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COMUNICACIONES

“Learning visual representations with Deep Neural
Networks for intelligent transportation systems

problems”

Ph.D. Thesis

Author

D. Daniel Oñoro-Rubio

Director

Dr. D. Roberto Javier López Sastre
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Abstract

This thesis tackles two major problems of the Intelligent Transportation Sys-
tems (ITS): the vehicle counting in traffic congestion scenes, and the simul-
taneous object detection and pose estimation in images.

For the vehicle counting problem, this thesis is first focused on the de-
sign of new deep neural networks architectures that have the ability to learn
deep multi-scale representations able to perform a precise estimation of the
object count in the form of density maps. It deals with the problem of the
object scale introduced by the large perspective typically present in the ob-
ject counting problem. In addition, with the success of the deep hourglass
networks in the object counting field, this work proposes a new type of deep
hourglass network with learnable self-gated short-cut connections. The pro-
posed models are evaluated in the most commonly used benchmarks and
achieve results equal to or greater than the state of the art at the time they
were published.

For the second problem, the thesis offers a complete comparative study
of the simultaneous object detection and pose estimation problem. The ex-
isting compromise between the object localization and the pose estimation
task is exposed. A detector ideally needs a representation which is invariant
to the viewpoint, while a pose estimator needs to be discriminative. Hence,
we introduce three new deep neural networks architectures where the prob-
lems of the object detection and pose estimation are progressively decoupled.
Moreover, the question of whether the pose should be expressed as a discrete
or a continuous variable is addressed. Despite the similar performance, the
results show that the continuous approaches are more sensitive to the bias of
the main viewpoint of the object category. A detailed comparative analysis
is performed on the two main datasets, i.e. PASCAL3D+ and ObjectNet3D.
Competitive results are achieved by the proposed models in both datasets.

Index terms: object counting, counting by regression, pose estimation,
object detection, convolutional neural networks, hourglass networks, gating
units, deep-learning, machine learning, artificial intelligence.





Resumen

Esta tesis se centra en dos grandes problemas en el área de los sistemas de
transportes inteligentes (STI): el conteo de veh́ıculos en escenas de congestión
de tráfico; y la detección y estimación del punto de vista, de forma simultánea,
de los objetos en una escena.

Respecto al problema del conteo, este trabajo se centra primero en el
diseño de arquitecturas de redes neuronales profundas que tengan la capaci-
dad de aprender representaciones multi-escala profundas, capaces de estimar
de forma precisa la cuenta de objetos, mediante mapas de densidad. Se trata
también el problema de la escala de los objetos introducida por la gran per-
spectiva t́ıpicamente presente en el área de recuento de objetos. Además, con
el éxito de las redes hourglass profundas en el campo del conteo de objetos,
este trabajo propone un nuevo tipo de red hourglass profunda con conex-
iones de corto circuito auto-gestionadas. Los modelos propuestos se evalúan
en las bases de datos públicas más utilizadas y logran los resultados iguales
o superiores al estado del arte en el momento en que fueron publicadas.

Para la segunda parte, se realiza un estudio comparativo completo del
problema de detección de objetos y la estimación de la pose de forma si-
multánea. Se expone el compromiso existente entre la localización del ob-
jeto y la estimación de su pose. Un detector necesita idealmente una repre-
sentación que sea invariable al punto de vista, mientras que un estimador de
poses necesita ser discriminatorio. Por lo tanto, se proponen tres nuevas ar-
quitecturas de redes neurales profundas en las que el problema de la detección
de objetos y la estimación de la pose se van desacoplando progresivamente.
Además, se aborda la cuestión de si la pose debe expresarse como un valor
discreto o continuo. A pesar de ofrecer un rendimiento similar, los resul-
tados muestran que los enfoques continuos son más sensibles al sesgo del
punto de vista principal de la categoŕıa del objeto. Se realiza un análisis
comparativo detallado en las dos bases de datos principales, es decir, PAS-
CAL3D+ y ObjectNet3D. Se logran resultados competitivos con todos los
modelos propuestos en ambos conjuntos de datos.



xiv

Index terms: conteo de objetos, conteo por regresión, estimación de pose,
detección de objetos, redes neuronales convolucionales, redes hourglass, uni-
dades de computación, aprendizaje profundo, aprendizaje de máquinas, in-
teligencia artificial.



Glossary

AP Average Viewpoint Precision.
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Chapter 1

Introduction

The establishment of shared theoretical frameworks, com-
bined with the availability of data and processing power, has
yielded remarkable successes in various component tasks such
as speech recognition, image classification, autonomous vehi-
cles, machine translation, legged locomotion, and question-
answering systems.
As capabilities in these areas and others cross the threshold
from laboratory research to economically valuable technolo-
gies, a virtuous cycle takes hold whereby even small improve-
ments in performance are worth large sums of money, prompt-
ing greater investments in research. There is now a broad
consensus that AI research is progressing steadily, and that
its impact on society is likely to increase... Because of the
great potential of AI, it is important to research how to reap
its benefits while avoiding potential pitfalls.

From Research Priorities for Robust and Beneficial
Artificial Intelligence, an open letter, January,

2015.

1.1 Vehicle counting
Mobility is one of the main virtual goods of any modern society. Whether
it’s moving workers to labor place, transporting goods, or even enhancing
tourism, mobility is one of the main pillars of the economy and people’s
freedom of any modern society. However, daily increasing levels of traffic
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(a) (b)

(c) (d)

Figure 1.1: Typical methods used to monitor the traffic congestion.

congestion underscore the importance of new technological developments in
the field of Intelligent Transportation Systems (ITS). One of the targets of
such systems is to ensure the efficient utilization of the existing infrastruc-
ture. These technologies can help with the planning of the new and future
infrastructures by offering new tools, in the continuous effort to develop ac-
cessible, safe, and sustainable transportation solutions.

Currently, the traffic congestion problem is often based on a lack of in-
formation. Every day, millions of persons take the car to commute to their
work, to enjoy their vacations in a touristic place, or to enjoy their favorite
social event. These actions often end up causing traffic jams, which: a) rise
the accident risk, b) are costly in terms of time, and money; and c) increase
pollution in big cities. Therefore, information acquisition is the first tool of a
smart city towards offering solutions that improve the roads utilization and
the design of new infrastructure. Data acquisition is typically performed by
field operators, pressure sensors, magnetic coils or video surveillance cameras.
Figure 1.1 shows some examples. Field operators are costly, they can only
work for a limited time period, and cannot provide data in real time. Coils
and pressure cables are limited to detecting vehicles that have passed over
them, which mean they have no clue if they are in a traffic jam. Cameras are
probably the most common sensor. In contrast to the pressure cables and
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Figure 1.2: (a) shows the typical labeling for the object counting problem.
The objects are marked with a single dot on top of them. The dot annotation
is converted into a density map by adding Gaussian functions centered on
each dot. (b) shows some qualitative results of the proposed GU-Net model.

coils, they provide multi-purpose information that can cover large areas. For
this reason, this thesis is focused on image data sources.

Image-based object counting is a very interesting challenge of the com-
puter vision and intelligent transportation systems communities. The nature
of the problem typically leads to situations where the objects are highly oc-
cluded. The camera perspective, the background variability, and the light
and weather conditions are some of the factors that also directly affect the
performance of the standard solutions based on object detection, segmenta-
tion, and tracking methods. Hence, developing systems that are robust to
all of these conditions is an essential step towards offering automatic object
counting solutions.

Deep Artificial Neural Networks (DANN) are a powerful modeling tech-
nique that can map an arbitrary input with a given target. The way they
work is by projecting the input data into intermediate latent representations
that are learned during an optimization process. Those intermediate repre-
sentations can be understood as a collection of features that progressively
reduce the complexity of the problem. After all the transformations, a lin-
ear classifier is powerful enough to perform the final prediction with high



4 Introduction

performance. This thesis focuses on designing novel deep learning models
that learn robust visual representations to the image scale introduced by
the camera perspective, the object occlusion, the cluttered background, and
other artifacts that typically make the conventional techniques unfeasible.

All our networks understand the counting problem as a regression pro-
blem. Where an input image is transformed into a density map where we
can perform a precise count of the objects present in the scene. Figure 1.2(a)
shows the dot annotation used to mark the objects for the vehicle counting
task. The dots are converted into a density map by summing up Gaussian
functions centered on each dot. In Figure 1.2(b) we anticipate the type of
output that our vehicle counting solutions can offer.

1.2 Object detection and pose estimation
Object detection and pose estimation are core problems in computer vision
and of utmost importance for the ITS and the robotics fields. The capabil-
ity of understanding or inferring the 3D world through 2D images brings a
wide range of possibilities. With an especial interest in ITS and smart cities,
understanding the traffic flow in a highway by detecting and estimating the
pose of vehicles circulating brings some interesting benefits. For instance
getting information about the traffic flow can be useful for optimizing the
traffic control resources of the city, see Figure 1.3(a). Getting the relative po-
sition, orientation and type or other vehicles that appears in an autonomous
driving scenario is essential in the development of Unnamed Ground Vehi-
cles (UGV), such as the Google’s UGV, the semi-autonomous Tesla cars, and
other prototypes that may enable the fully automatized and smart traffic of
the future (see Figure 1.3(b), 1.3(c), and 1.3(d) for some samples). Estimat-
ing the relative position of certain objects that need to be manipulated by
a robot is another example of an application where the object detection and
pose estimation plays a key role in the systems where the robot needs to
interact with the environment (see Figure 1.3(e)).

Object detection refers to the problem of localizing and recognizing cer-
tain object categories within an image. Pose estimation deals with predict-
ing the relative position of the object with respect to the camera in the 3D
space. Object detection and pose estimation from images is a longstand-
ing and challenging problem. The major difficulty is given by the fact that
the appearance of a given object class may drastically change by a lot of
factors such as the intra-class variability, the viewpoint, scale, occlusions,
truncation, light conditions, sensor noise, etc. Inspired by the ability of hu-
man beings in recognizing objects in a wide range of situation, pioneers in
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(a) Car detection and pose estimation system for smart cities (Guerrero-Gómez-Olmedo
et al. 2013).

(b) Google’s UGV. (c) Tesla car. (d) KoreaTech University’s
UGV.

(e) Robotic arm interacting with ob-
jects with multiple orientations.

Figure 1.3: Application examples of the object detection and pose estimation.
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machine learning community aimed at building computational models that
learn latent representations that are robust to the aforementioned challenge
but, in addition, they need to be discriminative with respect the object class
and its pose. Remarkable progress has been achieved in the recent years due
to the advances in the computing hardware such as the GPUs, storage sys-
tems, the development of the Internet, and the endless effort of the machine
learning, computer vision and intelligent transportation systems communi-
ties. Although, despite all these advances, the performance of a system is
bounded by the biases on these datasets. There are few large datasets such
as the PASCAL3D+ (Xiang et al. 2014) or the ObjectNet3D (Xiang et al.
2016) datasets that allows to establish a detailed experimental evaluation for
the problems of object detection and pose estimation. However, they hold
collections of natural images extracted from the Internet, hence the object
categories are biased toward the most common class and towards the most
common view. As an example, let consider the case of a car. It is not natural
to take photos of the underneath of the car, which causes a bias that affects
the performance of the models in charged of the estimation of the viewpoint.

Object representation is a crucial component of most of the object detec-
tion and pose estimation methods. Since there is a large intra-class variabil-
ity, similarities between classes, occlusions and other difficulties, obtaining
robust object representation is the component with the highest impact in
the performance of a system. There are many methods for learning effi-
cient representations such as in (Lowe 1999, Bay et al. 2006, Rublee et al.
2011, Schmid 2006, Girshick et al. 2014). However, all those representation
methods are applied and fitted to datasets that typically hold biases towards
certain object categories, and poses. Further, the object detection and the
pose estimation are two different tasks that, up to a certain extent, overlap.
While it is common for both to be robust to light conditions, occlusions, the
background, and other aspects, the object detection needs to be invariant
to the viewpoint, while the pose estimation needs to be discriminative. In
addition to that, there are two different ways of understanding the problem
of the pose estimation that may affect the performance of the systems: a
continuous approach, or a discrete manner. In this thesis, it is analyzed how
all the aforementioned aspects affect the system performance. We introduce
three novel deep learning architectures, for the problem described, with a
thorough experimental evaluation that allows us to validate the degree of
coupling between the object localization and the pose estimation tasks.
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1.3 Objectives of the thesis
This thesis aims to understand the main difficulties that affect the system’s
performance for two of the main problems in ITS: vehicle counting and si-
multaneous object detection and pose estimation.

During the first part of this thesis, it is tackled the object counting pro-
blem. The change of scale introduced by the perspective is one the main
problem in image recognition, but in especial, in the object counting field.
Due to the nature of the problem, the images exhibit a large change of
perspective. That makes that the objects close to the camera appear signifi-
cantly bigger than those close to the vanishing point of the scene. This thesis
first introduces a new type of scale-aware neural network model that aims
to overcome the problem of the scale. Additionally, we study the impact of
the information transferred in the skip-connections of the hourglass architec-
tures, and a new mechanism to gate the information which is forwarded is
proposed.

The second part of this thesis is focused on the simultaneous object de-
tection and pose estimation problem. This problem aims to detect object
instances in 2D images and to predict their class labels and 3D poses with
respect to the camera. It is a broad problem that can be tackled in several
ways. Depending on the methodology, the proposed methods in the literature
can be classified according to whether or not they simultaneously perform the
two tasks, and whether the predicted pose is a continuous or discrete vari-
able. This thesis studies the impact of decoupling or not the detection from
the pose estimation, and the impact of a continuous pose prediction versus
a discrete approach. In order to do that, three new models that implement
these requirements are introduced. Providing an extensive and detailed ex-
perimental evaluation, in multiple datasets, it is observed the impact of the
aforementioned approaches, but it also put into manifest the impact in the
performance of the dataset biases for the different methodologies designed.

1.4 Thesis outline
This thesis is organized as follows:

• Chapter 2 is focused on the object counting task. In this chapter, it
is first introduced the object counting problem. Then, a complete re-
view of the previous methods is provided. Next, the datasets that have
been used for the evaluation are introduced. Interestingly, our experi-
mental evaluation considers not only datasets for vehicle counting, but
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also for crowd counting. Then, it is introduced the proposed Count-
ing Convolutional Neural Network (CCNN) and Hydra architectures
and their experimental evaluation. These contributions appear in the
first top-tier publication of this thesis (Oñoro-Rubio and López-Sastre
2016). Second, the counting U-Net and the GU-Net models (related to
the second top-tier publication of this thesis (Oñoro-Rubio et al. 2018))
and their experimental evaluations are introduced. A final discussion
and the conclusions are provided at the end of the chapter.

• Chapter 3 tackles the problem of the object detection and pose estima-
tion. First, an introduction to the problem is presented. A subsection
with the related works is introduced afterward. Then, the notation
and the proposed model architectures are presented. We evaluate up
to three architecture designs where we gradually decouple the object
localization and the viewpoint estimating tasks. After, the different
factors that affect the system’s performance are analyzed by an ex-
tensive experimental setup using the datasets PASCAL3D+ and Ob-
jectNet3D. At the end of the chapter, the conclusions of the chapter
are presented. As the resulting of this chapter, the top tier journal
publication (Oñoro-Rubio et al. 2018) was achieved.

• Chapter 4 summaries the work and the contributions of this thesis.
The chapter finalizes with the future research lines.



Chapter 2

Object Counting

Perhaps we should all stop for a moment and focus not only
on making our AI better and more successful but also on the
benefit of humanity.

Stephen Hawking.

2.1 Introduction
Take an image of a crowded scene, or of a traffic jam. We address here the
hard problem of accurately counting the objects instances in these scenarios.
Developing this type of solutions covers a wide spectrum of applications:

• Improving public safety and security by automatically monitoring crowd
behavior and generating alerts that can be used to avoid stampedes.

• Collecting politically unbiased statistics of protests and pilgrims.

• Systems that automatically optimize the traffic flow by precisely mon-
itoring how the traffic congestion evolves.

Improving object counting technology will make possible the deployment
of robust solutions for the aforementioned applications, and probably in the
future, tragedies such as the crowd crush at the Madrid Arena during the
Halloween festival Spain at 2012, might be avoided.

In this chapter, we address the problem of counting objects instances in
images. Our models are able to precisely estimate the number of vehicles in a
traffic congestion or to count the humans in a very crowded scene. Our first
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contribution is the proposal of a novel convolutional neural network solution,
named Counting CNN (CCNN). Essentially, the CCNN is formulated as a
regression model where the network learns how to map the appearance of
the image patches to their corresponding object density maps. Our second
contribution consists of a scale-aware counting model, the Hydra CNN, able
to estimate object densities in very crowded scenarios where no geometric
information of the scene can be provided. Hydra CNN learns a multiscale
non-linear regression model which uses a pyramid of image patches extracted
at multiple scales to perform the final density prediction. Our third contri-
bution is a counting U-Net, a version of the popular model proposed by
Ronneberger et al. (2015) which has been adapted for the object counting
task. The fourth contribution is the Gated U-Net (GU-Net), a novel self-
gated hourglass Fully Convolution Neural Network. GU-Net implements an
efficient and adaptive gating mechanism in the short-cut connections that
improve the information flow over the network. We report an extensive ex-
perimental evaluation, using up to four different object counting benchmarks,
where the proposed solutions reported the state-of-the-art performance at the
time they were published and still competitive with the most recent methods.

This chapter is organized as follows. Section 2.3 introduces the pub-
lic benchmarks that are used to evaluate the proposed models. Section 2.4
formulates the notation used for object counting. Section 2.5 details and
analyzes the three novel deep network architectures, named Counting CNN
(CCNN), Hydra CNN, and GU-Net. In Section 2.6, a discussion between the
proposed solutions is provided. Finally, Section 2.7 summarizes the contri-
butions made in this chapter.

2.2 Related work
Significant progress has been made to count objects in images. We refer
the reader to the survey of Loy et al. (2013). Following the taxonomy in-
troduced in Loy et al. (2013), the counting algorithms can be classified into
three groups: counting by detection, counting by clustering, and counting by
regression.

2.2.1 Counting by detection
The most intuitive approach to tackle this problem is to scan the target image
with an object detector and to count the number of positive detections, e.g.
Guerrero-Gómez-Olmedo et al. (2015), Leibe et al. (2005), Li et al. (2009),
Tuzel et al. (2008), Li et al. (2008). Traditional detectors first scan the input
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Figure 2.1: Typical object detection system based on “hand-crafted” features.

image in a sliding window fashion. From each window they extract “hand-
crafted” features such as Haar wavelets (Viola and Jones 2004) or HOG
(Dalal and Triggs 2005). Then a classifier, typically an SVM or a random
forest, is used to distinguish the patches which correspond to the target
object from the samples of the background. Finally, to filler out the multiple
weak detections around the object, a non-maximum suppression filtering is
applied. Figure 2.1 illustrates this process.

With the success of the deep learning in the computer vision commu-
nity, the feature extraction became an automatic process which substantially
boosted the performance of the object detection solutions. RCNN (Girshick
et al. 2014), Fast RCNN (Girshick 2015), or YOLO (Redmon et al. 2016,
Redmon and Farhadi 2017) define the current state-of-the-art. A typical
Faster RCNN system starts with a deep CNN which extracts deep features.
Based on those features a Region Proposal Network(RPN) identifies impor-
tant regions on the input image. Then, the deep features that correspond to
the generated ROIs are pooled. Another deep neural network classifies the
retrieved regions, and finally a non-maximum suppression algorithm filter
out the multiple detentions. Figure 2.2 depicts the typical diagram of the
approaches.

Figure 2.3 shows some qualitative detections of some of the most relevant
works. As could be observed, counting by detection may work well in those
scenarios where the objects are sparse and can be clearly distinguished from
the background and from each other. By taking a look to Figure 2.3, it can
be clearly observed in (a) how the overlap between the cars, the scale, and
the viewpoint, makes the detector struggle to locate each car. Figure 2.3 (b)
depicts a situation where the targets can be clearly distinguished, however, it
can be observed how people that appear truncated on the top of the image is
ignored. (c) shows the best case scenario where the objects are clearly visible
and without much distortion due to the scale or viewpoint. Due to the
nature of the problem, the typical scenarios are closer to (a) rather than (b)
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Figure 2.2: Typical faster RCNN object detection diagram.

and (c), therefore, approaches like in Guerrero-Gómez-Olmedo et al. (2015),
Leibe et al. (2005), Li et al. (2009), Tuzel et al. (2008), Li et al. (2008) are
expected to have a poor performance.

2.2.2 Counting by clustering
Clustering approaches rely on the assumption that the same type of object in
a scene presents very similar and uniform visual features, motion fields and
trajectories. Consequently, they can be grouped together. Following this line
of research Rabaud and Belongie (2006) make use a Kanade-Lucas-Tomasi
(KLT) (Lucas and Kanade 1981) tracker to extract a set of low-level features.
Those features are grouped by a clustering algorithm and used to infer the
number of people in the scene. In the work of Brostow and Cipolla (2006)
they track local features and groups by using Bayesian clustering. In contrast
to the counting by detection, these methods avoid the supervised learning
and the explicit modeling of the appearance by assuming motion coherency.
In Figure 2.4 it is shown some qualitative results collected from the original
papers. These methods are restricted to video sequences, therefore false
estimations may rise when the objects remain static in the scene, or when
object shares common feature trajectories over time.

2.2.3 Counting by regression
In contrast with counting by detection, counting by regression solutions pre-
dict the total amount of objects of a given image, rather than trying to
localize every single object instance. As illustrated in Figure 2.5, the general
idea is to define a model which learns the regression function that projects
the image appearance into an object density map. This allows the deriva-
tion of an estimated object density map for unseen images. Note that the
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(a)

(b) (c)

Figure 2.3: This figure shows the qualitative results of some of the most popu-
lar methods in counting by detection. The images are taken from (Guerrero-
Gómez-Olmedo et al. 2015), (Li et al. 2008), and (Redmon et al. 2016) res-
pectively.

covered applications define the typical scenarios where individual object de-
tectors (e.g. Dalal and Triggs (2005), Felzenszwalb et al. (2010)) do not
work reliably. The reasons are the extreme overlap of objects, the size of the
instances, scene perspective, etc. Thus, approaches modeling the counting
problem as one of object density estimation have been systematically defin-
ing the state-of-the-art (Arteta et al. 2014, Chan et al. 2008, Fiaschi et al.
2012, Lempitsky and Zisserman 2010, Zhang et al. 2015, 2016, Babu Sam
et al. 2017, Pham et al. 2015, Ranjan et al. 2018, Cao et al. 2018, Idrees
et al. 2018, Laradji et al. 2018).

Counting by regression has an extensive literature, where a special atten-
tion deserves the learning-to-count model of Lempitsky and Zisserman (2010).
They introduce a counting approach, which works by learning a linear map-
ping from local image features to object density maps. With a successful
learning, one can provide the object count by simply integrating over regions
in the estimated density map. This strategy is followed also by Fiaschi et al.
(2012) and by Pham et al. (2015) where a structured learning framework is
applied to the random forests so as to obtain the object density map estima-
tions. In (Arteta et al. 2014), the authors propose an interactive counting
system, which simplifies the costly learning-to-count approach (Lempitsky
and Zisserman 2010), proposing the use of a simple ridge regressor.
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(a) (b)

Figure 2.4: (a) and (b) show the results of clustering coherent motions using
methods proposed in Rabaud and Belongie (2006) and Brostow and Cipolla
(2006) respectively.

One more time, the success of the deep convolutional neural networks
brought a totally new bunch of methods. The work of Zhang et al. (2015)
proposes a CNN architecture to predict density maps, which is trained fol-
lowing a switchable learning process that uses two different loss functions.
In (Zhang et al. 2016) a multi-column CNN is proposed, which stacks the
feature maps generated by filters of different sizes and combine them to gen-
erate the final prediction for the count. In (Zhang et al. 2017) they proposed
the first hourglass network for object counting. In their work they make use
of an hourglass network as a feature extractor, then the image is divided in a
grid and a regressor with a low-rank constraint is learned for each region. Li
et al. (2018) propose a hourglass network based on the VGG16 architecture
(Simonyan and Zisserman 2014) with dilated convolution filters. In (Laradji
et al. 2018) they propose a FCNN which is trained to minimize a four termed
loss function. Their solution generates a blob mask for each object instance.
The total number of objects is deducted by counting the number of blobs.
Idrees et al. (2018) introduce a new dataset and propose a FCNN which pre-
dicts multiple density maps where the radio of the Gaussian function placed
on top of each object is progressively decreased.

In this thesis, we propose the Hydra model, which learns a multi-scale
latent representation that comes from multiple scaled version of the input
image. In contrast to (Zhang et al. 2016, Cao et al. 2018) where a single
image is forwarded in a few columns with different filters sizes, and whose
outputs are then aggregated, the presented approach takes advantage of the
multiple view scales of the image and learns a specific representation for
each scale that later on it is combined. In addition, the presented GU-Net
improves the popular hourglass neural network architecture used in many
works such as (Zhang et al. 2017, Li et al. 2018, Laradji et al. 2018) by
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Figure 2.5: We define the object counting task like a regression problem
where a deep learning model has to learn how to map image patches to
object densities.

adding a novel self-gating mechanism in the skip-connections that control
the information flow between the layers.

2.3 Datasets
To precisely estimate the total count of a particular object category in an
image is a core task that plays a crucial role in many applications. Some
direct examples are:

• Monitoring cells growing in a test tube.

• Controlling the outcome of harvest for the intelligent agriculture sys-
tems.

• Collecting statistics of the number of people attending a protest.

• Controlling the highway’s congestion.

To precisely estimate the objects present in these types of scenes is not an
easy task, even for a human. Building automatic counting solutions able to
deal with this problem would allow the development of systems that precisely
monitor those scenes, increasing the overall accuracy and releasing the human
operator workload to focus on more important tasks.

To have a large and diverse dataset where we can train and test the
designed models is a prerequisite for building robust and realistic machine
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Figure 2.6: TRaffic ANd COngestionS (TRANCOS) database images. These
pictures show how challenging the proposed problem of extremely overlapping
vehicle counting is, even for a human.

learning models. For this reason, we run our experiments on three challenging
datasets with two very different target object categories to count cars and
people. In the following sections, we explain more in detail the characteristics
of each dataset.

2.3.1 TRANCOS dataset
We detail in this section the TRANCOS dataset. Although there are several
datasets for assessing the performance of vehicle detection approaches (e.g.
(Everingham et al. 2010, Guerrero-Gomez-Olmedo et al. 2013, Geiger et al.
2012, Caraffi et al. 2012)), TRANCOS is the first one focused on traffic jam
scenes, captured using real traffic surveillance cameras. Figure 2.6 shows a
sample of the images provided, which illustrate how challenging the proposed
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problem is, i.e. to estimate the number of vehicles under heavy traffic condi-
tion. Note that all the provided images contain traffic congestion situations,
covering a variety of different scenes and viewpoints, with changes in the
light conditions and considerably different levels of overlap and crowdedness,
even within the same image.

Specifically, the database consists of 1244 images. They have been ac-
quired from a selection of public traffic surveillance cameras provided by the
Directorate General of Traffic (DGT) of the Government of Spain. The cam-
eras selected monitor different highways located in the area of Madrid, which
typically presents heavy traffic congestions.

Each image has been manually annotated following a dotting annotation
strategy, as in (Lempitsky and Zisserman 2010). For each image, TRANCOS
provides the exact number of vehicles and their locations. In total, 46796
vehicles have been annotated. A Region of Interest (ROI) to identify the
road region is also provided for each image.

The main goal of TRANCOS is to evaluate vehicle counting approaches,
especially under extremely overlapping conditions. So, any method using
this dataset has to predict, for each test image, the number of vehicles, and
the vehicles locations. The following experimental setup has to be followed
by any method using the dataset. The acquisition of the images has been
done during three different weeks, which lets us distribute the images in
three separate sets: training (403 images), validation (420) and test (421).
Two types of training strategies are defined: 1) methods which are trained
using only the provided training and validation data; 2) methods built using
any data except the provided test data. In both cases, the test set must
be used strictly for reporting of results alone - it must not be used in any
way to train or tune systems, for example by running multiple parameter
choices and reporting the best results obtained. This has to be done using
the validation images, for instance.

For the evaluation metric, the novel Grid Average Mean absolute Error
(GAME) is introduce by Guerrero-Gómez-Olmedo et al. (2015). The GAME
metric is computed as follows,

GAME(L) = 1
N

N∑
n=1

(
4L∑
l=1

∣∣∣Dl
In −D

l
Igtn

∣∣∣) , (2.1)

where N is the total number of images, Dl
In corresponds to the estimated

object density map count for the image n and region l, and Dl
Ignt

is the
corresponding ground truth density map for the same region. For a specific
level L, GAME(L) subdivides the image using a grid of 4L non-overlapping
regions, and the error is computed as the sum of the mean absolute errors



18 Object Counting

(a) (b) (c)

(d) (e) (f)

Figure 2.7: UCSD database sample images.

in each of these subregions. This metric provides a spatial measurement of
the error. Note that a GAME(0) is equivalent to the Mean Absolute Error
(MAE) metric:

MAE = 1
N

N∑
n=1

∣∣∣DIn −DIgtn

∣∣∣ . (2.2)

With TRANCOS1 the authors provide a set of tools for accessing the
datasets and annotations described. These tools also enable the evaluation
and comparison of different methods using the proposed GAME metric.

2.3.2 UCSD dataset
Here we detail the UCSD dataset (Chan et al. 2008), one of the most popular
datasets of the crowd counting community. It is a 2000-frames video dataset
from a surveillance camera of a single scene, recorded a 10 fps with an image
resolution of 238 × 158 pixels and a single channel. Figure 2.7 shows some
image samples. The images have been annotated with a dot on each pedes-
trian. The dataset contains a total of 49,885 pedestrian instances. It also
includes a ROI and the perspective map of the scene. There are two main
experimental setups. In the first experimental setup, the frames 601 to 1400
are used for the training. The remaining frames are used as test data. The
second experimental setup splits the dataset into four subsets:

1http://agamenon.tsc.uah.es/Personales/rlopez/data/trancos
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Figure 2.8: UCF CC 50 database sample images.

• “maximal”: train with frames 600:5:1400. This split is designed to
analyze a model behavior when it is trained with a large number of
samples.

• “downscale”: train with frames 1205:5:1600. This split defines a train-
ing sequence where the number of people progressively decreases.

• “upscale”: train with frames 805:5:1100. This split takes a training
sequence where the number of people progressively increases.

• “minimal”: train with frames 640:80:1360. This split aims to unders-
tand the model behavior when it is trained with a minimal amount of
data.

All the frames out of the defined training ranges are used for testing. The
evaluation metric proposed by Chan et al. (2008) is the MAE, Equation 2.2.

2.3.3 UCF 50 dataset
The UCF CC 50 dataset of Idrees et al. (2013) consists of 50 pictures col-
lected from publicly available web images. The images are in grayscale of
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arbitrary size. The counts of persons are between 94 and 4543, with an ave-
rage of 1280 individuals per image. The ground truth has been determined
by manually annotating these images with dots. The images contain very
crowded scenes, which belong to a diverse set of events: concerts, protests,
stadiums, marathons, and pilgrimages. This dataset poses a challenging
problem, especially due to the reduced number of training images and the
variability between the covered scenarios. Figure 2.8 shows some image sam-
ples taken from the dataset. The dataset is usually evaluated by randomly
splitting it into 5 subsets and by performing a 5-fold evaluation. In previous
work, the Mean Standard Deviation (MSD) metric:

MSD = 1
N

N∑
n=1

s(DIn −DIgtn
) , (2.3)

where s(·) is the standard derivation, and the MAE metric (see Equation
2.2) are both used for the evaluation of the models counting in this dataset.

2.3.4 ShanghayTech dataset
The ShanghaiTech dataset introduced by Zhang et al. (2016) is a publicly
available and commonly used dataset for crowd counting. It contains 1198
annotated images with a total of 330,165 persons. The dataset consists of two
parts: Part A contains images randomly crawled from the Internet, and Part
B is made of images taken from the metropolitan areas of Shanghai. Both
sets are divided into training and testing subsets, where Part A contains 300
training images and 182 images are used for testing, and Part B consists of
400 training images and 316 testing images. In Figure 2.9 we show some
image samples of the dataset. The images are annotated by placing a dot
on the head of each person. The dataset uses two metrics for the evaluation:
the MAE of the Equation 2.2 and Mean Squared Error (MSE):

MSE =

√√√√ 1
N

N∑
n=1

(
DIn −DIgtn

)2
. (2.4)

2.4 Object counting notation
Let us first formalize our notation and counting objects methodology. In this
work, we model the counting problem as an object density estimation task
as it has been proposed by Lempitsky and Zisserman (2010).
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: ShanghaiTech database sample images.

Our solutions require a set of annotated images, where all the objects
are marked by dots. In this scenario, the ground truth density map DI , for
an image I, is defined as a sum of Gaussian functions centered on each dot
annotation,

DI(p) =
∑
µ∈AI

N (p;µ,Σ) , (2.5)

where AI is the set of 2D points annotated for the image I, and N (p;µ,Σ)
represents the evaluation of a normalized 2D Gaussian function, with mean
µ and isotropic covariance matrix Σ, evaluated at pixel position defined by p.
With this density map DI , the total object count NI can be directly obtained
by integrating the density map values in DI over the entire image, as follows,

NI =
∑
p∈I

DI(p). (2.6)

Note that all the Gaussian are summed, so the total object count is
preserved even when there is an overlap between objects.

Given this object counting model, the main objective of our work is to
design deep learning architectures able to learn the non-linear regression
function R that takes an image patch P as an input, and returns an object
density map prediction D

(P )
pred,

D
(P )
pred = R(P |Θ) , (2.7)



22 Object Counting

CCNN

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6

72x72x32 31x31x32 18x18x32 18x18x1000 18x18x400 18x18x1

7x7

3x3

7x7

1x1 1x1 1x1

 

18x18

72x72

Input Image
Patch

Density 
Prediction

Figure 2.10: Our novel CCNN model. The input image patch is passed
forward our deep network, which estimates its corresponding density map.

where Θ is the set of parameters of the CNN model. For the image patch
P ∈ Rh×w×c, h,w and c correspond to the height, width and number of
channels of the patch, respectively. In the density prediction D(P )

pred ∈ Rh′×w′ ,
h′ and w′ represent the height and width of the predicted map. Thus, given
an unseen test image, our model densely extracts image patches from it and
generates their corresponding object density maps, which are aggregated into
a density map for the whole test image.

2.5 Proposed models
In this section, we describe the designed deep neural networks architectures
that have been used for the object counting. First, it is introduced the
Counting CNN, a fully convolution neural network which establishes a ro-
bust baseline. Then, the Hydra architecture is detailed, a multiscale aware
model for object counting. After, we introduce the Counting U-Net and the
Counting GU-Net, two advanced hourglass networks that outperform the
previously existing methods.

2.5.1 The Counting CNN and Hydra CNN
2.5.1.1 The Counting CNN

We introduce in this section our first deep learning architecture, the Counting
CNN (CCNN). It is shown in Figure 2.10. Let us dissection it.

The CNN architecture has been implemented by using the Caffe library
(Jia et al. 2014a), and it consists of 6 convolutional layers. Conv1 and Conv2
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layers have filters of size 7x7 with a depth of 32, and they are followed by a
max-pooling layer, with a 2x2 kernel size. The Conv3 layer has 5x5 filters
with a depth of 64, and it is also followed by a max-pooling layer with another
2x2 kernel. Conv4 and Conv5 layers are made of 1x1 filters with a depth of
1000 and 400, respectively. Note that we do not integrate any fully-connected
layer in the model. With these Conv4 and Conv5 layers, we propose a fully
convolutional architecture (Long et al. 2014). All the previous layers are
followed by rectified linear units (ReLU). Finally, Conv6 is another 1x1 filter
with a depth of 1. Conv6 is in charge of returning the density map estimation
D

(P )
pred for the input patch P .

Like we specify in Equation (2.7), we want our deep network to learn
a non-linear mapping from the appearance of an image patch to an object
density map. Thus, our CCNN has to be trained to solve such a regression
problem. For doing so, we connect to the Conv6 layer the following Euclidean
regression loss,

l(Θ) = 1
2N

N∑
n=1

∥∥∥R(Pn|Θ)−D(Pn)
gt

∥∥∥2

2
, (2.8)

where N corresponds to the number of patches in the training batch, and
D

(Pn)
gt represents the ground-truth density for the associated training patch

Pn. Recall that Θ encodes the network parameters.
How do we implement the prediction stage? Given a test image, we first

densely extract image patches. As illustrated in Figure 2.10, we feed the
CCNN with image patches scaled to a fixed size of 72x72 pixels. These input
patches are passed through our CCNN model, which produces a density map
estimation for each of them. Note that due to the two max-pooling layers,
the size of the output object density map estimation is 1/4 of the size of
the input image patch, i.e. 18x18 pixels. Therefore, all the predicted object
density maps DP

pred = R(P |Θ) are rescaled in order to fit the original input
patch size. Note that this rescaling generates a density map D̂P

pred whose
associated count does not necessarily match with the original count before
the rescaling. Therefore, this new resized density map must be normalized
as follows,

D̂P
pred =

∑
∀pD

P
pred(p)∑

∀p D̂
P
pred(p)

D̂P
pred. (2.9)

The last step of the prediction stage consists in the assembly of all the
predicted density maps for the patches. In order to generate the final object
density map estimation DIt , for the given test image It, we simply aggregate
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all the predictions obtained for all the extracted patches into a unique density
map of the size of the test image (see Figure 2.5). Note that due to the dense
extraction of patches, the predictions will overlap, so each position of the
final density map must be normalized by the number of patches that cast a
prediction in it.

Like we have previously mentioned, we are not the first ones proposing a
deep learning model for object counting. Zhang et al. (2015) introduce the
novel Crowd CNN architecture. In a detailed comparison of both the CCNN
and the Crowd CNN, we can discover the following differences. First, the
network designs are different. For instance, instead of using fully-connected
layers, in our CCNN we have incorporated the fully convolutional 1x1 layers
Conv4, Conv5 and Conv6. This speeds up both the training a forwards pass
(Long et al. 2014). Second, their learning strategy is more complex. The
Crowd CNN model needs to incorporate two different loss functions (one for
the density maps and one for the total count of the patches). During the
optimization, they implement an iterative switching process to alternatively
optimize with one loss or the other. In contrast, our CCNN only uses one loss.
And third, our model is more compact. For the problem of crowd counting,
Zhang et al. (2015) do not use the direct estimation of the Crowd CNN
network to obtain the final object density estimation. Instead, they report
the results feeding a ridge regressor with the output features of their Crowd
CNN network. On the contrary, we do not need any extra regressor, our
novel CCNN is learned in an end-to-end manner to directly predict the object
density maps. Finally, our experiments reveal that the CCNN improves the
results of the Crowd CNN in three of four subsets of the UCSD dataset.

2.5.1.2 The Hydra CNN

In a typical pipeline of a counting by regression model, a geometric correction
of the input features, using an annotated perspective map of the scene, for
instance, results fundamentally to report accurate results. This phenomenon
has been described in several works, reporting state-of-the-art results (e.g.
(Lempitsky and Zisserman 2010, Loy et al. 2013, Fiaschi et al. 2012, Zhang
et al. 2015)). Technically, the perspective distortion exhibited by an image
causes that features extracted from the same object but at different scene
depths would have a huge difference in values. As a consequence, erroneous
results are expected by models which use a single regression function.

With the Hydra CNN model, we want to solve this problem. That is, Hy-
dra CNN must be a scale-aware architecture, which is not allowed to use any
previous geometric correction of the scene. Our architecture should be able
to learn a non-linear regression mapping, able to integrate the information
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Figure 2.11: Hydra CNN. The network uses a pyramid of input patches (they
are cropped and rescaled to a size of 72x72). Each level of the pyramid,
representing a different scale, feeds a particular head of the Hydra. All the
head outputs are concatenated and passed to a fully-connected bank of layers,
which form the body of the hydra.

from multiple scales simultaneously, in order to cast a precise object density
map estimation. This aspect brings a fundamental benefit: Hydra CNN can
work in scenarios and datasets which consider not only a single calibrated
scene. For instance, a single Hydra CNN model should be able to accurately
predict the number of objects for a variety of unseen scenes, exhibiting dif-
ferent perspectives, and generalizing well to real-world scenarios.

We attack this problem with the idea shown in Figure 2.11. Our Hy-
dra CNN has several heads and a common body, remembering the ancient
serpentine water monster called the Hydra in Greek and Roman mythology.
Each head is in charge of learning the representation for a particular scale
si from the input pyramid of image patches. Therefore, during learning, we
feed each head with image patches extracted at a particular scale. We have
to understand the output of the heads as a set of features describing the
images at different scales. Then, all these features are concatenated to feed
the body, which is made of fully-connected layers. Notice, that the heads
are not necessarily restricted to the same architecture, so their features may
have different dimensions, hence the use of fully convolutional layers in the
body may not be suitable. Therefore, we use a fully-connected layer in or-
der to provide the net full access to all the head features for the different
scales. Essentially, the body learns the high-dimensional representation that
merges the multiscale information provided by the heads, and it is in charge
of performing the final object density map estimation.
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Technically, as illustrated in Figure 2.11, for each head of the Hydra CNN,
we propose to use a CCNN model (CCNN s0, . . . , CCNN sn). Note that
we simply exclude in each CCNN model for the heads, its final Conv6 layer.
Then, the outputs of the different heads are concatenated and passed to the
body, where we use two fully-connected layers, with 512 neurons each one.
These are the layers Fc6 and Fc7 in Figure 2.11, which are followed by a ReLu
and a dropout layer. We end the architecture with the fully-connected layer
Fc8, with 324 neurons, whose output is the object density map. To train this
Hydra CNN model we use the same loss function defined in Equation (2.8).
Again the Caffe library is used, following for the optimization the stochastic
gradient descent algorithm. Finally, given a test image, we follow the same
procedure described for the CCNN model to produce the final object density
map estimation.

The network design of the novel Hydra CNN is inspired by the work of
Li and Yu (2015) for visual saliency estimation. In (Li and Yu 2015), they
propose a different network architecture but using a multiple input strategy,
which combines the features of different views of the whole input image in
order to return a visual saliency map. In our Hydra CNN model, we adapt
this idea to use the multi-scale pyramid set of image patches to feed our
network.

2.5.1.3 Experiments

We have evaluated the CCNN and the Hydra CNN solutions using three cha-
llenging benchmarks. Two have been proposed for the crowd counting pro-
blem: the UCSD pedestrian (Chan et al. 2008) and the UCF CC 50 (Idrees
et al. 2013) datasets. The third one is the TRANCOS dataset (Guerrero-
Gómez-Olmedo et al. 2015), which has been designed for vehicle counting in
traffic jam scenes.

TRANCOS dataset: We strictly follow the experimental setup proposed
in (Guerrero-Gómez-Olmedo et al. 2015), using only the training and vali-
dation sets for learning our models. In each training image, we randomly
extract 800 patches of 115x115 pixels. We also perform a data augmentation
strategy by flipping each patch, having in total 1600 patches per training
image. These patches are then resized to 72x72 to feed our networks. We
generate the ground truth object density maps with the code provided by
Guerrero-Gómez-Olmedo et al. (2015), which places a Gaussian Kernel (with
a covariance matrix of Σ = 15 · 12x2) in the center of each annotated object.

For the CCNN model, we perform a cross-validation to adjust the stan-
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Figure 2.12: Comparison of CCNN and Hydra CNN in the TRANCOS
dataset when the number of objects increases.

dard deviation values of the Gaussian noise that is necessary to initialize the
weights of each layer of the deep network. The Xavier initialization method
(Glorot and Bengio 2010) was used to, but with it, our CCNN models are
not able to converge in our experiments.

To train the Hydra CNN, we follow the same patch extraction procedure
as for the CCNN model. The only difference is that from each patch we
build its corresponding pyramid of s different scales, being s the number of
heads of our Hydra CNN. Therefore, the first level of the pyramid contains
the original patch. For the rest of levels, we build centered and scaled crops,
of size 1/s, of the original patch. For example, in the case of a Hydra CNN
with two heads, the first level of the pyramid corresponds to the original
input patch, and the second level contains a crop of size 50% of the original
size. When three heads are used, the second and third levels of the pyramid
contain a crop of size 66% and 33% of the original size, respectively.

To initialize the heads of the Hydra CNN model, we use the same param-
eters discovered by the cross-validation for the CCNN. Then we perform a
cross-validation to adjust the standard deviation for the layers Fc6 and Fc7.

The test is performed by densely scanning the input image with a stride
of 10 pixels, and assembling all the patches as it is described in Section 2.5.1.

The TRANCOS benchmark comes with an evaluation metric to be used:
the Grid Average Mean absolute Error (GAME) (Guerrero-Gómez-Olmedo
et al. 2015) (see Equation 2.1). This metric provides a spatial measurement
of the error. Note that a GAME(0) is equivalent to the mean absolute error
(MAE) metric.

Table 2.1 shows a detailed comparison of our models with the state-of-the-
art methods (Fiaschi et al. 2012), (Lempitsky and Zisserman 2010) reported
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in (Guerrero-Gómez-Olmedo et al. 2015).

Method GAME 0 GAME 1 GAME 2 GAME 3
Fiaschi et al. (2012) 17.77 20.14 23.65 25.99
Lempitsky and Zisserman (2010) 13.76 16.72 20.72 24.36
CCNN (2016) 12.49 16.58 20.02 22.41
Hydra 2s (2016) 11.41 16.36 20.89 23.67
Hydra 3s (2016) 10.99 13.75 16.69 19.32
Hydra 4s (2016) 12.92 15.54 18.45 20.96
Zhang et al. (2017) 5.47 - - -
Li et al. (2018) 3.56 5.49 8.57 15.04
Laradji et al. (2018) 3.57 4.98 7.42 11.67

Table 2.1: TRANCOS dataset. Comparison with the of state-of-the-art mod-
els.

First, note how all our models outperform the previous state-of-the-art
methods. The more simple architecture of CCNN already improves the re-
sults of the previously reported models by Fiaschi et al. (2012), and by Lem-
pitsky and Zisserman (2010). Hydra CNN should be able to report the best
results in TRANCOS, given the high level of variability in terms of perspec-
tive and variety of scenes that the images of this dataset exhibits. Table 2.1
shows that a Hydra CNN with just 2 scales improves the results with respect
to the CCNN for a GAME(0), while for GAME(1) to GAME(3) the perfor-
mance is very similar. If we go further, and train a Hydra CNN with 3 heads,
we are now able to report the best results for this dataset for all the GAMES.
Note how the error for the higher levels of the GAME, where this metric is
more restrictive, drastically decreases. This reveals that the Hydra CNN is
more precise not only predicting the object density maps, but also localizing
the densities within them. If we continue increasing the number of heads of
Hydra CNN, this does not guarantee an increment of the performance. On
the contrary, we have experimentally observed that the model saturates for
4 heads (see the last row of Table 2.1), while the complexity dramatically
increases.

Overall, these results lead us to two conclusions. First, the object density
maps can be accurately and efficiently estimated using the CCNN model,
which works remarkably well. Second, the Hydra CNN idea of having a
pyramid of scales as input, to learn a non-linear regression model for the
prediction of object density maps, seems to be more accurate, defining the
novel state of the art in this benchmark.

Figure 2.12 shows an additional analysis of our models using the MAE
(GAME(0)). We perform the comparison sorting all the test images by the
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Figure 2.13: Qualitative results of our Hydra model in the TRANCOS
dataset. The first row corresponds to the target image with the ground
truth. The second row shows the predicted object density maps. We show
the total object count above each image.

number of annotated vehicles they contain. We divide them into 10 subsets,
and plot in this figure the MAE of our CCNN and Hydra CNN 3s models.
Interestingly, CCNN reports a slightly lower error for the subsets of images
with fewer objects. But its error quickly rises when more vehicles appear in
the scene. The Hydra CNN model is clearly the winner, reporting a very
stable error along the different subsets.

Finally, Figure 2.13 shows some of the qualitative results obtained. The
first three images present the results where our Hydra 3s model obtains a
good performance, and the last two images correspond to those for which we
get the maximum error.

UCSD dataset: We follow exactly the same experimental setup that is used
by Fiaschi et al. (2012), Lempitsky and Zisserman (2010), Ryan et al. (2009),
and Zhang et al. (2015).

In order to train our CCNN model, for each image we collect 800 patches,
of 72x72 pixels, randomly extracted all over the image and their correspon-
ding ground truth density maps. We perform a data augmentation by flipping
each patch. Therefore, in total, we have 1600 training samples per image.
As usual, when the perspective map is used, the ground truth object density
maps are built scaling the covariance of the 2D Gaussian kernels, where we
fix a base Σ = 8 ·12x2, as it is described by Lempitsky and Zisserman (2010).

To train the Hydra CNN models, we follow the same patch extraction
detailed for the TRANCOS dataset. This time, 800 random patches of 72x72



30 Object Counting

P
R

ED
IC

TI
O

N
G

R
O

U
N

D
 

TR
U

TH

47.0

44.6

36.6

33.6

17.9

17.9

15.4

14.4

20.6

21.5

Figure 2.14: CCNN qualitative results for the UCSD dataset. The first row
shows the target image with its ground truth. The second row shows the
predicted object density map. We show the total object count above each
image.

pixels are extracted per training image. The pyramid of scaled versions of the
patches is built using the same procedure explained before. We initialize both
the CCNN and the Hydra CNN models following the procedures previously
explained for the TRANCOS dataset. Finally, to perform the test we fix a
stride of 10 pixels and then we proceed as it is described in Section 2.5.1.

We start analyzing the performance of the CCNN model. Table 2.2 shows
a comparison with all the state-of-the-art methods. Our CCNN, trained using
the perspective map provided, like all the competing approaches, obtains the
best results for the “upscale” subset. If we compare the performance of the
two deep learning models, i.e. CCNN vs. the Crowd CNN of Zhang et al.
(2015), our model gets better performance in 3 of the 4 subsets.

Method ‘maximal’ ‘downscale’ ‘upscale’ ‘minimal’
Lempitsky and Zisserman (2010) 1.70 1.28 1.59 2.02
Fiaschi et al. (2012) 1.70 2.16 1.61 2.20
Pham et al. (2015) 1.43 1.30 1.59 1.62
Arteta et al. (2014) 1.24 1.31 1.69 1.49
Zhang et al. (2015) 1.70 1.26 1.59 1.52
Our CCNN 1.65 1.79 1.11 1.50

Table 2.2: Mean absolute error. Comparison with the state-of-the-art meth-
ods for the UCSD pedestrian dataset.

Figure 2.14 shows some qualitative results. We have chosen five frames
that best represent the object density differences in the dataset. The last two
frames correspond with the maximal error produced by our CCNN model.
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Method ‘maximal’ ‘downscale’ ‘upscale’ ‘minimal’
Hydra 2s 2.22 1.93 1.37 2.38
Hydra 3s 2.17 2.99 1.44 1.92

Table 2.3: MAE comparison of our Hydra 2s and Hydra 3s models trained
without perspective information in the UCSD dataset.
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Figure 2.15: Comparison of ground truth, CCNN and Hydra CNN of two
and three heads in the UCSD benchmark.

We now proceed to analyze the results obtained by the Hydra CNN mod-
els in this benchmark. Even though this dataset offers images of a fixed
scene, providing its perspective map, where the objects appear at similar
scales, we have decided to conduct this extra experiment with the Hydra
CNN approach, to evaluate its performance with the state-of-the-art models.
Table 2.3 shows the MAE results for our Hydra with two and three heads.
Recall that we do not use the perspective information. We can observe two
things. The first one is that both architectures report a good performance,
even if they do not improve the state-of-the-art. To support this conclu-
sion, Figure 2.15 shows a comparison between the ground truth, the CCNN
model (trained using the perspective map), and the estimation generated by
our Hydra with two and three heads, which does not use the perspective
information. Hydra CNN models are able to closely follow both the CCNN
and the GT. We believe that Hydra CNN does not outperform CCNN due
to the small variability and the low perspective distortion exhibited by this
dataset. In this situation, adding more scales does not seem to provide really
useful information. Hence, the use of Hydra CNN does not offer here a clear
advantage.

UCF CC 50 dataset: This dataset proposes a challenging problem, es-
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pecially due to the reduced number of training images, and the variability
between the scenarios covered. We have followed the same experimental
setup described by Idrees et al. (2013). We randomly split the dataset into 5
subsets and perform a 5-fold cross-validation. To report the results the MAE
and the Mean Standard Deviation (MSD) are used.

For training our models, we scale the images in order to make the largest
size equal to 800 pixels. We follow the same experimental setup described for
TRANCOS. We now randomly extract 1200 image patches of 150x150 pixels
with their corresponding ground truth. We also augment the training data
by flipping each sample. Finally, the covariance matrix for the ground truth
density map generation with the Gaussian functions is fixed to Σ = 15 ·12x2.
For the initialization of the CCNN and the Hydra CNN models, we follow
the cross-validation procedure already described for the other datasets. To
do the test, we densely scan the image with a stride of 10 pixels.

Table 2.4 shows a comparison of our models with the state-of-the-art
approaches. At the moment of the release of this work, the best performance
is given by our Hydra CNN 2s, which is able to drastically reduce the MAE.
Hydra CNN with 3 scales outperforms 3 of 5 models previously published.
The CCNN approach only improves the results reported in (Rodriguez et al.
2011), and (Lempitsky and Zisserman 2010). Analyzing the results, we find
that the performance of the CCNN decreases especially in those images with
the highest number of humans and where the perspective really matters.
This issue and the results provided, confirm the advantages of the scale-
aware Hydra model for the very crowded scenes of the UCF CC 50 dataset.
Currently, the state of the art is defined by the posterior work of Cao et al.
(2018), which is closely followed by Ranjan et al. (2018).

Method MAE MSD
Rodriguez et al. (2011) 655.7 697.8
Lempitsky and Zisserman (2010) 493.4 487.1
Zhang et al. (2015) 467.0 498.5
Idrees et al. (2013) 419.5 541.6
Zhang et al. (2016) 377.6 509.1
Ranjan et al. (2018) 260.9 365.5
Cao et al. (2018) 258.4 334.0
CCNN 488.67 646.68
Hydra 2s 333.73 425.26
Hydra 3s 465.73 371.84

Table 2.4: MAE and MSD comparison for the UCF CC 50 dataset.
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Figure 2.16: UCF CC 50 dataset qualitative results for Hydra CNN with two
scales. First row corresponds to the target image with the GT. Second row
shows the predicted object density maps. We show the total object count
above each image.

Figure 2.16 shows some of the qualitative results that are obtained by
our Hydra CNN model with two heads. The first three columns correspond
with results where our network reports a good performance, while the last
two columns show the maximum errors.

2.5.2 The counting U-Net and GU-Net architectures
2.5.2.1 The counting U-Net

U-Net is an hourglass-like CNN that has been recently proposed by Ron-
neberger et al. (2015) for segmentation. U-Nets are fully convolutional neural
networks which can be divided into a compression and a construction part.
Both parts are connected with short-cut connections leading from a compres-
sion layer to a construction layer with the same feature size. This type of
architecture has shown excellent performance on mapping images into labels
maps of the same size of the input. Figure 2.17 shows the proposed U-Net
architecture for the counting task. The model consists of 11 layers. The
first five layers are convolutional layers that address the compression part of
a U-Net. The following five layers are transpose-convolutional layers (Long
et al. 2015) that perform the construction. Finally, the eleventh layer is the
output layer. The first convolutional layer has 64 filters of size [4, 4], the
second convolutional layer has 128 filters of size [4, 4], and the third, fourth
and fifth layers have 128 filters of size [3, 3]. In all the convolutional layers
we use a stride of [2, 2] to reduce the size of the features maps by one half.
The remaining layers use the transpose-convolution introduced by previous
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Figure 2.17: U-Net Network architecture for object counting.

work of Long et al. (2015). The sixth and seventh layers have 128 filters
with a size of [3, 3], the eighth and ninth layers have 128 filters of [4, 4]. The
tenth has 64 filters with a size of [4, 4] in order to match the first convolu-
tional layers. In all of the expansion layers, we use a stride of [2, 2] which
doubles the size of the feature maps. As the activation function, we make
use of the Leaky ReLu introduced in (Maas et al. 2013). For the eleventh
layer, we use a transpose-convolution with a single filter, the size of [4, 4],
and a stride of [1, 1]. This operation does not perform any up-sampling, it
just produces an output of the model. Also, notice that for this layer the
usage of the convolution or the transpose-convolution is equivalent. Due to
this is the output layer, there is no activation function needed. As in the
original U-Net architecture, the short-cuts are connecting the compression
and expansion layers with the same feature map size, i.e. the first layer con-
nects with the ninth, the second with the eight, the third with the seventh
and the fourth with the sixth. For the fusion operation, we chose the con-
catenation as in (Ronneberger et al. 2015), although summation, point-wise
multiplication or other operation might also be suitable.

The proposed U-Net architecture has a receptive field of a region of [96, 96]
pixels. Since we test our algorithm for the counting problem, we have setup
the presented receptive field to cover an area that can contain an object of
our datasets, surrounded by background. The size of the filter is chosen to
be [4, 4] for those features maps that are greater or equal to [24, 24], while for
those that are smaller we used a slightly reduced size of [3, 3]. It is important
to notice that the bottleneck occurs in the fifth layer. It receives a feature
map with a size of [3, 3] as input and, therefore, with the filter size of that
layer, the receptive field of the network covers the entire input image.

In contrast with the originally proposed U-Net, the presented network
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Figure 2.18: Gated U-Net Network architecture.

architecture is focused on solving the object density estimation in images,
and similarly to the previous models, it can be fitted by minimizing the loss
function of Equation 2.8.

2.5.2.2 The counting GU-Net

In this section, we introduce GU-Net, an extension of the previously proposed
counting U-Net that results from the integration of learnable short-cut units.
Figure 2.18 illustrates the proposed model architecture. We add four short-
cut connection units, one between each pair of layers for which there is a
short-cut in the U-Net. The first learnable short-cut connection G1 consists
of a convolutional layer with 64 filters each with a size of [4, 4]. The second
learnable short-cut connection G2 is made up of 128 filters each of size [4, 4].
The third learnable short-cut unit G3 consists of a convolutional layer of
128 filters of size [3, 3]. The fourth unit G4 has 128 filters of size [3, 3]. All
convolutional layers of the short-cut units work with a stride of [1, 1].

What are these learnable short-cut connection for? Short-cut connec-
tions are connections between layers in deep neural networks which skip at
least one intermediate layer. These connections have proven to be benefi-
cial in deep neural networks applied to problems such as object recognition
(He et al. 2016). Short-cut connections enable the training of deeper net-
works with backpropagation. A more recent and alternative explanation is
that networks with short-cut connections behave similarly to ensembles of
shallower networks (Veit et al. 2016). In all existing state-of-the-art neural
networks, short-cut connections either exist or do not exist between layers.
We propose a framework for fine-grained learning of the strength of short-cut
connections between layers.

In the presented GU-Net model for object counting, the gated short-cut
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units act as a bit-wise soft mask that determines the amount of information
to pass to the respective layers so as to improve the quality of the feature
maps for counting. In a deep neural network, the first layers are specialized
in detecting low-level features such as edges, textures, colors, etc. These
low-level features are needed in a normal feed-forward neural network, but
when they are combined with deeper features, they might or might not con-
tribute to the overall performance as the deeper features and to add noise to
the learning process. For this reason, the gating units are especially useful
to automate the feature selection mechanism for improving the short-cuts
connections while strongly back propagating the updates to the early layers.

The main limitation of the presented idea is that the gating units do
not add more freedom to the general network but add additional parameters
(one additional convolutional layer per short-cut connection). Therefore, the
fitting capability of GU-Net is the same as for the original U-Net. However,
the gating strategy leads to more robust models that produce better results.

With respect to the training procedure, the counting GU-Net does not
require any special modification with respect to the previously introduced
counting U-Net and it is trained to minimize the loss function of Equation 2.8.

2.5.2.3 Learning short-cut connections for object counting

Technically, we propose a gating mechanism that can be applied to any deep
neural network to learn short-cuts and to optimize the flow of information be-
tween earlier and later layers of a network architecture. Let us first, however,
introduce some background terminology.

Taking the definition of the Equation 2.7, a neural network R(P |Θ) can be
written as a composition of functions R(P |Θ) = fnΘn ◦ . . . f

2
Θ2 ◦f

1
Θ1(P ), where

each f i represents the transformation function for layer i ∈ {1, ..., n} with its
parameters Θi. Each layer maps its input to an output tensor zi ∈ R[h′,w′,d′].
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Typically, the output zi of layer i is used as input to the proceeding layer
f i+1

Θi+1
(zi) to generate output zi+1, and so on. Each layer, therefore, is only

connected locally to its preceding and proceeding layers.
However, we can also connect the output of a layer i to the input of a

layer j with j > i+ 1, that is, we can create short-cut connections that skip
a number of layers in the network. The first class of network architectures
popularizing these skip-connections were introduced with the ResNet model
class (He et al. 2016). Here, we do not only create certain short-cut con-
nections but learn their connection strength using a gated short-cut unit (see
Figure 2.19). The gated short-cut units determine the amount of information
which is passed to other layers and also the ways in which this information
is combined with the input of these later layers.

Whenever a layer i with transformation function f i is connected to a
layer j with j > i + 1 we introduce a new convolutional layer g(i,j) whose
hyperparameters are identical to that of layer i. With zi being the output
of layer i we compute

a(i,j) = σ(g(i,j)(zi)), (2.10)

where σ is the sigmoid function. The tensor a(i,j) consists of scalars between
0 and 1 that determine the amount of information passed through to layer j
for each of the local convolutions applied to zi. Hence, we then compute the
element-wise product of the output of layer i and the tensor a(i,j)

z(i,j) = zi � a(i,j), (2.11)

where a(i,j) are again the values of the gating function that decides how much
information is let through.

Figure 2.19 illustrates the gating unit. zi is used as input to a convo-
lutinal layer to compute the gating scores a(i,j). A point-wise multiplication
is performed to obtain z(i,j). Those gated features are then combined with
the input zj−1 of layer j by combining z(i,j) and zj−1 using an operation ◦
such as the sum, point-wise multiplication, or concatenation. The resulting
tensor z(i,j) ◦ zj−1 is then used as the input for layer j.

2.5.2.4 Experiments

We have conducted experiments on three publicly available object counting
datasets: TRANCOS (Guerrero-Gómez-Olmedo et al. 2015), ShanghaiTech
(Zhang et al. 2016), and UCSD (Chan et al. 2008). We perform a detailed
comparison with state-of the-art object counting methods. Moreover, we
provide empirical insights into the advantages of the learnable short-cut con-
nections introduced.
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Model GAME 0 GAME 1 GAME 2 GAME 3
Ew. Multiplication 6.19 7.24 8.64 10.51
Summation 4.81 6.09 7.63 9.60
Concatenation 4.44 5.84 7.34 9.29

Table 2.5: Fusion operation comparison in the TRANCOS dataset and the
GU-Net model.

We use Tensorflow library (Abadi et al. 2015) to implement the proposed
U-Net and GU-Net models for object counting. To train our models, we
initialize all the weights with samples from a normal distribution with mean
zero and standard deviation of 0.02. We make use of the L2 regularizer with
a scale value of 2.5 × 10−5 in all layers. To perform gradient descent we
use Adam (Kingma and Ba 2015) with a learning rate of 10−4, β1 of 0.9,
and β2 of 0.999. These are hyperparameter values commonly used with this
optimizer. We train our systems for 2 × 105 iterations, with mini-batches
consisting of 128 patches. The patches of each mini-batch are extracted from
a random image of the training set such that 50% of the patches contain
a centered object, and the remaining patches are randomly sampled from
the image. We perform data augmentation by flipping images horizontally
with a probability of 0.5. All the pixel values from all channels are scaled
to the range [0, 1]. The ground truth of each dataset is generated by placing
a normal distribution on top of each of the annotated objects in the image.
The standard deviation σ of the normal distribution varies depending on the
dataset under consideration.

To perform the object count we feed entire images to our models. Notice
that the proposed models are fully convolutional neural networks, therefore
they are not constrained to a fixed template-size. Hence, we can work with in-
put images of different sizes and aspect ratios, and the output of the network
is a density map that matches the input size. Notice that our previous mod-
els produce density maps that are significantly smaller than the input, and
the Hydra architecture is constrained to a fixed template-size which makes
the model less flexible and significantly slower. Moreover, the presented
models have significantly fewer parameters than most of the state-of-the-art
methods. To analyze an image of size [640, 480, 3] with a GU-Net architec-
ture takes on average only 23ms when executed in a conventional NVIDIA
GeForce 1080 Ti.

We use Mean Absolute Error (MAE) see Equation 2.2 and Mean Squared
Error (MSE), see Equation 2.3 for the evaluation of the results on Shang-
haiTech, and UCSD. The GAME metric (Equation 2.1) is used for the eval-
uation of the TRANCOS dataset.
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Trancos
Model GAME 0 GAME 1 GAME 2 GAME 3
Fiaschi et al. (2012) 17.77 20.14 23.65 25.99
Lempitsky and Zisserman (2010) 13.76 16.72 20.72 24.36
Hydra 3s (2016) 10.99 13.75 16.69 19.32
Zhang et al. (2017) 5.47 - - -
Li et al. (2018) 3.56 5.49 8.57 15.04
Laradji et al. (2018) 3.57 4.98 7.42 11.67
U-Net (2018) 4.58 6.69 8.69 10.83
GU-Net (2018) 4.44 5.84 7.34 9.29

Table 2.6: Results comparison for TRANCOS dataset.

TRANCOS experiment: to train all of our experiment on this dataset,
we generate the ground truth density maps by setting the standard deviation
of the normal distributions to σ = 10. In addition to the general setup, we
also perform random gamma transformation to the images.

Since we are trying to fuse features from low a high-level layer with short-
cuts, an important aspect to investigate is the operation ◦, which is the one
used for the feature combination. To this end, we perform experiments with
the element-wise multiplication and summation operations as well as the con-
catenation operation. Table 2.5 lists the results for the GU-Net and each of
the operations described. We observe that the element-wise multiplication,
even though it produces accurate density maps, offers the lowest performance.
The summation is a linear operation that shows satisfying results. It also has
the advantage that it does not add channels to the resulting features, making
this type of operation especially suitable for situations in which memory con-
sumption and processing capabilities are constrained. The best performing
operation is the concatenation. Therefore, for the remainder of our experi-
ments, we use the concatenation operation as the merging operation of the
short-cut connections.

Table 2.6 details the results of the various methods on the TRANCOS
dataset. Shallow methods are listed in the upper part of the table. In
the second part are the deep learning methods. The last two rows list the
results obtained by the U-Net and the GU-Net (U-Net + learnable short-cuts)
models. The GU-Net achieves better results compared to the U-Net base
architecture. These improvements are consistent across the various GAME
settings we use. As an overall comparison, we appreciate how the swallow
methods are outperformed by deep learning based approaches. Among the
deep learning approaches, the very recent work of Li et al. (2018) gets the
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Figure 2.20: a) Qualitative error analysis between U-Net and GU-Net. (b)
Mean activation scores of the gating units of the analyzed datasets.

best performance in special for GAME(0) (or MAE), but it reports a high
error for GAME(3). This is probably indicating that the model is under-
counting and over-counting in different regions of the image, but the overall
count is accurate due to the error in one image area is compensated by the
error of another area. The best performance for GAME(2) and GAME(3) is
given by our GU-Net. It shows the robustness of the proposed model. Figure
2.21 shows, a few qualitative results of the proposed models.

Adding learnable short-cut units helps to determine the strength of the
information that is passed to the later construction layers. It increases the
robustness of the final model by blocking information that is not relevant
for these layers. Intuitively, in a deep convolutional neural network, the first
layers learn to detect low-level features such as edges, textures, or colors.
The later layers are able to capture more complex feature patterns such as
eyes, legs, windows, etc. Therefore, when low-level features are combined
with high-level features, the resulting feature map might contain irrelevant
information potentially adding noise. As an example, in Figure 2.20(a) we
show a real example of a situation that clearly shows how a low-level texture
is adding noise. The U-Net is confusing the road lines as cars while the GU-
Net could efficiently handle the problem. The learnable short-cut units of
GU-Net learn to detect these situations and effectively block the forwarded
information of short-cut connections. To explore this hypothesis more thor-
oughly, we measure the mean values of the activation scalars (the output of
the sigmoids) for the learnable short-cut connections in the GU-Net for seve-
ral datasets. Figure 2.20(b) depicts the results of this experiment. It shows
the effect of the short-cut units is data dependent, that is, the learnable
short-cut units automatically adapt to the dataset under consideration.
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Figure 2.21: Trancos qualitative results.

ShanghaiTech experiment: The dataset consists of two parts: Part A
contains images randomly crawled on the Internet, and Part B is made of
images taken from the metropolitan areas of Shanghai. Both sets are divided
into training and testing, where Part A contains 300 training images and 182
images are used for testing, and Part B consists of 400 training images and
316 testing images. In addition to the standard sets, we created our own
validation set for each part by randomly taking 50 images out of the training
sets which are used to tune our parameters. We resize the images to have a
maximum height or width of 380 pixels, and we generate the ground truth
density maps by placing a Gaussian kernel on each annotated position with
a standard derivation of σ = 4. We follow the training procedure described
at the beginning of Section 2.5.2.4. Table 2.7 lists the results. Consistent
with the previous experiments, the proposed gating mechanism improves the
performance of our U-Net baseline model. The current state of the art is now
defined in both parts of the dataset by some posterior works. Currently, the
best performance is achieved by Cao et al. (2018), and it is closely followed
by Li et al. (2018) and Ranjan et al. (2018). The proposed models achieve a
good performance in both datasets. Especially in Part B, our models obtain
the second best results from all the previous works, just closely overtaken by
Li et al. (2018). Moreover, notice that all the best-performing methods are
significantly larger models. They range from 7.9M of learnable parameters
of the model proposed by Ranjan et al. (2018), and they go up to 63M of the
model proposed by Sindagi and Patel (2017), while our most complex model
has only 2.8M parameters. In Figure 2.22 we show some qualitative results
of our GU-Net model.

UCSD experiment: The UCSD dataset is a standard benchmark in the
crowd counting community. As in previous work of Chan et al. (2008), we
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ShanghaiTech

Model Part A Part B
MAE MSE MAE MSE

Zhang et al. (2015) 181.8 277.7 32.0 49.8
Zhang et al. (2016) 110.2 173.2 26.4 41.3
Sindagi and Patel (2017) 73.6 106.4 20.1 30.1
Laradji et al. (2018) - - 21.6 -
Ranjan et al. (2018) 68.5 116.2 10.7 16.0
Li et al. (2018) 68.2 115.0 10.6 16.0
Cao et al. (2018) 67.0 104.5 8.4 13.6
U-Net (2018) 104.9 173.3 17.1 25.8
GU-Net (2018) 101.4 167.8 14.7 23.3

Table 2.7: ShanghaiTech state-of-the-art.
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Figure 2.22: GU-Net qualitative results for ShanghaiTech.

train the models on frames 601 to 1400. The remaining frames are used as test
data. For our experiments, we sample 100 frames uniformly at random from
the set of training frames and use them as our validation set. To generate
the ground truth density maps, we set the standard deviation of the normal
distributions placed on the objects to σ = 5. To train our models, we follow
the procedure described at the beginning of Section 2.5.2.4. Table 2.8 lists the
results for the UCSD dataset. We reach state-of-the-art results, but also we
observe how GU-Net model consistently improves our U-Net. Our solutions
are outperformed by the work of Li et al. (2018), Zhang et al. (2016), Cao
et al. (2018), and Laradji et al. (2018) models. However, we should notice
that our models are not pretrained. Moreover, it is worth to mention that our
architectures have much less learnable parameter than these previous works,
and with them we are able to recover much of their capacity, reporting close
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Figure 2.23: GU-Net qualitative results for UCSD.

MAEs. In the Figure 2.23 we show some qualitative results obtained by the
proposed GU-Net model.

UCSD
Model MAE MSE
Zhang et al. (2017) 1.67 3.41
Pham et al. (2015) 1.61 4.4
Zhang et al. (2015) 1.6 5.97
Li et al. (2018) 1.16 1.47
Zhang et al. (2016) 1.07 1.35
Cao et al. (2018) 1.02 1.29
Laradji et al. (2018) 1.01 -
U-Net 1.28 1.57
GU-Net 1.25 1.59

Table 2.8: UCSD state-of-the-art.

2.6 Discussion
This chapter has detailed four models that were published in two different
top-tier conferences with a gap of 2 years in between of them. CCNN and
Hydra were presented in (Oñoro-Rubio and López-Sastre 2016) during the
early days of object counting with deep learning, while the counting U-Net
and GU-Net were recently presented in (Oñoro-Rubio et al. 2018). These
last models take advantage of the latest advances in the deep learning field
and considerably improve our previous approaches.

The object scale introduced by the perspective of the scene is the major
problem that has been addressed during the first publication (Oñoro-Rubio
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Trancos
Model GAME 0 GAME 1 GAME 2 GAME 3
CCNN (2016) 12.49 16.58 20.02 22.41
Hydra 2s (2016) 11.41 16.36 20.89 23.67
Hydra 3s (2016) 10.99 13.75 16.69 19.32
U-Net (2018) 4.58 6.69 8.69 10.83
GU-Net (2018) 4.44 5.84 7.34 9.29

Table 2.9: Results comparison of the proposed models in TRANCOS dataset.

and López-Sastre 2016). The CCNN presented in this work is, to be the best
of our knowledge, the first fully convolutional neural network solution for
object counting. CCNN acts as a strong baseline for the perspective aware
solution introduced by Hydra. Having a multiscale model is an idea that was
almost simultaneously explored by other teams, e.g. (Zhang et al. 2016). In
their model, for instance, they proposed a single input and a multiple column
CNN which progressively increases the filter size in order to have a multiscale
model. However, since all the columns are trained with the same image scale,
all the columns learn to map the same image scale distribution, and the filter
size would only impact in the receptive field of the column branch and the
number of parameters. Later on, Liu et al. (2017) proposed a very similar
idea to our Hydra model for metastases detection.

Having multiple scale views of the input is an efficient way to increase the
information fed into the model. However, the Hydra model has limitations.
The first limitation is given by the need of a fixed template size. Since a
fully-connected layer merges the information given by the heads, the input
to each head needs to be processed in order to fit a fixed template size. This
design significantly increases the processing time and slows down the forward
pass of the network. As for the second limitation, the output size produced
by the network is significantly smaller than the corresponding ground truth.

The introduced counting U-Net solution already addresses the main lim-
itations of the Hydra model. The proposed design eliminates the need of the
fully-connected layers, making the model template size free: the integration
of the transpose-convolution in the decoder allows the network to produce
outputs with the same size of the inputs. Finally, the short-cut connections
that forward information with multiple receptive fields allow the network to
naturally handle multiple scales. The proposed self-gated mechanism of the
GU-Net model acts as a feature selection mechanism over the short-cut con-
nection that improves the U-Net baseline by blocking noisy information over
the short-cut.
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GU-Net entails an improvement over the U-Net baseline. The improve-
ment is especially prominent in datasets with scenes where the objects are
extremely overlapped, and where there is a large variance on the objects
sizes. Two examples are TRANCOS (see Table 2.6) or ShanghaiTech (see
Table 2.7). On the other hand, in situations where the overlap and the
objects sizes are not so remarkable (e.g. UCSD), the proposed self-gating
mechanism does not necessarily bring an improvement, but it adds an over-
head to the model in terms of parameters and computation time. By taking
a look at Table 2.8, it can be observed a small improvement of the GU-Net
with respect to the U-Net baseline in terms of MAE, but a small loose in
terms of MSE.

Table 2.9 joins the results of all the proposed models using the TRANCOS
dataset. The first half of the table groups the CCNN and the Hydra models
proposed in 2016. The second half joins the results produced by the counting
U-Net and GU-Net presented in 2018. It can be clearly observed that the
GAME(3) error has been reduced significantly by the U-Net and the GU-Net
solutions.

2.7 Conclusions
In this chapter have presented a complete overview of the state of the art in
object counting. We have also introduced four new approaches for the object
counting problem.

With our first architecture, the CCNN model, we show that object density
maps can be accurately and efficiently estimated, letting the network to
learn the direct mapping which transforms the appearance of image patches
into object density maps. We are able to match and improve the counting
accuracy of much more complex models, such as (Zhang et al. 2015), where
multiple loss functions and extra regressors are used in conjunction with the
deep model.

Our second model, Hydra CNN, goes one step further and provides a
scale-aware solution, which is designed to learn a non-linear regressor to
generate the object density maps from a pyramid of image patches at multiple
scales. The experimental validation reveals that Hydra not only improves
the results of its predecessor, our CCNN, but also that it is able to improve
the state of the art for those benchmarks that propose to count objects in
different scenes, showing very crowded situations, and where no geometric
information for the scene is provided (e.g. its perspective map).

By making our software and pre-trained models available2, we make it ef-
2https://github.com/gramuah/ccnn
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fortless for future researches to reproduce our results and to facilitate further
progress towards more accurate solutions for this challenging task.

In addition to the previous contributions, we have created two more deep
learning architectures for the object counting problem: U-Net and GU-Net.
We design our U-Net like architecture as a baseline. For the GU-Net archi-
tecture, we introduce the novel learnable gatings idea. The proposed gating
mechanism improves the existing baseline by making it robust to certain
types of noisy situations. We have demonstrated and discussed the advan-
tages and limitations of the proposed approach by conducting experiments
on three standard benchmark datasets in the object counting domain.

Finally, it should be noted that all the proposed counting solutions have
been evaluated specifically on the problem of vehicle counting, thanks to
the TRANCOS database. The results are promising, as the implemented
solutions are able to monitor these scenes with great precision. This will
make it possible to implement real applications that allow users, knowing the
degree of congestion of the roads that are on their route, to automatically
search for alternative routes, or even to make predictions of which route
would be better to take tomorrow, given the history of congestion evaluated
by the system.



Chapter 3

Simultaneous Object
Localization and Pose
Estimation

Our intelligence is what makes us human, and AI is an ex-
tension of that quality.

Yann LeCun.

3.1 Introduction
Detecting objects and estimating their pose remains as one of the major
challenges of the computer vision research community. There exists a com-
promise between localizing the objects and estimating their viewpoints. The
detector ideally needs to be view-invariant, while the pose estimation pro-
cess should be able to generalize towards the category-level. This chapter
is an exploration of using deep learning models for solving both problems
simultaneously. For doing so, we propose three novel deep learning archi-
tectures, which are able to perform a joint detection and pose estimation,
where we gradually decouple the two tasks. We also investigate whether the
pose estimation problem should be solved as a classification or regression
problem, is this still an open question in the computer vision community.
We detail a comparative analysis of all our solutions and the methods that
currently define the state of the art for this problem. We use PASCAL3D+
(Xiang et al. 2014) and ObjectNet3D (Xiang et al. 2016) datasets to present
the thorough experimental evaluation and main results. With the proposed
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models we achieve the state of the art performance in both datasets.
Over the last decades, the category-level object detection problem has

drawn considerable attention. As a result, much progress has been realized,
led mainly by international challenges and benchmarking datasets, such as
the PASCAL VOC Challenges (Everingham et al. 2010) or the ImageNet
dataset (Deng et al. 2009). Nevertheless, researchers soon identified the im-
portance of not only localizing the objects, but also estimating their poses or
viewpoints, e.g. (Thomas et al. 2006), (Savarese 2008), (Lopez-Sastre et al.
2011), and (Yingze-Bao et al. 2011). This new capability results fundamen-
tally to enable a true interaction with the world and its objects. For instance,
a robot which merely knows the location of a cup but that cannot find its
handle, will not be able to grasp it. In the end, the robotic solution needs
to know a viewpoint estimation of the object to facilitate the inference of
the visual affordance for the object. Also, in the augmented reality field, to
localize and estimate the viewpoint of the objects, is a crucial feature in or-
der to project a realistic hologram, for instance. For the ITS, the capability
of detecting the objects and estimating their viewpoints results also funda-
mental. For example, localizing and estimating the pose of other vehicles are
essential tasks for the autonomous navigation; or in the vehicle tracking and
monitoring task in highways, adding pose information improves the system
performance (Guerrero-Gómez-Olmedo et al. 2013).

Technically, given an image, these models can localize the objects, pre-
dicting their associated bounding boxes, and are also able to estimate the
relative pose of the object instances in the scene with respect to the cam-
era. Figure 3.1 shows some examples, where the viewpoint of the object is
encoded using just the azimuth angle. In the image. The locations of the
objects are depicted by their bounding boxes (in green), and their azimuth
angles are represented by the blue arrow inside the yellow circle.

The computer vision community rapidly detected the necessity of pro-
viding the appropriately annotated datasets, in order to experimentally val-
idate the object detection and pose estimations approaches. To date, seve-
ral datasets have been released. Some examples are: 3D Object categories
(Savarese 2008), EPFL Multi-view car (Ozuysal et al. 2009), ICARO (López-
Sastre et al. 2010), PASCAL3D+ (Xiang et al. 2014) or ObjectNet3D (Xiang
et al. 2016).

Thanks to these datasets, multiple models have been experimentally eval-
uated. It is particularly interesting to observe how all the published ap-
proaches can be classified into two groups. In the first one, we find those
models that decouple both problems (e.g. (Tulsiani and Malik 2015), (Glas-
ner et al. 2012), and (Redondo-Cabrera and Lopez-Sastre 2015)), making
first a location of the object, to later estimate its pose. In the second group,
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Figure 3.1: Object category detection and pose estimation example. In the
images, the objects are localized by the green bounding boxes. The blue
arrow inside the yellow circles shows the azimuth angles of the objects, which
is a form of viewpoint annotation.

we identify the approaches that solve both tasks simultaneously (e.g. (Xi-
ang et al. 2014), (Pepik et al. 2012), and (Massa et al. 2016)), because they
understand that to carry out a correct location requires a good estimation
of the pose and vice versa.

But the discrepancies do not end here. Unlike the problem of object de-
tection, where the metric for the experimental evaluation is clear, being this
the mean Average Precision (mAP) defined in the PASCAL VOC Challenge,
for the problem of object detection and pose estimation, multiple metrics
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have been adopted. This is motivated by the fact that not all the mod-
els understand the viewpoint estimation problem in the same way. Some
solutions, i.e. the discrete approaches, consider that this is a classification
problem, when others, i.e. the continuous models, understand the pose as
a continuous variable, whose estimation must be approached by solving a
regression problem.

This chapter is an attempt to provide a comparative study where these
issues can be addressed. The main contributions are as follows:

• We introduce three novel deep learning architectures for the problem
of simultaneous object detection and pose estimation. Our models
seek to perform a joint detection and pose estimation, trained fully
end-to-end. We start with a model that fully integrates the tasks of
object localization and object pose estimation. Then, we present two
architectures that gradually decouple both tasks, proposing a final deep
network where the integration is minimal. All our solutions are detailed
in Sections 3.3.1 and 3.3.2.

• All our architectures have been carefully designed to be able to treat
the pose estimation problem from a continuous or from a discrete per-
spective. We simply need to change the loss functions used during lear-
ning. This is detailed in Section 3.3.3. In our experiments, we carefully
compare the performance of these two families of methods, reporting
results using four different loss functions. Therefore, this thesis aims
to shed some light on which perspective is more appropriate, keeping
the network architecture fixed.

• Thanks to the proposed models, we are able to offer an experimental
evaluation (see Section 3.4) designed to carefully analyze how coupled
the detection and pose estimation tasks are, being this our final con-
tribution. We also bring a detailed comparison with all the solutions
that establish the state of the art for the problem of object category
detection and pose estimation. We carefully analyze all the models us-
ing two publicly available datasets: PASCAL3D+ (Xiang et al. 2014)
and ObjectNet3D (Xiang et al. 2016).

3.2 Related work
The literature on 3D object pose estimation is large. In the early days of
the field, we mostly find works that exploit the modeling of an object shape
and scene geometry to estimate the pose. In the work of Harris and Stennett
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(1990), they proposed a model-based tracking algorithm for a known three-
dimensional object. In their work, they match the edges and the corners of 2D
images with the edges and corners of an approximated 3D model. Afterward,
they track the corner points and edges by using a Kalman filter. Later on
in the computer vision community, the local descriptors such as SIFT (Lowe
1999), SURF (Bay et al. 2006), ORB (Rublee et al. 2011) and others got a lot
of attention. The method of Lowe (2004) presents a mechanism for extracting
distinctive invariant features from images that are used to perform a reliable
matching between different views of an object or scene. In Figure 3.2 is
shown some qualitative results extracted from the aforementioned works.

(a) (b)

Figure 3.2: (a) and (b) show the qualitative results reported on the original
works of Harris and Stennett (1990) and Lowe (2004) respectively.

Alternatively to the point matching and geometry bases approaches, ma-
chine learning is one of the most important techniques. In contrast with the
previous solutions, the machine learning aims to learn a general function that
automatically maps the appearance of the target object to its pose based on
a collection of data samples. Based on machine learning techniques, we find
the VDPM of Lopez-Sastre et al. (2011). In their work, they discriminatively
trained a Deformable Part Model (DPM) such that each mixture component
represents a different azimuth section used to estimate the pose along with
the object detection. In the work of Pepik et al. (2012), they utilize structural
SVM, to predict the object bounding box and pose jointly (later on refer-
enced as DPM-VOC+VP). In Figure 3.3 are depicted the system diagrams
of the VDPM in (a), and of the DPM-VOC+VP in (b).

With the success of deep learning, a totally new branch of methods ap-
peared. Following this trend, we find the pioneering work of Tulsiani and
Malik (2015). In their work they use the RCNN (Girshick et al. 2014) for
detecting the objects. They fine-tune the VGG16 (Simonyan and Zisserman
2014) on the detection crops to predict the discrete pose. Beyer et al. (2015)
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(a)

(b)

Figure 3.3: (a) shows the diagram presented in the original paper of Lopez-
Sastre et al. (2011), and (b) show the diagram presented on the work of Pepik
et al. (2012).

they train a CNN to perform a continuous pose estimation where the pose
is decomposed in polar coordinates. In the work of Massa et al. (2016), they
modify the Fast RCNN (Girshick 2015) to simultaneously perform the object
detection and pose estimation, but in contrast with the Fast RCNN, the class
of the object is determined by the top accumulated score over the predicted
pose for a certain object class. Poirson et al. (2016) extend YOLO (Redmon
et al. 2016) to include the pose estimation together with the object detection.
Figure 3.4 shows the approach diagram introduced in (Massa et al. 2016),
and (Poirson et al. 2016).

It is clear that object category detection and viewpoint estimation is a
growing research field. Several are the methods that have contributed to
improving the state of the art. Like we have previously mentioned, we can
organize in two groups all the approaches in the literature.

In the first one, we find those models that understand that these two
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Figure 3.4: (a) depicts the system diagram of Massa et al. (2016). (b) shows
the the diagram proposed by Poirson et al. (2016).

tasks, i.e. object localization and pose estimation, must be solved separately
((Tulsiani and Malik 2015), (Glasner et al. 2012), and (Redondo-Cabrera
and Lopez-Sastre 2015)). The second group consists of the models where
the detection and the viewpoint estimation are fully coupled ((Xiang et al.
2014), (Pepik et al. 2012), (Massa et al. 2016), and (Redondo-Cabrera et al.
2014)).

Within these two groups, one must note that while some models solve
the pose estimation as a classification problem, i.e. the discrete approaches
((Massa et al. 2016), and (Tulsiani et al. 2015)), others treat the viewpoint
estimation as a regression problem, i.e. the continuous solutions ((Glasner
et al. 2012), (Redondo-Cabrera et al. 2014), and (Fenzi et al. 2013)).

In this work, we introduce three novel deep learning architectures for
the problem of joint object detection and pose estimation. They all are
extensions for the Faster R-CNN object detection model of Ren et al. (2015).
We have designed them to gradually decouple the object localization and
pose estimation tasks. Our models significantly differ from previous deep
learning based approaches for the same tasks. For instance, if we consider
the work of Tulsiani et al. (2015), we observe that their solution is based
on a detector (using the R-CNN (Girshick et al. 2014)), followed by a pose
classification network, fully decoupling both tasks. On the contrary, all our
architectures are trained fully end-to-end, performing a joint detection and
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viewpoint estimation. Moreover, the deep architectures implemented are
different. Massa et al. (2016) also propose a joint model. However, their
approach is completely different. They base their design on the Fast R-CNN
detector (Girshick 2015). Technically, they modify the Fast R-CNN output
to provide the detections based on an accumulative sum of scores that is
provided by the pose classification for each object category. In a different
manner, our solutions are based on the Faster R-CNN, which is a distinct
architecture. Moreover, in our work, we explore not only a modification
of the output of the networks, but multiple architecture designs where we
can gradually separate the branches of the network dedicated to the object
localization and the viewpoint estimation tasks.

Finally, this works offers a detailed comparative study of solutions for the
joint object detection and pose estimation problem. The study included in
(Elhoseiny et al. 2016) focus on the different problem of object classification
and pose estimation, i.e. they do not consider the object localization task.

3.3 Simultaneous detection and pose estima-
tion models

In the following section, we formulate the learning problem for joint detection
and pose estimation. Then, we detail the proposed architectures, named:
single-path, specific-path, and specific-network (Figure 3.5 shows an overview
of all our designs). Technically, they all are extensions for the Faster R-CNN
approach (Ren et al. 2015). Finally, we provide a detailed analysis of the loss
functions used in our experimental evaluation.

3.3.1 Learning model for simultaneous detection and
pose estimation

Our goal is to learn a strong visual representation that allows the models
to: localize the objects, classify them and estimate their viewpoint with
respect to the camera. Furthermore, we consider an in the wild setting where
multiple objects of a variety of categories appear in real-world scenarios,
with a considerable variability on the background, and where occlusions and
truncations are the rules rather than the exception.

Therefore, the supervised learning process starts from a training set S =
{(xi, ti)}Ni=1, where N is the number of training samples. For each sample
i in the dataset, xi ∈ X represents the input image, and ti ∈ T , with ti =
(yi, βi, φi), encodes the annotations for the three tasks to solve: classification
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(a) Single-path architecture.
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(b) Specific-path architecture.
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(c) Specific-network architecture.

Figure 3.5: Proposed deep learning architectures for simultaneous object
detection and pose estimation.

(yi), object localization (βi) and pose estimation (φi). yi ∈ Y with Y =
[1, 2, . . . , C, C + 1] describes the object class, being C the total number of
object categories. Category C + 1 is used to consider a generic background
class. βi ∈ R4 represents the bounding box localization of a particular object
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within image xi. Finally, φi ∈ R3 encodes the 3D viewpoint annotation for a
particular object with respect to the camera position as a tuple of azimuth,
elevation and zenith angles.

We propose to learn a convolutional neural network (CNN) (LeCun et al.
1990) for simultaneous object detection and pose estimation. Technically,
these CNNs are a combination of three main features which let the model
achieve a sort of invariance with respect to imaging conditions: local receptive
fields, shared convolutional weights, and spatial pooling. Each unit in a
layer receives inputs from a set of units located in a small neighborhood of
the previous layer. In the forward pass of a CNN, each output feature is
computed by the convolution of the input feature from the previous layer.
Therefore, these deep networks can be thought of as the composition of
a number of convolutional structure functions, which transform the input
image to feature maps that are used to solve the target tasks.

For the particular problem of simultaneous object detection and viewpoint
estimation, our CNN prediction t̂ should be expressed as follows,

t̂θ,W = FW ◦ zθ(xi) . (3.1)

zθ : X → RD represents the D-dimensional feature mapping that the
network performs to the input images. Technically, it consists in the trans-
formation of the input image xi into a feature that is used to feed the output
layers of our models. We encode in θ the trainable weights of the deep ar-
chitecture that allow the network to perform the mapping. In our solutions,
the weights in θ define the hidden layers that are shared by all the tasks that
the deep network needs to solve.

FW corresponds to the set of functions of the output layers. They take
as input the deep feature map zθ(xi). For the problem considered in this
paper, our set of functions must address three different tasks: classification
(y), object localization (β) and viewpoint estimation (φ). Therefore, FW =
(f yW y , f

β
Wβ , f

φ
Wφ). f yW y with weights W y produces the prediction for the object

category, i.e. t̂y. fβWβ predicts the object location t̂β. Finally, fφWφ is in charge
of the prediction of the viewpoint t̂φ.

According to the prediction model detailed in Equation 3.1, we define the
following objective function to learn our multi-task neural network:

argmin
θ,W

L(θ,W, S) , (3.2)

where the loss function follows the equation,
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L(θ,W, S) = λ1Ly(θ,W y, S) + λ2Lβ(θ,W β, S) + λ3Lφ(θ,W φ, S) . (3.3)

λi for i ∈ (1, 2, 3) corresponds to the scalar value that controls the im-
portance of a particular loss during training. For the classification loss Ly
we use a categorical cross-entropy function. A simple Euclidean loss is used
for the object localization task loss Lβ. Finally, for the pose estimation loss
Lφ multiple options are considered. We detail them in Section 3.3.3.

3.3.2 The proposed architectures
3.3.2.1 Single-path architecture

Our first deep network design is the single-path architecture. It offers a
natural extension of the Faster R-CNN model for the problem of simultaneous
object detection and pose estimation. Technically, we simply add an extra
output layer in order to predict the viewpoint of the object.

To understand the extension proposed, we proceed with a description of
the original Faster R-CNN pipeline. As it is shown in Figure 3.5(a), the Faster
R-CNN consists of three stages. The first stage is performed by the convolu-
tional layers. An input image passes through the convolutional network, to be
transformed into a deep feature map. The second stage is represented by the
Region Proposal Network (RPN), which serves as an “attention” mechanism
during learning. Technically, it is a fully convolutional (sub)network, which
takes an image feature map as input, and outputs a set of rectangular object
proposals, with their corresponding objectness scores. To go into details, this
RPN takes the feature map obtained from the last convolutional layer (e.g.
convolution 5 in a VGG16-based architecture) and adds a new convolutional
layer which is in charge of learning to generate regions of interest (ROIs).
In the third stage, these ROIs are used for pooling those features that are
passed to the last two fully-connected (FC) layers. Finally, the responses
coming from the last FC layer are used by the model: 1) to classify the ROIs
into background or object; 2) to perform a final bounding box regression for
a fine-grained localization of the object. In Figure 3.5(a) we represent these
two tasks with the blocks named as “Cls” (for classification) and “Bbox.
Reg.” (for the bounding box regression). Technically, the “Cls” module is
implemented with a softmax layer, and the “Bbox. Reg.” layer is a linear
regressor for the four coordinates that define a bounding box.

In order to evaluate the capability of the Faster R-CNN for the task of
pose estimation, guaranteeing a minimal intervention in the model architec-
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ture, we propose the single-path extension. It consists in the incorporation
of an additional output layer (see box “Pose” in Figure 3.5(a)), connected to
the last FC layer as well. The objective of this layer is to cast a prediction
for the viewpoint, and to measure the loss for this task, propagating the
appropriate gradients to the rest of the network during learning.

For training this single-path model, we solve the objective loss function of
Equation 3.2. We give the same weight to each task, i.e. λ1 = λ2 = λ3 = 1.
Note that at this point, we do not specify whether the viewpoint estimation
will be considered as a classification or regression problem. In this sense,
different loss functions will be considered and evaluated in the experiments,
in order to attain a high level of understanding of the simultaneous detection
and pose estimation problem.

3.3.2.2 Specific-path architecture

The specific-path is our second approach. Our objective with this architecture
is to explore the consequences of a slight separation of the pose estimation
task from the object class detection, learning specific deep features for each
task.

As it is shown in Figure 3.5(b), the extension we propose for this second
approach consists of adding two independent FC layers, which are directly
connected to the pose estimation layer. Note that we do not change the rest
of the architecture, i.e. both the initial convolutional layers and the RPN
module are shared. The pooled features are used to feed the two groups of
FC layers that form two types of features: one for the object detection task,
and the other for the viewpoint estimation. Therefore, during training, each
network FC path learns its specific features based on its gradients, while the
rest of the layers learn a shared representation.

The model is learned solving the objective function shown in Equation
3.2. For the detection path, λ1 = λ2 = 1, and λ3 = 0. For the pose path we
solve the Equation 3.2 getting rid of the object classification and bounding
box regression losses, i.e. λ1 = λ2 = 0 and λ3 = 1.

3.3.2.3 Specific-network architecture

With our third architecture, named specific-network, we attempt to separate
as much as possible the detection and pose estimation tasks within the same
architecture. The key idea of this design is to provide a model with two
networks that can be fully specialized in their respective tasks, while they
are learned simultaneously and end-to-end.

Consequently, as it is shown in Figure 3.5(c), we design a model made
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of two independent networks: the detection network and the pose network.
The detection network is in charge of fully performing the object localization
task, as in the original design of the Faster R-CNN.

The pose network must focus on the viewpoint estimation task, without
any influence of the detection objective. Therefore, this network has now its
own initial convolutional layers. To align the detection and pose estimation,
the pose network receives the ROIs generated by the RPN module of the
detection network. Technically, an input image is forwarded simultaneously
into both convolutional networks. The second stage of the Faster R-CNN,
i.e. the generation of ROIs by the RPN, occurs in the detection network
only. These ROIs are shared with the pose network. Finally, each network
pools its own features from the generated ROIs, feeds its FC layers with these
features, and produces its corresponding outputs.

Overall, we have an architecture with two specialized networks, that are
synchronized to solve the object detection and pose estimation tasks in a
single pass.

For learning this model we follow the same procedure as for the specific-
path. We train our detection network to solve the Equation 3.2 where λ3 = 0
and λ1 = λ2 = 1. The pose network is solved just for the pose problem,
hence, λ1 = λ2 = 0 and λ3 = 1. The main difference with respect the
specific-path model is that there are no shared features, so each network is
fully specialized to solve its corresponding task.

3.3.2.4 Why have we chosen these designs?

All our architectures are extensions of the Faster R-CNN approach of Ren
et al. (2015). Originally, the Faster R-CNN architecture was proposed to
address the problem of object detection only. This model has systematically
prevailed on all the detection benchmarks (e.g. PASCAL VOC (Everingham
et al. 2010), COCO (Lin et al. 2014) and ILSVRC detection (Deng et al.
2009)), where leading results are obtained by Faster R-CNN based models,
albeit with deeper features (e.g. using deep residual networks (He et al.
2016)). So, following a simple performance criterion, we believe that the
Faster R-CNN with its excellent results is a good choice.

Our second criterion for the selection of this Faster R-CNN architecture is
related to the main objective of our research: propose and evaluate solutions
for the problem of simultaneous object detection and viewpoint estimation.
Note that we neither address the problem of pose estimation in a classifi-
cation setup in isolation (e.g. in (Elhoseiny et al. 2016), where the object
localization problem is not considered) nor decouple the object detection and
pose estimation tasks (e.g. the work of Tulsiani et al. (2015)). Our models
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seek to perform a joint detection and pose estimation, trained fully end-to-
end, and the Faster R-CNN architecture is an ideal candidate to extend. All
our solutions perform a direct pooling of regions of interests in the images
from the internal RPN of the Faster R-CNN. This way, we do not need to use
any external process to hypothesize bounding boxes (e.g. Selective Search
(Uijlings et al. 2013)), hence performing a truly end-to-end simultaneous
object detection and pose estimation model, where the weights of the fully
convolutional RPN learn to predict object bounds and objectness scores at
each position, to maximize not only the object detection accuracy but also
the viewpoint estimation performance.

Finally, we want to discuss our main arguments for the concrete exten-
sions proposed in our architectures. Traditionally, the computer vision com-
munity working on the problem of pose estimation for object categories has
been divided into two groups. Those that understand that the tasks of local-
izing objects and estimating their poses are decoupled tasks (e.g. (Tulsiani
et al. 2015), (Glasner et al. 2012), (Fenzi et al. 2013), and (Redondo-Cabrera
et al. 2014)), and those that advocate for jointly solving both tasks (e.g.
(Massa et al. 2016), (Su et al. 2015), (Redondo-Cabrera et al. 2014), and
(Pepik et al. 2012)). The architectures proposed in this paper move from a
fully integration of both tasks, i.e. in the single-path, towards the specific-
network model, where the integration is minimal. In this way, we can design
an experimental evaluation to thoroughly analyze how coupled the detection
and pose estimation tasks are. Moreover, all our experiments are carried
on publicly available datasets which have been designed for the problem of
detection and viewpoint estimation, therefore a direct comparison with pre-
vious methods that define the state of the art is also possible.

3.3.3 Loss functions for pose estimation
Unlike the well-defined object detection task, the viewpoint estimation pro-
blem has been traditionally considered from two different perspectives: the
continuous and the discrete. Most methods in the literature adopt the dis-
crete formulation. That is, they understand the pose estimation as a cla-
ssification problem, relying on a coarse quantization of the poses for their
multi-view object detectors (e.g. (Tulsiani and Malik 2015), (Pepik et al.
2012), and (Su et al. 2015)). Only a few approaches consider that the pose
estimation of categories is ultimately a continuous problem, i.e. a regression
problem (e.g. (Redondo-Cabrera et al. 2014), (Fenzi et al. 2013), and (Beyer
et al. 2015)). In this chapter, all our architectures are evaluated considering
these two perspectives for the viewpoint estimation.

When we want our models to consider discrete outputs for the pose esti-
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mation (the “Pose” layer in Figure 3.5), we integrate the following categorical
cross-entropy loss function in Equation 3.2:

Lφ(θ,W φ, S) = − 1
N

N∑
i=1

log
(
σlφi

(fφWφ ◦ zθ(xi)
)
, (3.4)

where N is the number of samples, and σlφ is the softmax function for the
label lφi .

When the pose estimation is considered from a continuous perspective,
multiple adequate regression loss functions can be integrated. For all them,
it is fundamental to deal with the circularity of the viewpoint. Therefore,
we first represent the orientation angles as points on a unit circle by the
following transformation, p(α) = (sin(α), cos(α)), p(α) ∈ R2.

Probably, the simplest way to train the pose regressor is by using an
Euclidean loss, as follows:

Lφ(θ,W φ, S) = 1
2N

N∑
i=1

(
p
(
lφi
)
− p

(
fφWφ ◦ zθ(xi)

))2
. (3.5)

A popular alternative to the Euclidean loss, is the Huber loss function,

Lφ(θ,W φ, S) = 1
N

∑N
i=1


1
2

(
p
(
lφi
)
− p

(
fφWφ ◦ zθ(xi)

))2
if
∣∣∣p (lφi )− p

(
fφWφ ◦ zθ(xi)

)∣∣∣ ≤ δ,

δ
∣∣∣p (lφi )− p

(
fφWφ ◦ zθ(xi)

)∣∣∣− 1
2δ

2 otherwise
.

(3.6)
The advantage of this loss is that it tends to be more robust to outliers

than the Euclidean loss.
Finally, we propose to also use the continuous cyclic cosine cost function,

which is widely used in the natural language processing literature (Singhal
2001). It is defined as follows,

Lφ(θ,W φ, S) = 1
N

N∑
i=1

1− p(lφi )p(fφWφ ◦ zθ(xi))∥∥∥p(lφi )
∥∥∥ ∥∥∥p(fφWφ ◦ zθ(xi))

∥∥∥
 . (3.7)

3.4 Experiments

3.4.1 Implementation details
To perform our experiments, we have implemented all our models and loss
functions using the deep learning framework Caffe (Jia et al. 2014b). The
optimization is done by using the Stochastic Gradient Descent algorithm,
with: a momentum of 0.9; a weight decay of 0.0005; and a learning rate of
0.001. The learning rate of the output layer for the pose estimation has been
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Figure 3.6: Some images of the PASCAL3D+ dataset.

multiplied by a factor of 0.01, so as to guarantee that the network properly
converges. We publicly release all our implementations1.

We follow the standard procedure of the Faster R-CNN of Ren et al.
(2015) for training the models in an end-to-end fashion. This way, for each
training iteration, just one image is taken and passed through the first set
of convolutions. In a second step, a collection of 128 region proposals is
generated. These regions are used to build the batch to feed the last set
of FC layers. This batch contains 32 samples of foreground samples and 96
samples of background.

For the experimental evaluation, we use two publicly available datasets,
which have been specially designed for the evaluation of object detection and
pose estimation models: PASCAL3D+ (Xiang et al. 2014) and ObjectNet3D
(Xiang et al. 2016). We strictly follow the experimental setup described in
these datasets. In the following sections, more details are provided, as well
as a thorough analysis of the results and main conclusions obtained.

3.4.2 Results in the PASCAL3D+ dataset

PASCAL3D+ (Xiang et al. 2014) dataset is one of the largest and most
challenging datasets for the problem of object detection and poses estimation.
Technically, it consists of:

• The images and annotations of the 12 rigid object categories provided
with the PASCAL VOC 2012 dataset (Everingham et al. 2010).

1The source repository is available for the public, and it can be found at https://
github.com/gramuah/pose-estimation-study.git
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• An additional set of 22,394 images taken from the ImageNet (Deng
et al. 2009) dataset, for the same 12 categories.

On average, it has more than 3000 instances per object category. The test set
has 5823 images directly inherited from the PASCAL VOC 2012 test subset.
Figure 3.6 shows some examples of images. One can clearly observe that the
images provided contain objects “in the wild”. The standard PASCAL VOC
annotation for all the objects (i.e. category label and bounding box), has
been extended to provide a precise 3D pose. This has been done perform-
ing a manual alignment of the objects in the images with 3D CAD models.
This way, azimuth, elevation, and distance from the camera pose in 3D are
provided for each object.

For our analysis, we follow the official experimental setup of the PAS-
CAL3D+ (Xiang et al. 2014). The evaluation metric for the object detection
and pose estimation is the Average Viewpoint Precision (AVP). This AVP is
similar to the Average Precision (AP) for object detection. To compute the
AVP, every output of the detector is considered to be correct if and only if
the bounding box overlap with the ground truth annotation is larger than
50% and the viewpoint estimation for the azimuth angle is correct. When
we consider a discrete space for the viewpoint, the viewpoint estimation is
correct if it coincides with the ground truth azimuth label. On the contrary,
if the viewpoint belongs to a continuous space, then, two viewpoint labels
are correct if the distance between them is smaller than a fixed threshold of
2π
v

, where v is the number of views.

3.4.2.1 Network initialization analysis

One of the most common practices in deep learning consists in initializing a
deep network architecture with the weights of a model pre-trained in a big
dataset, such as ImageNet (Deng et al. 2009), and then start a fine-tuning
process for a specific task, typically using a different dataset.

For our problem of joint object detection and pose estimation, we also
follow this popular recipe. In a nutshell, we fine-tune our networks in the
PASCAL3D+ dataset, using for the initialization of the weights two pre-
trained models: the original VGG16 model (Simonyan and Zisserman 2014)
trained for the ImageNet dataset, and the Faster R-CNN model (Ren et al.
2015) using only the training set of the PASCAL VOC 2012 dataset. Note
that the validation set of the original PASCAL VOC 2012 is now the test
set proposed in the PASCAL3D+, therefore, we do not allow the Faster R-
CNN to be pre-trained on it. For the rest of the model weights that are not
covered by the pre-trained models, we basically follow a standard random
initialization.
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Here we simply want to explore what initialization procedure is the best
option. Therefore, for this preliminary experiment, we just use our first
architecture, the Single-path. The pose estimation is considered as a classi-
fication problem, using 360 discrete bins, and we employ the cross-entropy
loss defined in Eq. 3.4.

Init. strategy mAP mAVP 4 mAVP 8 mAVP 16 mAVP 24
ImageNet 49.5 37.6 32.0 24.6 20.2
PASCAL VOC 2012 63.6 42.4 32.2 23.6 18.9

Table 3.1: Effect of the network initialization strategy in the PASCAL3D+
for the Single-path architecture.

Table 3.1 shows the main results using the described initialization strate-
gies. In terms of object detection precision, i.e. mAP, the initialization of
our model, using the PASCAL VOC 2012 dataset is the best option, by a
considerable margin, with respect to the ImageNet based strategy. Inter-
estingly, the mAP of our model (63.6) improves the state of the art for the
object detection task in the official PASCAL3D+ leaderboard 2, where the
best mAP is of 62.5 reported by Massa et al. (2016).

In terms of joint object detection and pose estimation, we also report the
mAVP for different sets of views (4, 8, 16 and 24). The ImageNet based ini-
tialization reports slightly better results only for the more fine-grained setups
of 16 and 24 views. When just 4 or 8 views are considered, the initializa-
tion process using the PASCAL VOC 2012 is the best option, considering
its high detection precision. This first experiment also reveals that it seems
to be a trade-off between how good the system is localizing objects and how
accurate the pose predictions are. Overall, we conclude that the best initial-
ization strategy is clearly the one based on the PASCAL VOC 2012 dataset.
Therefore, for the rest of the experiments, we follow this initialization strat-
egy.

3.4.2.2 Discrete vs. Continuous approaches analysis

As we have discussed in Section 3.3.3, the pose estimation problem can be
treated following either a discrete approach, i.e. as a classification problem,
or a continuous approximation, i.e. as a regression problem. One of the main
objectives of our study is to shed light on this discussion.

2Official PASCAL3D+ leaderboard is available at http://cvgl.stanford.edu/
projects/pascal3d.html
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Losses mAP mAVP 4 mAVP 8 mAVP 16 mAVP 24

Discrete (Eq. 3.4) 63.6 42.4 32.2 23.6 18.9
Euclidean (Eq. 3.5) 64.3 47.9 34.7 23.2 17.6
Huber (Eq. 3.6) 64.5 46.1 31.5 20.2 15.2
Cyclic Cosine (Eq. 3.7) 55.6 42.1 32.2 22.5 17.5

Table 3.2: Loss function analysis for the PASCAL3D+ dataset. Object de-
tection and viewpoint estimation performances are reported.

We have carefully designed all our architectures, so they all can consider a
discrete and a continuous approximation to the pose estimation problem. We
simply have to change the Pose estimation layer and its associated loss func-
tion. Up to four different loss functions are analyzed in these experiments,
one for the discrete case and three for the continuous approach.

When the discrete scenario is considered, we follow the cross-entropy loss
function in Equation 3.4. Technically, our architectures consider 360 different
classes for the azimuth angle. For each category in the dataset (except for
the background), we learn a specific pose estimator, therefore, we need to
define a softmax function with a length of 360×C elements, where C is the
number of classes. During learning, we have opted to mask the softmax layer,
propagating only the error for the elements that correspond to the pose of
the foreground class.

For the continuous pose estimation problem, our networks learn to di-
rectly perform the regression of the two values corresponding to the conver-
sion to polar coordinates the azimuth angle. We design our deep models to
learn a particular regressor for each object category. And again, during lear-
ning, only the regressor that corresponds to the associated class label of the
sample in the training batch is allowed to propagate errors. Following this
continuous setup, we analyze the three different loss functions introduced in
Section 3.3.3: the Euclidean loss (Eq. 3.5), the Huber loss (Eq. 3.6), and
the Cyclic cosine loss (Eq. 3.7).

Table 3.2 shows the main results when the different loss functions are
used. Discrete, Euclidean and Huber losses exhibit a very similar detection
performance (mAP). Only when the Cyclic Cosine loss is used, a substantial
drop in the detection performance is reported. The reason we find to ex-
plain this fact is that during training, the Cyclic Cosine loss can eventually
produce larger gradients than the detection loss. This issue causes that the
learning process tends to focus more “attention” on the pose estimation task,
obtaining a deep model with a worse object localization accuracy. A simple
adjustment of the λ values in Eq. 3.3 did not properly work in our experi-
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ments. Another possibility could be to perform a power normalization of the
gradients produced by the different losses at the same level of the network.
However, we did not explore this option. Instead, we opted for applying the
clipping gradient strategy (Pascanu et al. 2013), with a threshold value of 5.

If we analyze now the mAVP, where both object detection and viewpoint
estimation accuracies are considered, we can observe that, in general, the
best performance is reported when the Euclidean loss based model is used.
Moreover, within the group of continuous viewpoint estimation models, the
Euclidean is the clear winner. Therefore, for the rest of the paper, when a
continuous viewpoint model is learned, we use the Euclidean loss. Interest-
ingly, the continuous approach wins the discrete model only when 4 and 8
set of views are considered. For 16 and 24 views, the discrete model retrieves
a slightly better performance. In our experiments, we have noted that the
continuous pose estimation approaches tend to offer smooth predictions that
are concentrated around the most frequent viewpoint of the training set.
However, the discrete approach, with a Softmax loss, does not suffer that
much from this pose annotation bias.

Figure 3.7 shows a detailed comparison of the performance between a
discrete and a continuous approach for a pair of representative object cate-
gories in the context of ITS solutions: car and bus. Car is the class with the
largest amount of samples in the PASCAL3D+ dataset, i.e. 1004 instances
of non-difficult objects. The annotated views for cars are distributed quite
homogeneously across all the poses, although they are slightly biased towards
the frontal and rear views. Category bus provides only 301 samples, and the
pose is clearly concentrated in the frontal view.

For the category Car, Figures 3.7(a) and 3.7(b) show that the performance
of both models (continuous and discrete) are comparable. The continuous
pose model tends to get confused with nearby views, while the discrete ap-
proach reports more errors with opposite viewpoints. The scenario changes
when one inspects the results for the Bus object category. Figures 3.7(c) and
3.7(d) show that the performance of the continuous model is slightly worse
than the one of the discrete model. Like we detail above, the continuous
model tends to concentrate its predictions around the pose annotated bias
(i.e. the frontal). Observe the bar diagram in 3.7(c), where most of the Rear
views are assigned to Frontal views.

We want to conclude this analysis, adding an additional dimension to
the discussion: the influence (in the performance) of the evaluation met-
ric used. The problem of simultaneous detection and pose estimation has
not been associated with either a clear experimental evaluation process or
an evaluation metric. Obviously, part of the problem is that discrete and
continuous approaches, being of a different nature, have been evaluated in
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(a) Car - Euclidean loss. (b) Car - Softmax loss.

(c) Bus - Euclidean loss. (d) Bus - Softmax loss.

Figure 3.7: Viewpoint estimation performance detailed analysis. A compari-
son between continuous (with Euclidean loss) and discrete (with a Softmax
loss) models for categories Car and Bus. (a) and (b) contain the results for
the car category, while (c) and (d) show the results for the bus class. First
row include pie charts showing the general performance of the models, where
it is reported the percentage of: correct detections, confusions with oppo-
site viewpoints, confusions with nearby poses, and the rest of errors (Other).
Second row shows a detailed analysis, of the same type of errors, considering
8 set of viewpoints (F: Frontal, R-F: Right-Frontal, F-L: Frontal-Left, RE:
Rear, RE-R: Rear-Right, L: Left, L-RE: Left-Rear and R: Right).
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different ways. As a result, multiple evaluation metrics have been proposed,
e.g. Pose Estimation Average Precision (PEAP) (Lopez-Sastre et al. 2011),
Average Orientation Similarity (AOS) (Geiger et al. 2012) and AVP (Xiang
et al. 2014). We refer the reader to (Redondo-Cabrera et al. 2016), where an
extensive analysis of the different evaluation metrics is presented.

We have compared the performance of the AVP and the AOS metrics.
Our experiments reveal that the AVP metric tends to favor discrete ap-
proaches, while the AOS metric favors the continuous models. For instance,
for the category bus, Figure 3.8 shows the precision-recall curves when the
different metrics are used. When the AVP metric is used, the discrete ap-
proach (Dis-AVP) obtains a higher average precision, compared to the one
reported for the continuous model (Cont-AVP). On the other hand, when
the AOS metric is followed, the average precision is slightly superior for the
continuous model, i.e. Dis-AOS < Cont-AOS.

In any case, taking into account the observations made in the work of
Redondo-Cabrera et al. (2016), we would like to remark that the AOS metric
is not an adequate measurement of the object detection and pose estimation
problem. Redondo-Cabrera et al. (2016) show that this metric is dominated
mainly by the detection performance, masquerading the pose estimation pre-
cision. Therefore, for the rest of our study, we choose to use an evaluation
procedure based only on the AVP metric.
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Figure 3.8: Detection and pose estimation performance for the bus category.
A comparison based on evaluation metrics AOS and AVP, for both continuous
(red tonalities) and discrete (blue tonalities) approaches.

Overall, based on these results, we conclude that continuous viewpoint
estimation models tend to accumulate errors at nearby poses, while discrete
pose estimation approaches errors are more likely to occur in opposite views.
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Objectively, errors with close poses are not as important as errors associated
with opposite poses. We believe that the continuous models could result in
more attractive for the problem we are dealing with. However, if the amount
of training data is not large enough, and is not well balanced in terms of
pose annotations, a discrete estimation model,i.e. based on a classifier, is
the best option. This is the normal situation in all datasets, and also in
the PASCAL3D+. Therefore, for the rest of our study, we opt for a discrete
model.

3.4.2.3 Independent vs. Joint object detection and pose estima-
tion

A quick reading of the scientific literature reveals two main models for tack-
ling the problem of detecting and estimating the pose of object categories. On
the one hand, we find those who decouple both tasks. The detector is trained
and executed separately to locate objects in the images. Subsequently, the
pose estimator is responsible for associating a pose to the detected object.
On the other hand, we have models that are trained to solve both tasks to-
gether. In this section, we analyze the performance of these two families of
works. To do so, we offer a detailed comparison of the proposed architec-
tures in Section 3.3.2, with existing state-of-the-art models that belong to
one family or another.

We need to start this experimental evaluation making the following ob-
servations with respect to the three architectures proposed in this paper.
Technically, our 3 network designs present a clear evolution in terms of the
degree of coupling of the tasks of detection and pose estimation. Our Single-
path approach clearly belongs to the joint family. Note that in this archi-
tecture, all the features of the network are shared for both tasks. With the
Specific-path architecture we advance one step forward in the decoupling de-
gree. It is a hybrid system, where the convolutional layer features are shared,
while the FC layers are split into two paths: one for the object localization
and one for the pose estimation. Finally, we propose the Specific-network.
Although it should be considered as an architecture belonging to the group
of independent, we cannot forget that it actually proposes a new paradigm,
where both networks, specialized in different tasks, can be trained end-to-end.
Note that although the networks learn their characteristics in a decoupled
way, the ROIs produced by the network in charge of the location are shared
with the network for the estimation of the pose, which somehow conditions
their learning. This end-to-end methodology clearly differs from the rest of
state-of-the-art independent models (e.g. (Tulsiani and Malik 2015) ).

Table 3.3 shows the results for all of our architectures in the PASCAL3D+
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Methods Aero Bike Boat Bus Car Chair Table MBike Sofa Train Monitor Avg.
AP Object Detection

Single-path 78.1 74.3 47.2 79.7 70.2 28.2 53.0 76.0 52.0 79.5 60.8 63.6
Specific-path 78.5 73.1 49.3 79.2 70.3 32.3 52.7 78.0 58.0 77.9 64.6 64.9
Specific-network 77.8 74.2 47.9 78.7 70.3 30.7 52.9 78.1 56.5 77.7 62.7 64.3

AVP 4 Views - Joint Object Detection and Pose Estimation
Single-path 52.4 41.7 18.6 66.2 45.3 14.2 26.1 44.7 40.4 63.7 52.9 42.4
Specific-path 56.7 54.7 24.1 66.2 50.2 17.3 30.1 55.7 44.0 61.6 60.4 47.4
Specific-network 58.4 57.0 23.2 66.3 53.3 16.9 27.9 60.9 41.5 60.1 52.6 47.1

AVP 8 Views - Joint Object Detection and Pose Estimation
Single-path 42.9 28.9 11.1 52.7 38.8 10.5 18.1 32.0 28.3 50.2 40.5 32.2
Specific-path 47.2 38.3 16.3 47.2 43.0 12.8 25.5 47.5 33.2 53.4 43.5 37.1
Specific-network 51.3 43.2 14.4 54.6 46.1 13.3 21.8 48.4 33.8 49.4 41.7 38.2

AVP 16 Views - Joint Object Detection and Pose Estimation
Single-path 22.8 19.5 7.8 54.4 31.8 6.8 14.0 20.5 15.6 42.9 23.6 23.6
Specific-path 33.4 25.9 10.1 51.3 32.7 8.0 20.1 23.8 25.9 38.0 32.5 27.4
Specific-network 36.7 30.5 11.7 57.4 39.7 8.9 21.8 29.6 25.5 38.0 31.9 30.2

AVP 24 Views - Joint Object Detection and Pose Estimation
Single-path 18.1 15.3 4.4 44.8 27.2 5.2 11.8 13.7 14.0 36.9 16.9 18.9
Specific-path 26.0 18.3 7.7 40.6 29.3 5.2 15.9 18.4 20.3 36.7 24.4 22.1
Specific-network 22.9 21.8 8.8 45.0 33.2 7.0 18.2 20.8 16.9 33.4 21.8 22.7

Table 3.3: Object detection and pose estimation results in the PASCAL3D+
dataset. Comparison between all our architectures. In gray color we show
our joint solution, i.e. the Single-path architecture. The remaining archi-
tectures (Specific-path and Specific-network) can be classified in the group of
independent approaches.

dataset. Overall, our two independent models report a better performance
than the Single-path architecture. For the specific case of 4 set of views, the
best performance is given by the Specific-path model, which achieves the best
AVP for 6 of 11 categories. For the rest of the set of views (8, 16 and 24),
the best performance is consistently achieved by our Specific-network archi-
tecture. The obtained results show that the independent approaches perform
better than joint approaches. In Figure 3.9, we show some qualitative exam-
ples produced by our Specific-network architecture.

We now compare our best model, i.e. the Specific-network, with the state-
of-the-art models in Table 3.4. First of all, our Specific-network reports the
best object detection results: see last column in Table 3.4.

Depending on the number set of views used for the evaluation in the
PASCAL3D+ we can identify different winners, even from different families
of methods. For instance, joint models retrieve the best results, in terms of
mAVP, for 4, 8 and 24 views. For 16 views, it is the independent model of
Tulsiani and Malik (2015) the one reporting the best performance.

Regarding all the results in Table 3.4 we can conclude that the indepen-
dent approaches exhibit a better accuracy over most of the joint models.

Note that the state of the art for 24 view sets is achieved by the Craft-
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Correct Prediction Bad Pose Bad Detection

Figure 3.9: Qualitative results produced by the Specific-network in the PAS-
CAL3D+ dataset. In green, we depict the ground truth annotations, while
in red we show the results produced by our model. Rectangles correspond
to the bounding boxes, while the arrows depict annotated orientations of the
objects.

CNN (Massa et al. 2016), which uses synthetic CAD models during learning.
This is also the case for the RenderCNN (Su et al. 2015). The rest of the
models, including ours, do not use any extra data in form of CAD models.
Note that the Specific-network systematically reports a better performance
than the RenderCNN, for instance. The Single-Shot approach of Poirson
et al. (2016) is the clear winner for 4 and 8 set of views, and the VP&KP
(Tulsiani and Malik 2015) wins for 16 set of views. In all these scenarios, our
Specific-network reports a higher detection accuracy than the winner model.
This aspect is relevant because the metric used tends to favor detectors with
a lower localization precision. We refer the reader to the study of Redondo-
Cabrera et al. (2016) for more details. In other words, the more detections
that are retrieved by a model, the greater the likelihood that the objects for
which pose estimations have to be assigned are objects that, being more dif-
ficult to detect, appear occluded or truncated, or that are too small, aspects
which naturally complicate a correct estimation of the viewpoint.

Every model comes with its own detector: VP&KP uses the R-CNN
(Girshick et al. 2014), Craft-CNN uses the Fast R-CNN (Girshick 2015),
and we follow the Faster R-CNN architecture (Ren et al. 2015). How can
we evaluate the actual influence of the detector in the viewpoint estimation
performance? In order to shed some light on this issue, we have decided to
perform an additional experiment. We have taken the code of the VP&KP
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Methods Aero Bike Boat Bus Car Chair Table MBike Sofa Train Monitor mAVP mAP
AVP 4 Views - Joint Object Detection and Pose Estimation

VDPM Xiang et al. (2014) 34.6 41.7 1.5 26.1 20.2 6.8 3.1 30.4 5.1 10.7 34.7 19.5 26.8
DPM-VOC+VP Pepik et al. (2012) 37.4 43.9 0.3 48.6 36.9 6.1 2.1 31.8 11.8 11.1 32.2 23.8 27.0
Craft-CNN Massa et al. (2016) - - - - - - - - - - - - -
Single-Shot Poirson et al. (2016) 64.6 62.1 26.8- 70.0 51.4 11.3 40.7 62.7 40.6 65.9 61.3 50.7 61.0
SubCNN Xiang et al. (2017) 61.4 60.4 21.1 63.0 48.7 23.8 17.4 60.7 47.8 55.9 62.3 47.5 60.7
RenderCNN Su et al. (2015) 50.0 50.5 15.1 57.1 41.8 15.7 18.6 50.8 28.4 46.1 58.2 39.7 56.9
VP&KP Tulsiani and Malik (2015) 63.1 59.4 20.3 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1 56.9
Specific-network 58.4 57.0 23.2 66.3 53.3 16.9 27.9 60.9 41.5 60.1 52.6 47.1 64.3

AVP 8 Views - Joint Object Detection and Pose Estimation
VDPM Xiang et al. (2014) 23.4 36.5 1.0 35.5 23.5 5.8 3.6 25.1 12.5 10.9 27.4 18.7 29.9
DPM-VOC+VP Pepik et al. (2012) 28.6 40.3 0.2 38.0 36.6 9.4 2.6 32.0 11.0 9.8 28.6 21.5 28.3
Craft-CNN Massa et al. (2016) - - - - - - - - - - - - -
Single-Shot Poirson et al. (2016) 58.7 56.4 19.9 62.4 42.2 10.6 34.7 58.6 38.8 61.2 49.7 45.1 60.4
SubCNN Xiang et al. (2017) 48.8 36.3 16.4 39.8 37.2 19.1 13.2 37.0 32.1 44.4 26.9 31.9 60.7
RenderCNN Su et al. (2015) 44.5 41.1 10.1 48.0 36.6 13.7 15.1 39.9 26.8 39.1 46.5 32.9 56.9
VP&KP Tulsiani and Malik (2015) 57.5 54.8 18.9 59.4 51.5 24.7 20.5 59.5 43.7 53.3 45.6 44.5 56.9
Specific-network 51.3 43.2 14.4 54.6 46.1 13.3 21.8 48.4 33.8 49.4 41.7 38.2 64.3

AVP 16 Views - Joint Object Detection and Pose Estimation
VDPM Xiang et al. (2014) 15.4 18.4 0.5 46.9 18.1 6.0 2.2 16.1 10.0 22.1 16.3 15.6 30.0
DPM-VOC+VP Pepik et al. (2012) 15.9 22.9 0.3 49.0 29.6 6.1 2.3 16.7 7.1 20.2 19.9 17.3 28.3
Craft-CNN Massa et al. (2016) - - - - - - - - - - - - -
Single-Shot Poirson et al. (2016) 46.1 39.6 13.6 56.0 36.8 6.4 23.5 41.8 27.0 38.8 36.4 33.3 60.0
SubCNN Xiang et al. (2017) 28.0 23.7 10.0 50.8 31.4 14.3 9.4 23.4 19.5 30.7 27.8 24.5 60.7
RenderCNN Su et al. (2015) 27.5 25.8 6.5 45.8 29.7 8.5 12.0 31.4 17.7 29.7 31.4 24.2 56.9
VP&KP Tulsiani and Malik (2015) 46.6 42.0 12.7 64.6 42.7 20.8 18.5 38.8 33.5 42.5 32.9 36.0 56.9
Specific-network 36.7 30.5 11.7 57.4 39.7 8.9 21.8 29.6 25.5 38.0 31.9 30.2 64.3

AVP 24 Views - Joint Object Detection and Pose Estimation
VDPM Xiang et al. (2014) 8.0 14.3 0.3 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1 29.5
DPM-VOC+VP Pepik et al. (2012) 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6 27.1
Craft-CNN Massa et al. (2016) 42.4 37.0 18.0 59.6 43.3 7.6 25.1 39.3 29.4 48.1 28.4 34.4 59.9
Single-Shot Poirson et al. (2016) 33.4 29.4 9.2 54.7 35.7 5.5 23.0 30.3 27.6 44.1 34.3 28.8 59.3
SubCNN Xiang et al. (2017) 20.7 16.4 7.9 34.6 24.6 9.4 7.6 19.9 20.0 32.7 18.2 19.3 60.7
RenderCNN Su et al. (2015) 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8 56.9
VP&KP Tulsiani and Malik (2015) 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1 56.9
Specific-network 22.9 21.8 8.8 45.0 33.2 7.0 18.2 20.8 16.9 33.4 21.8 22.7 64.3

Table 3.4: Comparison with the state-of-the-art in the PASCAL3D+
dataset.In gray color we show the joint solutions.

model provided by the authors. This model defines an independent type
architecture, where two completely decoupled and different deep networks
are used: one for detection, and one for the pose estimation. We start using
our Specific-path model which has the best detection performance, and we
run it over the training images. We then collect these detections on the
training data to enrich the ground truth data. Note that we only collect
those detections whose overlap with the original ground truth is greater than
70%. This is equivalent to the jittering technique applied in the original paper
but taking into account the bounding box distribution of the detector. With
this extended training data, we proceed to train the original pose estimator of
Tulsiani and Malik (2015). For the test images, we recover our detections and
apply the described pose estimator on them. We call this pipeline: Improved
VP&KP (Imp-VP&KP). Technically, the detector of the original VP&KP
has been improved, using the Faster R-CNN now.

As we can see in Table 3.5, our Improved VP&KP systematically reports
better results than the original work. Moreover, in Figure 3.10 we present
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Figure 3.10: Comparison of Craft-CNN and the Imp-VP&KP experiment for
24 views.
Methods Aero Bike Boat Bus Car Chair Table MBike Sofa Train Monitor Avg.

AVP 4 Views - Joint Object Detection and Pose Estimation
VP&KP Tulsiani and Malik (2015) 63.1 59.4 20.3 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1
Imp-VP&KP 70.8 66.2 37.9 75.5 61.6 17.7 39.5 68.9 49.6 67.0 62.8 56.1

AVP 8 Views - Joint Object Detection and Pose Estimation
VP&KP Tulsiani and Malik (2015) 57.5 54.8 18.9 59.4 51.5 24.7 20.5 59.5 43.7 53.3 45.6 44.5
Imp-VP&KP 63.9 61.4 29.0 63.3 56.2 15.8 32.8 65.3 42.0 60.6 53.6 49.4

AVP 16 Views - Joint Object Detection and Pose Estimation
VP&KP Tulsiani and Malik (2015) 46.6 42.0 12.7 64.6 42.7 20.8 18.5 38.8 33.5 42.5 32.9 36.0
Imp-VP&KP 51.2 43.2 20.4 68.9 47.3 17.7 30.1 40.8 36.5 44.7 38.9 39.6

AVP 24 Views - Joint Object Detection and Pose Estimation
VP&KP Tulsiani and Malik (2015) 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
Imp-VP&KP 40.7 36.4 15.8 58.5 45.8 10.7 28.5 35.9 28.3 49.5 26.6 34.3

Table 3.5: VP&KP (Tulsiani and Malik 2015) vs. Imp-VP&KP experiment.

a comparison between the Imp-VP&KP and the results of the Craft-CNN
(Massa et al. 2016) for 24 views. We can observe how by simply updating
the object detector, the model of Tulsiani and Malik (2015) can easily get
the same performance as the Craft-CNN (Massa et al. 2016).

3.4.2.4 The side effect of the pose estimation in the joint system

The systems that address the object detection and pose estimation problems
simultaneously, in principle, have multiple benefits, compared with the mod-
els that decouple both tasks. They are clearly more efficient, in terms of
computational cost. Note that during training, for instance, both tasks are
learned simultaneously. Moreover, for a test image, the localization of the
object, and the estimation of its pose is obtained at the same time, not need-
ing to process the images with a complex pipeline consisting of a detector
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followed by a viewpoint estimator. In a joint system, most of the operations
are shared between tasks.

In spite of these advantages, our experiments reveal that there is a trade-
off between doing the object localization accurately and casting a precise
estimation for the viewpoint. Ideally, a good detector should be invariant to
the different poses of an object, e.g. it should correctly localize frontal and
rear views of cars. This would push the detection models to learn represen-
tations that are not adequate to discriminate between the different poses,
being this what a good pose estimator should learn.

In Table 3.6 we report some results that can help us to understand the
mentioned trade-off. The first two rows show the results reported by Massa
et al. (2016). They show a comparison between their joint and independent
approaches. Their independent solution clearly obtains a better performance
for the object detection than the joint model, but also one can observe how
the pose estimation precision, in terms of mAVP, decreases.

It is also interesting to observe, in the last rows of Table 3.6, how this
trade-off between object detection and pose estimation performances also
affects the model of Poirson et al. (2016). We can see that when they try
to train their Single-Shot joint model to be more discriminative in terms of
poses,i.e. increasing the number of sets of views from 4 to 24, the object
detection accuracy tends to decrease.

If we now analyze the performance reported by our solutions, from the
Single-path to the Specific-network, we note that the detection performance
slightly increases for our independent models, but we are able to also report
better performance in terms of pose estimation. We explain this fact with the
type of deep architectures we have proposed. Both the Specific-path and the
Specific-network cannot be categorized as truly independent models: we do
not completely decouple the tasks of object localization and pose estimation.
Ours is an exercise or relaxing the amount of shared information between
these tasks, which defines a training process able to enforce the networks to
learn representations that are adequate for both tasks.

3.4.3 Results in the ObjectNet3D dataset
In this work, we also perform a detailed experimental evaluation of our mod-
els in the large scale dataset for 3D object recognition ObjectNet3D developed
by Xiang et al. (2016). It consists of 100 categories, 90.127 images, and more
than 200.000 annotated objects. This dataset has been carefully designed for
the evaluation of the problems of object detection, classification, and pose
estimation. Similarly to the PASCAL3D+, the object pose annotation is the
result of the manual alignment of a 3D CAD model with the target object.
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Method mAP mAVP
Craft-CNN (AlexNet) Massa et al. (2016)

Joint - 24 views 48.6 21.1
Independent - 24 views 51.6 20.5

Ours
Joint - 24 views (Single-path) 63.6 18.9
Independent - 24 views (Specific-path) 64.9 22.1
Independent - 24 views (Specific-network) 64.3 22.7

Single-Shot Poirson et al. (2016)
Joint - 4 views 61.0 50.7
Joint - 8 views 60.4 45.1
Joint - 16 views 60.0 33.3
Joint - 24 views 59.3 28.8

Table 3.6: Analysis of the trade-off between object detection and pose esti-
mation performance.

Figure 3.11 shows some examples of this dataset.
Like we describe in Section 3.4.1, we strictly follow the experimental

setup detailed in (Xiang et al. 2016). Only the training data is used to
learn the models. We then report our results using the validation and test
sets. For the evaluation metric, Xiang et al. (2016) propose a generalization
of the AVP. They basically extend the AVP to consider the prediction of
the three angles provided in the annotation: azimuth, elevation, and in-
plane rotation. Technically, the solutions must provide an estimation for
these three variables. Then, the corresponding predicted rotation matrix R̂
is constructed. The difference between the ground truth pose R, and the
prediction encoded in R̂ is computed using a geodesic distance as follows:

d(R, R̂) = 1√
2
|| log

(
R̂TR

)
|| . (3.8)

According to Xiang et al. (2016), for the AVP, an estimation is considered
to be correct if d(R, R̂) < π

6 .
With respect to the technical implementation of our models, note that

they cast a prediction for the three pose angles (azimuth, elevation and in-
plane rotation) simultaneously. We repeat the same initialization proce-
dure, using a pre-trained model on the ImageNet dataset. Again, we use
the Stochastic Gradient Descent optimizer, with a momentum of 0.9, and
the weight decay is set to 0.0005. This time we fix to 1 all the specific lear-
ning rates for each layer. The training is performed in an end-to-end fashion
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Figure 3.11: ObjectNet3D image samples.

Losses mAP mAVP
Discrete (Eq. 3.4) 59.7 40.9
Euclidean (Eq. 3.5) 60.5 41.2
Huber (Eq. 3.6) 60.4 41.5

Table 3.7: Loss function analysis for the ObjectNet3D dataset. Object de-
tection and viewpoint estimation performances are reported.

following the Faster R-CNN procedure (Ren et al. 2015).

3.4.3.1 Discrete vs. Continuous approaches analysis

In our experiments with the PASCAL3D+ dataset, one of the main conclu-
sions obtained has been that the discrete pose estimation models, based on
classifiers, give better results than continuous pose estimation models. When
the number of training samples is not large enough, and the pose annotations
are not well balanced, a discrete estimation model is generally the best option.
Now, with the novel ObjectNet3D dataset, which provides more viewpoint
annotations for more object categories, we have the opportunity to explore
whether we can obtain better performance for the continuous approaches.

We follow the same procedure described in Section 3.4.2.2 for our previous
Discrete vs. Continuous approaches analysis. We use our Single-path model,
which is trained for a continuous pose estimation task, solving a regression
problem using the Euclidean and Huber losses. When the discrete pose
estimation problem is tackled, we simply learn a classifier employing the
Softmax loss.

Table 3.7 reports the obtained results of our Single-path architecture,
trained on the training set, and evaluated over the validation set. In our
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experiments, we observe a similar performance among all the models, but this
time the continuous pose estimation architectures exhibit a small advantage
as we have previously suggested. Therefore, for the rest of the experiments
in this dataset, we use the continuous viewpoint architecture, employing the
Huber loss.

3.4.3.2 Comparison of our architectures
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Specific−network AVP: 40.1

Figure 3.12: Object detection and pose estimation performance of our Single-
path, Specific-path and Specific-network architectures in the ObjectNet3D
dataset. Both AP and AVP metrics, with their associated precision-recall
curves, are reported.

In this section, we propose to analyze the performance of all our archi-
tectures, i.e. the Single-path, the Specific-path, and the Specific-network, in
this novel dataset. We only use the training set for learning the models, and
the evaluation is carried in the validation set. Figure 3.12 shows that for
this dataset, all our models report a very similar performance. Note how the
AP reported for the object localization task is almost identical for the three
networks, while for the pose estimation the Specific-path exhibits a slightly
superior AVP. In any case, we conclude that for this dataset, there is no clear
winner within our models. Therefore, now that the amount of training data
in the ObjectNet3D dataset has increased considerably, it seems that there
are no major differences between treating the problem of locating objects and
estimating their pose jointly or separately.
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Method mAP mAVP
AlexNet Xiang et al. (2016) 54.2 35.4
VGG-16 Xiang et al. (2016) 67.5 42.6
Our 64.2 46.7

Table 3.8: Comparison with state-of-the-art models in the ObjectNet3D
dataset.

3.4.3.3 A comparison with the state of the art

In this section, we provide a comparison with the state-of-the-art models
reported by Xiang et al. (2016). For the joint 2D detection and continuous
3D pose estimation task, they propose a modification of the Fast R-CNN
(Girshick 2015) model, using two different base architectures: the VGG16
(Simonyan and Zisserman 2014) and the AlexNet (Krizhevsky et al. 2012).
Technically, they add a viewpoint regression FC branch just after the FC7
layer. Their network is trained to jointly solve three tasks: classification,
bounding box regression, and viewpoint regression. The FC layer for view-
point regression is of size 3 × 101, i.e. , for each class, it predicts the three
angles of azimuth, elevation and in-plane rotation. The smoothed L1 loss is
used for viewpoint regression.

Table 3.8 shows the comparison with the state-of-the-art models, but
now in the test set of the ObjectNet3D dataset. On the first two rows of the
table, we include the results of the VGG-16 and the AlexNet based models
reported by Xiang et al. (2014). The last row shows the performance of our
Specific-path model. First, note that we are able to report a better detection
performance than the AlexNet based solution of Xiang et al. (2014). Second,
although the VGG16 based architecture of Xiang et al. (2014) reports the
best detection results, if we simultaneously consider the object localization
and viewpoint estimation accuracies, i.e. using the AVP metric, our model
is the clear winner. This fact is particularly relevant if we consider that the
pose estimation is bounded by the detection performance, according to the
evaluation metric used. Overall, this implies that our model is more accurate
in predicting poses.

In a detailed comparison of our solution with the VGG16 based archi-
tecture used by Xiang et al. (2014), we find the following differences that
also help to explain the results obtained. First, while our model is trained
fully end-to-end, the approach of Xiang et al. (2016) consists in training the
Region Proposal Network of Ren et al. (2015) first, and then using these pro-
posals to fine-tune their model for the object detection and pose estimation
tasks. Therefore, their model is mainly trained to optimize the detection per-
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Correct Prediction Bad Pose Bad Detection

Figure 3.13: Qualitative results produced by the Specific-path in the Ob-
jectNet3D. In green, we depict the ground truth annotations, while in red
we show the results produced by our model. Rectangles correspond to the
bounding boxes, while the arrows depict annotated orientations of the ob-
jects.

formance, which explains why our Specific-path reports a slightly lower mAP.
Second, there are significant differences in how the pose estimation is per-
formed. In the work of Xiang et al. (2016), a regressor is trained to directly
predict viewpoint values in degrees. We, instead, decompose each angle into
two polar coordinates. This decomposition naturally takes into account the
cyclic nature of viewpoint angles. This explains why our Single-path model
reports a better performance for the pose.

We finally show some qualitative results for the ObjectNet3D dataset in
Figure 3.13.

3.5 Conclusion
This chapter has contributed to the research community with a complete
analysis of the state of the art for the problem of simultaneous object de-
tection and pose estimation. We have designed an experimental validation,
using the PASCAL3D+ and ObjectNet3D datasets, where we can evaluate
the degree of coupling that exists among the tasks of object localization and
viewpoint estimation. For doing so, we have introduced three deep learning
architectures, which are able to perform a joint detection and pose estima-
tion, where we gradually decouple these two tasks. With the proposed models
we have achieved the state-of-the-art performance in both datasets. We have
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Figure 3.14: Object detection and pose estimation qualitative examples pro-
duced by our model for some of the most common vehicles types. In green
is depicted the annotated ground truth for the bounding box and the pose;
in red are drawn the predicted bounding box and the estimated pose.

concluded that decoupling the detection from the viewpoint estimation task
have benefits on the overall performance of the models.

Furthermore, we have extended the comparative analysis of all our ap-
proaches considering the pose estimation as a discrete or a continuous pro-
blem, according to the two families of works in the literature. In our experi-
ments, we have analyzed the main factors that need to be considered during
the system design and training. Despite the similar performance among the
different approaches, we have observed a difference between the discrete and
the continuous models. We conclude that the continuous approaches are
more sensitive to the pose bias in the annotation than the discrete models.

How far are we from a realistic ITS application? The models developed
in this work achieve good performance and they could potentially be applied
to ITS application. In Figure 3.14 we show some extra qualitative examples
produced by our best model for a broad type of vehicles such as ground,
rail, naval, or aerial. Despite the good performance in detecting objects, the
pose estimation is still far from a robust solution. The reason is given by the
difficulty of the problem, due to two factors:

1. The bias in the dataset annotation and construction. The data co-
llection process of natural images often leads a bias for the most com-
mon views of the objects.

2. The similarity in terms of appearance between different poses. In spe-
cial, for those objects with a high degree of symmetry.

The first step to fight against these difficulties and towards a realistic ITS
solutions, consists in expanding the existing datasets. Increasing the diversity
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of the collected samples, and having uniform collections of viewpoints is an
effective way towards the development of robust ITS applications.
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Chapter 4

Contributions

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

Alan Turing, Computing machinery and
intelligence.

4.1 Summary and main contributions
The main goal of this thesis has been the design of new deep neural networks
models to improve some of the existing techniques that are often used in some
of the main problems of the ITS field. Specifically, this thesis has focused
on two of the major problems in the ITS community: the vehicle counting
problem and the simultaneous object detection and pose estimation. In the
following lines the main contributions that are presented in this work are
briefly summarized:
• The object counting problem has been addressed. During the develop-

ment of this topic, two top-tier publications were obtained. The first
publication was (Oñoro-Rubio and López-Sastre 2016). It was pub-
lished in the European Computer Vision Conference (ECCV) in 2016
where 415 papers were accepted with an acceptance rate of 26.7%.
This publication is cited by 121 scientific papers by the time this the-
sis is written, according to Google Scholar. The second publication is
(Oñoro-Rubio et al. 2018). It was published in the British Machine
Vision Conference (BMVC) in 2018, where 255 papers were published
with an acceptance rate of 29.5%. In the following bullets the main
scientific contributions are summarized:
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– An extensive overview of the most commonly used datasets and
thorough review of the literature have been proposed, focusing on
the object counting problem.

– The problem of the scale associated with the perspective of the
scene has been covered. In previous works, such as in (Chan et al.
2008), this problem has been addressed by adding a perspective
map that was used to scale the features. This thesis has studied
the impact of the perspective map on the performance. In ad-
dition, two new neural network architectures were proposed: the
CCNN and the Hydra model. The CCNN is a single scale fully
convolutional neural network that learns to map image patches
into density maps. The Hydra model is a perspective-aware neu-
ral network that learns an internal representation that combines
multiple scales at the same time. The proposed ideas have been
exhaustively evaluated on three of the most popular datasets.

– With the effectiveness of the skip-connection mechanism for the
training of deep neural networks, and with the succeed of the hour-
glass networks in the field, a new self-gating mechanism which is
applied to the short-cut connections of the U-Net was introduced.
The proposed mechanism helps to block the potentially noisy fea-
tures that are passed to the top layers by learning to control the
information flow that is forwarded in the short-cut connections. A
complete set of experiments has shed light on the working mech-
anism of the proposed idea, and prove the effectiveness of the
proposed mechanism by testing it in several datasets.

– A complete review of the most recent state-of-the-art methods and
a complete discussion were proposed.

• The object detection and pose estimation topic have been covered dur-
ing the second half of this thesis. As for the result, the article (Oñoro-
Rubio et al. 2018) was published in the Image and Vision Computing
journal with a 2.875 5-year impact factor and Q1 quartile. In the lines
below the contributions introduced by this thesis in the object detection
and pose estimation field are summarized:

– An extensive review of the problem with a complete summary of
the most relevant works and methods have been presented.

– The compromise between object detection and the viewpoint es-
timation tasks have been spotted. Detecting objects requires rep-
resentations that are invariant to the viewpoint while estimating
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the viewpoint needs to be a discriminative task. With that in
mind, the Faster-RCNN was modified leading to three novel deep
learning architectures where the object detection and the view-
point estimation tasks were gradually decoupled. A complete set
of experiments on two important datasets made evident the afore-
mentioned trade-off. With our experiments, we observed how the
proposed decoupled models such as the Specific-network or the
Specific-path, perform better than our Single-path model, which
fully couples both tasks.

– The problem of whether the pose estimation should be solved as a
classification problem, or as a regression problem has been also ex-
plored. Despite a similar performance among all the approaches, it
has been observed small differences which showed that the contin-
uous models are more sensitive to the pose bias of the annotation
than the discrete approaches.

4.2 Future research
There is still much work to be done in the problems addressed in this thesis
before the solutions can be efficiently implemented in a realistic ITS product.
Despite the extremely fast development of the AI field impulsed by many
companies and governments, there is still a gap between the developed models
in the laboratory and their deployment in a real-world scenario. Although
this thesis has presented several models that have been shown to be powerful
for the object counting and for the object detection and pose estimation
problems, these are the main directions for future work:

• The current counting by regression systems tend to underestimate the
total count. It seems there is a bias on the systems where the estimated
amount of objects is on average inferior to the ground truth. This effect
is probably caused by the density maps that are used as background.
The density maps tend to have large areas with 0 values which can
be the reason of the undercounting effect. Further research and new
systems are needed, where alternatives to the density map estimation
are evaluated.

• In this thesis, the object detection and pose estimation problem has
been deeply analyzed. However, extracting more explanations of the
predictions for the pose may be helpful to understand what are the main
difficulties of the current solutions. Extending some recent models, like
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(Ribeiro et al. 2016), and (Selvaraju et al. 2017), could allow us to
discover new difficulties that need to be addressed.

• The problem of domain adaptation is an active research area (Ganin
and Lempitsky 2015), and (Redko et al. 2017). The performance of a
system trained for a certain dataset can drastically be reduced when it
is tested on another dataset. Therefore, extending the proposed models
for efficiently adapting the trained models to new scenarios without
adding additional labeled data to the training set is a fundamental
problem.

• Data acquisition and data labeling are the utmost fundamental steps
that directly impact on system performance ((Uijlings et al. 2018), and
(Konyushkova et al. 2018)). However, this is an expensive process that
involves human supervision. Therefore, to explore weakly-supervised
or unsupervised approaches for the problems proposed could be an
interesting direction for future work.

• Out of distribution situation is a problem of any AI system. In a de-
ployed system, it may happen that the test distribution changes over
time. Having a mechanism to detect when the test distribution has
changed with respect to the trained model is an open and active re-
search line (DeVries and Taylor 2018). An evaluation of the impact
of this type of technique in the final performance of the solutions is a
direction worth to be explored.
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M. Fenzi, L. Leal-Taixé, B. Rosenhahn, and J. Ostermann. Class generative
models based on feature regression for pose estimation of object categories.
In CVPR, 2013.

Luca Fiaschi, Ullrich KÃűthe, Rahul Nair, and Fred A. Hamprecht. Learning
to count with regression forest and structured labels. In ICPR, 2012.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by
backpropagation. In ICML, 2015.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
the KITTI vision benchmark suite. In CVPR, 2012.

Ross Girshick. Fast R-CNN. In ICCV, 2015.



BIBLIOGRAPHY 89

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
CVPR, 2014.

D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich. Viewpoint-
aware object detection and continuous pose estimation. Image and Vision
Computing, 30(12):923–933, 2012.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS, 2010.

R. Guerrero-Gomez-Olmedo, R. J. Lopez-Sastre, S. Maldonado-Bascon, and
A. Fernandez-Caballero. Vehicle tracking by simultaneous detection and
viewpoint estimation. In IWINAC, 2013.
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R. López-Sastre, C. Redondo-Cabrera, P. Gil-Jiménez, and S. Maldonado-
Bascón. ICARO: Image collection of annotated real-world objects.
http://agamenon.tsc.uah.es/Personales/rlopez/data/icaro, 2010.

R. J. Lopez-Sastre, T. Tuytelaars, and S. Savarese. Deformable part models
revisited: A performance evaluation for object category pose estimation.
In ICCV 2011, 1st IEEE Workshop on Challenges and Opportunities in
Robot Perception, 2011.

D. G. Lowe. Object recognition from local scale-invariant features. In CVPR,
volume 2, pages 1150–1157 vol.2, Sept 1999.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, November 2004. ISSN 0920-5691.

Chen Change Loy, Ke Chen, Shaogang Gong, Tao Xiang, Ke Chen, Shaogang
Gong, Tao Xiang, Chen Change Loy, Ke Chen, Shaogang Gong, and Tao
Xiang. Crowd counting and profiling: Methodology and evaluation, 2013.

Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In IJCAI, 1981.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinear-
ities improve neural network acoustic models. In in ICML Workshop on
Deep Learning for Audio, Speech and Language Processing, 2013.

Francisco Massa, Renaud Marlet, and Mathieu Aubry. Crafting a multi-task
CNN for viewpoint estimation. In BMVC, 2016.



92 BIBLIOGRAPHY
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ning short-cut connections for object counting. In BMVC, 2018.

M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific
multiview object localization. In CVPR, 2009.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In ICML, 2013.

Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3D
geometry to deformable part models. In CVPR, June 2012.

Viet-Quoc Pham, Tatsuo Kozakaya, Osamu Yamaguchi, and Ryuzo Okada.
Count forest: Co-voting uncertain number of targets using random forest
for crowd density estimation. In ICCV, December 2015.

Patrick Poirson, Phil Ammirato, Cheng-Yang Fu, Wei Liu, Jana Kosecka,
and Alexander C. Berg. Fast single shot detection and pose estimation. In
3DV, 2016.

Vincent Rabaud and Serge J. Belongie. Counting crowded moving objects.
In CVPR, pages 705–711, 2006.

Viresh Ranjan, Hieu Le, and Minh Hoai. Iterative crowd counting. In ECCV,
2018.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of
domain adaptation with optimal transport. 2017.

J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In CVPR,
2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In CVPR, 2016.

C. Redondo-Cabrera and R. Lopez-Sastre. Because better detections are
still possible: Multi-aspect object detection with boosted hough forest. In
BMVC, 2015.



BIBLIOGRAPHY 93

C. Redondo-Cabrera, R. Lopez-Sastre, and T. Tuytelaars. All together now:
Simultaneous object detection and continuous pose estimation using a
hough forest with probabilistic locally enhanced voting. In BMVC, 2014.

C. Redondo-Cabrera, R. J. Lopez-Sastre, Y. Xiang, T. Tuytelaars, and
S. Savarese. Pose estimation errors, the ultimate diagnosis. In ECCV,
2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: To-
wards real-time object detection with region proposal networks. In NIPS,
2015.
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Those who can imagine anything, can create the impossible.
Alan Turing.
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