpose, we apply the algorithm, presented in this paper, to
each Pi(t). Since the aim of the example is to illustrate the problem, at this place
of the paper, we will apply the algorithm as a black-box ; for details, see Section 3.
In the application of the algorithm we will control the size of the search space by
N = 2 · H(Pi(t))

2, and θ = 103; see the problem statement above. Let Qi(t) denote
the output. We get

Q0 = P0

Q1 =
(
−6(t2+t+1)

t2+1
, 2t2

t2+1

)
Q2 =

(
−6(t2+t+1)
t2+2 t+2

, 2
t2+2 t+2

)
Q3 =

(
−228 t2+558 t+441

58 t2+174 t+145
, 100 t

2+260 t+169
29(2 t2+6 t+5)

)
Q4 =

(
−6(t2+t+1)

t2+1
, 2
t2+1

)
In Table 1 we show the results of the experiments. For all i > 0 we get significantly

better heights, this can be seen in the right column of Table 1. Furthermore, in three
cases we get norm 6, which is even smaller than the height of P.

3 Solution approach

In this section, we develop our solution approach to the problem stated in Section 2.
One may distinguish two levels when approaching the solution: first, we study how
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i (a, b, c, d) H(Pi) H(Qi) Impr10(Pi,Qi)

0 (1,0,0,1) 54 54 0
1 (-11, 13, -39, -33) 3969 6 3
2 (-145,-143,429,-435) 559953 6 5
3 (417, 715, 537, 180) 80621649 558 1.6
4 (-20737,41472,62205,6) 11609505873 6 10

Table 1: Results of the executions of the algorithm when applied to the parametriza-
tions Pi

to reduce the solution space into the search space, and then we solve the remaining
problem with evolutionary search techniques. Throughout this section, we will use the
same hypotheses and notation for P as in Section 2.

3.1 Search Space

LetM(N) ⊂ Z4 be the search space introduced in Section 2, with N fixed; see (8) for
the description of M(N). The idea now is to reduce the size of M(N) using heuristic
reasonings. We can see the search spaces as sets Ω2, with Ω ⊂ Z(N)2; see (7) for
the definition of Z(N). So reducing the size of Ω, the size of the search space also
reduces. We will refer to Ω as the seed set of the search space. Taking into account
this remark, we introduce the following notation. For Ω ⊂ Z(N)2 we denote the search
space associated to Ω as Space(Ω) where:

Space(Ω) = {(a, b, c, d) ∈ Ω2 | gcd(a, b, c, d) = 1 and ad− bc 6= 0}. (14)

Note that M(N) = Space(Z(N)2) is the biggest search space for N fixed.

In order to reduce the search space, we consider the homogenization PH(t, h) of
P(t). Let PH(t, h) be expressed as

PH(t, h) = (P1(t, h), . . . , Pr(t, h), Q(t, h)) (15)

with gcd(P1, . . . , Pr, Q) = 1 and where all polynomials Pi, Q have the same degree; i.e.
Pi(t, 1) = pi(t), Q(t, 1) = q(t). Furthermore, for (a, b, c, d) ∈ Space(Ω), let

Q(t) = P

(
at+ b

ct+ d

)
=

(
A1(t)

B(t)
, . . . ,

Ar(t)

B(t)

)
, (16)

where gcd(A1, . . . , Ar, B) = 1, and let

Q∗(t) = (A1(t), . . . , Ar(t), B(t)). (17)

Then, the following lemma holds.
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Lemma 3.1.

1. PH(b, d) = Q∗(0).

2. PH(a, c) = (LC(A1), . . . ,LC(Ar),LC(B)), where LC denotes the leading coeffi-
cient of the polynomial.

Proof. It follows taking into account that Q∗(t) = PH(at+ b, ct+ d).

For (α, β) ∈ Z2, we introduce the quantity

∆(α, β) :=
‖PH(α, β)‖∞

gcd(|P1(α, β)|, . . . , |Pr(α, β)|, |Q(α, β)|)
(18)

where ‖PH(α, β)‖∞ = max{|P1(α, β)|, . . . , |Pr(α, β)|, |Q(α, β)|}.

Theorem 3.2.

H(Q) ≥ max{‖PH(a, c)‖∞, ‖PH(b, d)‖∞} ≥ max{∆(a, c),∆(b, d)}.

Proof. By construction, H(Q) = H(Q∗) and, by Lemma 3.1, we have

H(Q∗) ≥ ‖Q∗(0)‖∞ = ‖Ph(b, d)‖∞,
H(Q∗) ≥ ‖(LC(A1), . . . ,LC(Ar),LC(B))‖∞ = ‖Ph(a, c)‖∞.

Hence, the first inequality in the statement holds. The second inequality follows taking
into account that ∆(α, β) ≤ ‖PH(α, β)‖∞.

Our goal is to find (a, b, c, d) ∈ Space(Ω) such that H(Q) is small. On the other
hand, Theorem 3.2 provides a lower bound of the height. So, small values of the height
will be reached only for small values of the lower bound. Based on this fact, we will
use the following principle in our evolutionary algorithm.

[A] : the smaller max{∆(a, c),∆(b, d)} is, the smaller H(Q) could be (19)

Using [A] we may reduce the seed set as follows. Let k ∈ R+ (k = 102, e.g.), then
we consider the seed set

Ω(P, N, k) =
{

(α, β) ∈ Z(N)2 | k ·∆(α, β) < H(P)} . (20)

In practice, #(Z(N)2) can be huge, and the computation of Ω(P, N,K) may consume
too much time. To deal with this problem, we introduce a subset Ω(P, N,K) of smaller
cardinality (the prime seed set), and from it we easy compute a bigger set (the extended
seed set) where the solution is searched. In general, the extended seed set will not
include all elements in Ω(P, N,K) but will contain other candidates not considered
in Ω(P, N,K). So, instead of working with the initial seed set Ω(P, N,K), which is
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complicated to compute, we will work with the extended seed set - let us now develop
these ideas:

We observe, since the polynomial expressions in ∆ are homogenous in {α, β} and
of the same degree, that

∆(α, β) = ∆(ρα, ρβ), for ρ 6= 0. (21)

Thus, when computing Ω(P, N, k), we only need to find those coprime α, β satisfying
k·∆(α, β) < H(P). This motivates the notion of prime seed set associated to Ω(P, N, k):

Ωp(P, N, k) = {(α, β) ∈ Ω(P, N, k) | gcd(α, β) = 1} . (22)

Let η · H denote the set {i · u |u ∈ H, i ∈ N, i ≤ η}. Then, for w ∈ N we define the
w-extended seed set as

Ωe(P, N, k, w) = w · Ωp(P, N, k), (23)

and we call w the amplitude. Note that we have the following inclusions

Ωe(P, N, k, w) ⊃ Ωp(P, N, k) ⊂ Ω(P, N, k). (24)

In the following we illustrate these ideas with two examples. The first example is
theoretical while the second correspond to a particular parametrization.

Example 3.1. Let us assume that N = 4, and (as shown in Fig. 1 left) we get:

Ω(P, 4, k) = {(±1,±1), (±2,±2), (±3,±3), (±4,±4), (±1, 0), (±2, 0), (±3, 0),
(±4, 0), (−1, 2), (1,−2), (±2,±4), (±4,±2)}

Then, the prime seed set is (as shown in Fig. 1, right):

Ωp(P, 4, k) = {(±1,±1), (±1, 0), (−1, 2), (1,−2)}.

0 
α 

β 

α 

β 

Figure 1: Illustration of seed sets: Ω(P, 4, k) (left), Ωp(P, 4, k) (right)
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α 

β 

α 

β 

Figure 2: Illustration of seed sets: Ωe(P, 4, k, 2) (left), Ωe(P, 4, k, 3) (right)

Different instances of the extended seed set are (see Fig. 2)

Ωe(P, 4, k, 2) = {((±1,±1), (±2,±2), (±1, 0), (±2, 0), (−1, 2),
(−2, 4), (1,−2), (2,−4)}

Ωe(P, 4, k, 3) = {((±1,±1), (±2,±2), (±3,±3), (±1, 0), (±2, 0),
(±3, 0), (−1, 2), (−2, 4), (−3, 6), (1,−2), (2,−4), (3,−6)}

Observe that #(Ω(P, 4, k)) = 34, #(Ωp(P, 4, k)) = 8, #(Ωe(P, 4, k, 2) = 16, and
#(Ωe(P, 4, k, 3) = 24.

Example 3.2. We consider the parametrization

P(t) =

(
−3969 t2 + 432 t− 1299

1305 t2 + 145
,
1089 t2 + 858 t+ 169

1305 t2 + 145

)
. (25)

We observe that this parametrization is indeed the parametrization P1(t) in Example
2.2. We get that #(Ω(P, 300, 101.5)) = 1640 and #(Ωp(P, 300, 101.5)) = 332; note that
#(Z(300)2) = 361201 (see Fig. 3). In addition, we consider a smaller prime seed
set and we extend it. We take Ωp(P, 50, 101.5) and Ωe(P, 50, 101.5, 6). We get that
#(Ωp(P, 50, 101.5)) = 76 and #(Ωe(P, 50, 101.5, 6)) = 1200 (see Fig. 4). Observe that
Ω(P, 300, 101.5) 6= Ωe(P, 50, 101.5, 6). Finally, we observe that the application of our
algorithm with Ω(P, 300, 101.5) and Ωe(P, 50, 101.5, 6) provided the same result, namely
Q1(t) in Example 2.2.

Remark. The following idea was provided by an anonymous referee and can be applied
to work with the prime seed instead of the extended seed: Let (G, ◦) denote the group
of Möbius transformations with the composition as operation. Every Φ ∈ G can be
decomposed as

Φ = Φ1 ◦ Φ2
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Figure 3: Seed set Ωp(P, 300, 101.5) (left) and Ω(P, 300, 101.5) (right) of Example ??

Figure 4: Seed set Ωp(P, 50, 101.5) (left) and Ωe(P, 50, 101.5, 6) (right) of Example ??

where Φ1,Φ2 ∈ G are of the form

Φ1(t) =
e

f
t, Φ2(t) =

at+ b

ct+ d
, with gcd(a, b) = gcd(c, d) = 1.

This implies that Φ2 can be determined by combining solutions generated by the prime
seed. For the computation of the Φ1 it is only relevant that e, f are divisors of the
gcd of the independent coefficients and of the leading coefficients of the polynomials
involved in the parametrization, respectively.

3.2 Identification of Partial Solutions

In Subsection 3.1 we have introduced the notion of extended seed set Ωe(P, N, k, w), as
well as the concept of search space Space(Ωe(P, N, k, w)) associated to Ωe(P, N, k, w).
We will refer to the elements in Ωe(P, N, k, w) as partial solution (candidate) and to the
elements in Space(Ωe(P, N, k, w)) as complete solution candidates; in the sequel, unless
risk of ambiguity, we simplify the notation as Ωe and Space(Ωe) respectively.

12



The composition of complete solution candidates from partial solution candidates
is defined as follows: Let (o1,o2) ∈ Ωe × Ωe with o1 = (o1,1, o1,2), and o2 = (o2,1, o2,2).
Then, the associated complete solution candidate is So1,o2 := (o1,1, o1,2, o2,1, o2,2). Con-
versely, every complete solution candidate (a, b, c, d) ∈ Space(Ωe) can be seen as a
combination of elements in Ωe, namely (a, b), (c, d) ∈ Ωe.

We first generate a seed set Ωe and then our goal is to find the best combinations
of elements in Ωe for composing the final complete solution of the given problem. In
order to measure the quality of a complete solution candidate, we introduce the notion
of complete quality. Given s := (a, b, c, d) ∈ Space(Ωe) we define the complete quality
of s as

Qualityc(s,P) = H

(
P

(
at+ b

ct+ d

))
. (26)

Please note that good candidates correspond to low qualities.

3.3 Evolutionary Search for Optimal Combinations of Ele-
ments of the Search Space

The last challenge is to find optimal combinations of partial solution candidates o1 and
o2 (o1,o2 ∈ Ωe). Depending on the input as well as on the parameters defining Ωe, the
size of Ωe varies; there may be thousands of elements in Ωe. Thus, exhaustive search
is possible, but may lead to very high runtime consumption as even for small input
examples millions of combinations have to be evaluated if all possible combinations
are to be checked. Please note that the same phenomenon will happen if, instead of
working with Ωe, we work with Ωp as described in Remark 3.1.

This is why we have developed a heuristic search method for the search of optimal
combinations of partial solution candidates. This search strategy works in an iterative,
evolutionary way and is based on the theory of evolution strategies (see [7]). The
main strategy of our method is to use the extended seed to generate partial solutions,
order according to their partial quality, and apply evolutionary search to find optimal
complete solutions.1

Of course, as already mentioned, in order to find the best solution (or a solution
among the best ones), we could try the direct approach by computing Qualityc(s,P)
for all s ∈ Space(Ωe). However, although we have simplified the space of solutions
by means of the notion of extended seed, the computation of the quality involves the
composition of rational functions, the simplification of rational functions, and integer
gcds computations of so many complete solution candidates that the direct approach is
unfeasible in practice. Instead, we want to deduce good complete solution candidates
from the partial solutions. More precisely, we apply evolutionary techniques to identify

1An alternative approach would be to use the prime seed and apply evolutionary search for finding
optimal complete solutions - nevertheless, we do not investigate this approach here.

13



optimal combinations of partial solution candidates. For this purpose, we introduce
the notion of partial quality. The concept is based on the principle [A] (see Subsection
3.1): Given o = (o1, o2) ∈ Ωe we define the partial quality of o as (see (15))

Qualityp(o,P) = gcd(P1(o), . . . , Pr(o), Q(o)). (27)

In order to motivate our evolutionary search strategy we consider an example:

Example 3.3. Let P(t) be the parametrization

P(t) =

(
26182752640t2 + 12512544t+ 517752

771199968t2 + 45486
,
8476943376t2 + 1026528t+ 500715

771199968t2 + 45486

)
.

For this example, setting N = 1000, k = 101.5, and w = 1, the set of partial solution
candidates Ωe(P, N, k, w) consists of 348 elements. In order to analyze the viability of
an evolutionary strategy we perform two experiments:

(i) For o1,o2 ∈ Ωe, we compute Qualityc(o1,o2). Then, (o1,o2,Qualityc(o1,o2)) is
represented in Figure 5.

(ii) We order the elements in Ωe by the value of Qualityc. Let Ωord
e be the ordered

set. Then, we proceed with the elements in Ωord
e as in (i).

In Figure 5 (left) we show the fitness landscape (see [21]) for (i), and in Figure 5
(right) we show the fitness landscape for (ii), where red indicates good quality and blue
indicates bad quality. As we see in Figure 5 (right), ordering partial solution candidates
using this fitness function (partial quality) leads to a search space with a much smoother
fitness landscape, which makes the use of evolutionary search reasonable.

In Figure 6 we show the 3-dimensional visualization of the landscape. Here we
see that in the upper-right area of the landscape there are many high-quality partial
solutions, hence we start searching for optimal complete solutions in that area.

So, let ` = #(Ωe), and assume that the elements of Ωe are ordered as {o1, . . . ,o`}
where oi ≤ oj if Qualityp(oi) ≤ Qualityp(oj). First, we create an initial population
of µ complete solution candidates soi,oj

: we take i, j ∈ {1, . . . ,#(Ωe)}; 50% of the
initial partial solution candidates are created randomly, 50% are created with i, j ∈
{d#(Ωe)/2e, . . . ,#(Ωe)}, as we assume that there is a higher chance to find optimal
solutions by combining partial solution candidates with rather high partial qualities.

Next, the evolutionary search process is started and executed generation-wise: In
each generation we create λ new solution candidates (“offspring”) by drawing a par-
ent solution candidate of the current population randomly and mutating it randomly;
mutating a solution candidate soi,oj

here means that i and j are randomly increased
or decreased by a offset z ∈ {1, . . . , r} where r defines the mutation radius.

14



Figure 5: Fitness landscape for combinations of elements of Ωe for the parametrization
P(t) in Example 3.3; N = 1000, k = 101.5, w = 1. Here, the number of elements in Ωe

is 348. Each cell (x, y) represents the fitness of combination of x ∈ Ωe (right x ∈ Ωord
e

and y ∈ Ωe (right y ∈ Ωord
e ), where red indicates good quality and blue indicates bad

quality.

Each solution candidate soi,oj
, generated in this way, is evaluated using the complete

quality function. From the so generated λ offspring candidates we select the µ best
solution candidates. If offspring selection (see [1]) is applied, then we consider only
those children that are better than their parents; if elitism (see [1]) is applied, then the
previous generation’s best individual is also copied to the next generation.

Additionally, we calculate the success ratio R as the ratio of mutants that are
evaluated better than their respective parents; if R is smaller than 0.2, i.e., if less than
20% of the mutations lead to better solution candidates, then R is decreased (divided
by a given factor ς, ς > 1.0), and if R is bigger than 0.2, then it is increased (multiplied
by ς).

This procedure is repeated until R is decreased to 0 or the maximum number of
generations is reached or the number of consecutive unsuccessful generations is reached;
a generation is here considered unsuccessful if no candidate is found that is better than
the previous generation’s best individual.

3.4 Composed method

Summarizing the algorithm defined in the previous sections we here define the overall
solution approach. In the description of the algorithms, for a given list L, we denote
by L[i] the i-th element in the list.

• Algorithm 1 is the complete algorithm. It is represented as
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Figure 6: Fitness landscape for combinations of elements of Ωe for the parametrization
P(t) in Example 3.3; N = 1000, k = 101.5, w = 1. Here, the number of elements in Ωe

is 348. Each cell (x, y) represents the fitness of combination of x ∈ Ωe (right x ∈ Ωord
e

and y ∈ Ωe (right y ∈ Ωord
e ).

FindOptimalParametrization(P, N0, w0, N, θ, k, µ, λ, ø, ρ, γ, γus, ψ, ε, ς).

The input parameters are:

– P is the input parametrization.

– N0 ∈ N is the size of the prime seed set to be used in the algorithm.

– w0 ∈ N is the initial size of the amplitude.

– N ≥ N0 is the size of the search space. In our experiments, based on the
reasoning in Section 2, we take N = 2 H(P)2.

– θ is the upper bound for the expected height.

– k is the controlling factor in the definition of Ωe (see Eq. (20)).

– For the evolutionary search for the best combination of elements of the
sorted set Ωe we define the following parameters:

∗ µ defines the number of individuals in the population.

∗ λ defines the number of children created each generation using mutation.

∗ ø defines whether strict offspring selection is applied. ø is either false
or true.

∗ ρ is the initial mutation radius.

∗ γ defines the maximum number of generations.

∗ γus defines the maximum number of unsuccessful consecutive genera-
tions; a generation is considered unsuccessful if no candidate is found
that is better than the previous generation’s best candidate.

∗ ψ defines whether plus selection is applied. If plus selection is applied
then the next generation’s individuals are chosen from the joint pool of
the current generation’s children and parents.
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∗ ε defines whether elitism is applied. If elitism is applied, then the best
individual of a generation is automatically included in the next genera-
tion’s population.

∗ ς is the factor for decreasing or increasing the mutation with depending
on the ratio of successful mutations in a generation.

• Algorithm 2 defines the evaluation of a combination (o1,o2) of partial solution
candidates o1,o2 ∈ Ωe. It is represented as Evaluate(o1,o2,P).

• Algorithm 3 defines the mutation of a solution candidate (oi,oj) repre-
senting a combination of partial solution candidates. It is represented as
Mutate(oi,oj, R,Ω

ord
e ). Ωord

e is the set Ωe after ordering its elements by their
partial quality as explained in Subsection 3.3. In this sense, ok denotes the k-th
element in Ωord

e . R is used in the normal distribution.

• Algorithm 4 is the main sub-algorithm and it is called with increasing values of
the amplitude (w) in Algorithm 1. It is represented as

OptimizeCoefficients(P, N, k, w, µ, λ, ø, ρ, γ, γus, ψ, ε, ς)

Algorithm 1 FindOptimalParametrization(P, N0, w0, N, θ, k, µ, λ, ø, ρ, γ, γus, ψ, ε, ς)

1: w ← w0, θ̂ ← H(P), P̂← P, i← 1.

2: while (w ·N0) < N ∧ θ̂ > θ do

3: (a, b, c, d)← OptimizeCoefficients(P̂, (i+ 1) ·N0, k, w, µ, λ, ø, ρ, γ, γus, ψ, ε, ς).

4: P̂← P̂
(

at+b
ct+d

)
, θ̂ ← H(P̂), i← i+ 1 and w ← i · w.

5: end while
6: return P̂

Algorithm 2 Evaluate(o1,o2,P)

1: compile complete solution from the partial solution candidates o1 = (α1, β1),o2 = (α2, β2):

s = (a, b, c, d)← (α1, β1, α2, β2)

2: calculate quality of complete solution candidate:

q ← Qualityc(s,P) = H

(
P

(
at+ b

ct+ d

))
3: return q
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Algorithm 3 Mutate(oi,oj, R,Ω
ord
e )

1: draw zi and zj randomly from the normal distribution N (0, R)

2: î← i+ zi, ĵ ← j + zj
3: n← #(Ωord

e )
4: if î > n then î← n− (̂i− n)
5: if î < 1 then î← 1 + (1− î)
6: if ĵ > n then ĵ ← n− (ĵ − n)
7: if ĵ < 1 then ĵ ← 1 + (1− ĵ)
8: ô = (oî,oĵ)
9: return (ô)
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Algorithm 4 OptimizeCoefficients(P, N, k, w, µ, λ, ø, ρ, γ, γus, ψ, ε, ς)

1: calculate the prime seed set Ωp =
{

(α, β) ∈ Z2 | k ·∆(α, β) < H(P) and gcd(α, β) = 1} . See
Eq. (18) for the definition of ∆.

2: calculate the w-extended seed set as Ωe = w · Ωp

3: sort elements in Ωe according to their partial quality and store resulting sorted set in Ωord
e . See

Eq. (27) for the notion of partial quality.
4: n← #(Ωord

e )
5: initialize population for search for best combination of elements of Ωord

e : pop = {}
6: for i = 1 to µ/2 do pop← pop ∪ (x, y) with x, y ∈ {1, . . . , bn/2c}
7: for i = 1 to µ/2 do pop← pop ∪ (x, y) with x, y ∈ {1, . . . , n}
8: evaluate all individuals in pop using Algorithm 2: ∀o ∈ pop : quality(o) = Evaluate(o,P)
. Note that quality(o) = Qualityc(o,P)

9: R← ρ, gen← 1, genus ← 0 . genus stores the number of unsuccessful generations
10: while gen < γ ∧ genus < γus do
11: initialize next generation: children← {}
12: sm← 0 . sm stores the number of successful mutations
13: for i = 1 to λ do
14: select randomly chosen individual from population: o← pop[j], j ∈ {1, . . . , µ}.
15: create offspring by mutation using Algorithm 3: ô←Mutate(o, R,Ωord

e )
16: evaluate offspring: quality(ô) = Evaluate(ô,P)
17: if quality(ô) < quality(o) then sm← sm+ 1
18: if quality(ô) < quality(o) ∨ ø = false then
19: children← children ∪ {ô}
20: end if
21: end for
22: if sm > µ/5 then
23: R← R · ς
24: else if sm < µ/5 then
25: R← R/ς
26: end if
27: if ψ then children← children ∪ pop
28: sort children according to quality of elements
29: if quality(children[1]) > quality(pop[1]) then
30: genus ← genus + 1
31: else
32: genus ← 0
33: end if
34: select µ best children: ˆpop← childreni : i ∈ {1, . . . , µ}.
35: if ε then
36: ˆpop[µ]← pop[1]
37: sort ˆpop according to quality of elements
38: end if
39: generational replacement: pop← ˆpop
40: gen← gen+ 1
41: end while
42: return pop[1]
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4 Empirical Tests

In this section we analyze the performance of Algorithm 1. We summarize and dis-
cuss its performance for three different sets of problem instances. In the first tests
(Subsection 4.1) the input given to the algorithm is the output of a parametrization
algorithm executed to a family of 10 randomly chosen (implicitly given) conics. In the
second part (Subsection 4.2) we use a collection of 20 randomly generated parametriza-
tions, and we execute the algorithm with different settings of its parameters. In the
third part (Subsection 4.3) we apply a non-random approach, we work with a family
of parametrizations with low height and apply different Möbius transformations with
different heights.

All computations were done on a Intel(R) Core(TM) i7-2630QM with 2.0 GHz and
16 GB RAM using Maple 18. The randomly generated parametrizations that are used
in Subsections 4.1 and 4.2 can be found online2. The results of the experiments are
summarized in the tables collected in the Appendix of this paper.

4.1 Implicit Experiment

In this experiment, we work with a family of parametrizations obtained from a family
of implicitly given genus zero curves. More precisely, the data used here have been
generated as follows:

• We take a family F = {Ci}1≤i≤10 of 10 conics generated randomly with integer
coefficients in {−400, . . . , 400}. In order to guarantee the existence of rational
parametrizations over Q, we force each conic in F to pass through a rational
point P ; for simplicity, we take P as the origin. The generated polynomials for
F are

{−3x2 − 182xy + 26y2 + 380x− 382y, 135x2 + 395xy − 289y2 + 12x+ 112y,
−207x2 + 188xy + 359y2 + 198x+ 335y, 333x2 + 246xy + 85y2 − 257x− 214y,
273x2 + 359xy − 308y2 − 382x+ 47y,−365x2 − 47xy + 42y2 + 98x+ 59y,
107x2 − 237xy − 145y2 + 226x+ 105y,−240x2 + 238xy + 232y2 − 257x− 133y,
−374x2 + 287xy − 174y2 − 239x+ 194y,−62x2 + 83xy + 163y2 − 3x+ 314y}

• We generated the family of rational parametrizations {Pi(t)}1≤i≤10 (see the web
link2) by applying the parametrization command in Maple to each conic.

Test 4.1. We now apply our algorithm to each parametrization Pi(t) using the follow-
ing parameter settings:

N0 = 100, N = 2 H(P)2, θ = 400, k = 102, µ = 100,
λ = 1000, ø = false, ρ = 50, γ = 100, γus = 20,
ψ = true, ε = true, ς = 0.9, w0 = 10

(28)

2http://www3.uah.es/rsendra/data-in-paper-Sendra-StWinkler.pdf
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Note that, since the height of the implicit equation of each conic is around 400, we
take θ = 400 which means that a parametrization height around 400 can be considered
a satisfactory result. By Qi(t) we denote the output of our algorithm applied to
Pi(t). In Table 2 we show the heights of each input and output parametrization, the
improvement (see definition in (12)), and the consumed runtime (in seconds). We
observe that in no case the Maple parametrization algorithm returned an optimal
(height) parametrization. Indeed, all heights produced by the Maple command are
bigger than the implicit equation height. However, our algorithm improves the height
in all cases. Moreover, in all but one, the output height is around the required expected
height, namely ∼ 400. We observe that the average runtime is 36 seconds.

4.2 Random Parametric Experiments

We consider a rational parametrization R(t), of a curve in Cr, constructed as follows:

• the degree n of the parametrization is taken randomly among the natural numbers
in {2, . . . , 20},

• the coefficients of the parametrization are taken randomly among the natural
numbers in {−100, . . . , 100},

• the ambient space dimension r of the curve defined by R(t) is taken randomly
among the natural numbers in {2, . . . , 5}.

In addition we introduce a Möbius transformation Φ(t) whose coefficients are taken
ramdonly among the natural numbers in {−100, . . . , 100}. Finally we gets the input
parametrization

P(t) = R(Φ(t)).

We use 20 inputs {P1, . . . ,P20} as described above.

Test 4.2. We applied our algorithm to each parametrization Pi using for its parameters
the setting described in (28). By Q(t) we denote the output of our algorithm applied
to P(t). In Table 3 we show the heights of each input and output parametrization,
the improvement (see definition in (12)), and the consumed runtime (in seconds). We
observe that in all cases the algorithm reached the expectable optimal height, namely
∼ 100, and that the consumed runtime varied from 17.66 seconds to less than 4 minutes.

In the second part of this test series we applied the algorithm to the family of
inputs {P1, . . . ,P20} and used different settings of the parameters µ, λ, ψ, and φ. More
precisely, we consider the settings:

• µ = 100, λ = 1000; results are given in Table 4 in the appendix.

• µ = 50, λ = 500; results are given in Table 5 in the appendix.

• µ = 10, λ = 100; results are given in Table 6 in the appendix.
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• µ = 10, λ = 50; results are given in Table 7 in the appendix.

In Subsection 4.4, we analyze the obtained results.

4.3 Non-Random Experiments

In the second part (Tests 4.3, 4.4, 4.5), we use a different, non-random approach.
We consider a family of parametrizations with low height and we apply different
Möbius transformations with different heights. More precisely, we now consider the
five parametrizations

Rm(t) =

(
tm + t2 + 1∑m

j=0 jt
j
,
tm + 2t+ 1∑m

j=0 jt
j
,
tm + 3t4 + 1∑m

j=0 jt
j

)
with 6 ≤ m ≤ 10. (29)

Note that deg(Rm(t)) = m and that H(Rm) = m. Hence, for these parametrizations,
the degree can be seen as a potential optimal of the height.

We tested our algorithm after performing different changes of parameters. The
algorithm was executed 5 times for each case, using the parameter values described in
(28). We consider three different type of re-parametrizations:

φ1(t) =
t−m2

t−m
, φ2(t) =

t− 2m

2mt− 1
, φ3(t) =

t− 2m

t+ 2m
. (30)

Observe that the first change will place the answer in integers of value O(m2), and
the second and the third will place the answer in integers of value O(2m), where
m = 6, 7, 8, 9, 10.

Test 4.3. We manipulate the parametrization Rm using the Möbius transformation

φ1(t) =
t−m2

t−m
(31)

to get the new parametrizations

Pm(t) = Rm(φ1(t)). (32)

Observe that the deg(Pm) = degm(Rm) = m, but H(Pm) is much bigger than H(Rm) =
m. The idea is to apply the main algorithm (Algorithm 1) to Pm and test how much
we can improve the height.

For each parametrization Pm we ran the algorithm 5 times with input parameters
as given in (28). Table 8 shows the heights of the input parametrization Pm and of
the parametrizations {Qj

m}1≤j≤5 produced by our algorithm, as well as the means and
the standard deviations of the achieved improvements (as defined in (12)). We observe
that in all cases we get a significant improvement of the height. Moreover, in all cases,
with the exception of m = 7, the potential optimum was found, namely the degree m.
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For each m, we show the achieved transformation φ(t) = (at + b)/(ct + d) producing
the simplified parametrization.

P6 7→ 36t+6
t+1
7→ Q2

6

P7 7→ −49t+56
−t+2

7→ Q5
7

P8 7→ −64t+8
−t+1

7→ Q3
8

P9 7→ 9t−81
t−1 7→ Q3

9

P10 7→ 10t+100
t+1

7→ Q2
10

Test 4.4. In this second test we use the Möbius transformation

φ2(t) =
t− 2m

2mt− 1
(33)

to get the new parametrizations

Pm(t) = Rm(φ2(t)). (34)

Again, observe that the deg(Pm) = degm(R) = m but H(Pm) is much bigger than
H(Rm) = m. For each parametrization Pm we run our algorithm (as defined in Al-
gorithm 1) 5 times, with input parameters given in (28). Table 9 shows the heights
of the input parametrization Pm and of the 5 parametrizations {Qj

m}1≤j≤5 produced
by our algorithm, as well as the means and the standard deviations of the achieved
improvements (12). We observe that in all cases we get a significant improvement of
the height. Moreover, in all cases, with the exception of m = 8, we get the potential
optimum, namely the degree m. For each m, we show the achieved transformation
φ2(t) producing the simplified parametrization.

P6 7→ t+64
64t+1

7→ Q1
6

P7 7→ 128t−1
t−128 7→ Q1

7

P8 7→ 86t+171
171t+86

7→ Q1
8

P9 7→ 521t+1
t+512

7→ Q1
9

P10 7→ 1024t+1
t+1024

7→ Q1
10

Test 4.5. In this test we used the Möbius transformation

φ3(t) =
t− 2m

t+ 2m
(35)

to get the new parametrizations

Pm(t) = Rm(φ3(t)). (36)

Again, observe that the deg(Pm) = degm(R) = m but H(Pm) is much bigger than
H(Rm) = m. For each parametrization Pm we run the algorithm 5 times with input
parameters given in (28). Table 10 shows the hights of the input parametrization Pm
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and of the 5 parametrizations {Qj
m}1≤j≤5 produced by our algorithm as well as the

means and the standard deviations of the achieved improvements (12). We observe
that in all cases we get a significant improvement of the height. Moreover, in all cases
we get the potential optimum, namely the degree m. For each m, we show the achieved
transformation φ(t) producing the simplified parametrization.

P6 7→ −64t−64
t−1 7→ Q1

6

P7 7→ −128t−128
t−1 7→ Q1

7

P8 7→ 256(t+1)
t−1 7→ Q1

8

P9 7→ −512(t−1)
t+1

7→ Q3
9

P10 7→ −1024(t+1)
t−1 7→ Q1

10

4.4 Discussion

In Test 4.1 we executed our algorithm on a family of conic parametrizations. The first
remarkable fact is that the direct application of the parametrization algorithms do
not provide optimal parametrizations (i.e., parametrizations with optimal height) and
hence it shows a natural frame for the applicability of our algorithm. The reason for
this behavior of the parametrization algorithms is that they require the determination
of regular rational points [34]. This question can be reduced to the computation of one
rational point on a conic, and the height of the output parametrization depends on the
height of this rational point. Our second remark is that the execution of our algorithm
improves the height in all cases. Moreover, in all but one, the output height is around
the required expected height, namely ∼ 400. We also observe that the average runtime
is 36 seconds.

In Test 4.2 we executed our algorithm first for the setting of parameters described
in (28). One can see in Table 3 that the performance of our algorithm is very satisfac-
tory. In all cases, the algorithm reached the expectable optimal height, namely ∼ 100.
Moreover, the time of executions varied from 17.66 seconds to less than 4 minutes.

In the second part of Test 4.2 we analyze the performance of our algorithm with
different settings of the evolutionary search for optimal solutions. We see in Table 4
that setting µ = 100 and λ = 1000 yields best results; in all cases optimal solutions are
found, regardless whether offspring selection is applied or not and regardless whether
plus or comma selection is applied. In fact, using smaller populations tends to lead us
to worse results: as we see in Table 5, some test runs did not find optimal solutions
with µ = 50 and λ = 500, and also the consumed runtime was not reduced significantly
in all cases because it takes the algorithm more generations to converge (and we use
convergence as a termination criterion via γus, the maximum number of unsuccessful
consecutive generations). Lowering the population size even more leads to even worse
results, as we see in Tables 6 and 7.

Concerning to the second collection of tests, those documented in Subsection 4.3,
we also conclude that the execution of the algorithm is satisfactory. Indeed, we observe
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that in all cases we get a significant improvement of the height. More precisely, in the
worst case, the algorithm reduces

• (in Test 4.3) input parametrizations with coefficients with α ∈ {11, 13, 16, 19, 22}
decimal digits to output parametrizations with coefficients with 4 decimal digits,

• (in Test 4.4) input parametrizations with coefficients with α ∈ {12, 16, 21, 26, 32}
decimal digits to output parametrizations with coefficients with 4 decimal digits,

• (in Test 4.5) input parametrizations with coefficients with α ∈ {23, 31, 40, 50, 81}
decimal digits to output parametrizations with coefficients with 4 decimal digits.

Moreover, in all cases, with the exception of m = 7 (in Test 4.3) and m = 8 (in Test
4.4), we get the potential optimum, namely the degree of the parameterization.

On the other hand, in Subsection 3.1 we have analyzed the search space for the
problem. There we have seen that each search space Space(Ω) is generated by a seed
subset Ω ⊂ Z(N)2. The efficiency of our method is due to the adaptation and applica-
tion of evolutionary techniques, and the reduction of the seed set Ω. In our tests, we
have taken N as 2 H(Pm(t)). Therefore, the direct approach will use the search space
Space(Z(2 H(Pm(t))2), whose cardinality is O(H(Pm(t))2). Analyzing Tables 8 and 9
we see how huge the height of the input parametrization is, and hence how big the
search space is when using the direct approach. In Table 11 we provide the cardinality
of the actual seed set used in each case.

5 Conclusion

Parametric curves admit infinitely many different parametrizations. Depending on the
chosen one, the applicability of the parametrization varies. There are different criteria
for choosing a parametrization. For most of them there exist algorithms and results
to be used. Nevertheless, for the case of the arithmetic optimality this is not the
case. In this paper we provide an evolutionary algorithm for approximately solving
this problem. According to our knowledge, this is the first algorithmic approach to the
problem of arithmetic optimality.
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[34] J.R. Sendra, F. Winkler, S. Pérez-Dı́az. Rational Algebraic Curves: A Computer
Algebra Approach. Springer-Verlag Heidelberg. In series Algorithms and Compu-
tation in Mathematics. Volume 22. 2007

[35] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag, Wien
New York, 1996.

28



Appendix: Tables of the tests in Section 4

H(Pi) H(Qi) Impr10 Time

P1(t) 128440 380 1 15.99

P2(t) 47708 523 0.67 36.739

P3(t) 6179051637 74668 1 51.667

P4(t) 54355590 231 1.67 35.35

P5(t) 85453560192 473 2.67 57.533

P6(t) 63067620 243 1.67 41.746

P7(t) 10348505 343 1.67 34.445

P8(t) 3340800 532 1.3 32.994

P9(t) 122668260 342 2 33.914

P1(t) 7640136 320 1.3 17.769

Table 2: Results of Test 4.1 in Subsection 4.1.

In Tables 4, 5, 6, 7, we have emphasized with bold face style when the result has
height bigger than expected. In addition, the processes were aborted when they took
more than 900 second of CPU execution; this is expressed in the tables as > 900.
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Cr deg(P) H(P) H(Q) Impr10 Time

P1 r = 4 13 20473632923964887080514238281324928 93 16.5 137.624

P2 r = 2 14 14327349120521962049851258346394869760 100 11.6 79.951

P3 r = 5 18
2383545106910133697043796295

14508361018181504
100 14. 148.076

P4 r = 5 2 349874 99 2. 17.660
P5 r = 2 9 2827199650699677729492 98 10. 27.768

P6 r = 2 11 179415500145130976754852 99 11. 51.402

P7 r = 4 3 99712956 99 3. 16.427

P8 r = 5 11 11459639833490045675765760 99 12. 95.036

P9 r = 2 14 13732461167434626494051719 99 12. 76.425

P10 r = 5 12 155812617201464671339552964608 94 14. 110.980

P11 r = 3 15 9739125658909214797223474560 95 13. 105.051

P12 r = 2 13 104499022408268258389816884375 81 14. 63.758

P13 r = 3 15 144682330719124526869517949657418797 98 17. 70.731

P14 r = 3 19 1388237194497006733071996334128305280 92 17.5 224.455

P15 r = 3 6 217962317958120 96 6.5 115.956

P16 r = 2 16 173878708995875187345961044158054400 89 17. 111.338

P17 r = 2 7 12758128747585929 97 7.5 21.014

P18 r = 2 19 33983437729266597841239819191401076220 87 18. 79.373

P19 r = 5 16 1277148456062480823489459166895616 98 16. 139.434

P20 r = 2 19
720418753670872331198116248628

172305818123
97 20. 86.143

Table 3: Results of the first experiment of Test 4.2 in Subsection 4.2.
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µ = 100
λ = 1000

ψ = T, φ = T
[H(Q), Time]

ψ = T, φ = F
[H(Q), Time]

ψ = F, φ = T
[H(Q), Time]

ψ = F, φ = F
[H(Q), Time]

P1 [93, 137.624] [93, 134.255] [93, 130.682] [93, 119.544]
P2 [100, 79.951] [100, 80.247] [100, 79.966] [100, 84.756]
P3 [100, 148.076] [100, 148.700] [100, 151.196] [100, 153.895]
P4 [99, 17.660] [99, 17.675] [99, 17.597] [99, 19.594]
P5 [98, 27.768] [98, 27.456] [98, 28.283] [98, 47.845]
P6 [99, 51.402] [99, 50.825] [99, 51.527] [99, 52.931]
P7 [99, 16.427] [99, 16.677] [99, 16.567] [99, 17.457]
P8 [99, 95.036] [99, 94.786] [99, 208.823] [99, 100.105]
P9 [99, 76.425] [99, 74.693] [99, 77.127] [99, 79.140]
P10 [94, 110.980] [94, 108.296] [94, 107.984] [94, 108.249]
P11 [95, 105.051] [95, 105.223] [95, 153.412] [95, 92.727]
P12 [81, 63.758] [81, 61.059] [81, 63.383] [81, 67.393]
P13 [98, 70.731] [98, 67.689] [98, 71.043] [98, 101.837]
P14 [92, 224.455] [92, 199.338] [92, 412.888] [92, 213.721]
P15 [96, 115.956] [96, 36.473] [96, 107.703] [96, 41.044]
P16 [89, 111.338] [89, 104.427] [89, 100.652] [89, 104.255]
P17 [97, 21.014] [97, 20.389] [97, 21.278] [97, 22.854]
P18 [87, 79.373] [87, 79.935] [87, 78.203] [87, 80.076]
P19 [98, 139.434] [98, 138.155] [98, 142.071] [98, 143.864]
P20 [97, 86.143] [97, 86.658] [97, 86.549] [97, 89.514]

Table 4: Results for Test 4.2 achieved with µ = 100, λ = 1000; T = true, F = false.

µ = 50
λ = 500

ψ = T, φ = T
[H(Q), Time]

ψ = T, φ = F
[H(Q), Time]

ψ = F, φ = T
[H(Q), Time]

ψ = F, φ = F
[H(Q), Time]

P1 [93, 73.305] [93, 75.723] [93, 74.132] [93, 75.442]
P2 [100, 41.808] [100, 46.021] [100, 44.756] [100, 44.585]
P3 [100, 79.686] [100, 80.371] [100, 78.360] [100, 77.501]
P4 [235, 9.236] [99, 9.969] [235, 9.423] [235, 9.719]
P5 [98, 25.880] [98, 27.799] [98, 26.255] [98, 26.582]
P6 [99, 28.455] [99, 30.670] [99, 29.312] [99, 29.407]
P7 [1318, 550.902] [1318, 554.038] [99, 8.892] [608, 541.120]
P8 [99, 53.696] [99, 55.520] [99, 55.194] [99, 54.943]
P9 [99, 47.222] [99, 50.436] [99, 39.998] [99, 39.952]
P10 [94, 60.793] [94, 63.383] [94, 41.169] [94, 60.575]
P11 [95, 47.877] [95, 51.043] [95, 55.240] [95, 83.882]
P12 [81, 35.755] [81, 38.299] [81, 35.053] [81, 35.943]
P13 [98, 35.412] [98, 38.922] [98, 37.581] [98, 37.128]
P14 [92, 122.165] [92, 238.869] [92, 102.851] [92, 221.959]
P15 [96, 21.310] [96, 23.212] [96, 19.423] [96, 22.511]
P16 [89, 54.320] [89, 59.374] [89, 54.491] [89, 54.116]
P17 [97, 12.183] [97, 12.496] [97, 10.857] [97, 12.028]
P18 [87, 40.420] [87, 42.448] [87, 37.534] [87, 41.122]
P19 [98, 76.753] [98, 71.323] [98, 70.887] [98, 77.516]
P20 [97, 43.586] [97, 42.136] [97, 39.234] [97, 44.976]

Table 5: Results for Test 4.2 achieved with µ = 50, λ = 500; T = true, F = false.
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µ = 10
λ = 100

ψ = T, φ = T
[H(Q), Time]

ψ = T, φ = F
[H(Q), Time]

ψ = F, φ = T
[H(Q), Time]

ψ = F, φ = F
[H(Q), Time]

P1 > 900 [93, 30.373] [93, 30.608] [93, 38.376]
P2 [100, 80.778] [100, 18.361] [100, 18.034] [100, 26.271]
P3 [100, 176.952] [100, 39.530] [100, 23.556] [100, 34.195]
P4 [99, 14.103] [99, 3.526] [99, 3.323] [99, 4.977]
P5 [98, 52.261] > 900 [98, 20.093] > 900
P6 > 900 [99, 21.840] [99, 12.558] [99, 19.079]
P7 > 900 [891, 760.692] [891, 586.439] [1318, 681.459]
P8 [99, 119.528] [99, 32.666] [99, 23.057] [99, 28.267]
P9 [99, 93.305] [99, 26.364] [99, 31.262] [99, 20.312]
P10 [94, 127.640] [94, 34.398] [94, 23.915] [94, 30.326]
P11 [95, 194.315] [95, 54.428] [95, 37.347] > 900
P12 [81, 78.016] [81, 21.373] [81, 15.226] [81, 19.016]
P13 [98, 65.895] [98, 19.328] [98, 12.121] [98, 15.819]
P14 [92, 468.408] > 900 [92, 60.248] > 900
P15 [96, 43.650] [96, 15.178] [96, 9.063] [96, 13.728]
P16 [89, 106.908] [89, 30.873] [89, 21.278] [89, 27.269]
P17 [97, 19.126] [97, 6.178] [97, 4.010] [97, 4.930]
P18 [87, 71.136] [87, 18.299] [87, 12.573] [87, 16.832]
P19 > 900 [98, 43.181] [98, 29.703] [98, 37.097]
P20 [97, 23.666] [97, 32.043] [97, 22.058] [97, 27.674]

Table 6: Results for Test 4.2 achieved with µ = 10, λ = 100; T = true, F = false.

µ = 10
λ = 50

ψ = T, φ = T
[H(Q), Time]

ψ = T, φ = F
[H(Q), Time]

ψ = F, φ = T
[H(Q), Time]

ψ = F, φ = F
[H(Q), Time]

P1 [93, 41.434] > 900 [93, 82.946] [93, 32.386]
P2 [100, 17.612] [100, 22.636] [100, 47.705] [100, 18.892]
P3 [100, 20.780] [100, 103.959] [100, 52.790] [100, 18.860]
P4 [99, 3.385] [262, 4.353] [99, 8.705] [99, 3.370]
P5 [98, 22.105] > 900 > 900 [98, 22.994]
P6 > 900 [99, 19.562] [99, 49.796] [99, 22.807]
P7 [1318, 863.341] [99, 10.920] [99, 10.125] [608, 812.687]
P8 > 900 [99, 65.162] [99, 79.935] [99, 28.969]
P9 [99, 59.452] [99, 26.457] [99, 62.104] [99, 18.814]
P10 [94, 37.581] [94, 37.987] [94, 81.277] [94, 25.085]
P11 > 900 [95, 59.265] [95, 130.542] [95, 24.039]
P12 [81, 18.471] [81, 25.272] [81, 52.791] [81, 19.968]
P13 [98, 17.409] [98, 17.472] [98, 39.343] [98, 10.468]
P14 > 900 [92, 113.085] [92, 107.937] > 900
P15 [96, 9.859] > 900 [96, 31.637] [96, 9.391]
P16 > 900 [89, 22.027] > 900 [89, 21.544]
P17 [97, 7.987] [97, 13.463] > 900 [97, 3.776]
P18 [87, 8.565] [87, 19.516] [87, 45.022] [87, 9.422]
P19 [98, 81.215] > 900 [98, 116.159] [98, 28.923]
P20 [97, 21.154] > 900 [97, 80.138] [97, 19.126]

Table 7: Results for Test 4.2 achieved with µ = 10, λ = 50; T = true, F = false.
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m H(Pm) [ H(Qj
m) ]j=1,...,5 Impr10(Pm,Q

j
m)[µ± σ]

6 15150416256 (1.5× 1010) [1734, 6, 24, 24, 642] 4.683± 3.202
7 5406945213124 (5.4× 1012) [45, 880, 626, 752, 45] 4.2± 1.187
8 2527530405855232 (2.5× 1015) [2560, 85, 8, 8, 8] 11± 5.657
9 1498601124347956605 (1.5× 1018) [3186, 639, 9, 802, 9] 10.083± 7.256
10 1098765432100000000000 (1.1× 1021) [308, 10, 308, 10, 10] 8.533± 2.008

Table 8: Results of Test 4.3 in Subsection 4.3.

m H(Pm) [ H(Qj
m) ]j=1,...,5 Impr10(Pm,Q

j
m)[µ]

6 417753473088 (4.2× 1011) [6, 6, 6, 6, 6] 11

7 3967210831773824 (4.0× 1015) [7, 7, 7, 7, 7] 15

8 148080050112590643456 (1.5× 1020) [8003, 8003, 8003, 8003, 8003] 4.25

9
21798508356793128488272384

(2.2× 1025)
[9, 9, 9, 9, 9] 25

10
12687657142313483862424846074880

(1.3× 1031)
[10, 10, 10, 10, 10] 15

Table 9: Results of Test 4.4 in Subsection 4.3.

m H(Pm) [ H(Qj
m) ]j=1,...,5 Impr10(Pm,Q

j
m)[µ± σ]

6 23611832414348226068480 (2.4× 1022) [6, 4374, 1216, 6, 64] 12.8 ± 8.72

7
1267650600228229401496703205376

(1.3× 1030)
[7, 7, 7, 7, 7] 30

8
1701411834604692317316873037158841057280

(1.7× 1039)
[8, 8, 8, 8, 8] 39

9
2923003274661805836407369665432566039311

8650859520 (2.9× 1049)
[9, 9, 9, 9, 9] 49

10
8034690221294951377709810461705813012611

014968913964176506880 (8.0× 1060)
[10, 10, 10, 10, 10] 29.5

Table 10: Results of Test 4.5 in Subsection 4.3.

Average runtime , #(Ωe)
Test m=6 m=7 m=8 m=9 m=10

4.3 time 46.5 51.16 51.16 73.12 65.57
#(Ωe) 9250 1320 16320 20880 25400

4.4 time 28.03 28.85 37.8 91.24 160.96
#(Ωe) 13680 5960 4720 18000 29480

4.5 time 36.92 63.53 61.67 68.57 79.21
#(Ωe) 1000 14120 13720 16280 18120

Table 11: Average time of the computations and cardinality of the used seed sets in
Tests 4.3, 4.4, and 4.5.
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