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Abstract

Let P(t) ∈ P2(K(t)) be a rational projective parametrization of a plane
curve C. In this paper, we introduce the notion of limit point, PL, of
P(t), and some remarkable properties of PL are obtained. In particular,
if the singularities of C are P1, . . . , Pn and PL (all of them ordinary) and
their respective multiplicities are m1, . . . ,mn and mL, we show that T (s) =∏n

i=1HPi
(s)mi−1HPL

(s)mL−1, where T (s) is the univariate resultant of two
polynomials obtained from P(t), and HP1(s), . . . , HPn(s), HPL

(s) are the fibre
functions of the singularities. The fibre function of a point P is a polynomial
HP (s) whose roots are the fibre of P . Thus, a complete classification of the
singularities of a given plane curve, via the factorization of a resultant, is
obtained.

Keywords: Algebraic Parametric Curve; Rational Parametrization;
Singularities; Limit Point; T–function; Fibre Function.

1. Introduction

A given algebraic curve can be represented in different ways, such as
implicitly by defining polynomials, parametrically by rational functions, or
locally parametrically by power series expansions around a point. These rep-
resentations all have their individual advantages: an implicit representation
allows us to easily decide whether a given point lies on a given curve, a
parametric representation allows us to generate points of a given curve over
the desired coordinate fields, and using power series expansions one can,
for instance, overcome the numerical problems of tracing a curve through a
singularity.
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In the last years, important advances in the study and knowledge of
a given algebraic variety (which is in general a curve or a surface) from
its parametric representation has been obtained (see [7], [8], [16], etc.). In
particular, an essential problem in computer aided geometric design (CAGD)
is the detection of singularities (see e.g. [2], [3], [4], [12], [13], [14], [18] or [19]).
Understanding the singularities of algebraic curves and surfaces is important
for understanding their geometry. In fact, a difficult problem in CAGD is
the handling of self-intersections, and the theory of singularities of algebraic
varieties is potentially a tool for handling this problem. For instance, once
the singularities are located, one can, use numerical methods to follow curve
branches (see e.g. [9]).

In [12], several results in this sense are provided. In particular, some
formulae for the computation of the multiplicity of a point are presented.
These formulae simply involve the computation of the degree of a polynomial,
directly determined from the parametrization. A further analysis on this
topic can be found in [2] where, using the direct relation existing between
the cardinality of the fibre of a given point and its multiplicity, it is shown
how easily identify the singularities of the curve as those points whose fibre
has more than one element. This topic is also addressed by some other
authors although from a different point of view (see e.g. [1] and [3]).

In this paper, we observe that the relation between fibre and multiplicity
fails for one point of the curve, the called limit point. Given a rational
plane curve C over an algebraically closed field of characteristic zero K, and
a projective parametrization P(t) ∈ P2(K(t)) of degree d, the limit point is
defined as PL := limt→∞P(t)/td. The point PL is on the curve, since P(t) ∈ C
for every t ∈ K and C is a closed set. However, it is not “well–represented”
by the parametrization and in fact, its fibre is usually empty, i.e., there is
no t0 ∈ K such that P(t0) = PL. We say in this case that the limit point is
unreachable via the parametrization P(t). This circumstance involves some
difficulties, since the connection between fibre and multiplicity is lost and
then, many results based on that connection do not hold.

Every rational parametrization has a limit point. If PL is not an affine
point or it is a reachable affine point, P(t) is a normal parametrization. Oth-
erwise, if PL is an affine point and it is not reachable via the parametrization,
P(t) is not normal and PL is the critical point (see Subsection 6.3 in [16]).
Thus, under a normal parametrization, every affine point of the curve is
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reachable via P(t). However, the problem persists, since PL remains a point
of the curve (affine or at infinity) which is not “well–represented” by P(t)
and, thus, its multiplicity is not the cardinality of its fibre. In fact, some
important results presented in [2] and [12] hold for every point of the curve
but for PL. In particular, the main theorem in [2] (Theorem 3) holds only if
PL is not a singularity.

The main goal in this paper is to explore the nature of the limit point and
analyze the relation between its fibre and its multiplicity. As a remarkable
result, we show that PL is reachable via P(t) only if it is a singular point of
the given curve. In addition, we generalize Theorem 3 in [2] independently
on whether the limit point is regular or not. In this way, we get a result
that allows us to easily compute the ordinary singularities of a rational plane
curve. Using the ideas presented in Section 4 in [2], one may easily generalize
the results presented in this paper to the case of a given rational space curve
in any dimension. Thus, a complete classification of the singularities of a
given space curve, via the factorization of a resultant, is also obtained. A
natural but more difficult problem is to consider the case of a given algebraic
surface defined by a rational parametrization. In this case, similar results are
expected to be provided. We will deal with this problem in a future work.

The structure of the paper is as follows. In Section 2, we provide the
notation and some previous results. In Section 3 the notion of limit point,
PL, of the given parametrization P(t) is introduced and some important
properties concerning the multiplicity of PL are obtained. We show these
properties with some illustrative examples. In Section 4, we first summarize
some previous properties concerning the T–function introduced in [2]. In
particular, Theorem 4.1 holds under the assumption that the limit point, PL,
is regular. The goal of Section 4 is to remove this condition and generalize
the result to the case that PL is a singularity. The proof of the generalized
theorem as well as a previous technical lemma appear in Section 5. These
results are all illustrated with suitable examples.

2. Notation and previous results

Let C be a rational plane curve over an algebraically closed field of char-
acteristic zero, K, defined by the projective parametrization

P(t) = (p1(t), p2(t), p(t)) ∈ P2(K(t)),
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where gcd(p1, p2, p) = 1. We assume that C is not a line. Let d1 = deg(p1),
d2 = deg(p2), d3 = deg(p) and d = max{d1, d2, d3}. Then, we write

p1(t) = a0 + a1t+ a2t
2 + · · ·+ adt

d

p2(t) = b0 + b1t+ b2t
2 + · · ·+ bdt

d

p(t) = c0 + c1t+ c2t
2 + · · ·+ cdt

d.

Note that, under these conditions, it holds that the degree of C is d (see
Theorem 6 in [12]).

Associated with P(t), we consider the induced rational map ψP : K −→
C ⊂ P2(K); t 7−→ P(t), and deg(ψP) denotes the degree of the rational map
ψP (see e.g. [6] pp. 80 or [17] pp. 143). We recall that the birationality
of ψP , i.e. the properness of P(t), is characterized by deg(ψP) = 1 (see [6]
and [17]). Furthermore, the degree of a rational map can be seen as the
cardinality of the fibre of a generic element (see Theorem 7, pp. 76 in [17]).
We will use this characterization in our reasoning. For this purpose, we
denote by FP(P ) the fibre of a point P ∈ C via the parametrization P(t);
that is FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

It is well known that almost all points of C (except at most a finite number
of points) are generated via P(t) by the same number of parameter values,
and this number is deg(ψP) (see Subsection 2.2. in [16]). Thus, intuitively
speaking, deg(ψP) measures the number of times that P(t) traces the curve
when the parameter takes values in K. In Chapter 4 in [16], it is proved that
deg(ψP) = degt(G), where G(s, t) = gcd(G1(s, t), G2(s, t), G3(s, t)) and

G1(s, t) = p1(s)p(t)− p(s)p1(t)
G2(s, t) = p2(s)p(t)− p(s)p2(t)
G3(s, t) = p1(s)p2(t)− p2(s)p1(t)

(1)

Observe that the parametrization is proper if and only if degt(G) = 1.

The cardinality of the fibre of ψP is the same for almost all points on
C; that is, all but finitely many points in C are generated, via P(t), by
exactly degt(G) parameter values. Nevertheless, for finitely many exceptions,
the cardinality may vary. We can compute the fibre of a particular point
P = (a : b : c) ∈ P2(K) by solving the corresponding fibre equations

φ1(t) := ap(t)− cp1(t) = 0
φ2(t) := bp(t)− cp2(t) = 0
φ3(t) := ap2(t)− bp1(t) = 0.

(2)
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Observe that P(t0) = P if and only if φ1(t0) = φ2(t0) = φ3(t0) = 0. This
motivates the following definition.

Definition 2.1. Let P ∈ P2(K), and a parametrization P(t) ∈ P2(K(t)).
We define the fibre function of P via P(t) as HP (t) := gcd(φ1, φ2, φ3).

Remark 2.2. Note that the roots of HP determine the fibre of P . In addition,
we observe that the above expression for HP may be simplified if we consider
the following cases (see Remark 2 in [2]):

• If P is an affine point then HP (t) = gcd(φ1(t), φ2(t)).

• If P is a point at infinity then HP (t) = gcd(p(t), φ3(t)).

Remark 2.3. Observe that if P is a generic point of the input curve, P =
(x : y : 1), it holds that, up to constants in K, Rest(φ1, φ2) = f(x, y)deg(HP ),
where f is the implicit polynomial defining the input curve and the resultant
is the determinant of the Sylvester resultant (see e.g Subsection 4.5 in [16]).
However, it holds that the determinant of the Bézout matrix is (up to a sign)
the determinant of the Sylvester matrix (see e.g. [15]).

Throughout this paper we assume that P(t) is a proper parametrization
(otherwise, we obtain a proper one by reparametrizing P ; see e.g. [11]). This
means that deg(ψP) = degt(G) = 1 (see (1)) and, so, the cardinality of the
fibre is 1 for almost every point of the curve. However, this cardinality may
be different for finitely many points. In fact, the fibre of a singular point is
greater than 1 (see e.g. [12]). The method proposed in [2] for computing the
ordinary singularities of a rational curve is based on this idea. On the other
hand, the cardinality of the fibre may be less than 1 if we consider the limit
point of the parametrization.

Definition 2.4. We define the limit point of the parametrization P(t) as

PL = lim
t→∞
P(t)/td = (ad : bd : cd).

From this definition, it follows that every parametrization has only one
limit point. In addition, PL ∈ C since P(t)/td ∈ C for every t ∈ K and C is
a closed set. However, PL is not a conventional point. The following results,
which are proved in [12], hold for every point of the curve but for PL.

5



Theorem 2.5. Let C be a rational algebraic curve defined by a proper para-
metrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) =

∏n
i=1(t− si)ki be its fibre function. Then, C has n tangents at P of

multiplicities k1, . . . , kn, respectively.

Corollary 2.6. Let C be a rational algebraic curve defined by a proper pa-
rametrization P(t), with limit point PL. Let P 6= PL be a point of C and let
HP (t) be its fibre function. Then, multP (C) = deg(HP ).

Theorem 2.5 and Corollary 2.6 show that there exists a strong relation
between the fibre of a point and its multiplicity, but they fail if the point
is PL since this point is not “well–represented” by the parametrization. In
fact, most of the times it holds that FP(PL) = ∅, i.e., there is no t0 ∈ K such
that P(t0) = PL. In this case, we say that the limit point is unreachable via
the parametrization. In order to illustrate the concept of limit point, let us
consider the ellipse defined by the projective parametrization

P(t) = (t2 − 1, t2 − t, t2 + 1) ∈ P2(C(t))

The limit point is, in this case, the affine point PL = (1, 1). In Figure 1
(left), we plot the curve using P(t) with −20 ≤ t ≤ 20. In Figure 1 (right),
we plot it using P(t) with −60 ≤ t ≤ 60. Note that PL is not reached by the
parametrization but it would be reached in the limit, when t tends to ∞.

Figure 1: Curve C plotted from P(t) with −20 ≤ t ≤ 20 (left) and −60 ≤ t ≤ 60 (right)

We say that P(t) is a normal parametrization if PL is an infinity point
or it is a reachable affine point; otherwise, P(t) is not normal and it is said
that PL is the critical point (see Subsection 6.3 in [16]).
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In the next section some important properties as well as essential results
concerning the limit point are obtained. In particular, we see that PL is
a special point of C whose multiplicity has to be carefully computed. In
addition, we prove that if the limit point is reached by P(t), then it is a
singularity. These results will be used in Section 4, where the relation with
the T–function is studied. The T–function provides essential information
about the singularities of the given curve C. More precisely, its factorization
provides the fibre functions of each singularity as well as its corresponding
multiplicity (see [2]).

3. The limit point and the hidden multiplicity

In Definition 2.4, we introduce the notion of limit point of the parametriza-
tion P(t) as

PL = lim
t→∞
P(t)/td = (ad : bd : cd),

where d = max{d1, d2, d3}, and d1 = deg(p1), d2 = deg(p2), d3 = deg(p).
One may determine the fibre of PL from the corresponding fibre function,
that we denote for this particular point as HL(t). That is,

HL(t) := gcd(φL1 , φ
L
2 , φ

L
3 ),

where 
φL1 (t) = adp(t)− cdp1(t)
φL2 (t) = bdp(t)− cdp2(t)
φL3 (t) = adp2(t)− bdp1(t).

(3)

The functions φL1 , φL2 and φL3 are obtained as particular cases of those
introduced in (2). Because of the importance of this point, we use a specific
notation for them.

Remark 3.1. Remark 2.2 can be applied similarly for this special case (when
the limit point is considered). More precisely, depending on whether PL is an
affine point or an infinity point, its fibre function can be expressed as follows:

• If PL is an affine point, then HL(t) = gcd(φL1 (t), φL2 (t)).

• If PL is a point at infinity, then HL(t) = gcd(p(t), φL3 (t)).
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Note that we can not compute the multiplicity of PL from the fibre since
Corollary 2.6 does not hold in this particular case. Although PL is a point
of C, it is not “well–represented” by the parametrization P(t) and hence, the
cardinality of the fibre does not provide its multiplicity. In the following,
and throughout this section, we illustrate this statement and we present a
method that allows to compute the multiplicity of PL.

For this purpose, we consider a reparametrization of P(t), U(t), such that
PL is not the limit point (that is, U(t) has a limit point UL 6= PL). First,
we assume that PL is not reachable via P(t), i.e., there is no s0 ∈ K such
that P(s0) = PL (afterwards, we will analyze the case of PL reached by
the parametrization P(t)). In this case, FP(PL) = ∅ and the system in (3)
does not have any solution. Then, we consider U(t) = P(1/t), and we write
U(t) = (u1(t), u2(t), u(t)), where

u1(t) = p1(1/t)t
d = a0t

d + a1t
d−1 + · · ·+ ad

u2(t) = p2(1/t)t
d = b0t

d + b1t
d−1 + · · ·+ bd

u(t) = p(1/t)td = c0t
d + c1t

d−1 + · · ·+ cd.

The limit point of U(t) is

UL = lim
t→∞
U(t)/td = (a0 : b0 : c0) = P(0)

(note that a0 = b0 = c0 = 0 is not possible since we are assuming that
gcd(p1, p2, p)=1). On the other hand, PL is a usual point of C, which can be
obtained as PL = U(0). Since U(t) = P(1/t) and P(t) is proper, we get that
U(t) is also a proper parametrization. Thus, we may apply Corollary 2.6 to
determine the multiplicity of PL by computing the cardinality of FU(PL).

In order to get it, we obtain the corresponding fibre function, that we
denote as HUL (t). We observe that if HUL (si) = 0, for some si 6= 0, then
U(si) = PL and thus P(1/si) = PL, which is impossible by assumption, since
PL can not be reached by P(t). Thus, we have that HUL (t) = tr for some
r ∈ N. Moreover, we have that r ≥ 1, since U(0) = PL.

Therefore, from Corollary 2.6, we get that the multiplicity of PL is r ≥ 1.
We refer to this multiplicity (that can not be obtained from the parametriza-
tion P(t)) as the hidden multiplicity of the limit point PL, and we represent it
as mH . In the following, we illustrate the above procedure with an example.
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Example 3.2. Let C be a rational plane curve defined by the projective
parametrization

P(t) = (t6+2t5+2t4+3t3+2t2+t+1, t6+2t5+t4+t3+t2, t4+t2) ∈ P2(C(t)).

One may check that P is proper since degt(G) = 1 (see (1)). In addition, the
limit point is PL = limt→∞P(t)/t6 = (1 : 1 : 0). In order to compute the fibre
of PL, we solve the system given in (3) that can be expressed as (see Remark
3.1)

p(t) = t4 + t2 = 0, p1(t)− p2(t) = 2t3 + t+ 1 = 0.

This system does not have any solution, which implies that PL is not reached
by the parametrization P(t). We consider the reparametrization

U(t) = P (1/t) = (t6 + t5 + 2t4 + 3t3 + 2t2 + 2t+ 1, t4 + t3 + t2 + 2t+ 1, t4 + t2)

and now PL is a usual point obtained as PL = U(0). Furthermore, the fibre
function is HUL (t) = t2 and thus, from Corollary 2.6, we conclude that PL is
a singular point of C of multiplicity 2 (note that mH = 2).

Now, let us assume that the limit point, PL, can be reached by the
parametrization, i.e. FP(PL) 6= ∅. Then, HL(t) =

∏n
i=1(t − si)

ki . If
we could apply Corollary 2.6, we would get that the multiplicity of PL is
deg(HL) = k1 + · · ·+ kn. However, this is not true since the fibre of PL, via
P(t), does not determine correctly the multiplicity of PL.

In order to illustrate this statement, we reason as above, and we consider
the reparametrization U(t) = P(1/t). Let us assume that si 6= 0 for i =
1, . . . , n (see Remark 3.4). Then, for each root si of HL we have that 1/si
is a root of HUL , since U(1/si) = P(si) = 0. In addition, HUL has one new
root given by t = 0, since U(0) = PL. Thus, from HL(t) =

∏n
i=1(t− si)ki , we

easily get that

HUL (t) = tr
n∏
i=1

(t− 1/si)
ki . (4)

Finally, by applying Corollary 2.6 (note that PL is not the limit point of
U(t)), we conclude that

multPL
(C) = deg(HUL ) = r + k1 + · · ·+ kn.

Observe that part of this multiplicity is k1 + · · · + kn = deg(HL). It is
given by the degree of the fibre function HL(t), which is obtained from the
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parametrization P(t). We refer to this multiplicity as the visible multiplicity
of the limit point PL. However, there is another part, r, that could not be
obtained via P(t); this is the hidden multiplicity (mH) introduced above. In
the following definition, we summarize these notions.

Definition 3.3. Let C be a rational algebraic plane curve defined by a proper
parametrization P(t) with limit point PL. We denote mL = multPL

(C), and
we refer to deg(HL) as the visible multiplicity of PL. Then, mL = deg(HL)+
mH , where mH denotes the hidden multiplicity of PL.

Remark 3.4. 1. The above reasoning is not correct if si = 0 for some i =
1, . . . , n, since 1/si is not a root of the polynomial HUL (t). We observe
that in this situation, PL is the limit point also with the parametrization
U(t) (note that UL = P(0) = PL) and thus, we can not apply Corollary
2.6. This problem can be solved by considering a new reparametrization
of the form Q(t) = P(θt/(t − 1)), where θ 6= 0 and θ 6= si for every
i = 1, . . . , n (see Section 4). Reasoning with this reparametrization, we
get an equivalent result.

2. Many authors (see e.g. [4]) consider the homogeneous parametrization
P(t, h) = (p1(t/h)hd, p2(t/h)hd, p(t/h)hd). The multiplicity of PL is
correctly obtained by using this parametrization. Observe that every
point of C is reachable by P since P(t) = P(t, 1) for every t ∈ K, and
P(1, h) = U(h) (which implies that PL = P(1, 0)). Therefore, P(t, h)
provides the visible and the hidden multiplicity of the limit point PL. In
fact, it is easy to check that the corresponding fibre function is

HL(t, h) = hr
n∏
i=1

(t− sih)ki ,

where P(si) = PL, i = 1, . . . , n, si 6= sj, i 6= j, k1 + · · · + kn is the
visible multiplicity and r is the hidden one (see the analogy with (4)).

In the following proposition, we prove an important property concerning
the limit point. Namely, if the limit point is reached by P(t), then it is a
singularity. However, clearly the reciprocal is not true (see Example 3.2).

Proposition 3.5. If the limit point is reached by the parametrization P(t),
then it is a singularity.
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Proof: The multiplicity of PL is given by

multPL
(C) = k1 + · · ·+ kn +mH ,

where k1 + · · · + kn = deg(HL) is the visible multiplicity, and mH is the
hidden multiplicity (see Definition 3.3). Note that mH ≥ 1 (U(0) = PL), and
since PL is reached by the parametrization, then some of its multiplicity is
visible, i.e. k1 + · · · + kn ≥ 1. Therefore, multPL

(C) ≥ 2 and thus, PL is a
singularity. �

Example 3.6. Let C be the rational curve defined over C by the projective
parametrization P(t) =

(t6+2t5+3t4+3t2+4t3+2t+1,−t4−t3−t2−2t−1, t7+3t5+t4+3t3+t+2t2+1).

One may check that P is proper since degt(G) = 1 (see (1)). In addition, the
limit point is PL = limt→∞P(t)/t7 = (0 : 0 : 1). The fibre of PL is obtained
by solving the system in (3), that can be expressed as (see Remark 3.1){

p1(t) = t6 + 2t5 + 3t4 + 3t2 + 4t3 + 2t+ 1 = 0
p2(t) = −t4 − t3 − t2 − 2t− 1 = 0.

The gcd of both polynomials is HL(t) = (t + 1), and thus FP(PL) = {−1}
(i.e. P(−1) = (0 : 0 : 1) = PL). If we could apply Corollary 2.6, we would
deduce that PL is a regular point since its multiplicity is 1. However, this is
not true. Indeed: let us consider the reparametrization U(t) = P(1/t) =

(t7+2t6+3t5+4t4+3t3+2t2+t,−t7−2t6−t5−t4−t3, t7+t6+2t5+3t4+t3+3t2+1).

Note that U(0) = (0 : 0 : 1) = PL. The fibre of PL via U(t), FU(PL), is
given by the common roots of the equations{

q1(t) = t7 + 2t6 + 3t5 + 4t4 + 3t3 + 2t2 + t = 0
q2(t) = −t7 − 2t6 − t5 − t4 − t3 = 0.

The gcd of both polynomials is HUL (t) = t(t + 1) and thus, the cardinality
of the fibre, FU(PL), is 2. Hence, PL is a double point of C. The visible
multiplicity is 1, and the hidden multiplicity is 1.

In Figure 2, we plot the curve C in a neighborhood of the limit point PL.
More precisely, in Figure 2 (left), we plot C using P(t) with −50 ≤ t ≤ 50. In
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Figure 2: Curve C plotted from P(t) with −50 ≤ t ≤ 50 (left) and −100 ≤ t ≤ 100 (right)

Figure 2 (right), we plot C using P(t) with −100 ≤ t ≤ 100. Note that PL =
(0, 0) is reached once by P(t) although it would be reached again in the limit,
when t tends to ∞. This second time (as the limit of the parametrization)
does not have any fibre but it provides a second tangent (which increases the
multiplicity of PL) that is not detected from the parametrization P(t).

4. The limit point and the T–function

In this section, we consider C a rational plane curve over an algebraically
closed field of characteristic zero, K, defined by the projective parametriza-
tion

P(t) = (p1(t), p2(t), p(t)) ∈ P2(K(t)),

where gcd(p1, p2, p) = 1. Let d1 = deg(p1), d2 = deg(p2), d3 = deg(p) and
d = max{d1, d2, d3}. Then, deg(C) = d.

In [2], a method for computing the singularities of C from P(t) is proposed.
The method is based on the construction and factorization of a polynomial
called the T–function, which may be defined in the following three ways:

T (s) =
R12(s)

p(s)λ12−1
=

R13(s)

p1(s)λ13−1
=

R23(s)

p2(s)λ23−1
, (5)

where λij = min{degt(Gi), degt(Gj)}, i, j ∈ {1, 2, 3}, i < j, and

Rij(s) = Rest

(
Gi(s, t)

t− s
,
Gj(s, t)

t− s

)
.
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The T–function provides essential information about the singularities of
the given curve C. More precisely, the factorization of the T–function gives
the fibre functions of the singularities of C. We remark that from the fibre
function of a point P , one may determine the multiplicity of P as well as its
fibre and the tangent lines at P . In [2], some important results concerning
the T–function are shown. In the following, we summarize the main theorem.

Theorem 4.1. (Theorem 3 in [2]) Let C be a rational algebraic plane curve
defined by a parametrization P(t), with limit point PL. Let P1, . . . , Pn be
the singular points of C, with multiplicities m1, . . . ,mn respectively. Let us
assume that they are ordinary singularities and that Pi 6= PL for i = 1, . . . , n.
Then, it holds that

T (s) =
n∏
i=1

HPi
(s)mi−1.

Theorem 4.1 holds under the assumption that the limit point, PL, is
regular. In Theorem 4.2 we eliminate this condition and generalize both
results to the case that PL is a singularity. For this purpose, we state the
following theorem whose proof will be presented in Section 5.

Theorem 4.2. Let C be a rational algebraic plane curve of degree d defined
by a proper parametrization P(t) with limit point PL. Let P1, . . . , Pn and
PL be the singularities of C and suppose that all of them are ordinary. For
each Pi (i = 1, . . . , n), let mi be its multiplicity and HPi

its fibre function.
In addition, let mL and HL be the multiplicity and the fibre function of PL.
Then,

T (s) =
n∏
i=1

HPi
(s)mi−1HL(s)mL−1.

Corollary 4.3. Let mL be the multiplicity of PL and mH the hidden multi-
plicity of PL. It holds that

deg(T ) = (d− 1)(d− 2)−mH(mL − 1).

Proof: From Theorem 4.2, we deduce that

deg(T ) =
n∑
i=1

(mi − 1)deg(HPi
) + (mL − 1)deg(HL),
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where P1, . . . , Pn, PL are the singularities of C, and m1, . . . ,mn,mL their
respective multiplicities. From Corollary 2.6, we get that deg(HPi

) = mi.
Furthermore, since deg(HL) = mL −mH (see Definition 3.3), we get that

deg(T ) =
n∑
i=1

mi(mi − 1) + (mL −mH)(mL − 1).

Finally, the corollary follows using the genus formula (see Chapter 3 in [16])
which implies that

n∑
i=1

mi(mi − 1) +mL(mL − 1) = (d− 1)(d− 2).

�

Remark 4.4. 1. Theorem 4.2 shows that Theorem 4.1 holds regardless of
wether PL is regular or not. If it is not regular, its fibre function appears
as a factor of T (s), raised to its multiplicity, as it happens for the other
singularities. Besides, if it is singular, mL = 1 and the corresponding
factor vanishes. Thus, we conclude that Theorem 4.1 may be stated
without imposing any condition on the limit point.

2. By using Theorem 4.2, we get that:

(a) If for each factor HPi
(s)mi−1 it holds that deg(HPi

) = mi, i =
1, . . . , n, then the limit point is regular.

(b) If there is a factor HPi0
(s)mi0

−1 such that deg(HPi0
) < mi0, then

Pi0 is the limit point and mH = mi0 − deg(HPi0
).

3. Corollary 4.3 allows us to easily determine if the limit point is singu-
lar. In that case, we have that deg(T ) < (d − 1)(d − 2); otherwise, if
deg(T ) = (d− 1)(d− 2), it means that mL = 1 and PL is regular.

Remark 4.5. In general, different conjugate roots of the T–function appear
all together under a unique irreducible polynomial. These roots are associ-
ated to families of conjugated parametric points (see Definition 4 in [2]). In
[12] (Theorem 16), it is shown that all the points in such a family have the
same multiplicity and character. Let us assume that T (s) includes a factor
m(s)k−1, where m(s) is an irreducible polynomial of degree l. Then, m(s)
contains the fibre functions of l/k singular points of multiplicity k (see The-
orem 5 in [2]).
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The following example shows how useful the above results are in order to
study the singularities of a rational plane curve defined parametrically.

Example 4.6. In Example 3.6, we consider the rational plane curve C de-
fined over C by the projective parametrization P(t) =

(t6+2t5+3t4+3t2+4t3+2t+1,−t4−t3−t2−2t−1, t7+3t5+t4+3t3+t+2t2+1).

We compute the T–function by applying (5), and we get that up to constants
in C,

T (s) = (s2 − s− 1)(s3 + s+ 1)2

(s8 + 3s7 + 13s6 + 22s5 + 43s4 + 47s3 + 47s2 + 44s+ 16)(s2 + 1)6(s+ 1).

In the following, we analyze each of the five factors of T (s):

• The first factor is f1(s) = s2 − s − 1. It has degree 2 and its power is
1, which means that f1 provides a double point. Indeed, f1 has two real
roots, 1/2 + 1/2

√
5 and 1/2 − 1/2

√
5. By substituting them into the

parametrization we get the affine double point P1 = (1 : −1/5 : 1).

• The second factor is f2(s) = (s3 +s+1)2. It has degree 3 and its power
is 2, which means that f2 provides a triple point. If we compute the
three roots of f2 and substitute them in the parametrization we get the
infinity triple point P2 = (1 : 0 : 0).

• The third factor is f3(s) = s8 + 3s7 + 13s6 + 22s5 + 43s4 + 47s3 +
47s2 + 44s + 16. It is an irreducible polynomial of degree 8 and its
power is 1. This implies that f3 is associated to a set of double points
which defines a family of conjugated parametric points (see Remark
4.5). More precisely, since the degree of the irreducible polynomial is
8, we deduce that this family contains 4 double points.

• The fourth factor is f4(s) = (s2 + 1)6. This factor may be difficult
to interpret since one could think that the fibre function is (s2 + 1)
and its power is 6. However, this is not correct. Actually, the fibre
function is (s2 + 1)2 and its power is 3, which means that f4 provides a
point of multiplicity 4. In order to avoid mistakes, one has to compute
one of the roots, namely s = I, the corresponding point of the curve,
P4 = P(I) = (0 : 1 : 0), and the associate fibre function. From Remark
2.2, we get that HP4(s) = (s2 + 1)2.

15



• The last factor is f5(s) = s+1, and it provides the point P5 = P(−1) =
(0 : 0 : 1). The fibre function of P5 is HP5(s) = s + 1. Observe that
HP5 has degree 1 and its power is 1. This situation is described in
statement 2 (b) of Remark 4.4. More precisely, we have that m5 =
2 > deg(HP5) = 1, which implies that P5 is the limit point. Its total
multiplicity is mL = 2 and its hidden multiplicity is mH = 1 (see
Definition 3.3).

We observe that since C is rational and the singularities are ordinary, it
holds that

g = (d− 1)(d− 2)/2−
k∑
i=1

mi(mi − 1)/2, and g = 0

where g is the genus of C, d is the degree of the given curve, and Pi, i =
1, . . . , k are the ordinary singular points of multiplicity, mi, i = 1, . . . , k, re-
spectively. Observe that a point Pi of multiplicity mi degenerates to mi(mi−
1)/2 double points. In this particular example, one may check that this for-
mulae holds since the point of multiplicity 3 degenerates to 3 double points,
the point of multiplicity 4 degenerates to 6 double points, and thus, since
d = 7 and g = 0, it holds that 3 + 6 + 4 + 2 = 15 = 6 · 5/2.

Figure 3: The curve C has two real affine double points at (1 : −1/5 : 1) and (0 : 0 : 1)

In Figure 3, we plot the curve C. One may see the two real affine double
points P1 and P5.
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As we state in the Introduction, using the ideas presented in Section 4
in [2], one may easily generalize the results presented in this paper to the
case of a given rational space curve in any dimension. In particular, one may
construct a polynomial, TE(s), that plays the same role as the T–function,
T (s), introduced for the case of rational plane curves. Thus, a similar result
to the stated in Theorem 4.2 can be obtained for rational space curves.

Complexity of the computation

As we stated in the introduction, one of the main topics in the study
of algebraic varieties, in particular curves and surfaces, from the parametric
point of view, is the analysis of singularities. Here, rational parametrizations
provide interesting approaches from the computational point of view.

For instance, for the case of parametric plane curves, some interesting
results are provided in [4], where the singular points are computed using the
implicitization matrix derived from the µ–basis of the curve. In addition,
a conjecture is presented which concerns the computation of the parameter
values corresponding to all the singularities, from the Smith normal forms
of certain Bézout resultant matrices derived from µ–bases. In [19], a natural
one to one correspondence is derived between the singular points of a ratio-
nal planar curve and the axial moving lines that follow that curves. This
correspondence is applied to compute and analyze the singular points of low
degree rational planar curves, by using µ–bases. The µ–basis approach is
also used in [3], where it is given a complete factorization of the invariant
factors of certain resultant matrices, built from birational parameterizations
of rational plane curves, in terms of the singular points of the curve and their
multiplicity graph. This also allows to prove the validity of some conjectures
introduced in [4]. A new technique for detecting singularities is introduced
in [18]. The idea is to compute a µ–basis for the parametrization and to gen-
erate, from this µ–basis, three planar algebraic curves of different bidegrees,
whose intersection points correspond to the parameters of the singularities.
In order to find these intersection points, a new sparse resultant matrix for
these three bivariate polynomials is constructed. Afterwards, authors com-
pute the parameter values corresponding to the singularities by applying
Gaussian elimination to the resultant matrix.

All these works are based on the use of µ–basis. Besides, there is a second
line of work, based on the use of univariate resultants. For instance, in [12],
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a method for detecting and analyzing the singularities of a rational curve
(including the non-ordinary ones) by computing a univariate resultant, is
provided. This approach is based on the ideas introduced in Subsection 4.3
in [16], and it generalizes some previous results presented in [1], [5], [10] and
[20]. In [2], some important results concerning the analysis of the singularities
are also presented. These results are based on the paper [12] and hence, the
main technique used is the computation of a univariate resultant. We recall
that in this paper, we generalize the results in [2] concerning the T–function,
T (s), which is defined by means of a univariate resultant.

On the other side, the study of singularities in parametric space curves
has been addressed in [2], [14], [18] and [19]. In this case, also the most
important methods used have to do with the computation of µ–bases and
univariate resultants. For the case of surfaces, some works have also been
published (see e.g. [13]).

The results presented in this paper are based on the computation of only
one univariate resultant and the previous results summarized above depend
on the computation of µ–basis and afterwards, in general, an additional re-
sultant has to be computed. Thus, given a rational plane curve C, of degree
d, defined by the projective parametrization P(t) = (p1(t), p2(t), p(t)) the
complexity of computing the T–function is O(d3). The methods based on
the computation of µ–basis need to compute the µ–basis which complexity is
O(d3), and the resultant of the µ–basis which complexity is O(d2). We note
that the degrees of the µ–basis, q1(t) = (q11, q12, q13) and q2(t) = (q21, q22, q23),
are d1 and d2 with d1 + d2 = d and thus, the size of resultant of µ–basis is
smaller than that the resultant needed to compute the T–function. Observe
that a µ–basis is a basis of syzygy module with lowest degrees and the poly-
nomials Gi(t, s), i = 1, 2 introduced in this paper (see (1)) are defined from
(p, 0,−p1) and (0, p,−p2) which are called trivial syzygy of P(t) and they
can be generated by a µ–basis.

Therefore, one may conclude that the time complexity of the different
existing methods is O(d3), where d is the degree of the input curve.
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5. Proof of Theorem 4.2 in Section 4

This section is devoted to prove Theorem 4.2 stated in Section 4. For this
purpose, throughout this section, we use the reparametrization

Q(t) := P
(

θt

t− 1

)
(6)

introduced in Remark 3.4. Observe that

Q(t) =

(
p1

(
θt

t− 1

)
(t− 1)d, p2

(
θt

t− 1

)
(t− 1)d, p

(
θt

t− 1

)
(t− 1)d

)
and then, we may write Q(t) = (q1(t), q2(t), q(t)), where

q1(t) = a0(t− 1)d + a1θt(t− 1)d−1 + · · ·+ adθ
dtd

q2(t) = b0(t− 1)d + b1θt(t− 1)d−1 + · · ·+ bdθ
dtd

q(t) = c0(t− 1)d + c1θt(t− 1)d−1 + · · ·+ cdθ
dtd.

(7)

Note that, with this parametrization, PL is not the limit point but a con-
ventional point which can be obtained as PL = Q(1). The new limit point
is

QL = lim
t→∞
Q(t)/td = P(θ), (8)

and we can choose θ ∈ K \ {0} so that QL is not a singularity. In addition,
if p(θ) 6= 0, we get that QL is an affine regular point. Note that every point
of the curve reached via P(t), but QL, is also reached via Q(t). Indeed, for

any s0 6= θ it holds that Q
(

s0
s0−θ

)
= P(s0). The only exception arises when

s0 = θ, since P(θ) = QL.

Taking into account this last statement, we have that for each si ∈ FP(PL)
there exists ti = si/(si − θ) ∈ FQ(PL) (note that si 6= θ since θ /∈ FP(PL);
we recall that P(θ) = QL 6= PL). However, there is a value in FQ(PL) which
does not have a correspondence in FP(PL); namely t = 1. Note that this
value belongs to FQ(PL), since Q(1) = PL, but there is no si ∈ K such that
si

si − θ
= 1 (note that θ ∈ K \ {0}). As a consequence, the fibre function of

PL under the parametrization Q(t) is

H̃L(t) = (t− 1)r
n∏
i=1

(
t− si

si − θ

)ki
, (9)
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where k1 + · · ·+ kn is the visible multiplicity and r is the hidden multiplicity
(see the analogy with (4)). Hence, we observe that deg(H̃L) = k1 + · · ·+kn+
r = deg(HL) +mH = mL (see Definition 3.3).

Summarizing, we have a new parametrization of C such that the limit
point, QL, is regular; this allows us to apply the results obtained in [2].

For this purpose, let G̃1(s, t), G̃2(s, t) and G̃3(s, t) be the equivalent poly-
nomials to G1(s, t), G2(s, t) and G3(s, t) (see (1)) computed from the new
parametrization Q(t). That is,

G̃1(s, t) = q1(s)q(t)− q(s)q1(t)
G̃2(s, t) = q2(s)q(t)− q(s)q2(t)
G̃3(s, t) = q1(s)q2(t)− q2(s)q1(t).

(10)

In addition, let δ̃i = degt(G̃i), λ̃ij = min{δ̃i, δ̃j}, i, j = 1, 2, 3, and

R̃ij(s) = Rest

(
G̃i(s, t)

t− s
,
G̃j(s, t)

t− s

)
, for i, j = 1, 2, 3, i < j. (11)

The T–function obtained from Q is

T̃ = R̃12/q
λ̃12−1 = R̃13/q

λ̃13−1
1 = R̃23/q

λ̃23−1
2 . (12)

Now, Theorem 4.1 states that

T̃ (s) =
n∏
i=1

H̃Pi
(s)mi−1H̃L(s)mL−1

and deg(T̃ ) = (d− 1)(d− 2) (QL is regular and we apply Corollary 3 in [2]).

We will use both statements later but, before, let us introduce the fol-
lowing technical lemma, which describes the relation between R12 and R̃12

under the assumption that degt(G1) = degt(G2).

Lemma 5.1. Let degt(G1) = degt(G2). Then, it holds that

R̃12(s) = (s− 1)2(d−1)
2

R12

(
θs

s− 1

)
.
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Proof: We prove the lemma by considering two steps. In the first one, we
obtain the form of R12

(
θs
s−1

)
. In the second one, we compute R̃12(s) and we

compare it with R12

(
θs
s−1

)
.

Step 1

First, we recall that

R12(s) = Rest

(
G1(s, t)

t− s
,
G2(s, t)

t− s

)
,

where G1(s, t) = p1(s)p(t)−p(s)p1(t) and G2(s, t) = p2(s)p(t)−p(s)p2(t). In
addition, since δ1 = δ2, where δ1 := degt(G1) and δ2 := degt(G2), and taking
into account that δ1 = max{d1, d3} and δ2 = max{d2, d3} (see Remark 1 in
[2]), we get that δ1 = δ2 = max{d1, d2, d3} = d.

In the following, we denote G∗1 := G1/(t− s) and G∗2 := G2/(t− s), and
thus R12(s) = Rest(G

∗
1, G

∗
2), where degt(G

∗
1) = degt(G

∗
2) = d − 1 (note that

degs(G
∗
1) = degs(G

∗
2) = d − 1). If we see G∗1 and G∗2 as polynomials in the

variable t, that is, G∗1, G
∗
2 ∈ (K[s])[t], we may write

G∗1(s, t) = lct(G
∗
1)

d−1∏
i=1

(t− αi(s)) and G∗2(s, t) = lct(G
∗
2)

d−1∏
j=1

(t− βj(s)), (13)

where lct(G
∗
1) and lct(G

∗
2) are their respective leader coefficients in K[s] and

α1(s), . . . , αd−1(s) and β1(s), . . . , βd−1(s) their d− 1 roots, respectively (that
is, G∗1(s, αi(s)) = G∗2(s, βj(s)) = 0 for i, j = 1, . . . , d − 1). Now, taking into
account the properties of the resultant, we have that

R12(s) = lct(G
∗
1)
d−1lct(G

∗
2)
d−1

d−1∏
i=1

d−1∏
j=1

(αi(s)− βj(s)). (14)

By substituting t = θ in (13), we obtain

G∗1(s, θ) = lct(G
∗
1)

d−1∏
i=1

(θ − αi(s)) and G∗2(s, θ) = lct(G
∗
2)

d−1∏
j=1

(θ − βj(s)) (15)

so, up to constants in K \ {0},

lct(G
∗
1) =

G∗1(s, θ)∏d−1
i=1 (αi(s)− θ)

and lct(G
∗
2) =

G∗2(s, θ)∏d−1
j=1(βj(s)− θ)

. (16)
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In the following, we denote Φ1(s) :=
∏d−1

i=1 (αi(s) − θ) and Φ2(s) :=∏d−1
j=1(βj(s)− θ). Thus, taking into account that G∗i (s, t) := Gi(s, t)/(t− s),

we get that

lct(G
∗
1) =

G1(s, θ)

(s− θ)Φ1(s)
and lct(G

∗
2) =

G2(s, θ)

(s− θ)Φ2(s)
. (17)

By substituting both expressions in (14), we obtain that

R12(s) =

(
G1(s, θ)

(s− θ)Φ1(s)

)d−1(
G2(s, θ)

(s− θ)Φ2(s)

)d−1 d−1∏
i=1

d−1∏
j=1

(αi(s)− βj(s)) (18)

and therefore,

R12

(
θs

s− 1

)
=

(
G1

(
θs
s−1 , θ

)(
θs
s−1 − θ

)
Φ1

(
θs
s−1

))d−1

(
G2

(
θs
s−1 , θ

)(
θs
s−1 − θ

)
Φ2

(
θs
s−1

))d−1 d−1∏
i=1

d−1∏
j=1

(
αi

(
θs

s− 1

)
− βj

(
θs

s− 1

))

=

(
G1

(
θs
s−1 , θ

)
Φ1

(
θs
s−1

) )d−1(
G2

(
θs
s−1 , θ

)
Φ2

(
θs
s−1

) )d−1(
s− 1

θ

)2(d−1)

d−1∏
i=1

d−1∏
j=1

(
αi

(
θs

s− 1

)
− βj

(
θs

s− 1

))
. (19)

Step 2

First, we observe that the coefficient of the term td in q(t) is p(θ). Thus,

deg(q) = d (note that θ is such that p(θ) 6= 0) and hence, degt(G̃1) = d.

Indeed: we have that G̃1(s, t) = q1(s)q(t)− q(s)q1(t) (see (10)), so it follows

that degt(G̃1) = d if deg(q1) < d. On the other hand, if deg(q1) = d, it could

happen that degt(G̃1) < d if q1(s)q(θ) − q(s)q1(θ) = 0 but this would imply
that q1(s)/q(s) is a constant and, thus, C is a line, which is impossible by

assumption. Reasoning similarly, we deduce that degt(G̃2) = d.

Let G̃∗1 := G̃1/(t−s) and G̃∗2 := G̃2/(t−s). Then, R̃12(s) = Rest(G̃
∗
1, G̃

∗
2).

Similarly as before, we have that, G̃∗1 and G̃∗2 are polynomials in the variables
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s and t, with degree d− 1 in both variables. Moreover, reasoning as in Step
1, we have that

G̃∗1(s, t) = lct(G̃
∗
1)

d−1∏
i=1

(t− α̃i(s)), G̃∗2(s, t) = lct(G̃
∗
2)

d−1∏
j=1

(t− β̃j(s)), (20)

and

R̃12(s) = lct(G̃
∗
1)
d−1lct(G̃

∗
2)
d−1

d−1∏
i=1

d−1∏
j=1

(α̃i(s)− β̃j(s)). (21)

Note also that lct(G̃
∗
1) = lct(G̃1) =

q1(s)(c0 +c1θ+ · · ·+cdθ
d)−q(s)(a0 +a1θ+ · · ·+adθ

d) = q1(s)p(θ)−q(s)p1(θ)

which can be written as

p1(θs/(s−1))(s−1)dp(θ)−p(θs/(s−1))(s−1)dp1(θ) = G1(θs/(s−1), θ)(s−1)d.

Reasoning similarly with lct(G̃
∗
2), we conclude that

lct(G̃
∗
1) = G1

(
θs

s− 1
, θ

)
(s−1)d and lct(G̃

∗
2) = G2

(
θs

s− 1
, θ

)
(s−1)d. (22)

Now, we focus on the roots α̃1(s), . . . , α̃d−1(s). On the one side, all of them

verify that G̃∗1(s, α̃i(s)) = 0. On the other side, note that

G̃1(s, t) = q1(s)q(t)− q(s)q1(t) =

= p1

(
θs

s− 1

)
(s−1)dp

(
θt

t− 1

)
(t−1)d−p

(
θs

s− 1

)
(s−1)dp1

(
θt

t− 1

)
(t−1)d

= (s− 1)d(t− 1)dG1

(
θs

s− 1
,
θt

t− 1

)
.

Thus, G̃∗1(s, α̃i(s)) = 0, which is equivalent to

G1

(
θs

s− 1
,
θα̃i(s)

α̃i(s)− 1

)
= 0,

implies that

αi

(
θs

s− 1

)
=

θα̃i(s)

α̃i(s)− 1
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and thus

α̃i(s) =
αi
(
θs
s−1

)
αi
(
θs
s−1

)
− θ

.

Reasoning similarly with β̃1(s), . . . , β̃d−1(s), we deduce that

α̃i(s) =
αi
(
θs
s−1

)
αi
(
θs
s−1

)
− θ

and β̃j(s) =
βj
(
θs
s−1

)
βj
(
θs
s−1

)
− θ

(23)

for each i, j = 1, . . . , d− 1.

Now, by substituting (22) and (23) on (21), we get

R̃12(s) =

(
G1

(
θs

s− 1
, θ

)
(s− 1)d

)d−1(
G2

(
θs

s− 1
, θ

)
(s− 1)d

)d−1
d−1∏
i=1

d−1∏
j=1

(
αi
(
θs
s−1

)
αi
(
θs
s−1

)
− θ
−

βj
(
θs
s−1

)
βj
(
θs
s−1

)
− θ

)
=

= G1

(
θs

s− 1
, θ

)d−1
G2

(
θs

s− 1
, θ

)d−1
(s− 1)2d(d−1)

d−1∏
i=1

d−1∏
j=1

(
αi
(
θs
s−1

) (
βj
(
θs
s−1

)
− θ
)
− βj

(
θs
s−1

) (
αi
(
θs
s−1

)
− θ
)(

αi
(
θs
s−1

)
− θ
) (
βj
(
θs
s−1

)
− θ
) )

=

= G1

(
θs

s− 1
, θ

)d−1
G2

(
θs

s− 1
, θ

)d−1
(s− 1)2d(d−1)∏d−1

i=1

∏d−1
j=1

(
αi
(
θs
s−1

)
− βj

(
θs
s−1

))
θ∏d−1

i=1

(
αi
(
θs
s−1

)
− θ
)d−1∏d−1

j=1

(
βj
(
θs
s−1

)
− θ
)d−1 =

=

(
G1

(
θs
s−1 , θ

)
Φ1

(
θs
s−1

) )d−1(
G2

(
θs
s−1 , θ

)
Φ2

(
θs
s−1

) )d−1

(s− 1)2d(d−1)θ(d−1)
2

d−1∏
i=1

d−1∏
j=1

(
αi

(
θs

s− 1

)
− βj

(
θs

s− 1

))
.
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Finally, by comparing this expression with (19), we observe that, up to con-
stants,

R̃12(s)

(s− 1)2d(d−1)
=
R12(θs/(s− 1))

(s− 1)2(d−1)
,

which proves the lemma. �

Remark 5.2. Reasoning as in the proof of Lemma 5.1, one shows that

1. If p1(θ) 6= 0, then R̃13(s) = (s− 1)2(d−1)
2
R13

(
θs
s−1

)
.

2. If p2(θ) 6= 0, then R̃23(s) = (s− 1)2(d−1)
2
R23

(
θs
s−1

)
.

Now, we are ready to deal with the main item of the section. More
precisely, we prove Theorem 4.2 (see Section 4), where Theorem 4.1 is gen-
eralized to the case that the limit point, PL, is a singularity of the curve. In
order to show this result, Lemma 5.1 and Remark 5.2 will be required.

Proof of Theorem 4.2

We consider two steps in the proof of the theorem. First, we assume that
δ1 = δ2, which allows us to use Lema 5.1 and second, we eliminate this
requirement and we prove that the result holds anyway.

Step 1

According to Lema 2 in [2], for each singularity Pi, i = 1, . . . , n it holds
that T (s) = HPi

(s)mi−1T ∗i (s), where T ∗i is a polynomial such that gcd(HPi
, T ∗i ) =

1. Note that gcd(HPi
, HPj

) = 1 for i 6= j (otherwise, one single value of the
parameter would generate two different points of the curve). Hence, we have
that

T (s) =
n∏
i=1

HPi
(s)mi−1V (s), (24)

where V (s) is a polynomial such that gcd(HPi
, V ) = 1, for i = 1, . . . , n.

Now, we focus on the polynomial V . We observe that if V (s0) = 0
then T (s0) = 0 which implies that R12(s0) = R13(s0) = R23(s0) = 0 (see
(5)). Moreover, we note that d = max{d1, d2, d3}, so it can not happen that
ad = bd = cd = 0. In the following we assume w.l.o.g., that ad 6= 0 and we
consider R13 (if ad = 0 and bd 6= 0, we would consider R23 and if ad = bd = 0
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and cd 6= 0 we would use R12). Then, let ad 6= 0. We have that if V (s0) = 0,
then

R13(s0) = Rest(G
∗
1(s, t), G

∗
3(s, t))(s0) = 0,

and thus, one of the following statements hold:

1. The polynomials G∗1(s0, t) and G∗3(s0, t) have a common root, say t =
s1 6= s0, which implies that the point P = P(s0) = P(s1) is a singu-
larity. However, it can not be P = Pi for i = 1, . . . , n since it would
imply that gcd(HPi

, V ) 6= 1 (both polynomials would have (t − s0) as
a common factor). Thus, we have that P(s0) = PL and HL(s0) = 0.

2. It holds that gcd(lct(G
∗
1), lct(G

∗
3))(s0) = 0. Note that

lct(G
∗
1) = lct(G1) = p1(s)cd − p(s)ad = φL1 (s) and

lct(G
∗
3) = lct(G3) = p1(s)bd − p2(s)ad = φL3 (s)

and then, gcd(lct(G
∗
1), lct(G

∗
3)) = gcd(φL1 (s), φL3 (s)). In addition, since

we are assuming that ad 6= 0, we may write

φL2 (s) =
bd
ad
φL1 (s)− cd

ad
φL3 (s),

and, hence, gcd(φL1 (s), φL3 (s)) = gcd(φL1 (s), φL2 (s), φL3 (s)) = HL(s). Fi-
nally we conclude that

gcd(lct(G
∗
1), lct(G

∗
3)) = HL(s).

In both cases, V (s0) = 0 implies that HL(s0) = 0. Now, let us check that the
reciprocal holds, that is, we assume that HL(s0) = 0 (i.e., that P(s0) = PL)
and we prove that V (s0) = 0. By applying (14) to R13, we deduce that it
is divided by gcd(lct(G

∗
1), lct(G

∗
3)) = HL(s). Thus, HL(s0) = 0 implies that

R13(s0) = 0. In addition, by combining (5) and (24),

R13(s) = T (s)p1(s)
λ13−1 =

n∏
i=1

HPi
(s)mi−1V (s)p1(s)

λ13−1

so we get that
n∏
i=1

HPi
(s0)

mi−1V (s0)p1(s0)
λ13−1 = 0.
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Observe that gcd(HL, HPi
) = 1 (otherwise, we would have Pi = PL). Hence,∏n

i=1HPi
(s0)

mi−1 6= 0. On the other hand, P(s0) = PL implies that p1(s0) =
ad and since we are assuming ad 6= 0, we conclude that V (s0) = 0. Thus, we
have proved that V (s0) = 0 if and only if HL(s0) = 0 and, as a consequence,
we have that V (s) = HL(s)ν for some ν ∈ N. By substituting above, we get

R13(s) =
n∏
i=1

HPi
(s)mi−1HL(s)νp1(s)

λ13−1. (25)

Now, we compute ν. For this purpose, we use the reparametrization

Q(t) = P
(

θt

t− 1

)
,

and we take θ such that p1(θ) 6= 0 and P(θ) 6= Pi, for i = 1, . . . , n. We

consider the polynomials G̃i, i = 1, 2, 3 and R̃ij (i, j = 1, 2, 3) introduced

in (10) and (11), respectively. In addition, let δ̃i = degt(G̃i) and λ̃ij =

min{δ̃i, δ̃j} (i, j = 1, 2, 3). Then, we may construct the T–function for the
new parametrization, Q(t), as follows (see (12)):

T̃ = R̃13/q
λ̃13−1
1 .

We recall that the limit point for Q(t) is QL = P(θ) (see (8)). Since we
have chosen θ such that P(θ) 6= Pi for i = 1, . . . , n, we are ensuring the new
limit point to be regular. Thus, we can apply Corollary 3 in [2] and we get

that deg(T̃ ) = (d− 1)(d− 2). In addition, we have that p1(θ) 6= 0 and thus

deg(q1) = d, which implies that δ̃1 = δ̃3 = λ̃13 = d. Hence,

deg(R̃13) = deg(T̃ · qλ̃13−11 ) = (d− 1)(d− 2) + d(d− 1) = 2(d− 1)2.

Since QL is a regular point, we may apply Theorem 4.1 and we get the
following equality:

R̃13(s) =
n∏
i=1

H̃Pi
(s)mi−1H̃L(s)mL−1q1(s)

d−1 (26)

where H̃Pi
(s) is the fibre function of the singular point Pi (i = 1, . . . , n)

and H̃L(s) is the fibre function of the singular point PL (note that now PL
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is not the limit point). All these fibre functions are computed from the
parametrization Q(t).

Now, let us compare the expressions in (25) and (26). By computing
degrees on (25), we have that

degt(R13(s)) = degt(
n∏
i=1

HPi
(s)mi−1) + degt(HL(s)ν) + degt(p1(s)

λ13−1).

On the other hand, from (26),

degt(R̃13(s)) = degt(
n∏
i=1

H̃Pi
(s)mi−1) + degt(H̃L(s)mL−1) + degt(q1(s)

d−1).

We observe that Pi 6= PL and Pi 6= QL for each i = 1, . . . , n (note that
QL = P(θ) and we have chosen θ such that P(θ) 6= Pi for i = 1, . . . , n).

Then, by applying Corollary 2.6, we get that deg(HPi
) = deg(H̃Pi

) = mi for

i = 1, . . . , n and, therefore, deg(
∏n

i=1HPi
(s)mi−1) = deg(

∏n
i=1 H̃Pi

(s)mi−1).
On the other hand, we have that deg(p1) = d (we are assuming that ad 6= 0)
and deg(q1) = d (the coefficient of td in q1 is p(θ) and we are assuming that
p(θ) 6= 0). Furthermore, ad 6= 0 implies that d1 = d ≥ d2, d3 and thus,
δ1 = δ3 = λ13 = d, so we have that deg(p1(s)

λ13−1) = deg(q1(s)
d−1).

From the above statements, we deduce that

deg(R13)− deg(R̃13) = deg(Hν
L)− deg(H̃mL−1

L ).

In addition, we know from (9) that deg(H̃L(s)) provides the total multiplicity
of PL (that is, mL), while deg(HL) provides just its visible multiplicity (that
is, mL −mH). Thus, we have that

deg(R13) = 2(d− 1)2 + (mL −mH)ν −mL(mL − 1). (27)

In the following, we compute deg(R13) in a different way and we compare
the result obtained with (27). Since we are assuming δ1 = δ2, we may use
Lema 5.1 and Remark 5.2; the last one states that

R̃13(s) = (s− 1)2(d−1)
2

R13

(
θs

s− 1

)
.
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By applying the change
θs

s− 1
= t to the above expression, we get

R̃13

(
t

t− θ

)
=

(
t

t− θ
− 1

)2(d−1)2

R13(t) =

(
θ

t− θ

)2(d−1)2

R13(t)

and hence,

R13(t) =

(
t− θ
θ

)2(d−1)2

R̃13

(
t

t− θ

)
. (28)

Now, let us analyze the factor R̃13

(
t
t−θ

)
. According to (9), we may write

H̃L(s) as H̃L(s) = (s− 1)mHHL(s), where mH is the hidden multiplicity and
HL(s) is a polynomial such that HL(1) 6= 0. By substituting it on (26), we
obtain:

R̃13(s) =
n∏
i=1

H̃Pi
(s)mi−1

(
(s− 1)mHHL(s)

)mL−1
q1(s)

d−1 =

= (s− 1)mH(mL−1)
n∏
i=1

H̃Pi
(s)mi−1HL(s)mL−1q1(s)

d−1.

Note that HL(1) 6= 0 and H̃Pi
(1) 6= 0 for any i = 1, . . . , n (H̃Pi

(1) = 0
would imply that Pi = Q(1) = PL). In addition, from (7) we have that
q1(1) = adθ

d 6= 0. Thus, we may write

R̃13(s) = (s− 1)mH(mL−1)R13(s),

where R13(s) is a polynomial such that R13(1) 6= 0. Hence,

R̃13

(
t

t− θ

)
=

(
θ

t− θ

)mH(mL−1)

R13

(
t

t− θ

)
and, by substituting in (28), up to constants, we get that

R13(t) =

(
t− θ
θ

)2(d−1)2 (
θ

t− θ

)mH(mL−1)

R13

(
t

t− θ

)
=

= (t− θ)2(d−1)2−mH(mL−1)R13

(
t

t− θ

)
.

Therefore, we deduce that

deg(R13) = 2(d− 1)2 −mH(mL − 1) (29)

and, by comparing (27) and (29), we conclude that ν = mL − 1.
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Step 2

In the following we prove that condition δ1 = δ2 is not necessary for the
theorem to be hold. Let us assume w.l.o.g. that δ1 := degt(G1) > δ2 :=

degt(G2) that is, d = d1 > d2, d3. Then, we consider the curve Ĉ defined by
the parametrization

P̂(t) = (p1(t), p1(t) + λp2(t), p(t)), (30)

where λ ∈ K. Note that we are applying a change of coordinates and then,
for almost all values of λ, the curve Ĉ has the same number of singularities
that C and they are reached at the same values of the parameter t ∈ K. That
is, for each singularity Pi in C there exists another singularity P̂i in Ĉ such
that HPi

= HP̂i
, and reciprocally. Furthermore, since Pi and P̂i have the

same fibre function their multiplicities, say mi and m̂i, are the same.

The limit point for P̂(t) is

P̂L = lim
t→∞

P̂(t)

td
= (ad : ad + λbd : cd)

and it holds that P̂(t) = P̂L if and only if P(t) = PL. Thus, HP̂L
(s) = HPL

(s)

and m̂L := multP̂L
(Ĉ) = mL := multPL

(C).
By appropriately choosing λ in (30), we can force the singularities of

the curve to keep their ordinary character. In addition, we can get that
ad+λbd 6= 0, which ensures that deg(p1(t)+λp2(t)) = max{d1, d2} = d1 = d.

Now, for each i = 1, 2, 3, let Ĝi be the equivalent polynomial to Gi but
computed from P̂(t). Observe that Ĝ1 = G1 and

Ĝ2(s, t) = (p1(s) + λp2(s))p(t)− p(s)(p1(t) + λp2(t)),

which implies that degt(Ĝ1) = degt(Ĝ2) = d. Then, the conditions imposed

in Step 1 are satisfied and the theorem holds for P̂(t). Thus,

R̂12(s) := Rest

(
Ĝ1

t− s
,
Ĝ2

t− s

)
= p(s)d−1

(
n∏
i=1

HP̂i
(s)m̂i−1

)
HP̂L

(s)m̂L−1,

where P̂1, . . . , P̂n and P̂L are the singularities of Ĉ, and m̂1, . . . , m̂n, m̂L their
respective multiplicities. On the other hand, we have remarked above that
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the singularities of C and Ĉ (and also their multiplicities) are the same. Then,
we have that

R̂12(s) = p(s)d−1
n∏
i=1

HPi
(s)mi−1HL(s)mL−1. (31)

Now we observe that

Ĝ2(s, t) = (p1(s) + λp2(s))p(t)− p(s)(p1(t) + λp2(t)) =

p1(s)p(t)− p(s)p1(t) + λ(p2(s)p(t)− p(s)p2(t)) = (G1 + λG2)(s, t).

Thus, by applying some well known properties of the resultants (see e.g.
Appendix B in [16]), we get that

R̂12(s) = Rest

(
G1

t− s
,
G1 +G2

t− s

)
=

= lct

(
G1

t− s

)d−1 d−1∏
i=1

(
G1(s, αi(s)) +G2(s, αi(s))

αi(s)− s

)
where α1(s), . . . , αd−1(s) are the d − 1 roots of the polynomial G∗1(s, t) :=
G1(s, t)/(t − s) ∈ (K[s])[t]. That is, for each i = 1, . . . , d − 1, we have that
αi(s) 6= s and G1(s, αi(s)) = 0. Thus, the last formula may be written as

R̂12(s) = lct

(
G1

t− s

)d−δ2
lct

(
G1

t− s

)δ2−1 d−1∏
i=1

(
G2(s, αi(s))

αi(s)− s

)
,

and, hence,

R̂12(s) = lct

(
G1

t− s

)d−δ2
Rest

(
G1

t− s
,
G2

t− s

)
.

Note that lct

(
G1

t− s

)
= lct(G1) = p(s) since d3 < d1, so we deduce that

R̂12(s) = p(s)d−δ2Rest

(
G1

t− s
,
G2

t− s

)
= p(s)d−δ2R12(s). (32)

Finally, by combining (31) and (32), we conclude that

R12(s) = p(s)δ2−1
n∏
i=1

HPi
(s)mi−1HL(s)mL−1.

The result follows from the assumption that δ2 = min{δ1, δ2} = λ12. �

31



Acknowledgements

This work has been partially funded by Ministerio de Economı́a y Com-
petitividad under the Project MTM2017-88796-P. The second author belongs
to the Research Group ASYNACS (Ref. CCEE2011/R34).

[1] Abhyankar, S.S., (1990). Algebraic Geometry for Scientists and Engi-
neers. Math. Surveys Monogr., vol. 35, American Mathematical Society,
Providence, RI.
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