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In this paper we present a procedure for solving first-order autonomous
algebraic partial differential equations in an arbitrary number of variables.
The method uses rational parametrizations of algebraic (hyper)surfaces and
generalizes a similar procedure for first-order autonomous ordinary differ-
ential equations. In particular we are interested in rational solutions and
present certain classes of equations having rational solutions. However, the
method can also be used for finding non-rational solutions.

1 Introduction

The problem of finding exact solutions to partial differential equations has been deeply
studied in the literature. However, there is not a general method to be followed when
handling a specific equation but different methods and techniques which might be applied
to solving equations of certain form or under some assumptions on the elements involved.
We provide [21, Sec. I1.B] as a reference in this direction.

The main aim of the present work is to provide an alternative novel exact method
for solving partial differential equations. More precisely, we study algebraic partial
differential equations (APDEs) which are autonomous and of first-order (see Section 2
for a precise definition).
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1.1 Algebro-geometric treatment of AODEs — State of the art

Recently algebraic-geometric solution methods for algebraic ordinary differential equa-
tions (AODEs) were investigated. First results on solving first order AODEs can be
found in [15] where Grobner bases are used and [5] where a degree bound is computed
which might be used for making an ansatz. The starting point for algebraic-geometric
methods, such as the one described in this paper, was an algorithm by Feng and Gao [7, &]
which decides whether or not an autonomous AODE, F(y,y) = 0 has a rational solution
and in the affirmative case computes a rational general solution. This result was then
generalized by Ngo and Winkler [19, 21, 20] to the non-autonomous case F(z,y,y’) = 0.
First results on higher order AODEs can be found in [12, 13, 14]. Ngo, Sendra and
Winkler [17] also classified AODEs in terms of rational solvability by considering affine
linear transformations. A generalization to birational transformations can be found in
[18]. In [9, 11] a solution method for autonomous AODEs is presented which generalizes
the method of Feng and Gao to finding radical and also non-radical solutions. A gener-
alization of the procedure to APDEs in two variables can be found in [10]. In this paper
we present a further generalization to the case of an arbitrary number of variables.

1.2 The novel solution method proposed

Let K be an algebraically closed field of characteristic 0, and let F' € K(z1,...,x,){u} be

an element of the ring of differential polynomials in u (derivatives are w.r.t. z1,...,x,),
which is also a polynomial in xz1,...,z,. For our purposes we assume:
a) F only depends on the first order derivatives of u w.r.t. x1,..., &y, Say Uz, - - . , Ug,, -
b) F does not depend on x1,...,Zy,.

Under the previous assumptions we may write the first-order autonomous APDE asso-
ciated to F' as
F(u,ugy, ..., ug,)=0. (1)

Our method aims to solve such equations.
The method departs from a given proper rational parametrization of the hypersurface

F(z,p1,...,pn) =0, say
Q(S1y--+58n) = (q0(S1y-+58n), @1 (81, -+8n)y -« s qn(S1, -+, 8n)) -
We assume that the parametrization can be expressed in the form
Q(81,---58n) = L(g(s1,...,8n)),
where ¢ is an invertible map. If we are able to compute h = g~ ', then
Qg (s1,...,80)) = L(51,...,5n),

provides a solution ¢ (h1,...,hy) of (1).



The solution method, algorithmically described in Procedure 1, makes use of the
method of characteristics applied to an auxiliary system of quasilinear equations (see (8)).
If it returns a function, it is a solution of the initial problem (see Theorem 3.6).

It is worth remarking a distinguished difference with respect to the case of ordinary
differencial equations. Whilst a non-constant solution of an autonomous AODE always
provides a proper parametrization of the associated curve, this is no longer valid when
working with APDEs. The method provides, if it successfully arrives to a rational solu-
tion of the APDE under study, a proper solution of suitable dimension (see Definition 2.2
and Definition 2.3 for the definitions of proper solution and solution of suitable dimension
respectively, and Theorem 4.2 for this statement).

Another important feature under discussion in the work is completeness of the solution
(see Definition 2.2) which is also attained. From the knowledge of a complete solution
one can construct any other solution of the problem (see [1]), so we only focus our results
on those.

Our method provides a tool for systematically solving various well-known equations
(see Table 2) . Some of them are enumerated throughout the text, such as those studied
in the examples in Section 4. Moreover, the algorithm may be applied to find other
solutions rather than just rational ones (see Section 5).

1.3 Main contributions of the paper

The main contribution of the paper is the development of a novel method to find exact
solutions for autonomous first-order algebraic partial differential equations. The value
of this approach is motivated by the following facts:

e In our method, if it returns a rational function, then this function provides a
solution to the autonomous first-order ADPE under study. Moreover, this solution
turns out to be proper, complete, and of suitable dimension.

e Our method is not restricted to obtain rational solutions of APDEs (see Section 5).

e Our method generalizes known results obtained in the framework of ODEs. It gives
solutions to some well-known partial differential equations studied in the literature.

e Even if the method fails, it often leads to an implicit description of the solution.

1.4 Structure of the paper

In Section 2 we recall and introduce the necessary definitions and concepts. The proce-
dure presented in this paper is a generalization of the case for two variables [10]. We do
not go into details of this case but show first an extension to three variables in Section 3.
Then we present the general procedure for solving APDEs in arbitrary many variables.
In Section 4 we consider the case of rational solutions. The section is divided into two
parts. The first part proves some properties of rational solutions which can be found by
the procedure. The second part presents APDEs which have rational solutions. Finally,
in Section 5 we show that the procedure is not restricted to finding rational solutions.



2 Preliminaries

We consider the field of rational functions K(z1,...,x,) for some algebraically closed
field K of characteristic 0; in practice, one may think of K as the field C of complex

numbers. We denote the usual derivative w.r.t. x; by % . Sometimes we might use the

abbreviations u,, = %. In case n = 2 we also write = for x; and y for x5. The ring of

differential polynomialé is denoted as K(z1,...,x,){u}. It consists of all polynomials in
u and its derivatives, i.e.

K(z1,...,zp){u} = K(@1,. .oy ) [t Ugyy ooy Uy s Ugqmys - v o s Uz - - - -

An algebraic partial differential equation (APDE) is defined by a differential polynomial
F e K(z1,...,z,){u} which is also a polynomial in x,...,z,. We write

F(x1, .oy Ty Uy Ugyy e oy Uy s Ugyay s e v oy Ugpaps---) =0

for the corresponding APDE. In this paper we restrict our attention to the first-order
autonomous case, i.e.
F(u,ug,,...,usz,) =0.

An algebraic hypersurface S is an algebraic variety of codimension 1, i.e. the zero set
of a squarefree non-constant polynomial f € K[zq,...,x,],

S=A{(a1,...,an) € A" | f(a1,...,a,) =0},

where A" is the n-dimensional affine space over K. We call the polynomial f the
defining polynomial. An important aspect of algebraic hypersurfaces is their rational
parametrizability. We consider an algebraic hypersurface defined by an irreducible poly-
nomial f. We write 5§ = (s1,...,8,-1). A tuple of rational functions P(sy,...,8,-1) =
(p1(5), ..., pn(8)) is called a rational parametrization of the hypersurface if f(P(s5)) =0
for all s and the jacobian of P has generic rank n — 1. We observe that this condi-
tion is fundamental since, otherwise, we are parametrizing a lower dimensional subva-
riety on the hypersurface. A parametrization can be considered as a dominant map
P(5) : A"~ — S. By abuse of notation we also call this map a parametrization. We call
a parametrization P(5) proper if it is a birational map or, in other words, if for almost
every point a = (aq,...,ay,) on the hypersurface we find exactly one tuple (s1,...,S,-1)
such that P(5) = a, i.e. only a finite number of lower dimensional subvarieties might not
be attained. Equivalently P is proper iff K(P(3)) = K(5).

Remark 2.1. The jacobian of a proper parametrization P(s1,...,Sn—1) of a hypersur-
face in A™ has generic rank n — 1. Since P is proper we know that K(s1,...,sp-1) =
K(P(5)). Hence, there is a rational function R(ai,...,a,) = (R1(a),...,R.(a)) € K(a)"
such that R(P(5)) = (s1,--+,8n-1). Thus, Jig = Jrop = Jr(P) - Jp. Taking into ac-
count, that the rank of a product of two matrices is smaller equal the minimal rank of
the two matrices, we get that rank(Jp) = n — 1.



Above we have considered rational parametrizations of a hypersurface. However, we
might want to deal with more general parametrizations. If so, we will say that a tuple of

differentiable functions Q(5) = (¢1(5), ..., ¢n(8)) is a parametrization of the hypersurface
if f(Q(5)) is identically zero and the jacobian of Q(5) has generic rank n — 1.

Let F(u,ug,,...,us,) = 0 be an autonomous APDE. We consider the correspond-
ing algebraic hypersurface by replacing the derivatives by independent transcendental
variables, F(z,p1,...,pn) = 0. Given any differentiable function u(x1,...,z,) which
satisfies F'(u, ug,,...,ug,) =0, then

L(s1,...,5n) = (u(S1,---,8n), Uz (51, -, Sn)s -y Uz, (S1,...,5n))

is a parametrization. We call this parametrization the corresponding parametrization of
the solution. We observe that the corresponding parametrization of a solution is not
necessarily a parametrization of the associated hypersurface, since the condition on the
rank of the Jacobian may fail. For instance, let us consider the APDE w, = 0 with
n = 2. A solution would be of the form u(z,y) = g(y), with g differentiable. However,
this solution generates (g(s2),0,¢'(s2)) that is a curve in the surface; namely the plane
p = 0. Now, consider the APDE w, = A, with A a nonzero constant. Hence, the
solutions are of the form u(z,y) = Az + g(y). Then, u(z,y) = Ax + y generates the line
(As1+ 82, A, 1) while u(z,y) = Az +y? generates the parametrization (As1 + s3, A, 2s2) of
the associated plane p = A. These examples motivate the following definition. Clearly a
solution of an APDE is a function u(x,...,xy) such that F(u, ug,,...,us,) =0.

Definition 2.2. A solution of an APDE is rational iff u(xy,...,xy) is a rational func-
tion over K.
A rational solution of an APDE is proper iff the corresponding parametrization is proper.

In the case of autonomous ordinary differential equations, every non-constant solution
induces a proper parametrization of the associated curve (see [7]). However, this is not
true in general for autonomous APDEs. For instance, the solution x + 3% of u, = 1,
induces the parametrization (s + s%, 1, 33%) which is, although its jacobian has rank 2,
not proper.

In addition, we observe that it can happen that none of the rational solutions of an
APDE is proper. This is the case for instance, of u, = 0, since all rational solutions are
of the form v = R(y), with R a rational function and K(R(s1),0, R'(s1)) € K(s1,s2).
Furthermore, we see that none of the solutions of this APDE generates a parametrization
of the associated hypersurface, since the Jacobian has rank 1.

Every solution of the problem under consideration in this work can be attained by
the knowledge of a set of complete solutions. A general solution can be obtained from a
complete solution by envelope computations (see [1] for the details).

For this reason, we focus on finding families of complete solutions. This notion of a
complete solution is due to Lagrange and can also be found in [16].

Definition 2.3. Let F(u,ug,,...,us,) = 0 be an autonomous APDE. Let u be a rational
solution depending on n arbitrary constants ci,...,c,. Let L = (po,pi1,...,pn) be the



parametrization induced by the solution, i.e. po = u and p; = uy, for i > 1. We call
the solution complete if the jacobian jﬁcl""’cn of L with respect to c1,...,c, has generic
rank n.

We call the solution complete of suitable dimension if it is complete and the jacobian
JZ“"’S” of L with respect to s1,...,s, has generic rank n.

Intuitively speaking, the notion of complete solution is requiring that the correspond-
ing parametrization of the solution parametrizes an algebraic set on the hypersurface,
independently of the constants ci,...,c,. On the other hand, the notion of suitable
dimension ensures that the corresponding parametrization really parametrizes the asso-
ciated hypersurface and not a lower dimensional subvariety.

In the following example we will see complete and non-complete solutions of APDEs.

Example 2.4. We consider the APDE u, = 0, F(z,p,q) = p, as well as the solution
u(z,y) = y+c1+ca. The corresponding parametrization is L = (sg+c1+¢2,0,1). Then

1 1
jﬁcl 2 0 0 ,
0 0

and hence u(x,y) is not complete. However, if we take u(x,y) = c1y + c2, the jacobian
with respect to c1, co has generic rank 2, and u is complete but not of suitable dimension,
since the jacobian of L with respect to s1,ss has rank 1.

Now, if we take the APDE, u, = 1. In Table 1 we see solutions and their properties.
Note that the solution x +c1 +y?+co is not complete and hence, not complete of suitable
dimension. However, the other property of suitable dimension is fulfilled.

solution complete suitable dim proper rank(J;"%)
T+ cC F F F 1
rT+y+cr+co F F F 1
T+ c1+ coy T F F 1
T+ c+ y2 + ¢ F F T 2
r+c + 02y2 T T T 2
r4c+ (y+c)? T T T 2
r+er+ (y+e)? T T F 2

Table 1: Properties of some solutions of u, = 1 where T means true, F false

3 A method for solving first-order autonomous APDEs

Let F(u,ugz,,...,uy,) = 0 be an algebraic partial differential equation, where F' is an
irreducible non-constant polynomial. We consider the hypersurface F(z,p1,...,pn) =0
and assume it admits a proper (rational) hypersurface parametrization

Q(817 M '7Sn) = (q0(817 R 7Sn)7q1(517‘ * -,Sn), R 7qn(sl7‘ * ';Sn)) .



An algorithm for computing a proper rational parametrization of a three-dimensional
surface can be found for instance in [22]. For higher-dimensional hypersurfaces there is no
general algorithm for computing rational parametrizations. Here, we will stick to rational
parametrizations, but the procedure which we present will work as well with other kinds
of parametrizations, for instance radical ones. First results on radical parametrizations of
three-dimensional surfaces can be found in [23]. Assume that £(s1,...,sn) = (vo,...,vp)
corresponds to a solution of the APDE. Furthermore we assume that the parametrization
Q can be expressed as

O(S1y-+-y8n) = L(g(S1,---,5n))

for some invertible map g(s1,...,5n) = (91(S1,---+8n)s - 9n(S1,.--,Sn)). This assump-
tion is motivated by the fact that in case of rational algebraic curves every non-constant
rational solution of an AODE yields a proper rational parametrization of the associ-
ated algebraic curve and each proper rational parametrization can be obtained from
any other proper one by a rational transformation. In the case of APDEs, however,
not all rational solutions provide a proper parametrization, as mentioned in the re-
mark after Definition 2.2. Talking about hypersurface parametrizations, we still know
that any proper rational parametrization can be obtained from any other proper one
by a rational transformation. At this point, if we can compute ¢
(g7 (s1,--+,8n))-

Let J be the jacobian matrix. The solution of our problem comes from the solution
of

we have a solution

Jo(s1,...y8n) =T(9(s1,--.,8n)) - Tg(s1,. .., 8n) .
Taking a look at the rows we get that

Jdqo 51}0 897, g 3%
D51 Z 9s; 9 as; Z; Gilst o osn) g
(2)
9q0 6vo 89@ 891
05y, Z 85Z Bsn Zzz: ACTRE 6sn

This is a system of quasﬂlnear equations in the unknown functions g; to g,. In case ¢; is
zero for some ¢ the problem reduces to lower order. Since Q is a proper parametrization
of a hypersurface, at most one of its components can be zero. So, we can ensure that
there exists a non-zero ¢; with i > 0. Let us assume that ¢; # 0. If this is not the case,
we can always change the role of x1 and x; with ¢ > 1. First we divide by ¢i:

agl agz
a; = Dy + ;

agl agz
n " Osn Zz: bi



9q9
with a; = % and b; = %. JFrom this system we will get by differentiation the following
system (where for each j € {1,...,n} we take derivatives of the j-th equation in (3)
w.r.t. the variables sy for j # k).

Oa; 0%g1 ob; agz 82gi .
— = f k. 4
Os,  0s,0s; Z 05y 8s] 8sk83j or j # (4)
Now we take the difference of two equations each and get the following equations where
the second derivatives vanished.

Jg; .
szk bi j &fk for j <k, (5)

__ Oaj Oay, o Ob;
where a; = D5y~ Oy and b; ), = Osp

The aim now will be to take suitable linear combinations of the equations from (5)
such that all derivatives of g; vanish except for ¢ = n, i.e. we are left with a quasilinear
PDE in gp. In [10] this was shown for n = 2 and in the Section 3.1 we will do so for
n = 3. Later in Section 3.2 we will prove the general case. Finally in Section 3.3 we will
give a step by step description of the procedure for solving APDEs in arbitrary many
variables.

3.1 The case n =3

In the case of three variables the system (5) reads as

992 992 Jg3 dg3
=b —b b —b
a2 227 B, 215 5 + 0327 s, 3, 183 )
0go 092 093 d93
=b b b33—"— — b3 — 6
ay 2581 2183+ 3’3651 3’1833’ (6)
B 0go 0go 093 d93
a9 b238 5 52278 +63376 bg 683‘ )

By a linear combination we get
bazai2 + ba1as sz — baoai3

0 093 0
= (bo,3b32 — b2 2b3 3) =— J3 + (b2,1b3,3 — b2 3b3 1)7 + (ba,2b3 1 — bo,1b32) = 5.
Jsy 059 0s3

This is a quasilinear PDE in g3. Hence, it can be solved by the method of characteristics.
Once we have gz we get a quasilinear PDE in g2 adding the two first equations of (6):

d9g3 993 dgs3
— 1 (b b33)=— —bz31=— — b
a2 +a3 ((32+ 33)01 162 3,1 83)
092 92 g2
b bo3)=—= —by1=— —by1—.
(2,2—|— 23)631 2’183 2’1833



Again, this can be solved by the well known method of characteristics. Finding g; is
finally computing an integral from (3).

Note, here we have shown a recursive way. However, some computations can also be
done in parallel. Indeed, we may consider this second quasilinear PDE in g

b3 zay2 + b3az3 — bz2a13

092 992 g2
— (boobs 3 — basbza) == + (basbsy — ba1bzz) = + (ba1bso — boobs 1) =
881 0s S92 0s 3
Indeed, the two quasilinear PDEs can be expressed as
990 990 I g3 Og3  Ogs
g81 282 283 Os1 Osa  Os3
_ q1 q1 q1 —
q% det s, Osy, Oss | T det b1 bao bo3
ba1 bao boj3 b31 b32 b33
9200 990  Oq 992 992 092
gsl 252 253 Os1 0so 0s3
_ 9 9o Oq | —
" det | g8 gu Za det | a1 bao bog
b31 b3o b33 b31 b32 b33

In both cases there is no reason for the choice of the roles of g; (compare Remark 3.2).

3.2 The general case

Theorem 3.1. Let n > 2 be the number of independent variables. Let further M =
(bk,0)2<k<n,i<t<n, where b; j are as in (5). Then system (3) yields a quasilinear PDE in
gn of the following form

o 9 0
> ag (1) det( My gi,gy) Zai )" det(Mp 3y) , (7)

17]6{17777/}
1<)

where Mg s denotes the matriz which is obtained from M by deleting all rows with index
in R and all columns with index in S.

Proof. We will start with rearranging the left hand side. Some technical details we will
outsource to lemmata which are shown later. Using equation (5) to replace the a; ; the
left hand side of (7) reads as

891@ i+j+n
> (Zbkua bk’asj> (=) det(Mny i)

i,j€{1,...,n}
1<J
=33 <bk:,j 95, Dkig, j> (=17 det(Mny i jy)
k=2 i=1 :’L"Fl
B Ogr, D+ qot( M
= ,ga (=1 et(Mny (ij})
k=2 \ i= 1] z+1



>y bmagk, —1)TI det(Miny, i)

i=1 j=i+1
- 89k z j+n
= Z Z ki, (DT det(Mny, i)
k=2 \ i=1 j=i+1
n 1—1
0 .
- Z Z br j 3gk H]Jm det(M{n}»{i,j})
=2 j=1
- = agk i+n
=2 | 2 brag,, (D det(Mny i)
k=2 \ j=2
b )
+Z 0 (5 by (-1 det (M )
8i Jj=i+1
i—1
_Zbk7j(—1)i+j+ndet(M{nL{i,j})
j=1
= Zgik Z bre ;i ( 1)l+j+ndet(M{n} {Z,J})
k=2 \i=1 ' \j=i+1
i—1 o
=D b (1) det( My .5y)
j=1
" n i—1
Ogn, i+j+n i+j+n
= oo | 2 b (DT Aet(Mny giy) = D bng (= 1) det( My i 3)
i=1 7 \j=i+1 i=1
Z agn det M@{ })

351

In the last two steps we used backward Laplace expansion and got a matrix with an
additional line. This line does already appear in the matrix except for k = n. ]

There is no reason for the special role of g,,. Hence, we can give a similar quasilinear
equation for each g, for v > 1 and solve them in parallel.

Remark 3.2. The equations we have to solve are

i+j+v — Jg, i
Z CLZ'J‘(—l) kA det(M{l,},{m}) = g(—l) det(M@,{i}) . (8)
z,je{'l,.‘ n} i=1 t
1<j ve{2,...,n}

10



Finally, g1 has to be computed by using the system (3). The system of quasilinear
PDEs in (8) can be expressed as (compare to the case of 3 variables)

_ 1\ VCJO
( é) det | Vg1 | =det <ng>
qi M M
{v}.0 ve{2,...,n}

This is a consequence of using backward Laplace expansion by the first row, of the right
hand side determinant, and generalized Laplace’s expansion by the two first rows of the
left hand side determinant.

The system of quasilinear PDEs depends on the choice of parametrization. This
might influence computational complexity. However, investigation of a suitable choice is
subject to further research.

Note, that the determinants on the right hand side of (8) do not depend on v. In the
following we will see some cases where the the determinants on the right hand side have
special properties. Mainly, we are asking some or all of them to be zero.

Remark 3.3. If det(Mp ;3) = 0 for every i € {1,...,n} but one indez, say ¢, then the
equations (8) reduce to n —1 ODEs with solution

Sijeftny @i (—1)" det(Mpy (51)

i<j
gy :/ — dsp+ K (81,3 80—1, 8041, Sn) -
(D77 det(My 12 ( sty on)

In the following remark and theorem we will see what happens if the right hand side
of (8) is zero. Two possible cases appear: Either the left hand side is zero as well, or it
is not.

Remark 3.4. If det(My (;3) = 0 for everyi € {1,...,n} and

> i (1) det(Myy g gy) # 0

i,je{l,.:.,n}
1<J
for some v € {1,...,n}, then we get a contradiction, and hence, the assumption Q =

L(g) was wrong. This, however, means that there is no proper rational solution (compare
the remarks on parametrization in the beginning of Section 3). Nevertheless, there might
be a mon-proper rational solution, which we cannot find with the procedure presented
here.

We will now show that the left hand side cannot be zero according to our assumptions.
Note, that the proof can also be applied in the case when Q is not rational.

Theorem 3.5. If det(My (;3) = 0 for everyi € {1,...,n}, and

Z ai,j(—l)“—j—w det(M{V}7{i7j}) =0

i,j€{1,...,n}
1<)

for everyv € {1,...,n}, then Q turns out to be a parametrization of a variety of dimen-
ston strictly less than n.

11



Proof. In order to prove this statement, we take the matrix M = (by¢)2<k<n. From the
1<t<n
fact that the determinant det(Mjy (;3) = 0 for every i € {1,...,n}, the rank of M is, at

most, n — 2. By definition of the b, we know

o,k 0 (o _ o0 ~_ On
k.t dsy  0sy \q1 N aqul aSng

for every k € {2,...,n} and ¢ € {1,...,n}. Let M* = (g—;“z)ggkgn. Then each row in M
1<6<n

is obtained from a linear combination of the corresponding row in M* and the vector
(g—g)lggn. More precisely, one has that the v-th row in M is given by

1 v
Vigui1)— — V(Q1)q ;1
q1 q7

for every v € {1,...,n — 1}, and where V(g;) = (gTqi’ ey gTqi)' So the rank of <X4q*1> is

upper bounded by n—1. It remains to prove that this rank is preserved when the vectors
(%)Kﬂn and (%)Kﬂn are incorporated to M* as new rows. If this occurs, then the
J - J - =

matrix ( %)oggn would have rank strictly lower than n, and the parametrization does
<t<n

not correspond to a variety of dimension 7.
From their definition,

0
woOm_0ay 9 (ER\ 0 (G 1 (dmda 9w dn
i 8Sj 881' &Sj q1 881' q1 q% st 832» 8Si 8Sj .

The hypotheses held in the statement of the theorem, that the left hand side of

equation (8) vanishes for every v € {2,...,n} yields
990 0q1  9q0 Oqa "
SI T TI0 TN ) (1) det(Myyy i) =0 9
X (GRS TR ety ) )
z,je{l,.:‘,n}
1<J
for v € {2,...,n}. Regarding the generalized Laplace expansion (see for instance [0]),

the left hand side of (9) is the determinant of a single n x n-matrix and we get

Vqo
det Va1 =0.
My

Hence, all such n x n matrices have rank n — 1. We still need to show, that the

rank of <X4qf> is at most n — 1. Assume to the contrary, that the rank is n. Then
Vi

M*) is at most n — 1,

(Vqo,...,Vq,) are linearly independent. Since the rank of <
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we know that (Vqi,...,Vgy,) are linearly dependent. Hence, V¢ can be written as a
linear combination of Vg = 2?12 AjVq;. We take k such that Ay # 0. Then Vg, =

Vqo
i <Vq1 — > =0 )\quj>. Hence, the rank of (X;E) equals the rank of Vg
7 M0

which we have shown to be at most n — 1 so we have a contradiction.
From this we conclude that the rank of (%)ogjgn is, at most, n — 1, and the param-
1<k<n
etrization does not correspond to a variety of dimension n. O
For the rest of the paper we will assume that the quasilinear equations (8) are non-
trivial, i.e. we are not in one of the special cases described above.

Method of characteristics. The quasilinear equations (8) can be solved by using the
method of characteristics (see for instance [24]). Doing so we need to solve the following
system of ordinary differential equations.

ds; .
d—i = (—1)Z det(M@7{i}) for1 <i<n,
d'U i+idu 10
o = Z CL,’J(—l) It det(M{u},{i,j}) . (10)
i,jG{l,.‘..,n}
1<)

In case n = 2 this can be transformed to a decoupled system which can be solved by
methods presented in [19, 20, 21]. Compare [10] for this case. For n > 3 system (10)
is no longer uncoupled in general. The first n equations will form a possibly coupled
system, whereas (as in the case n = 2) the last one can then be solved by integration.
Hence, an arbitrary constant is involved. We will show later that the introduction of
these constants can be postponed.

First we solve the first n equations in (10). Observe that it is a first-order system of
autonomous ordinary differential equations which provides solutions depending on n —1
arbitrary constants, say ko,...,kn,. We write s;(t) = xi(t,ko,...,kn), 1 < i < n, to
describe the dependence on that constants. In view of this information, we solve the last
equation in (10) by integration. The dependence on the arbitrary constants is inherited
by v so that we may write v(t) = v(t, ka,...,ky) = 0(t, k2, ..., k) + w(ke, ..., ky) for
some v and an arbitrary function w.

In order to resolve the constants appearing, we search for explicit functions & satis-
fying s;(t) = xi(&1, .- -, &) for all i

We remark it is not always possible to obtain these functions explicitly. In the neg-
ative case, the procedure will fail to find a solution of the APDE. In this situation, we
will not know whether a solution exists or not, whereas in the positive case, we get
9u(81,...,8n) = 0(&1,...,&) + w, where w depends on a constant c¢. For the sake of
simplicity, we fix w = ¢ as a special case in the procedure. The question of how to
choose w is a matter of further research.

Note, that the first n equations of (10) do not depend on v since the right hand side
of (8) did not either. This means we can solve this part of the system of ODEs once for
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each APDE. What remains is to solve the last equation of (10). This needs to be done
for every v > 1, but can be done in parallel.

3.3 Solution procedure

Finally, using the results from the previous sections we give a procedure for solving
APDEs in n variables is as follows

Procedure 1. Given an autonomous first-order APDE, F(u,ug,,...,us,) = 0, where
F is an irreducible and non-constant polynomial, and a proper rational parametrization

Q(s1,---58n) = (q0y---,qn) of F.

dqqp
9s;
q1 q1°

o _ Og; Oay, o 0b;
Compute further a;j, = Js; T Oy and b; p = D5

9i

1. Compute the coefficients a; = , and b; =

2. Compute det(My (;y) for all i. If only one of them is non-zero, solve the ODEs by
integration as described in Remark 3.3 and continue with step 4.
If all determinants are zero, compute Y ; ic1, 3 aij(—=1) det(Mpy 1) If

1<J
this is non-zero, there is no proper rational solution. The procedure stops. If this

is zero, then Q does not fulfill the requirements.

3. Solve (in parallel) the quasilinear PDEs (8) for g,, n > v > 1, respectively. Using
the method of characteristics proceed as follows.

a) Solve the system of ODEs, Cilsti = (—1)"det(M@’{i}), for all1 <i<n and get

solutions s;(t) = xi(t, ko, ..., kn).
b) Solve the ODE, % = Soijeft,ny @iy (—1) Y det(My,y 15 53), by integration.
1<j
¢) Compute & such that s; = xi(&1,-..,&n) for all i.

d) Compute g,(s1,. .., ) = B(Er, . &) +c.

4. Use (3) to compute g;.
5. Compute hy,...,h, such that

g(h1(81,---38n)s v s hn(S1,- -, 8n)) = (81, -+, Sn)-
6. Compute the solution qo(hi, ..., hy).

Theorem 3.6. Let F(u,uz,,...,us,) = 0 be an autonomous APDE. If Procedure 1
returns a function v(x1,...,x,) for input F, then v is a solution of F = 0.

Proof. By the last step of the procedure we know that
v(x1, . mn) = qo(hi(xe, .o yxn), o b2, o))

with h; such that g(hi(s1,...,8n)s---,hAn(s1,...,5n)) = (S1,...,5,). The function g
fulfills the assumption that u(gi,...,gn) = qo for a solution w since it is a solution of
the system (5). Hence, v is a solution. We have seen a more detailed description at the
beginning of this section. O

14



Now, we will show that the result does not change if we postpone the introduc-
tion of the constants ci,...,c, to the end of the procedure. It is easy to show that
if u(xy,...,x,) is a solution of an autonomous APDE then so is u(z1 + c1,...,2n + ¢p)
for any constants ¢;, 1 <7 < n. ;From the procedure we get that g; = g; + ¢; for i > 2
and g; not depending on ¢; for all j. Furthermore, we see that in the computation of g;
we use the derivatives of g; only (and hence the ¢; disappear). Therefore, we have that
g1 =g1+c. Let g =(91,...,9n) and g = (g1,-..,Gn). In step 5 we are looking for
a function h such that goh =id. Now goh = goh + (c1,...,¢,). Take h such that
goh =1id. Then goh(sy —ci,...,8, —cy)) = id. Hence, we can introduce the constants
at the end.

In the next section, we provide additional information on the solution obtained by the
preceding method, in case it yields a rational solution. Namely, we study whether the
output is a proper complete solution of suitable dimension.

In case the original APDE is in fact an AODE, the ODE in (10) turns out to be
trivial and the integral in step 4 is exactly the one which appears in the procedure for
AODEs [9, 11]. Of course then g is univariate and so is its inverse. In this sense, this
new procedure generalizes the procedure in [9, 11]. We do not specify Procedure 1 to
handle this case. Furthermore, if n = 2 this procedure is exactly the one which can be
found in [10].

Remark 3.7. Procedure 1 might fail in several steps. First of all, we avoided to talk
about parametrizability by assuming there is a parametrization of the corresponding hy-
persurface. In case such a parametrization does not exist in a certain class there cannot
exist a solution in this class either. Further we use the method of characteristics which
might not give an explicit solution (compare [2/]). Later we compute g1 by integration
where a solution might only be found in a field extension, i.e. we might get out of the
class of functions we are looking for. Nevertheless, if we find an integral in a field ex-
tension and the subsequent steps are successful as well, we maight still get a solution.
See for instance the examples in Section 5. We have made the initial assumption that
the solution can be written in the form Qo g, for some invertible function g. In step 5
one may approach the actual computation of the inverse of g by means of elimination
techniques, such as Grobner bases. Nevertheless, it might happen that there is no explicit
solution for h; while inverting g.

In all the above mentioned cases, we say that the procedure fails and then we do not know
anything about solvability of the input APDE. In the latter case, however, we might state
the solution implicitly.

4 Rational Solutions

For first-order autonomous AODEs the algorithm of Feng and Gao [7] gives an answer
on whether or not a rational solution exists. As Procedure 1 is a generalization of
the procedure for ODEs in [9, 11], it also generalizes this algorithm. However, as in
[9, 11], any final result of the procedure is a solution of the differential equation, but the
procedure might fail and then it does not tell us whether a solution might exist. In the
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following we describe properties of rational solutions found by Procedure 1 and we give
a class of APDESs that has a rational solution which can be found by the procedure.

4.1 Properties of Rational Solutions

In the following we will discuss the properties of rational solutions computed by our
procedure. We will show that these solutions are proper and complete of suitable di-
mension.

Lemma 4.1. If Procedure 1 yields a rational solution, then the solution is proper.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-
cedure we start with a proper parametrization Q of the associated surface. When the
procedure is successful we know that £(g) = Q and the inverse h of g exists. Hence,
L = Q(h) is proper as well. O

Recall Remark 2.1 which proves that the jacobian of the corresponding parametriza-
tion of a proper solution computed by the procedure has generic rank n.

Theorem 4.2. Assume Procedure 1 yields a rational solution u(x1,...,x,). Then the
solution u is complete of suitable dimension.

Proof. From the investigation below Theorem 3.6 we know that the output of the proc-
dure is u(x1,...,2,) = v (x1 + ¢1,..., 2y + ¢,) for some u*. As usual let £ be the
corresponding parametrization of u. For the case of two variables we see that

uz(x + e,y +c2)  uy(r+cr,y+c2)
T = | U + 1,y +2) Ugy(x+er,yte) | =T =Tc.
ny(CC-FCl,y—FCz) Uyy($+01,y+02)

The equation 7, 21""’0" =7 glx" also holds in general. From Lemma 4.1 we know that

L is proper and from Remark 2.1 we know that a proper solution has a jacobian of rank
n. (]

4.2 APDEs with Rational Solutions

Examples with two variables can be found in [10]. Here we will therefore focus on an
example with more than two variables.

Example 4.3 (Example 7.11 of Kamke [10]). We consider the autonomous APDE,
F(u, gy, Ugy, Ugy) = dluil + dgui2 + dg,u?:3 —u=0,

where dy, do and d3 are non-zero constants. A possible parametrization is

0 (51,89, +disy +dzsy | dy si—dis3 +d38§)
- 1o 2d283 dg’ 2d383
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The coefficients as computed in the procedure are

1
ap = —, a2:03 (13:0,
52

—s1 + dlsg + dgsg _@ S1 — dlsg + dgsg

by = =
2 2d95953 ds’ 2d35953

Then we have to solve the following quasilinear equations

/_ dz 992 992 992
—S1 +dls%—i—d38§ . <$36 +828 + 251 851)

2d3 5353 2da 8353 ’
da 2 /_da 9g3 9gs 993
T ds (81 - d182 + d383) _ ds (83 Os3 + 52 Osg + 251 831>
2d25§8§ N 2d25253 '

Since qo = s1 we have that a; = 0 fori > 2, and hence only one pair of indeces in the sum
on the left hand side of (8) yields a non-zero contribution. Simplifying these equations

and using the ideas of the method of characteristics, we have to solve the following system
of ODEs.

’ 28183
S1 = 7
_?zdg
, A / —%8283
§g = —F—— |
2 s
da .2
sh=— 4%
3 - d2 b
[ d 2 2
,  disi+ d38§ — 57 *ﬁ (—d152 + d3s5 + 51)
v = , resp. v=— .
d3 d2
The first three equations are independent on the last one. They yield solutions
C2 C3 d2
S1 = 2 SQZ—da 33:_—d7
(Cl —%dg + t) crdy — /=t cdy — /[ —Ft

for some arbitrary constants cy, co,c3. Resolving t and the constants we get

d
443 _ dadzsy _ dasy

f=—¥ = =—", c3 = — (11)
s3 3 53

Solving the last equation of the system of ODEs by integration we get

Csdl + 2+ dyds \ —% (c3dids + cady — d3d3)
= , resp. v =
: P 2t
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Using (11) get the solutions

d 2 2
B _ﬁ (_31 + dis; + d353) 81— dlsg + d33§
g2 = s3 ) g3 = s3 .

Now, we need to compute g1. We do so be taking the first equation of (3). As a solution
we get

g1 = mi(s2,3),

where my is an arbitrary function. Using the second equation of (3) we compute my and
get

m1 = 2d189 + m2(33) .

Finally, we compute ma using the last equation in (3) and get ma = ¢1, which we choose
to be 0. Hence,

g1 = 2a183 .
Solving the system g;(h) = s;, we get
S2 + 83
h—l st s 82 b, — 51 h_\/%
YTa\d T dy dg) 72, T 2y

Hence,

s 85  s3

1 2 2 2
qo(h($1’$25$3)) - h1(x1,$2,x3) = 1 <dl + de + d?)>

is a solution of the APDE and qo(h(z1 + c1,x2 + ¢c2, 23 + ¢3)) is a complete one.

5 Other Solutions

We will first show some properties of arbitrary solutions found by the procedure. Simi-
larly to Lemma 4.1 we get the following.

Lemma 5.1. If Procedure 1 yields a solution, then the corresponding parametrization is
injective almost everywhere.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-
cedure we start with a proper parametrization Q of the associated surface. When the
procedure is successful we know that £(g) = Q and the inverse h of g exists. Hence,
L = Q(h) is injective almost everywhere. O
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A parametrization which is injective almost everywhere is also called almost injective.
Note, that jacobian of an almost injective parametrization P(sq,...,s,) has generic
rank n. Indeed, since P is almost injective, there exists a map R such that id = RoP
generically. Thus Jig = Jrop = Jr(P) - Jp. Taking into account, that the rank of
a product of two matrices is smaller equal the minimal rank of the two matrices, we
getthat rank(7p) = n.

Theorem 5.2. Assume Procedure 1 yields a solution u(x1,...,x,). Then the solution
u 1s complete of suitable dimension.

Proof. As usual let £ be the corresponding parametrization of u. Then the equation

T = J" holds in general.  From Lemma 5.1 we know that £ is almost
injective and from the notes above we know that an almost injective solution has a
jacobian of expected rank. O

The following examples show that the method is not restricted to finding rational
solutions. It might happen that the steps in Procedure 1 can be done working in some
extension field. In this case we can of course continue in the procedure and might get a
non-rational solution.

Table 2 presents a list of some well known equations in two variables and the solutions
found by the procedure. For the sake of readability we negelct the arbitrary constants
and present only specific solutions. Details can be found in [10].

Name APDE Parametrization | Solution
Burgers (inviscid) [24] | wuy + uy (=% s,t) .
Traffic [3] Uy — Ug (% - vm> (7%(;;:?”),5,25) 7%(;;25%)
Eikonal [2] u? + u; -1 (s, %, %) /2?2 +y?
Convection-Reaction [1] | uy + cuy — du (e s t) M
Generalized Burgers Uy + Ul + ou + Bu? | (sB,tB, B) %
(special case) [24] B _(4s)

st+s2p

Table 2: Well known PDEs and their solutions found by the method in [10], which is a

special case of the method presented here.

The procedure might as well find non-rational solutions to APDEs in more than two
variables as we will see in the following examples. In both examples a parametrization
with go = s1 is chosen which simplifies the left hand side of the quasilinear PDEs (8).
Nevertheless, all important aspects of the procedure can be seen.
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Example 5.3 (Eikonal equation with 5 variables). We consider the APDE,

5
Fu,ugy ... ug;) = (Zui) —1=0.
i=1

A possible rational parametrization of the corresponding surface is
s3+s3+s7+s2—1 259 253 254 255

D D' D D D)
where D = s% + s% + 52+ s% + 1. The parametrization is proper. Indeed, the inverse is
given by

Q: (817

S1 =2 S = — P2 83 = pg(p1+1)

’ p—1’ p3+ 03+ pi+p3]
= p4(2?1 +21) o, s= p5(2171 +21) .

p3 +p3 +p;+ D5 p5 + p3 + Py + px

The coefficients appearing in the procedure are
s5+s3+si+si+1
s2+s3+s5+sE-17

281'
s2+s3+s24s2-17

a] = a; =0, fori>2]

i

Then we get the following quasilinear equations for 2 <i < 5.

32s; 16 (s3 + 53 + 57 + s34+ 1) 52
(3+s3+si+si-1)"  (S+s3+sirsd-1)
Here we are in the case of Remark 3.5 and hence, we get by integration
25184
gi = 11) : fori>2.

Note, that for simplicity we chose the arbitrary functions which occur in the solutions

to be 0. Now we need to compute g1. We do so by taking the first equation of (3). As
S1 (s%+s§+si+s§71)
D

a solution we get g1 = + mq(s2, $3, 84, S5), where my is an arbitrary
function. Step by step we will compute my now by using the other equations of (3). Using
the second equation we have an ODE in my. We get mi = ma(ss, S4,85). Continuing
like this we finally get m1 = c1 for an arbitrary constant. Since, we can deal with the
constants at the end of the procedure, we will take it to be zero for the moment. Now we
have to solve the system g;(h) = s;. A solution of this system is

VB (353 + 53+ 57+ 5)
hi =

)

52

§1528; — si\/s% (3% + s% + s% + SZ + s%)
h; = R R E— fori>2.
S92 (82 +83 + 54 +S5)
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Hence we conclude that,

qo(h(z)) = hi(z) = \/x% + 2% + 23 + 2 + a2
s a solution of the APDE.

Example 5.4. We consider the APDE, F(u, Uy, , Ugy, Uzy) = (Ug, +d1 ) Uz, — (u+d2) Uy, =

(s2+d1)s3 )

0. A possible proper parametrization is Q = (s1, 2, S3, . The coefficients are

s1+d2
1
a; = —, a2 = 07 0
52
by — 83 by — (82 + d1
s’ (s1+ dz)

Then we have to solve the following quasilinear equations

di+s2  (di+s2)s3 < 992 392) L5 O
(dz + 81)33 N (dg + 81) 683 2882 (dg + 81)83 0s1 ’
o (d1+82)83 ( %+ 393) s3  OJgs

53 (do+s1)253 \ 20ss | 20sy) ' (do+s1)s2 051

Omiting the details and intermediate steps we get the solutions

(d2 + 81)(d1 — 10g(82)82) g3 = (dg + 81)2(d1 — log(sz):;g)

(d1 + s2)s3 ’ K (dq + s2)2%s .
Now, we need to compute g1. We do so by taking the first equation of (3). As a solution
we get

92 = —

(1 + 10g(—32))51
dy + s2

where my is an arbitrary function. Using the second equation of (3) we compute my and
get

+ mq(s2,s3),

g1 =

da(1 + log(—s2))
di + s2

Finally, we compute ms using the last equation in (3) and get mg = c1, which we choose
to be 0. Hence,

my = + ma(s3)

_ (I +log(=s2))(d2 +51)
N di + so

Solving the system g;(h) = s;, we get

—1-21%2
dosy + dis3 — e 53 83

h1 - — )
52
—1— 5152
hy = —e %3,
_1_5132 1 5152
e 53 (—8182 + (—1 + die T ) 53>
hg = .

2
53
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Hence,

_T1T2

doxo + dix3 — e 3 I3

qo(h(z)) = hi(x1, 22, 23) = .

is a solution of the APDE.

6 Conclusion

We have presented an exact procedure for solving first-order algebraic differential equa-
tions in an arbitrary number of independent variables. In case the procedure yields a
result, it is proven to be a complete solution of suitable dimension. Even if the method
fails, it often leads to an implicit description of the solution. The method is a gener-
alization of several methods which were already known, in particular also for ordinary
differential equations.
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