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Abstract: An untargeted metabolomics strategy using hydrophilic interaction chromatography-mass
spectrometry (HILIC-MS) was developed in this work enabling the study of the coffee roasting
process. Green coffee beans and coffee beans submitted to three different roasting degrees (light,
medium, and strong) were analyzed. Chromatographic separation was carried out using water
containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase A) and acetonitrile
containing 10 mM ammonium formate with 0.2 % formic acid (mobile phase B). A total of 93 molecular
features were considered from which 31 were chosen as the most statistically significant using
variable in the projection values. 13 metabolites were tentatively identified as potential biomarkers
of the coffee roasting process using this metabolomic platform. Results obtained in this work
were complementary to those achieved using orthogonal techniques such as reversed-phase liquid
chromatography-mass spectrometry (RPLC-MS) and capillary electrophoresis-mass spectrometry
(CE-MS) since only one metabolite was found to be common between HILIC-MS and RPLC-MS
platforms (caffeoylshikimic acid isomer) and other between HILIC-MS and CE-MS platforms (choline).
On the basis of these results, an untargeted metabolomics multiplatform is proposed in this work
based on the integration of the three orthogonal techniques as a powerful tool to expand the coverage
of the roasted coffee metabolome.

Keywords: coffee roasting process; HILIC; mass spectrometry; multiplatform;
untargeted metabolomics

1. Introduction

Coffee is a valuable and highly consumed drink over the world due to its interesting organoleptic
characteristics [1]. The main compounds found in coffee comprise alkaloids, phenolic compounds,
carbohydrates, amino acids, proteins, and lipids, being some of them bioactive and having
beneficial health effects, such as chemopreventive, antihypertensive, hypoglycemic, antiglycative,
and anticarcinogenic [2]. Generally, the most abundant coffee bioactive compounds are caffeine,
chlorogenic acids, and trigonelline followed by diterpene alcohols, such as cafestol and kahweol, and
non-digestible fiber. Additionally, the coffee roasting process contributes to the formation of another
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class of bioactive compounds called melanoidins, which are Maillard reaction products [3]. Hence,
there are many works in the literature focused on the study of these bioactive coffee compounds [2].
However, not many studies have been carried out using a metabolomics approach although this omic
strategy is considered a powerful tool in food analysis. Metabolomics is focused on the analysis of the
metabolome of a certain biological system which is composed of molecules with a molecular mass
below 1500 Da. For example, this strategy has been employed for the discrimination of coffee varieties
and geographical origins [4–13], caffeinated and decaffeinated coffees [14], and ground roasted and
instant coffees [15].

Metabolomics has also been applied to investigate the changes on the chemical composition
taking place during the coffee processing as a result of pyrolysis and Maillard reactions, among others.
These changes can have influence on the coffee quality and safety, which makes crucial the study of
markers capable of discriminating the changes occurring during the roasting. For instance, different
methods employed in coffee brewed have been evaluated because they can affect the metabolomic
profile [5,16,17]. In this line, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and
human sensory test were used to study the chemical compounds enabling to distinguish and predict
the different sensations of coffee taste [18,19]. On-line analysis of coffee samples submitted to roasting
was carried out by ion mobility spectrometry-mass spectrometry (IMS-MS) to monitor the formation
of volatile compounds and the release of fatty acids [20]. Additionally, targeted and non-targeted
analysis by mass spectrometry (MS), two-dimensional gas chromatography (GC ×GC)-MS and GC-MS
were carried out for understanding the role of chlorogenic acids and the volatile fraction during coffee
roasting process, respectively [21–23] and a non-target and non-volatile approach based on the use
of ambient technique (EASI) coupled to a single quadrupole MS was employed to monitor roasting
chemical changes in the coffee bean [24].

Our research team has investigated for the first time the coffee roasting process using untargeted
metabolomics strategies based on RPLC-MS and CE-MS [25,26] and different metabolites were proposed
as biomarkers of this process. The hypothesis of the current work relies on what markers of coffee
roasting could be obtained using a HILIC-MS strategy. To this end, an untargeted metabolomics
approach based on the use of HILIC-MS as analytical platform is proposed to achieve the metabolomic
analysis of green coffee and coffee samples submitted to different roasting degrees. The results obtained
were compared with those previously achieved using RPLC-MS and CE-MS untargeted metabolomics
platforms. This study revealed the potential of a metabolomic multiplatform consisting of different
liquid-phase orthogonal techniques to expand the coverage of the metabolome of a given system such
as roasted coffee.

2. Results and Discussion

2.1. Metabolomics Analysis of Coffee Samples by HILIC-MS

In order to achieve the metabolomics analysis of coffee samples submitted to different roasting
degrees, a method based on the coupling HILIC-MS was tuned for the given samples. Mobile phases
consisting of water containing 0.1 % formic acid (solvent A) and acetonitrile containing 0.1 % formic
acid (solvent B) were assayed using an elution gradient 98–55% B in 45 min; 55% B during 4 min; 55–98%
in 2 min. However, under these conditions, positive ionization did not enable the MS detection of the
metabolites although 162 molecular features were detected in negative ionization mode. Therefore,
water containing 0.2 % formic acid with 10 mM ammonium formate (solvent A) and acetonitrile
containing 0.2 % formic acid with 2 mM ammonium formate (solvent B) were employed using the
same elution gradient. These mobile phases also showed to give good metabolite coverage for food
and biological samples in previous works by our research team [27,28]. Under these conditions,
the ionization was successful, and 280 and 223 molecular features were detected in positive and
negative modes, respectively. All these experiments were carried out using an injection volume of 5 µL
(since using 10 µL the number of molecular features decreased) and a flow rate of 0.2 mL/min at a
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temperature of 30 ◦C. Under these conditions, the effect of the column temperature on the number of
molecular features was investigated (30, 40, and 50 ◦C). The results obtained showed that a decrease in
the number of molecular features was observed when increasing the temperature both in positive and
in negative ionization modes so that a temperature of 30 ◦C was chosen as optimum. Finally, a flow
rate of 0.3 mL/min was assayed for comparison but a decrease in the number of molecular features was
obtained. So, a flow rate value of 0.2 mL/min was employed for further experiments. Although initially
a sheath gas temperature of 300 ◦C, a sheath flow of 6.5 L/min and a fragmentator voltage of 175 V were
employed as MS conditions, other values for these variables were also assayed (250 ◦C, 5.5 L/min and
125 V, respectively) without improving the number of features obtained. Figure S1 shows the base peak
chromatograms obtained for green coffee and for coffee samples submitted to three roasting degrees
under the above-mentioned chromatographic and MS conditions in the positive ionization mode.

Using the optimal conditions for HILIC-MS method, metabolomic sequence was acquired as
detailed in section “3.4 metabolomics sequence”. 53 and 40 molecular features were the resulting
number of features for positive and negative ionization modes sequences, respectively. PCA score
plots having using molecular features as variables and the samples as observations displayed good
QC and sample grouping clustering both for positive (Figure 1A) and negative (Figure 1B) ionization
modes. Score plots of PCAs models excluding the QC samples revealed similar pattern in sample
clustering meaning that plots are not influenced by QC samples in both positive (Figure 1C) and
negative (Figure 1D) ionization modes. Variance explained in first two components was similar for
both ionization modes, 48 and 23 % for ESI+ (Figure 1C) and 51% and 15 % for ESI- (Figure 1D). Note
that in the ESI+ separation between the unroasted samples (GCB) and the roasted samples (LRC, MRC,
and DRC) was in the second component, whereas that in the ESI- was in the first component. Focusing
only on the roasting degree, there was a gradual trend, which could be observed both in first and
second components for both ionization modes.
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Figure 1. Principal component analysis (PCA) score plots obtained in positive and negative ionization
modes for the four studied coffee groups (GCB, LRC, MRC, and DRC) submitted to different roasting
degree with QC samples (A,B) and without QC samples (C,D).

To further explore these data, another type of unsupervised multivariate analysis was conducted,
i.e., hierarchical clustering analysis (HCA) (see Figure S2). As anticipated in the PCA score plots,
there was a good clustering also observed in HCA. In the positive ionization mode (Figure S2A) the
most difference was found between DRC and the rest of samples while that in the negative mode
(Figure S2B) the GCB was most different group of samples. This is in line with the results from Figure 1
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since DRC (in ESI+) and GCB (in ESI-) samples are further away from the rest of samples on the first
component. Both PCA and HCA plots support the existence of differences in the metabolic profiles of
the coffee samples upon different roasting degrees.

As the aim of this work is to find markers of roasting degree for coffee, supervised PLS-DA models
were used in a pair-wise manner to highlight what metabolic features were significant (Figure 2).
Specifically, these pair-wise comparisons included matching GCB vs. each roasting degrees (LRC,
MRC and DRC). Quality parameters (R2X, R2Y, and Q2) and results of the cross-validated ANOVA (F,
and p-values) for both ionization modes are listed on Table 1. Given the good cluster found in the
unsupervised models (PCA), it is not surprising to see the good R2 and Q2 values as well as the very
high values for the cross-validation ANOVA in the supervised PLS-DA models. Both ionization modes
behaved in a very similar manner. This highlights the fact that for the given HILIC-based methodology
both ionization modes can be used to extract metabolic profiling in a reliable manner. Moreover, as
will be further discussed in the next section, using both ionization modes is very advantageous as it
increases the metabolite coverage.
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Table 1. PLS-DA models for samples submitted to different roasting degrees compared with green coffee.

ESI+ ESI−

Quality
Parameters

F (and p-values) of
Cross-Validated

ANOVA

Quality
Parameters

F (and p-values) of
Cross-Validated

ANOVA

GCB vs LRC
R2X = 0.485
R2Y = 0.989
Q2 = 0.977

561.6
(1.0 × 10−22)

R2X = 0.747
R2Y = 0.995
Q2 = 0.987

466.0
(2.3 × 10−22)

GCB vs MRC
R2X = 0.347
R2Y = 0.972
Q2 = 0.903

125.7
(2.1 × 10−14)

R2X = 0.676
R2Y = 0.993
Q2 = 0.980

220.2
(1.5 × 10−18)

GCB vs DRC
R2X = 0.637
R2Y = 0.990
Q2 = 0.980

197.1
(1.6 × 10−18)

R2X = 0.625
R2Y = 0.988
Q2 = 0.962

120.8
(1.6 × 10−15)

2.2. Metabolite Identification of Coffee Roasting Process

In order to study the metabolites involved in the coffee roasting process, an exhaustive identification
focused on the metabolic features with VIP values for the pair-wise PLS-DA models higher than
1.0 in the positive and negative ionization modes was carried out. Based on this criterium, 20 and
13 molecular features were selected in positive and negative ionization modes, respectively. Table 2
(negative mode) and Table 3 (positive mode) summarize the retention time, the molecular feature, the
experimental m/z value, the mass error comparing with the database, the main fragments obtained
in MS/MS spectra, the VIP values for the pairwise PLS-DA models, and the trend observed for all
significant metabolites along the roasting process of the coffee (Figure S3 shows the diagrams of the
trends observed for all tentatively and unequivocally compounds along the coffee roasting process).
As it can be seen in both tables, seven and six metabolites were identified in negative and positive
ionization modes, respectively. From the 13 identified metabolites, 5 were unequivocally identified.

In the negative ionization mode, mainly different kind of phenolic compounds were identified
such as hydroxycinnamic acids (such as neochlorogenic acid and hydroxycinnamic acid methyl ester
derivative), hordatines (such as hordatine A1 and hordatine A1 hexose isomers), caffeoylshikimic
acid isomer, and ssioriside (see Table 2). In general, the trend of the identified phenolic compounds
is to decrease as roasting process increases (except in the case of hydroxycinnamic acid methyl ester
derivative) because they are thermolabile and easily decompose under the effect of high temperature
resulting in their degradation [29].

On the other hand, in the positive ionization modes, choline and the amino acids betaine,
proline, and the proline betaine were unequivocally identified, while N-methylpipecolic acid and
2-methyl-(methylthiol)pyrazine isomer were tentatively identified (see Table 3). These markers
decreased during roasting process. All the identified compounds grouped in Tables 2 and 3 had been
previously described in coffee samples in the literature [25,26,30–33].
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Table 2. MS/MS fragmentation of potential markers of coffee roasting process in negative ionization mode.

VIP Values

# RT
(min)

Molecular
Formula Tentative Identification [M−H]−

Mass Error
(ppm)

Main MS/MS
Fragments

GCB vs.
LRC

GCB vs.
MRC

GCB vs.
DRC

Roasting
Trend

1 2.2 C10H10O4
Hydroxycinnamic acid
methyl ester derivative 193.0483 11

65.0388
121.0280
93.0334

133.0277

0.78670 1.12365 1.49312 ↑

2 2.5 C16H16O8
Caffeoylshikimic acid

isomer 335.0708 11
161.0238
135.0440
179.0333

1.81873 2.19334 2.41682 ↓

3 2.7 C28H38N8O5 Hordatine A1 565.2902 11
59.0136

101.0589
113.0234

1.82774 2.19590 1.86040 ↓

4 13.2 C34H48N8O10
Hordatine A1 hexose

isomer 727.3413 16 643.2944
113.0236 0.81788 0.95373 0.94533 ↓

5 14.9 Unknown 481.2371 59.0133
89.0235 2.41084 2.85921 3.12239 ↓

6 14.9 C34H48N8O10
Hordatine A1 hexose

isomer 727.3413 16
643.2942
113.0235
89.0235

2.32700 2.67836 2.78861 ↓

7 16.4 C27H38O12 Ssioriside 553.2225 3

44.9983
89.0239
59.0143

391.0400
119.0358

1.54553 2.49650 2.52013 -

8 17.7 Unknown 135.0436 67.0185 1.38856 1.31171 0.51246 ↓

9 18.5 Unknown 135.0448 134.0358
89.0381 1.75153 1.26031 1.05637 ↓

10 18.6 C16H18O9 Neochlorogenic acid * 353.0803 7
191.0553
179.0339
135.0439

2.04079 1.59240 0.56977 ↓

11 21.6 Unknown 705.3292
659.3259
335.2215
323.0965

1.80217 9.9 × 10−9 9.7 × 10−9 ↑

12 25.1 Unknown 341.0528
89.0242
59.0138
71.0137

1.98371 2.6 × 10−8 2.2 × 10−8 ↑

13 29.0 Unknown 242.0787 78.9588
168.0424 0.82795 0.43160 1.35421 ↓

# Metabolite number. * Confirmed with standard ↑ The level of the compound increases with roasting. ↓ The level of the compound decreases with roasting.
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Table 3. MS/MS fragmentation of potential markers of coffee roasting process in positive ionization mode.

VIP Values

# RT
(min)

Molecular
Feature Tentative Identification [M + H]+ Mass Error

(ppm)
Main MS/MS

Fragments GCB vs. LRC GCB vs.
MRC GCB vs. DRC Roasting

Trend

1 12.3 Unknown 177.0561
117.0327
89.0377

145.0268
1.719010 2.00514 1.60664 ↓

2 14.9 Unknown 679.5175 - 1.69434 1.90782 1.79200 ↓

3 18.3 Unknown 393.0609 38.9629 1.70296 1.80418 0.60806 -

4 18.3 Unknown 163.0394
89.0380

117.0327
135.0431

1.71644 1.86415 0.51289 -

5 19.1 C7H13NO2 N-methylpipecolic acid 144.1012 6
58.0649
84.0797
98.0973

1.71129 1.56815 1.76873 ↓

6 19.4 C5H11NO2 Betaine * 118.0858 10 58.0646 1.76821 2.079 1.8509 ↓

7 19.9 C7H13NO2 Proline betaine * 144.1019 6
98.0958
58.0637
84.0814

1.56002 1.30522 1.66228 ↓

8 21.6 Unknown 295.1666
121.0275
175.1433
84.0804

1.53231 1.95759 1.7594 -

9 22.4 C5H9NO2 Proline * 116.0703 2 70.0641 1.53958 3.55 × 10−8 1.49 × 10−8 ↓

10 23.5 Unknown 200.1220 - 0.40495 1.77901 1.77808 ↓

11 23.5 Unknown 244.1122 141.0470
126.0236 0.31289 1.88784 1.80463 ↓

12 23.5 C6H8N2S 2-Methyl-(methylthiol)pyrazine isomer 141.0483 10
126.0239
99.0134
82.0522

1.29913 1.81396 1.83413 ↓

13 23.8 Unknown 236.1503
58.0647
57.0329
59.0723

1.7175 2.04337 1.86042 ↓

14 24.2 Unknown 520.1954 123.0905
296.1594 0.986242 0 5.79 × 10−9 -

15 24.3 Unknown 266.1605 104.1064
60.0800 1.4989 1.60253 1.29524 ↓

16 24.7 Unknown 226.1186 123.0915
110.0830 1.64839 1.91133 1.67194 ↑

17 25.6 Unknown 129.0654 - 1.76951 9.33 × 10−9 3.66 × 10−8 ↓

18 27.8 Unknown 198.1236 - 1.7959 2.11365 1.87729 ↓

19 28.8 C5H14NO Choline *,a 104.1065 7
58.0647
60.0804
45.0328

1.63786 0.18465 1.78252 ↓

20 28.8 Unknown 258.1106

104.1070
124.9995
86.0961

184.0730

1.53731 0.15982 1.77857 ↓

# Metabolite number. * Confirmed with standard. a [M]+, ↑ The level of the compound increases with roasting. ↓ The level of the compound decreases with roasting.
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2.3. Integration of the Untargeted HILIC-MS Strategy Developed in a Metabolomics Multiplatform for the
Search of Markers of the Coffee Roasting Process

Results obtained by the HILIC-MS metabolomics strategy developed in this work complement
those obtained by our research team using RPLC-MS [25] and CE-MS [26], contributing to enlarge
the coverage of the roasted coffee metabolome in the study of the coffee roasting process. In fact,
the use of three orthogonal analytical techniques such as RPLC-, HILIC-, and CE-MS, constitutes a
powerful untargeted metabolomics multiplatform integrated by these three techniques that originate
complementary information. Figure 3A shows a comparative among the metabolites tentatively
identified by each of the developed strategies (19 by RPLC-MS, 13 by HILIC-MS, and 7 by CE-MS).
Moreover, this figure indicates which of these metabolites are unequivocally identified (marked in bold
and with an asterisk) by the injection of standards (matched retention/migration times and MS/MS
spectra fragmentation) showing that a total of nine different metabolites were unequivocally identified
using the proposed multiplatform. On the other hand, the Venn diagram shown in Figure 3B illustrates
the potential of using the integrated platform developed since just one metabolite was common between
RPLC-MS and HILIC-MS platforms (isomer of caffeoylshikimic acid) and another between HILIC-MS
and CE-MS platforms (choline) while there were not common metabolites found by RPLC-MS and
CE-MS platforms. These results demonstrate the relevance of using orthogonal techniques to provide
information on the whole metabolome including compounds of diverse characteristics. They also show
that some isomers of the same compound (e.g., dicaffeoylquinic acids or coumaroylquinic acid) with
the same m/z ratio but different retention times were found although they could not be distinguished
in this work.
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Figure 3. (A) List of metabolites tentatively identified by the integrated untargeted metabolomics
multiplatform based on HILIC-MS, RPLC-MS [25] and CE-MS [26]. Those metabolites common in two
platforms are highlighted using different colors. Metabolites unequivocally identified for each platform
by the injection of standards (matched retention/migration times and MS/MS spectra fragmentation)
are marked in bold and with an asterisk. (B) Venn diagram displaying the total number of different
metabolites tentatively identified by the untargeted multiplatform proposed and those common to
two platforms.
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Moreover, as both ionization modes were employed for RPLC-MS and HILIC-MS analysis (analysis
by CE-MS could only be achieved in ESI+), they were shown to provide interesting complementary
information. Thus, some metabolites with the same nominal mass were found by RPLC-MS in both
ionization modes (one of them was unequivocally identified as 1,5-dicaffeoylquinic acid) and were
identified as hydroxycinnamic acids. After analyzing the MS/MS fragmentation of these compounds,
just one of them was common in RPLC-MS and HILIC-MS platforms (isomer of caffeoylshikimic acid).
This compound exhibited the same trend along the roasting process when analyzed by both platforms.
In addition, the content of this compound seemed to be relatively stable whereas de contents of other
compounds from the same family decreased, all these results confirming the consistency of the results
obtained regardless the analytical platform employed. In fact, the levels of many compounds decreased
with the roasting process (chlorogenic acids) whereas other formed as products of Maillard reaction
increased (3-ethylpyridine, methyl-pyrrolecarboxaldehyde or N-acetyl-2-methylpyrrole).

3. Materials and Methods

3.1. Chemicals and samples

Methanol, acetonitrile, and formic acid of MS-grade were supplied from Fisher Scientific (Hampton,
New Hampshire, USA). Ammonium formate of MS grade, 4-O-caffeoylquinic acid, quinic acid, shikimic
acid, 3-hydroxycoumarin, 7-hydroxycoumarin, trans-caffeic, caffeic acid, trans-ferulic acid, chlorogenic
acid, neochlorogenic acid 1-aminocyclohexanecarboxylic acid, methyl benzoate, betaine, norvaline,
valine, proline, and choline were purchased from Sigma (St. Louis, MO, USA). Ultrapure water was
generated with a Milli-Q system (Millipore, Madrid, Spain).

Green coffee beans (GCB) of the Arabica variety were roasted to light (LRC), medium (MRC), and
dark (DRC) levels at 175, 185, and 195 ◦C during 12.36, 14.11, and 17.06 min, respectively. In order to
control the roasting process, the weight loss of each sample was checked, being 13% in light coffee,
15% in medium coffee, and 17% in dark coffee. All these coffee samples were kindly donated, roasted,
and grounded by “Café Fortaleza” (Vitoria, Spain) and were identical to the samples analyzed in our
previous works using RPLC-MS [25] and CE-MS [26] platforms.

3.2. Sample Preparation

Metabolite extraction from grounded coffee samples was carried out following the procedure
previously optimized by our research group [25]. Briefly, 1.5 mL of methanol/water (25/75, v/v) were
added to 50 mg of grounded coffee. The extraction was performed using a Thermomixer Compact
(Eppendorf AG, Hamburg, Germany) at 1× g during 15 min at room temperature (25 ◦C). After
centrifugation (1137× g, 25 ◦C, 10 min) the supernatant was collected and injected in the system.

In order to perform the metabolomics sequence, the extractions of each group of coffee samples
(GCB, LRB, MRB, and DRB) were carried out five times independently (n = 5).

On the other hand, equal amounts of each grounded coffee sample were combined to prepare the
quality control (QC) sample.

3.3. HILIC-MS Analysis

Metabolic profiling of coffee samples was carried out using a High Performance Liquid
Chromatography (HPLC) system 1100 series from Agilent (Agilent Technologies, Palo Alto, CA,
USA) coupled to a high sensitive quadrupole time-of-flight mass spectrometer (QTOF/MS) 6530
series (Agilent Technologies, Germany) equipped with a Jet Stream thermal orthogonal electrospray
ionization (ESI) source. Agilent Mass Hunter Qualitative Analysis software (B.07.00) was employed
for MS control, data acquisition, and data analysis.

The chromatographic method included the use of a HILIC (OH5) Ascentis Express column (100 ×
2.1 mm, 2.7 µm particle size with fused core® particles with 0.5 µm thick porous shell) protected by
a HILIC (OH5) Ascentis Express guard column (0.5 cm × 2.1 mm, 2.7 µm particle size), both from
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Supelco (Bellefonte, PA, USA). The mobile phases consisted of water with 0.2 % formic acid and 10 mM
ammonium formate (solvent A), and acetonitrile with 0.2 % formic acid and 2 mM ammonium formate
(solvent B) in a gradient elution analysis programed as follows: 98–55% B in 45 min; 55% B during
4 min; 55–98% in 2 min; and then the column was re-equilibrated for 15 min using the initial solvent
composition. The mobile phase flow rate, column temperature and injection volume were 0.2 mL/min,
30 ◦C, and 5 µL, respectively.

MS analyses were performed both in positive and negative ESI modes with the mass range set at
m/z 100–1700 (extended dynamic range) in full scan resolution mode at a scan rate of 2 scans per second.
ESI parameters for the mass spectrometer were: gas temperature, 300 ◦C; drying gas flow, 10 L/min;
capillary voltage, 3000 V with a nozzle voltage of 0 V; nebulizer pressure, 25 psi; and sheath gas flow
and temperature of jet stream, 6.5 L/min and 300 ◦C, respectively. The fragmentator voltage was set
at 175 V whereas the skimmer and octapole voltages were 60 and 750 V, respectively. For MS/MS
experiments, the selected precursor ions were fragmented by applying voltages between 20 and 40 V
in the collision chamber.

In order to obtain proper mass accuracy, spectra were corrected using ions m/z 121.0508
(C5H4N4) and 922.0097 (C18H18O6N3P3F24) in ESI positive, and m/z 112.9856 (C2F3O2) and 966.0007
(C18H18O6N3P3F24) in ESI negative. To achieve this task, a solution from Agilent Technologies
containing those ions was continuously pumped into the ionization source at a 15 µL/min flow rate
using a 25 mL Gastight 1000 Series Hamilton syringe (Hamilton Robotics, Bonaduz, Switzerland) on a
NE-3000 pump (New Era Pump Systems Inc., Farmingdale, NY, USA).

3.4. Metabolomics Sequence

In order to guarantee great stability and repeatability of the chromatographic system, blanks and
QC samples were injected at the beginning of the metabolomics sequence. Then, a total of 60 coffee
samples (five replicates of each group injected in triplicate) were randomly injected and a QC sample
was injected every six coffee samples.

3.5. Data Processing and Multivariate Analysis

In order to get the data related to the molecular features present in each sample, Molecular Feature
Extraction (MFE) tool from Mass Hunter Qualitative Analysis (B.07.00) was employed. The “small
molecules (chromatographic)” algorithm was utilized to select MFE extraction following parameters:
ions ≥ 500 counts; peak spacing tolerance = 0.0025 m/z, plus 7.0 ppm; isotope model = common organic
molecular; and limited assigned change was set to 2. H+, Na+, K+, and NH4+ adducts were considered
in positive ionization, whereas that only the HCOO− adduct was chosen for negative ionization to
identify different ion species coming from the same molecular feature.

Agilent Mass Profiler Professional (MPP) software (B.02.00) was used to carry out the filtering and
alignment of the extracted molecular features. Molecular feature filtering was achieved employing a
minimum absolute abundance of 10.000 counts; number of ions 2 and all charges permitted. On the
other hand, molecular feature alignment was performed using a retention time window of 0.5 and
3.0 min for positive and negative mode respectively, a mass tolerance of 0.02 Da and a mass window of
15 ppm. Molecular features present in 80 % of all injected QC samples with a coefficient of variation
below 30 % were retained for further data analysis to clean data matrix from background signals.

The data were centered and divided by the square root of the standard deviation as scaling factor
(Pareto scaling) using multivariate statistical analysis with SIMCA 14.0 software (MSK Data Analytics
Solutions, Umeå, Sweden). Firstly, unsupervised principal component analysis (PCA) was employed
to check clustering existing in the analyzed samples. Thereupon, partial least squares discriminant
analysis (PLS-DA) was applied to discriminate samples according to their roasted degree. The quality
of the models was evaluated by the parameters R2X, R2Y and Q2. R2 is the explained variability of the
model, i.e., goodness of fit, whereas that Q2 describes the goodness of prediction, this is, the predictive
ability of the model.
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3.6. Metabolite Identification

The potential markers of roasting degree of coffee were found by comparing models in a pair-wise
manner: GCB vs. LRC, GCB vs. MRB, and GCB vs. DRB. Only features with variable importance in
the projection (VIP) values of the first component of the PLS-DA models higher or equal than 1.0 were
considered as significant and were subjected to the identification process. Metabolite identification
was carried out by comparing the obtained accurate mass values in the CEU Mass Mediator (in which
the search of metabolites is performed in different databases such as KEGG, METLIN, LipidMass, and
HMDB) [34] and in the FoodDB database (http://foodb.ca/) (an error of 30 ppm was considered).

If the standard compounds could be commercially acquired, they were analyzed under identical
analytical conditions to obtain their retention times and MS/MS fragmentation patterns in order to
confirm the metabolite identity. However, if the standards could not be acquired because they were
not commercially available, experimental MS/MS spectra obtained for each molecular feature were
compared to those described in HMDB database, literature, and/or predicted MS/MS spectra obtained
in CFM-ID (cfmid.wishartlab.com).

4. Conclusions

An untargeted metabolomics strategy using HILIC-MS was developed in this work aimed to
study the coffee roasting process. Both positive and negative ionization modes were employed which
originated 53 and 40 molecular features, respectively, to be statistically analyzed. Using VIP values,
20 and 13 variables were chosen as the most statistically significant metabolites in ESI+ and ESI-,
respectively, from which 13 were tentatively identified using this platform (6 in the positive ionization
mode and 7 in the negative ionization mode). Five of these metabolites were unequivocally identified
through the injection of standards (betaine, proline, proline betaine, choline, and neocholorogenic
acid). Results obtained in this work enabled to us reveal the trend followed by statistically significant
metabolites with the coffee roasting process as samples submitted to light, medium, and strong roasting
were analyzed and compared to green coffee. The levels of some compounds decreased with the
roasting process, as expected, while other originated by Maillard reaction increased.

The comparison of the results obtained in this work by the HILIC-MS strategy developed with those
achieved when using RPLC-MS and CE-MS strategies showed that just one metabolite was common
to HILIC-MS and RPLC-MS platforms (caffeoylshikimic acid isomer) and another to HILIC-MS and
CE-MS platforms (choline) demonstrating the big potential of an integrated untargeted metabolomics
multiplatform based on the three orthogonal techniques employed in this work to enlarge the coverage
of the roasted coffee metabolome and to obtain complementary results, making possible a deeper
characterization of the coffee roasting process.

Supplementary Materials: The following are available online, Figure S1: Base peak chromatograms (BPC)
obtained in positive ionization mode for green coffee (GCB) (A); light coffee (LRC) (B); medium coffee (MRC)
(C); and dark coffee (DRC) (D) under optimal separation conditions. HILIC-MS conditions are summarized in
Section 3.3., Figure S2: Hierarchical cluster analysis (HCA) in positive (A) and negative (B) ionization modes
for the four groups of coffee samples (GCB, LRC, MRC, and DRC) submitted to different roasting, Figure S3:
Diagrams of the trends observed for all the tentatively and unequivocally compounds both in negative and
positive ionization mode along the coffee roasting process.
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