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Abstract

We study the rational solutions of systems of first-order algebraic partial differential equations and relate
them to those of an associated autonomous system. We also describe how rational general solutions of
these systems are related, and provide an algorithm in some particular case concerning the dimension of the
associated algebraic variety. Our results can be considered as a generalization of the approach by L.X.C. Ngô
and F. Winkler on algebraic ordinary differential equations of order one, adapted to systems of first-order
algebraic partial differential equations.
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1. Introduction

The study of solutions of systems of partial differential equations in the complex domain goes along a
parallel study of that of a single equation. This is a classical approach in mathematics, which has proved
successful in many circumstances. There are widespread approximation techniques of the solutions by
different methods. For a historical review on the analytic approach we refer to [5]. In this paper, we
study exact symbolic solutions of systems of algebraic partial differential equations. Our work is based on
differential algebra techniques, put forward in [20, 25].

More precisely, our main aim is to investigate the exact rational solutions of systems of algebraic partial
differential equations (APDEs, for short) from the point of view of an algebro-geometric treatment. We
deal with systems of first-order partial differential equations. To such a system we associate an algebraic
variety. If this associated variety admits a rational parametrization, we derive information on the rational
solvability from such a parametrization.

An algebraic-geometric method for solving differential equations was proposed in [15] via Gröbner bases;
see also [26]. Several advances have been made concerning not only the treatment of equations of higher
order, but also the extension of results for autonomous equations to more general ones. Algebraic ordinary
differential equations (AODEs, for short) were considered in [6, 7], where the authors develop an algorithm
for deciding whether an autonomous first-order AODE admits a rational solution, and, in the affirmative
case, for computing it. These investigations have been extended to radical solutions in [10, 12], to the
non-autonomous case in [22, 24, 23], and to higher order AODEs in [14].

In the case of systems of ordinary differential equations, a first step is taken in [21] when studying systems
of AODEs of algebro-geometric dimension one. A similar direction is explored in [13].

The multivariate setting of the problem deals with partial differential equations. The development
concerning APDEs has progressed in a manner analogous to AODEs. In [11] we describe a solution method
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for a single autonomous first-order APDE. The latter method is not restricted to finding rational solutions.
It also provides in some cases an implicit description of the solution even if the method fails. The present
work deals with a next step in the theory, namely, the study of solutions of systems of first-order (not
necessarily autonomous) APDEs. The method heavily relies on the construction of an auxiliary system of
partial differential equations which is associated to the initial one, in the spirit of the univariate case studied
in [22]. The so-called associated system is linear and autonomous, which might be easier to handle, as
suggested by our examples. Thus, the present paper can be seen as a generalization to APDEs of the results
developed for AODEs in [22].

Given a system of first-order APDEs, Sdiff , we construct its associated system, SPass, via a proper param-
etrization P of the associated algebraic variety. P-covered rational solutions of Sdiff generate a certain type
of rational solutions of SPass; and rational solutions of SPass under the natural assumption of being P-suitable
(see Definition 23) yield rational solutions of Sdiff . As a matter of fact, this yields a one-to-one relation. The
study of the behavior of general solutions of Sdiff and SPass is much more involved.

Under the assumption of the differential primality of the ideal associated to Sdiff , we show that a general
solution of Sdiff has the expected number of free parameters and corresponds to a solution of SPass having
also the expected number of free parameters; and vice-versa, see Theorem 28 and Theorem 29. If we drop
the hypothesis of primality, we still have this correspondence between the number of free parameters but we
cannot ensure that the solutions are general in the classical sense of Ritt (see [25]).

The paper is structured as follows. In the last paragraphs of the current section, a summary of the
notations considered in the work is stated for the sake of clarity of the interested readers. Section 2 states
the hypotheses for the problem and several assumptions required in the subsequent sections. In Sections 2.1
and 2.2 we recall basic notions with respect to rational solutions of systems of APDEs and characteristic sets,
respectively. In Section 3, we give details on a particular case of the problem, and describe an algorithm
providing rational solutions of the systems under study. In Section 4, we describe the field extension
containing all the coefficients of a general solution of Sdiff (see Theorem 16). Essentially, the number
of indeterminate functions in the system is also the number of transcendental elements required in the
extension of the ground field (see Corollary 17). In Section 5, we construct the associated system SPass
related to the initial problem Sdiff , via a proper parametrization P of the associated algebraic variety. This
is a system of first-order autonomous APDEs, which is easier to handle. A one-to-one correspondence of
the so called P-covered rational solutions of Sdiff (see Definition 6) and P-suitable rational solutions of SPass
(see Definition 23) is stated in Theorem 18 and Theorem 21. Under the assumption of differential primality,
Section 6 is devoted to describing the transformation from P-covered rational general solutions of Sdiff to
P-suitable rational rank-general solutions of SPass (see Theorem 28), and vice-versa (see Theorem 29). In
the last section, we drop the requirement of differential primality and we see how rank-general solutions of
both systems relate (see Section 7). We end with some conclusions and possible future lines of research in
Section 8.

Notation. Throughout this paper we use the following notation:

1. K stands for an algebraically closed field of characteristic zero, and we consider the usual partial
derivative ∂

∂xi
where ∂xj

∂xi
= δij and the elements xi are trascendental over K.

2. We fix positive integers k, ` such that k stands for the number of independent variables and ` for the
number of dependent variables.

3. By bold face letters we denote the tuples involved. More precisely, in the differential frame, we write
(a) x = (x1, . . . , xk) for the tuple of independent variables,
(b) u(x) = (u1(x), . . . , u`(x)) for the tuple of indeterminate functions on x, and
(c) u′(x) =

(
∂u1
∂x1

(x), . . . , ∂u1
∂xk

(x), . . . , ∂u`∂x1
(x), . . . , ∂u`∂xk

(x)
)
for the tuple of all first-order derivatives.

(d) Analogously, if u(x) = (u1(x), . . . , u`(x)) is a tuple of differentiable functions depending on x we
write u(x)′ =

(
∂u1
∂x1

(x), . . . , ∂u1
∂xk

(x), . . . , ∂u`∂x1
(x), . . . , ∂u`∂xk

(x)
)
.

(e) We deal with two different differential systems, both depending on x. The main system, Sdiff ,
involves x, u(x), u′(x). For the second system, SPass, we introduce a tuple s of β := k + ` new
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indeterminate functions on x, s(x) = (s1(x), . . . , sβ(x)), and similarly we denote by s′ the tuple
of first-order derivatives.

In the next section we associate an algebraic variety to the differential system. When working in this
algebraic frame, we also use the following tuples of undetermined variables
(a) y = (y1, . . . , y`), will replace u(x),
(b) z = (z11, . . . , z1k, . . . , z`1, . . . , z`k), will replace u′(x),
(c) w = (w1, . . . , wβ), will replace s(x).
(d) The associated algebraic variety in the next section is assumed to have a rational component of

dimension β, i.e. the length of the tuple s. When expressing the variety parametrically, we use
t = (t1, . . . , tβ) for the tuple of parameters.

4. Finally, let (f1, . . . , fm) be a tuple of functions in the variables z = (z1, . . . , zj). We denote by
Jacz(f1, . . . , fm) the Jacobian (matrix) of the tuple of functions with respect to z. If the set of
variables is clear from the context we might also write Jac(f1, . . . , fm).

2. Preliminaries

We consider a (potentially) non-autonomous system of first-order algebraic partial differential equations

Sdiff = {F (x, u, u′) = 0}F∈Fa
, (1)

where Fa ⊂ K[x,y, z] is a nonempty finite set of polynomials. Our goal is to analyze the existence of rational
solutions of Sdiff . For this purpose, we associate to Sdiff the system of algebraic equations

Salg = {F (x,y, z) = 0}F∈Fa
. (2)

Let V(Fa) ⊂ Kk+`+k` be the variety over K defined by Fa. We call it the variety associated to Salg and we
denote it by VSalg . We denote by Fd the set of differential polynomials {F (x, u, u′)}F∈Fa

. Let Jd = [Fd] be
the differential ideal generated by Fd in K(x){u}, and let Ja = 〈Fa〉 be the ideal in K[x,y, z] generated by
Fa. Additionally, we make the following
Assumptions:
(I) The differential ideal Jd, is prime;
(II) VSalg has a rational component of maximal dimension;
(III) dim(VSalg) = β := k + `;
(IV) We fix an orderly ranking (see e.g. page 75 in [20]) and let A be a characteristic set of Jd. We

assume that every polynomial in A is of order 1 and that every first-order partial derivative of every
component of u is the leader of some polynomial in A (this entails that no equivalent system to Sdiff
can contain algebraic equations);

(IVa) Ja ∩K[x,y] = {0}.
Whether a differential ideal is prime, as stipulated in (I), is a difficult question. For algebraic ideals in
multivariate polynomial rings over a field, we can decompose a radical ideal into prime ideals; see for
instance [18]. In [2, Sec. 5], we read "To our knowledge, there does not exist any algorithm which decides if a
differential ideal given by a basis (. . . ) is prime". Hubert [16] revisits this problem area, but without giving
an algorithm for testing primality of differential ideals. Golubitsky [9] raises the question in the conclusion,
when he asks "Can one efficiently construct a universal regular (Boulier et al., 1995)/characterizable (Hubert,
2000) decomposition of a radical differential ideal?". To our knowledge, the question of whether a differential
ideal is prime, is still not known to be decidable.

Also the question whether an algebraic set in arbitrary dimension is rational is algorithmically still open.
Observe that Assumption (IV) implies Assumption (IVa), namely Ja ∩K[x,y] = {0}. Indeed, polynomials
of order less than one cannot be reduced to 0.

The next lemma ensures that under our hypotheses, the rank of the Jacobian of any proper parame-
trization of VSalg is reached by a principal minor. This property plays an important role in the process of
generating the associated system in Section 5.

3



Lemma 1. Under the assumptions (II), (III), and (IVa), let P be a proper rational parametrization of a
component of maximal dimension of VSalg . Then, the (k+ `)× (k+ `) principal minor of the Jacobian of P
is non-zero.

Proof. Let W be such a component of maximal dimension. Let us assume that the (k+ `)× (k+ `) principal
minor is zero. Let Pk+` be the tuple consisting of the first (k + `) components of P. By construction, Pk+`
parametrizes the Zariski closure of the projection of W over the first (k + `) coordinates. Therefore, the
dimension of this projection equals the rank of the Jacobian of Pk+`, and hence it is smaller than k + `.
Therefore, Ja ∩K[x,y] 6= {0}, which is a contradiction.

The results in this paper do not all depend on the whole set of assumptions (I)–(IVa). In the following
table we specify which assumptions are required in which sections.

Section 2.1 2.2 3 4 5 6 7
Assumptions (II) (I), (IV) (II) (I), (IV) (II), (III),

(IVa)
All All but (I)

Table 1: Assumptions and sections

2.1. Rational solutions
In this subsection we assume hypothesis (II). We recall the basic notions of solution, and we intro-

duce the concept of solution variety and covered solution. Let us consider the partial differential field
(K(x), ∂

∂x1
, . . . , ∂

∂xk
) and let (F, δ1, . . . , δk) be a differential field extension.

Definition 2. A solution of Sdiff is a u(x) = (u1, . . . , u`) ∈ F` such that

F (x,u(x), δ1(u(x)), . . . , δk(u(x))) = 0 ,

for all F ∈ Fa, and where δi(u(x)) = (δi(u1), . . . , δi(u`)).

Definition 3. Let u(x) ∈ K(x)` be a rational solution of Sdiff , and let Ωu ⊂ Kk be the Zariski open subset
where the evaluations of u are well-defined. The Zariski closure of

{(x0,u(x0),u′(x0)) : x0 ∈ Ωu}

is called the solution variety of u. We denote it by Vu.

We observe that
Vu ⊂ VSalg .

In the next lemma we prove further properties of Vu.

Lemma 4. Let u(x) be a rational solution of Sdiff . Then
(i) Vu is rational. Moreover

U(x) = (x,u(x),u(x)′) (3)

properly parametrizes Vu. We call U(x) the parametrization derived from the solution u.
(ii) dim(Vu) = k.

Proof. It is clear that U(x) parametrizes Vu. Moreover, since x appears as components of the parametriza-
tion U, it holds that K(U(x))) = K(x). So, the parametrization is proper. In addition, since the Jacobian
of U has rank k, it holds that dim(Vu) = k.

Remark 5. Lemma 4 (ii) implies that dim(VSalg) ≥ k and obviously β < k + ` + k`. The particular case
dim(VSalg) = k is studied in Section 3.
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The previous lemma gives a hint on where the rational solutions of Sdiff come from. They are parametri-
zations of rational subvarieties of VSalg of dimension k. In order to analyze these subvarieties, we introduce
the next definition.

Definition 6. Let u(x) be a rational solution of Sdiff , and let P be a proper rational parametrization of a
maximal component of VSalg . We say that u(x) is P-covered if

• P−1 is well-defined at U(x).

• P is well-defined at P−1(U(x)).

Remark 7. The previous definition essentially requires that

Vu ∩ dom(P−1) ∩ Im(P)

is a Zariski dense subset of Vu.

2.2. Basic facts on characteristic sets
In this section we assume hypotheses (I), (IV). We fix an orderly ranking. Let A be a characteristic set

(see e.g. page 82 in [20]) of Jd, and let H be the product of all initials and separants of the polynomials in
A. Then, we introduce the saturation of the ideal [A]

[A] : H∞ = {p ∈ K(x){u} | ∃n ∈ N ∪ {0} such that Hn · p ∈ [A]} .

Since Jd is prime and A is a characteristic set of Jd, we have (see [20, Lem. 2, p. 167])

Jd = [A] : H∞ .

Characteristic sets can be computed using the characteristic set method [25, 34], Rosenfeld-Groebner
algorithm [2, 3, 17] or differential Thomas decomposition [31, 32]. The Rosenfeld-Groebner algorithm is
included in Maple in the DifferentialAlgebra package developed by F. Boulier and E. S. Cheb-Terrab.
There are also implementations for Thomas decomposition (see for instance [1]). Thus, Assumption (IV)
can be easily checked. In the following remark, we collect some facts from differential algebra that are used
throughout the paper.

Remark 8. Under the assumptions made for this section, the following statements hold:
(a) The order of H is at most 1.

Proof. By (IV), each polynomial in A is of order 1. We have ord(sep(P )) ≤ ord(P ), and for every
P ∈ A, the order of its initial is at most 1.

(b) Let G be of order 1, and G∗ its pseudo-remainder w.r.t. A. Then,(∏
A∈A

ImAA SnAA

)
G = G∗ +

∑
A∈A

TAA ,

where mA, nA ∈ N ∪ {0}, TA ∈ K(x){u}, and where IA and SA denote the initial and the separant of
A ∈ A.

Proof. By Proposition 1, p. 79, [20], we have(∏
A∈A

ImAA SnAA

)
G = G? +

∑
A∈B

TAA,

where
B = {θA : A ∈ A, θ(ld(A)) ≤ ld(G), θ ∈ Θ}

(see page 59 in [20] for the notation for the set of derivative operators). By Assumption (IV), every
polynomial in A has a leader of order 1, hence any proper derivative of the leader is of order 2 and
hence greater than the leader of G due to the orderly ranking. We conclude B ⊆ A.
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(c) Neither any initial nor any separant of the polynomials in A belong to Jd.

Proof. Since Jd is prime, the result follows from the second to the last paragraphs in [26], page 252.

(d) If G(x, u, u′) is an initial or a separant of a differential polynomial in A, then G(x,y, z) 6∈ Ja.

Proof. Let G(x,y, z) ∈ Ja, then G(x, u, u′) ∈ Jd. The conclusion follows from (IV).

3. Case dim(VSalg) = k

In this section, assuming (II), we analyze the special case where dim(VSalg) = k. Let u(x) be a rational
solution of Sdiff . Then, Vu ⊂ VSalg , dim(Vu) = dim(VSalg). Thus, Vu is an irreducible component of VSalg .
We have the next theorem.

Theorem 9. Let dim(VSalg) = k and let W be a k-dimensional rational irreducible component of VSalg . The
following statements are equivalent

(a) There exists a proper rational parametrization P(t) = (χ1(t), . . . , χk+`+k`(t)) of W such that
(i) P1 := (χ1(t), . . . , χk(t)) defines a birational map from Kk onto Kk.
(ii) There exists ξ(t) ∈ K(t)` such that P(P−1

1 (t)) = (t, ξ(t), ξ(t)′).
(b) Every proper rational parametrization of W satisfies conditions (a)(i) and (a)(ii).

Rational solutions of Sdiff come from the parametrizations of irreducible components of VSalg satisfying the
above property.

Proof. First we prove the equivalence of (a) and (b). Let P(t),P1(t), ξ(t) satisfy (a), and let Q(t) be a
proper rational parametrization of W . Since both parametrizations are proper, there exists Φ(t) ∈ K(t)k
such that Q(Φ(t)) = P(t). Therefore,

Q(Φ(P−1
1 (t))) = P(P−1

1 (t)) = (t, ξ(t), ξ(t)′),

and clearly Φ ◦ P−1
1 is a birational map from Kk on Kk (see Diagram (4)). So, (b) holds.

Kk Kk W

Kk

P1
1:1

P
1:1

Q1:1Φ
(4)

(b) clearly implies (a).
Let u(x) be a rational solution of Sdiff . Then, by Lemma 4, U(x) is a proper rational parametrization of

a k-dimensional component of VSalg satisfying the conditions in (a). On the other hand, let P(t) and ξ(t)
be as in (a). Then, since P(P−1

1 (t)) parametrizes a k-dimensional component of VSalg , we get that ξ(t) is a
rational solution of Sdiff .

Note that Theorem 9 implies that the number of k-dimensional rational components of VSalg is an upper
bound for the number of rational solutions of Sdiff .

The following algorithm is derived from the previous theorem.
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Algorithm 1 Rational Solutions when dim(VSalg) = k (General assumptions as above).

The algorithm takes as input a system of APDEs Sdiff such that dim(VSalg) = k, and it returns the set
L of all rational solutions.

1: Determine the k-dimensional rational components {W1, . . . ,Wr} of VSalg .
2: Set L := ∅.
3: for i from 1 to r do
4: Compute a proper rational parametrization P(t) = (χ1(t), . . . , χk+`+k`(t)) of Wi.
5: Check whether P1 := (χ1, . . . , χk) is a birational map from Kk to Kk.
. One may decide this using e.g. Gröbner bases. If k = 1, P1 is birational iff P1 is a linear rational
function.

6: if P1 is birational then
7: compute P(P−1

1 ) . Say that P(P−1
1 ) = (t, ψk+1(t), . . . , ψk+`+k`(t))

8: if (ψk+1, . . . , ψk+`)′ = (ψk+`+1, . . . , ψk+`+k`) then L := L ∪ {(ψk+1, . . . , ψk+`)}
9: end if
10: end if
11: end for
12: return L.

In the following we briefly comment on how to perform the steps of Algorithm 1. In Step 1 one needs to
compute the irreducible components of VSalg . This can be done, for instance, by means of Gröbner bases (see
e.g. [8], [33]). Furthermore, one can also compute the dimension with similar techniques (see e.g. Chapter 9
in [4]). For checking the rationality of the components of VSalg , one may use the methods described in [29] for
dimension 1, and in [28] for dimension 2; if the dimension is higher than 2 one may find answers for particular
cases but we do not know any general method and the problem is open. The algorithms described in [29]
and [28] provide proper parametrizations when the dimension is 1 or 2, respectively; Again for dimension
higher than 2 the problem is open. The invertibility of P1 (see Step 5), and the actual computation of the
inverse (see Step 7), can be performed by using the ideas in [27] or in [29].
Example 10. We consider the system of ODEs

Sdiff =
{
u′1 + u2

1 = 0
x3u′1u1 + 1 = 0

In this example we have k = 1 = `. We work in C3 using coordinates x, y, z. We have Fa = {z+y2, x3yz+1},
which decomposes into prime ideals J1 =

〈
z + y2,−1 + zx2 − xy

〉
, and J2 =

〈
−1 + xy, z + y2, xz + y

〉
. Both

ideals are of dimension 1, which we proceed to study. On the one hand, J1 determines a curve in space which
does not provide any solutions of the problem under study, while J2 provides the solution u(x) = 1/x.
Example 11. We consider the system of ODEs

Sdiff =
{
−x3u′1 + x3 − xu′1 + 2u1 = 0
x4u′1 − x4 + 2x2u′1 − 3x2 + u′1 = 0

So, k = 1 = `. We work in C3 with coordinates x, y, z. Furthermore, Fa = {x4z − x4 + 2x2z − 3x2 +
z,−x3z + x3 − xz + 2y}. Therefore, VSalg is rational of dimension 1. Hence dim(VSalg) = k. Moreover, a
proper rational parametrization is

P(t) =
(
t+ 1
t

,
(t+ 1)3

t (2 t2 + 2 t+ 1) ,
4 t4 + 10 t3 + 9 t2 + 4 t+ 1
4 t4 + 8 t3 + 8 t2 + 4 t+ 1

)
.

We observe that P1 is invertible and P−1
1 = 1

t−1 . We compute

P(P−1
1 ) =

(
t,

t3

t2 + 1 ,
t2
(
t2 + 3

)
t4 + 2 t2 + 1

)
.
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Moreover, (
t3

t2 + 1

)′
=

t2
(
t2 + 3

)
t4 + 2 t2 + 1 .

So, we conclude that u(x) = x3

x2+1 is a rational solution of Sdiff .

Example 12. We consider the system of PDEs

Sdiff =


−∂u1

∂x2
(x1, x2) + x1 = 0

∂u1

∂x2
(x1, x2) ∂u1

∂x1
(x1, x2)−

(
∂u1

∂x2
(x1, x2)

)2
− u1 (x1, x2) = 0

2 ∂u1

∂x2
(x1, x2)− ∂u1

∂x1
(x1, x2) + x2 = 0

So, k = 2, ` = 1. We work in C5 with variables x1, x2, y1, z1, z2. Furthermore, Fa = {−z2 + x1, 2z2 − z1 +
x2, z1z2 − z2

2 − y1}. Therefore, VSalg is rational of dimension 2. Hence dim(VSalg) = k. Moreover, a proper
rational parametrization is

P(t) =
(
t1,−t21 + t2, t

2
1 + (−t21 + t2)t1,−t21 + 2t1 + t2, t1

)
.

We observe that P1 is invertible and P−1
1 = (t1, t21 + t2). We compute

P(P−1
1 ) =

(
t1, t2, t

2
1 + t1t2, 2t1 + t2, t1

)
.

Moreover,
∂

∂t1
(t21 + t1t2) = 2t1 + t2,

∂

∂t2
(t21 + t1t2) = t1 .

So, we conclude that u(x1, x2) = x2
1 + x1x2 is a rational solution of Sdiff .

4. Rational General Solutions of First-Order Systems of Algebraic PDEs

In this section, we assume hypotheses (I) and (IV). We analyze properties of a rational general solution
of Sdiff . As in Subsection 2.2, we consider an orderly ranking in K(x){u} and we assume that A is a
characteristic set of Jd.

Definition 13. Let F be an extension field of K and let u(x) ∈ F(x)` be a rational solution of Sdiff . We
say that u(x) is a rational general solution of Sdiff if u(x) is a generic zero of Jd. In other words, if for
G ∈ K(x){u}, it holds that G ∈ Jd if and only if G(u(x)) = 0.

The following lemma characterizes the notion of general solution. For this purpose, we need to introduce
first some additional terminology. By hypothesis (IV), we know that all polynomials in A have order 1,
and all partial derivatives appear in the heads of the polynomials in A. Let Rd be the set of all possible
pseudo-remainders w.r.t. A, that is (ld denotes the leader)

Rd = {G ∈ K(x){u} | ord(G) ≤ 1,degld(A)(G) < degld(A)(A) for all A ∈ A}, (5)

and let Ra be the set of all algebraic polynomial associated to the differential polynomials in Rd. Note that
Ra ⊂ K[x,y, z].

Lemma 14. Let u(x) be a rational solution of Sdiff . Then, the following statements are equivalent

(i) u(x) is a rational general solution of Sdiff .
(ii) For every G(x,y, z) ∈ Ra it holds that G(x,u(x),u(x)′) = 0⇐⇒ G(x,y, z) = 0.
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Proof. We first observe that, by construction, prem(G(x, u, u′),A) = G(x, u, u′). Therefore, if u(x) is
a general solution, using that Jd is prime (see pp. 31 in [30]), we have that G(x,u(x),u(x)′) = 0 iff
G(x, u, u′) ∈ Jd iff prem(G(x, u, u′),A) = 0 iff G(x, u, u′) = 0 identically . So, (i) implies (ii).

Conversely, let us see that (ii) implies (i). LetG(x, u) ∈ K(x){u} andG∗(x, u) = prem(G,A). Then, G∗ ∈
Rd and hence G∗(x,y, z) ∈ Ra. Thus, G ∈ Jd iff G∗(x, u, u′) = 0 iff G∗(x,y, z) = 0 iff G∗(x,u(x),u(x)′) =
0. So, it only remains to prove that G(x,u(x),u(x)′) = 0 iff G∗(x,u(x),u(x)′) = 0. Since G∗ is the pseudo-
remainder of G w.r.t. A, by Prop. 1 page 79 in [20], G∗− (

∏
A∈A I

mA
A SnAA )G ∈ [A], where mA, nA ∈ N∪{0},

and where IA and SA are the initial and the separant of A, respectively. So,

G∗(x,u(x),u(x)′) ≡
(∏
A∈A

ImAA (x,u(x),u(x)′)SnAA (x,u(x),u(x)′)
)
G(x,u(x),u(x)′) (mod [A]).

Observe that IA, SA ∈ Rd and are not zero. So, by our assumptions in (ii) they cannot vanish at
(x,u(x),u(x)′). This implies the result.

Lemma 15. Let ug(x) be a rational general solution of Sdiff . Let L be the smallest field extension of K
containing all coefficients of ug(x). Then, L is transcendental over K.

Proof. Let ug(x) = (u1(x) . . . , u`(x)) with uj(x) = Aj(x)
Bj(x) , where Aj , Bj ∈ L[x] and gcd(Aj , Bj) = 1. We

consider the polynomials
Tj(x,y) = yjBj(x)−Aj(x) ∈ L[x,y].

Let T = {T1, . . . , T`}. If L = K then, T ⊂ L[x,y] = K[x,y] ⊂ Ra. Moreover, let V = V(T ) be the variety
defined by T over Kk+`. We observe that Tj(x,ug(x)) = 0. Therefore, V contains an irreducible component
W parametrized by (x,ug(x)). Thus,

dim(V ) ≥ dim(W ) = rank(Jacx(x,ug(x))) = k.

Now, since T ⊂ Ra and all polynomials in T vanish at ug(x), and since ug(x) is a rational general solution,
by Lemma 14 we have that T = {0}. Thus V = Kk+`. So, V = W and k + ` = dim(V ) = dim(W ) = k
which is a contradiction. So K  L, and, since K is algebraically closed we get that L is transcendental over
K.

Theorem 16. Let ug(x) be a rational general solution of Sdiff . Let L be the smallest field extension of K
containing all coefficients of ug(x). There exists a tuple c of transcendental constants over K, such that
L = K(c), and rank(Jacc(ug(x)) = `.

Proof. By Lemma 15, we know that L is transcendental over K. L is obtained by adjoining all coefficients of
ug(x) to K. Since K is algebraically closed, then L can be expressed as L = K(c), with c = (c1, . . . , cρ), for
some ρ ∈ N, and all ci transcendental over K. The coefficients of ug(x) depend on c. Let us emphasize it by
writing ug(x, c). Let uj = Aj(x,c)

Bj(x,c) with Aj , Bj ∈ K[x, c] and gcd(Aj , Bj) = 1. We consider the polynomials

Tj(x,y, c) = yjBj(x, c)−Aj(x, c) ∈ K[x,y, c].

Let V be the variety defined by {T1, . . . , T`} in Kk+`+ρ. We also consider the ideal, over K[x,y, c], I =
〈T1, . . . , T`〉. We consider a Gröbner basis G of I ∩K[x,y]. Note that G ⊂ K[x,y] ⊂ Ra. Let π : Kk+`+ρ →
Kk+`; (x,y, c) 7→ (x,y). Let W be the Zariski closure of π(V ). In this situation, we observe that

• By construction, Tj(x,ug(x, c), c) = 0. Thus, for all g ∈ G it holds that g(x,ug(x, c)) = 0. This
implies that (x,ug(x, c)) parametrizes an irreducible component W ∗ of W . Moreover, dim(W ∗) =
rank(Jacx,c(x,ug(x, c)))

• By Lemma 14, since ug(x) is general and G ⊂ Ra, we have that G = {0}. Thus, W = Kk+`.
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Since W is irreducible, we have that W ∗ = W = Kk+`. This implies that k + ` = rank(Jacx,c(x,ug(x, c))).
We note that

Jacx,c(x,ug(x, c)) =
(

Idk×k Ok×ρ
Jacx(ug(x, c)) Jacc(ug(x, c))

)
,

where Idk×k is the k × k identity matrix and Ok×ρ is the k × ρ zero matrix. Therefore, we get that
rank(Jacx,c(x,ug(x, c))) = k + rank(Jacc(ug(x, c))).

In conclusion, this implies the statement that rank(Jacc(x,ug(x, c))) = `.

Observe that in the previous theorem we are only requiring the elements of c to be transcendental over
K. There might be algebraic relations between the components of c.

Corollary 17. Let ug(x) ∈ K(c)(x)` be a rational general solution of Sdiff , where c = (c1, . . . , cρ) are
transcendental constants. If ρ > `, there exists a subset {ci1 , . . . , ciρ−`} ⊂ {c1, . . . , cρ} and there exists
{ai1 , . . . , aiρ−`} ⊂ K(x) such that the specialization ug(x)∗ of ug(x) at (ci1 , . . . , ciρ−`) = (ai1 , . . . , aiρ−`) is a
rational solution and rank(Jacc(ug(x)∗)) = `.

Proof. Let us assume w.l.o.g. that the principal ` × `-minor of Jacc(ug(x)) is non-zero; we denote it by
M(x, c). Let c` = (c1, . . . , c`) and a = (a1, . . . , aρ−`) ∈ K(x)ρ−`. We consider the evaluation homomorphism

ϕa : K(x)[c]→ K(x)[c`]; F (x, c) 7→ F (x, c`,a) .

By abuse of notation we also denote by ϕa the extension of ϕa to the subset of K(x)(c) consisting in those
rational functions whose denominators do not vanishes at a. In this situation, let Ω ⊂ K(x)[c] be the set of
all denominators appearing in ug(x, c) and the numerator of the M(x, c). We take a0 ∈ K(x)ρ−` such that
no ω ∈ Ω vanishes on a0. Let

u0
g(x, c`) = (u1(x, c`,a0), . . . , u`(x, c`,a0)) .

Note that u0
g is well-defined. In addition ϕa0(M) is the principal `× `-minor of Jacc(u0

g). So, we have that
u0

g is a rational solution of Sdiff , and rank(Jacc(u0
g)) = `.

5. The Associated System SP
ass corresponding to Sdiff

In this section we assume hypotheses (II), (III) and (IVa), and we see how to associate an autonomous
first-order system of algebraic PDEs to Sdiff . Later, in Section 6 we study how the solutions of Sdiff and its
associated system are related. In the following, for a given parametrization P(t) ∈ K(t)k+`+k` of a rational
component of maximal dimension W of VSalg ⊂ Kk+`+k` we distinguish three parts as follows

P(t) = (

P1(t)︷ ︸︸ ︷
χ1(t), . . . , χk(t),

P2(t)︷ ︸︸ ︷
χk+1(t), . . . , χk+`(t),

P3(t)︷ ︸︸ ︷
χk+`+1(t), . . . , χk+`+k`(t)). (6)

Note that P1,P2,P3 correspond, respectively, to the independent variables, the indeterminate functions and
the first-order derivatives. We start with the following theorem.

Theorem 18. Let P(t) = (P1(t),P2(t),P3(t)) be a proper parametrization of W . Then, the following
statements are equivalent

(a) Sdiff has a P-covered rational solution.
(b) There exists s ∈ K(x)k+` such that P(s(x)) and P−1(P(s(x))) are well-defined and{

P1(s(x)) = x ,

(P2(s(x)))′ = P3(s(x)) .
(7)

In that case, P2(s(x)) is a P-covered rational solution of Sdiff
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Proof. Let u(x) ∈ K(x)` be a P-covered rational solution of Sdiff , and let U be the parametrization derived
from u (see Lemma 4). Since u(x) is P-covered, then P−1 ◦U is well defined. Let

s(x) := P−1(U(x)) ∈ K(x)k+` .

Since u(x) is P-covered, the formal substitution P(s(x)) is well-defined. Then, U(x) = P(s(x)). Taking into
account how U is defined (see (3)), one deduces that s(x) satisfies the equalities in (7). Since P2(s(x)) =
u(x), it is clear that it is a P-covered rational solution.

For the other implication, let u(x) = P2(s(x)). Since P parametrizes VSalg , one has that u is a rational
solution of Sdiff . Finally, note that U = P(s(x)) and hence the hypotheses imply that u is P-covered.

By Theorem 18 we know that P-covered rational solutions of Sdiff are related with the rational solutions
of the system (7). In the following we study (7) in more detail. So, let s(x) and P be as in Theorem 18.
Taking derivatives in the first equality in (7) we get

Jac(P1)(s(x)) · Jac(s)(x) = Idk×k (8)

where Idk×k is the k × k identity matrix. That, combined with (7), yields the system{
Jac(P1)(s(x)) · Jac(s)(x) = Idk×k ,

(P2(s(x)))′ = P3(s(x)) ,
(9)

that is {
Jac(P1)(s(x)) · Jac(s)(x) = Idk×k ,

Jac(P2)(s(x)) · Jac(s)(x) = P3(s(x)) .
(10)

Observe, that the system in (10) consists of linear partial differential equations in the indeterminates
{∂sj/∂xh}1≤j≤k+`,1≤h≤k; that is, in the undetermined entries of Jac(s)(x). Let sj,h denote ∂sj/∂xh(x),
and let the coordinates of P = (P1,P2,P3) be expressed as in (6), i.e. its entries are χj(x). Then, (9) can
be expressed as

Jac(P1,P2)(s(x)) ·

 s1,1 · · · s1,k
...

. . .
...

sk+`,1 · · · sk+`,k

 = Υ(s(x)) , (11)

where

Υ :=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

χk+`+1 χk+`+2 · · · χ2k+`
χ2k+`+1 χ2k+`+2 · · · χ3k+`

...
...

. . .
...

χ`k+`+1 χ`k+`+2 · · · χ(`+1)k+`


.

By Lemma 1, Jac(P1,P2)(t) is regular. Let us assume that det(Jac(P1,P2)(s(x))) 6= 0. Then, one can
rewrite (11) in the form  s1,1 · · · s1,k

...
. . .

...
sk+`,1 · · · sk+`,k

 = (Jac(P1,P2)(s(x)))−1 Υ(s(x)) . (12)
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Thus s(x) is a solution of the system of APDEs(
∂si
∂xj

)
1≤i≤k+`
1≤j≤k

= (Jac(P1,P2)(s))−1 Υ(s) , (13)

where s = (s1, . . . , sk+`) is a (k + `)-tuple of undetermined functions in x.

Remark 19. Observe that in the case dim(VSalg) = k the matrix Υ turns out to be the identity matrix.

Definition 20. The autonomous system (13) is called the associated system of Sdiff with respect to P(s).
We denote it by SPass

In this situation, we get the following theorem.

Theorem 21. Assume P(t) = (P1(t),P2(t),P3(t)) to be proper (see (6)).

(i) Let u(x) be a P-covered rational solution of Sdiff and s(x) := P−1(U(x)). If det(Jac(P1,P2)(s(x))) 6=
0, then s(x) is a rational solution of SPass such that P1(s(x)) = x.

(ii) Let s(x) be a rational solution of SPass such that det(Jac(P1,P2)(s(x))) 6= 0. If

P1(s(x)) = x, (14)

then P2(s(x)) is a P-covered rational solution of Sdiff , and U = P(s(x)).

Observe that the first statement in the previous theorem follows directly from the construction of SPass in
terms of Sdiff . On the other hand, the condition (14) is required in order to derive a solution of Sdiff , from
one of SPass. If we remove this condition, we derive

P1(s(x)) = x + c

for a tuple of transcendental constants c. This does not provide a solution unless these constants are chosen
to be zero, as we point out in the following example, studied in [19, I.415].

Example 22. Consider Sdiff = {F (x, u, u′) = 0}, with F (x, u, u′) = u′2x+ u′u− u4. We have k = ` = 1 and
dim(VSalg) = 2. VSalg has only one component. A proper rational parametrization of VSalg is given by

P = (χ1(t1, t2), χ2(t1, t2), χ3(t1, t2)) =
(
t1,

t2
t22 − t1

,− t32
t1(t1 − t22)2

)
.

Then, SPass is (
s′1
s′2

)
=
(

1
s2/s1

)
.

This system has the rational solution s1(x) = x+ c1 and s2(x) = (x+ c1)c2, for any choice of the constants
c1, c2. If c2 = 0, then u(x) = 0 is a solution of Sdiff which is not P-covered because P−1(x1, x2, x3) =(
x,−xzy2

)
is not well defined for u = (x, 0, 0) (see Definition 6). Let c2 6= 0. Then we have u(x) =

χ2(s1(x), s2(x)) = c2
(x+c1)c2

2−1 , which is not a solution of Sdiff , unless c1 vanishes. Condition (14) states that

x = χ1(s1(x), s2(x)) = x+ c1 ,

so we choose c1 = 0.

The additional assumption (14) made when constructing a rational solution of Sdiff from another rational
solution of SPass motivates the next definition.

Definition 23. Let s(x) be a rational solution of SPass. We say it is P-suitable if P1(s(x)) = x.
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Given a proper parametrization of the associated variety, we introduce the following sets

SolCov(Sdiff) =
{

u(x) | u(x) is a P-covered rational solution of Sdiff
such that det(Jac(P1,P2)(P−1(U(x))) 6= 0

}

SolLift(SPass) =
{

s | s is a P-suitable rational solution of SPass
such that det(Jac(P1,P2)(s(x)) 6= 0

}
Theorem 21 establishes a one-to-one relation between SolCov(Sdiff) and SolLift(SPass). Observe that in
Lemma 25 we prove that the requirement on the determinant not being 0 in SolCov(Sdiff) follows from the
notion of P-covered.

6. General Solutions of Sdiff versus SP
ass

In this section we assume all the hypotheses in Section 2, see Table 1. Note that hypothesis (I) implies
that VSalg is irreducible. So, taking into account hypothesis (II), one gets that VSalg is rational of dimension
k+`; this is indeed used in the proof of Theorem 29. In addition, throughout the whole section, Sdiff ,P(t) =
(P1,P2,P3) = (χ1, . . . , χk+`+k`) (see (6)) and SPass are fixed; moreover, P is assumed to be proper.

Definition 24. Let c be a tuple of ` independent transcendental constants over K. Let F = K(c) be the
algebraic closure of K(c), and let s ∈ F(x)k+` be a rational solution of SPass. Then s is rank-general if and
only if rank(Jacx,c(s(x))) = k + `.

We start with a few technical lemmas.

Lemma 25. Let ug(x) be a P-covered rational solution of Sdiff . Then

det(Jac(P1,P2)(P−1(Ug))) 6= 0 .

Proof. We know that P ◦ P−1 = id. Hence,

Idk+`+k` = Jac(P ◦ P−1)(x,y, z) = Jac(P)(P−1(x,y, z)) · Jac(P−1)(x,y, z),

where Jac(P) is a (k+ `+ k`)× (k+ `)-matrix and Jac(P−1) is a (k+ `)× (k+ `+ k`)-matrix and Idk+`+k`
is the (k+ `+ k`)× (k+ `+ k`) identity matrix. In fact we are interested in the first (k+ `) rows of Jac(P).
Observe that ug(x) is P-covered, and thus the matrices in the following line are well-defined. We have that

Jac(P1,P2)(P−1(Ug)) · Jac(P−1)(Ug) = Idk+`
k+`+k`,

where Idk+`
k+`+k` is the matrix consisting of the first k + ` rows of Idk+`+k`. Hence,

k + ` = rank(Idk+`
k+`+k`) = rank(Jac(P1,P2)(P−1(Ug)) · Jac(P−1)(Ug))

≤ min{rank(Jac(P1,P2)(P−1(Ug))), rank(Jac(P−1)(Ug))}.

Therefore, rank(Jac(P1,P2)(P−1(Ug))) = k + ` and thus we have shown the claim.

Lemma 26. Let sg(x) be a rational rank-general solution of SPass. Then

det(Jac(P1,P2)(sg(x))) 6= 0 .

Proof. Let L(w) be the numerator of det(Jac(P1,P2)(w))) ∈ K[w] ⊂ K(x)[w]. By Lemma 1, L(w) 6= 0.
To emphasize that sg does depend on x and c we write sg(c,x). Let us now assume that L(sg(c,x)) is
identically zero. This means that sg(c,x) is a parametrization of a component W ∗ of the hypersurface W ,
in Kk+`, defined by L(w). So, since ug(x) is rank-general, then rank(Jacc,x(sg)) = k + `, and this implies
that dim(W ∗) = k + `. So, W ∗ = Kk+` ⊂ W ⊂ Kk+`. Thus, W = Kk+`, and hence L = 0 which is a
contradiction.

13



The next lemma is a weaker version of Lemma 14 for the case of rank-general solutions.

Lemma 27. Let sg be a rational rank-general solution of SPass. Then, for every G(w) ∈ K[w] we have:
G(sg) = 0⇐⇒ G(w) = 0.

Proof. Clearly, if G(w) = 0 then G(sg) = 0. Let us assume that G(sg) = 0, and let W be the variety
generated by G(w) in Kk+`. So, sg is a rational parametrization of an irreducible component W ∗ of W .
Then

k + ` = rank(Jacx,c(sg)) = dim(W ∗) ≤ dim(W ) ≤ k + `.

So, dim(W ) = k + `, and hence W = Kk+` and therefore G(w) = 0.

Theorem 28 (From Sdiff to SPass). Let ug(x) be a P-covered rational general solution of Sdiff . Then,
sg(x) := P−1(Ug(x)) is a P-suitable rational rank-general solution of SPass.

Proof. By Lemma 25 and by Theorem 21 (i), we have that sg(x) is a rational P-suitable solution of SPass.
By Corollary 17, we know that ug(x) can be taken depending exactly on ` transcendental constants c
and such that rank(Jacc(ug(x))) = `. Now, we show that rank(Jacx,c(sg(x))) = k + `. We consider
Ug = (x,ug(x),ug(x)′). We observe that

Jacx,c(Ug) =

 Idk×k Ok×`
Jacx(ug(x)) Jacc(ug(x))
Jacx(ug(x)′) Jacc(ug(x)′)

 .

So, rank(Jacx,c(Ug)) = k + `. Since, P ◦ sg = Ug, taking Jacobians, we get

Jacx,c(P)(sg) · Jacx,c(sg) = Jacx,c(Ug) .

Thus,

k + ` = rank(Jacx,c(Ug)
≤ min{rank(Jacx,c(P)(sg)), rank(Jacx,c(sg))}
≤ rank(Jacx,c(sg))
≤ k + `

Therefore, rank(Jacx,c(sg)) = k + `.

Theorem 29 (From SPass to Sdiff). Let sg(x) be a P-suitable rational rank-general solution of SPass. Then
P2(sg(x)) is a P-covered rational general solution of Sdiff .

Proof. Let ug(x) := P2(sg(x)). By Lemma 26 and Theorem 21 (ii) we have that ug(x) is a P-covered
rational solution of Sdiff . It only remains to check that ug(x) is a general solution of Sdiff . In view of
Definition 13, we have to prove that G ∈ Jd iff G(ug(x)) = 0.

Since Jd is radical, by the Nullstellensatz (see e.g. [26, p. 105]), it is equal to the ideal of the differential
polynomials vanishing on all the solutions of Sdiff . Therefore, since G ∈ Jd and ug(x) is a solution of Sdiff
we get that G(ug(x)) = 0.

We now prove the converse statement. For this purpose, and within this part of the proof, we find it
useful to utilize the following notation: when a polynomial is differential (resp. algebraic) we emphasize
this fact by writing the subindex d (resp. a). Let Gd ∈ K(x){u} such that Gd(ug(x)) = 0. We need to
prove that Gd ∈ Jd which is equivalent to prove that the pseudo-remainder G∗d of Gd w.r.t. A is 0. Because
of Hypothesis (IV), ord(G∗d) ≤ 1. Indeed, G∗d ∈ Rd (see (5)). So we consider the algebraic polynomial
G∗a(x,y, z) ∈ Ra ⊂ K[x,y, z]. Now, let Ma(w) = G∗a(P(w)). We observe that

Ma(sg(x)) = G∗a(P(sg(x))) = G∗a(x,ug(x),ug(x)′) = G∗d(ug(x))
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By Remark 8 (b) (∏
A∈A

ImAA SnAA

)
Gd = G?d +

∑
A∈B

TAA,

Since Gd(ug(x)) = 0 by hypothesis and A(ug(x)) = 0 because A ∈ Jd, we get that G∗d(ug(x)) = 0.
Therefore, Ma(sg(x)) = 0. Thus, by Lemma 27, the numerator of Ma(w) is zero, and hence Ma(w) is zero.
In this situation, we consider the Zariski open subset

Ω = VSalg ∩ dom(P−1).

Let P := (a,b, c) ∈ Ω. There exists t0 ∈ Kk+` such that P(t0) = P . Then, G∗a(P ) = G∗a(P(t0)) = Ma(t0) =
0. Thus, G∗a(w) vanishes on Ω. Since VSalg is irreducible, then Ω is dense in VSalg , and therefore G∗a(w)
vanishes on VSalg . This implies that G∗a(w) ∈ Ja. So, G∗d(u) ∈ Jd. However, G∗d(u) is a pseudo-remainder,
and thus G∗d = 0.

We illustrate the previous ideas by some examples.

Example 30. We consider the system of first-order algebraic partial differential equations

Sdiff =



x2
2
∂u

∂x1
= 1 ,

4x2
1

(
∂u

∂x1

)3
−
(
∂u

∂x2

)2
= 0 ,

2x1
∂u

∂x1
+ x2

∂u

∂x2
= 0 ,

2x1x2

(
∂u

∂x1

)2
+ ∂u

∂x2
= 0 .

Therefore, k = 2, ` = 1. Then A =
{
x2

2
∂u

∂x1
− 1, ∂u

∂x2
x3

2 + 2x1

}
is a characteristic set. It fulfills Assump-

tion (IV). The set
Fa = {x2

2z1 − 1, 4x2
1z

3
1 − z2

2 , 2x1z1 + x2z2, 2x1x2z
2
1 + z2}

defines an irreducible variety VSalg in C5 of dimension 3 = k + `. Furthermore, the variety is rational and
can be properly parametrized by

P(t) =
(
t1, t2,

t22t3 + t1
t22

,
1
t22
,−2 t1

t32

)
.

Indeed,

P−1(x,y, z) =
(
x1, x2,

1
2x2z2 + y

)
.

So,

P1(t) = (t1, t2), P2(t) = t22t3 + t1
t22

, and P3(t) =
(

1
t22
,−2 t1

t32

)
.

In addition, we observe that Ja ∩K[x, y] = {0}. Now, the associated system SPass in s1(x), s2(x) is given by

SPass =



∂s1

∂x1
= 1 , ∂s1

∂x2
= 0 ,

∂s2

∂x1
= 0 , ∂s2

∂x2
= 1 ,

∂s3

∂x1
= 0 , ∂s3

∂x2
= 0 ,
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with solution s1(x1, x2) = x1 + c1, s2(x1, x2) = x2 + c2, s3(x1, x2) = c3, for arbitrary constants c1, c2, c3. So,
sg(x) = (x1, x2, c) is a P-suitable rational rank-general solution. Therefore, P2(sg(x)) is a rational general
solution of Sdiff , namely,

ug(x) = c+ x1

x2
2
.

Example 31. We consider the system of first-order algebraic partial differential equations

Sdiff =



∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1
= 0 ,

4u2
2 −

∂u2

∂x1

(
∂u2

∂x2

)2
= 0 ,

u1
∂u2

∂x2
− u2

∂u1

∂x2
= 0 ,

u1
∂u2

∂x1
− u2

∂u1

∂x1
= 0 ,

4u1u2 −
∂u1

∂x2

∂u2

∂x1

∂u2

∂x2
= 0 ,

4u2
1 −

(
∂u1

∂x2

)2
∂u2

∂x1
= 0 ,

−8x1u2
∂u1

∂x2
+ 4x2

1
∂u1

∂x2

∂u2

∂x1
+ ∂u1

∂x2

(
∂u2

∂x2

)2
− 4∂u2

∂x1

∂u2

∂x2
= 0 ,

−8x1u1 + 4x2
1
∂u1

∂x1
− 4∂u2

∂x1
+ ∂u1

∂x2

∂u2

∂x2
= 0 .

So, k = 2, ` = 2. Then

A =



u2
∂u1

∂x2
− u1

∂u2

∂x2
,

4∂u2

∂x1
u1x

2
1 − 4∂u2

∂x1
u2 +

(
∂u2

∂x2

)2
u1 − 8u1u2x1 ,

4∂u1

∂x1
u1u2x

2
1 − 4∂u1

∂x1
u2

2 +
(
∂u2

∂x2

)2
u2

1 − 8u2
1u2x1 ,(

∂u2

∂x2

)4
u1 − 8

(
∂u2

∂x2

)2
u1u2x1 + 16u1u

2
2x

2
1 − 16u3

2 .

is a characteristic set which fulfills Assumption (IV). The set

Fa = {z11z22 − z12z21, 4y2
2 − z21z

2
22, y1z22 − y2z12, y1z21 − y2z11, 4y1y2 − z12z21z22,

4y2
1 − z2

12z21,−8y2x1z12 + 4x2
1z12z21 + z12z

2
22 − 4z21z22,

− 8y1x1 + 4x2
1z11 − 4z21 + z12z22}

defines an irreducible variety VSalg in C8. VSalg is rational and a proper rational parametrization is

P(t) =
(
t1 + t3, t2t4,

t1t
2
2

t23
, t1t

2
2,
t22
t23
, 2 t1t2

t23
, t22, 2 t1t2

)
.

The inverse of P is given by

P−1(x,y, z) =
(

1
4
z2

22
y2
,

2y2

z22
,

1
4

4x1y2 − z2
22

y2
,

1
2
x2z22

y2

)
.

16



The associated system SPass in s1(x), s2(x), s3(x), s4(x) is given by

SPass =



∂s1

∂x1
(x) = 1 , ∂s1

∂x2
(x) = 0 ,

∂s2

∂x1
(x) = 0 , ∂s2

∂x2
(x) = 1 ,

∂s3

∂x1
(x) = 0 , ∂s3

∂x2
(x) = 0 ,

∂s4

∂x1
(x) = 0 , ∂s4

∂x2
(x) s2 (x) + s4 (x) = 1 .

with solution
s1(x) = x1 + c1 , s2(x) = x2 + c3 , s3(x) = c2 , s4(x) = x2 + c4

x2 + c3
,

for arbitrary constants c1, c2, c3, c4. We have det(Jac(P1,P2)(s(x))) 6= 0. We consider c1 = −c2, c4 = 0
in order to apply Theorem 21 (ii), and deduce that P2(s(x)) is a P−covered rational solution of Sdiff , and
u = P(s(x)). In view of Theorem 29, we obtain that P2(sg(x)) turns out to be a P−covered rational general
solution of Sdiff . More precisely,

ug(x) = P2(sg(x)) =
(
− (−x1 + c2) (x2 + c3)2

c22 ,− (−x1 + c2) (x2 + c3)2

)
.

7. Extension to non-prime differential ideals

Let W be a rational component of maximum dimension (k+ `) of VSalg and P a proper rational param-
etrization of W . We associate to W a differential system S(W )diff in the following way. Consider a set of
generators {g1, . . . , gr} ⊂ K[x,y, z] of the ideal of W , which is algebraically prime. Then S(W )diff is the
system {gi(x, u, u′) = 0}i=1,...,r. Using the ideas in Section 5 we associate to S(W )diff an autonomous first
order system S(W )Pass. Let u(x, c) be a rational solution S(W )diff , where c are transcendental constants.
We say that u(x, c) is rank-general if and only if

rank(Jacc(u(x, c))) = ` .

Observe that in Theorem 28 we have proved that if u is a rational general solution in the classical Ritt sense,
then it is rank-general. For the associated system we consider the notion of rank-general given in Definition
24.

Theorem 32. Rational P-covered rank-general solutions of S(W )diff are in 1:1 correspondence with rational
P-suitable rank-general solutions of S(W )Pass.

Proof. Because of Lemmas 25 and 26 and Theorem 21, there is a 1:1 correspondence between P-covered
solutions of S(W )diff and P-suitable solutions of S(W )Pass. Let us see that rank-general solutions also
correspond. Reasoning as in proof of Theorem 28, we get a P-covered rational rank-general solution of
S(W )diff provides a rank-general solution of S(W )Pass. Conversely, let s(x, c) be a rational P-suitable rank-
general solution of S(W )Pass. This implies that rank(Jacx,c(s)) = k + `. Since Jacx,c(s) is of dimension
(k + `)× (k + `), it must be a regular matrix. By Lemma 26, we get that

det(Jact(P1,P2))(s)) 6= 0. (15)

Now, we consider (x,u(x)) = (P1,P2)(s). Since s is P-suitable, using (15) and Theorem 21, we see that
(x,u(x)) is well-defined. Therefore, by the chain rule we get(

Idk×k Ok×`
Jacx(u(x)) Jacc(u(x))

)
= Jacx,c((P1,P2)(s)) = Jact((P1,P2)(s)) · Jacx,c(s) .
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Taking into account that Jacx,c(s) is regular, this implies

k + rank(Jacc(u(x))) = rank(Jact((P1,P2)(s))) . (16)

Furthermore, by Lemma 1 we have

rank (Jact(P1,P2)) = k + `. (17)

Using (15), (16) and (17) we get that rank(Jacc(u(x))) = ` and hence u(x) is rank-general.

8. Conclusion

The present study deals with the problem of solving systems of first-order partial differential equations.
This is a theoretical approach to the problem. The rational solutions of such systems are related in a one-
to-one correspondence with the rational solutions of an associated autonomous system of first-order partial
differential equations. Such an autonomous system might be solved more easily. Moreover, we describe how
rational general solutions are transmitted in both directions, and we provide a concrete algorithm in some
particular case concerning the dimension of the associated algebraic variety.

This paper can be seen as a generalization of the results obtained in [22] for systems of first-order algebraic
partial differential equations. In this sense, some open questions remain unsolved and will be studied in
future research. In particular, the study of systems of APDEs of order higher than one is completely open.
Further research is also necessary for relaxing the restrictions on the dimensions of the varieties involved,
which we have been required to assume in our treatment of the problem.
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