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assumed the forcing term of the Cauchy problem to be analytic near 0. Presently, we
consider a family of forcing terms that are holomorphic on a common sector in time ¢
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neighborhood of 0 in C*, which are asked to share a common formal power series
asymptotic expansion of some Gevrey order as € tends to 0. We construct a family of
actual holomorphic solutions to our Cauchy problem defined on the sector in time
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Fourier inverse transform in space. It appears that these functions share a common
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originating from the forcing terms. The special case of multisummability in € is also
analyzed thoroughly. The proof leans on a version of the so-called Ramis-Sibuya
theorem which entails two distinct Gevrey orders. Finally, we give an application to
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1 Introduction
We consider a family of parameter depending nonlinear initial value Cauchy problems of

the form

Q(3;) (0:u® (t,2,€)) = c12(€)(Qu(3)u (¢, 2, €)) (Qa(3,)u” (£, 2, €))
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+ 6((SD—I)(/Q+1)—5D+1t((SD—l)(k2+l) afDRD(az)qu (t, z, 6)
D-1

+ Z b BflRl(az)uap(t, z,€)
=1

+¢o(t,2,€)Ro(3,)u® (t,z,€) + c;(e)fal’(t, Z,€) (1)

for given vanishing initial data #°7(0,z,¢) = 0, where D > 2 and 8p, ky, A, dy, 8, 1 <1 <
D —1 are nonnegative integers and Q(X), Q1(X), Q2(X), Ri(X), 0 <[ < D, are polynomi-
als belonging to C[X]. The coefficient c((¢, z, €) is a bounded holomorphic function on a
product D(0,r) x Hg x D(0, €), where D(0, r) (resp. D(0, €y)) denotes a disc centered at 0
with small radius r > 0 (resp. €y > 0) and Hg = {z € C/|Im(z)| < B} is some strip of width
B > 0. The coefficients ¢ 5 (€) and c(€) define bounded holomorphic functions on D(0, o)
vanishing at € = 0. The forcing terms f°2(¢,z,¢), 0 < p < ¢ — 1, form a family of bounded
holomorphic functions on products 7 x Hg x &,, where T is a small sector centered at
0 contained in D(0,7) and {&,}o<p<c1 is a set of bounded sectors with aperture slightly
larger than m /k; covering some neighborhood of 0 in C*. We make assumptions in order
that all the functions € — f°2(¢, z, €), seen as functions from &, into the Banach space F of
bounded holomorphic functions on 7 x Hg endowed with the supremum norm, share a
common asymptotic expansion f(£,z, €) = > m=ofm(t, 2)e™ Im! € Fe] of Gevrey order 1/k;
on &,, for some integer 1 < k; < ky; see Lemma 11.

Our main purpose is the construction of actual holomorphic solutions #°7 (¢, z, €) to the
problem (1) on the domains 7 x Hg x &, and to analyze their asymptotic expansions as €
tends to 0.

This work is a continuation of the study initiated in [1] where the authors have studied
initial value problems with a quadratic nonlinearity of the form

Q) (ult, 2, €)) = (QuBult,2,€)) (Qa(3,)ult, 2, )

+ E(SD—I)(k+1)—6D+1t(SD—l)(k+l)afDRD(az)u(t, z, 6)
D-1

+ Z edipth 8f’Rl(8z)u(t, z,€)
I=1

+co(t,z,€)Ro(3)ult, z,€) + f(t,z, €) (2)

for given vanishing initial data u(0,z,€) = 0, where D, Ay, d;, §; are positive integers and
QX), %1 (X), Q2(X), Ri(X), 0 <[ < D, are polynomials with complex coefficients. Under
the assumption that the coefficients ¢y(t,z, €) and the forcing term f(t,z, €) are bounded
holomorphic functions on D(0, 7) x Hg x D(0, €(), one can build, using some Borel-Laplace
procedure and Fourier inverse transform, a family of holomorphic bounded functions
u,(t,z,€), 0 < p < ¢ — 1, solutions of (2), defined on the products 7 x Hg x &,, where
&, has an aperture slightly larger than 7 /k. Moreover, the functions € > u,(t,z, €) share

a common formal power series (¢, z,€) = > _, hu(t,z)e” /m! as asymptotic expansion

m>0
of Gevrey order 1/k on &,. In other words, u,(t,z,€) is the k-sum of (¢, z,€) on &,; see
Definition 9.

In this paper, we observe that the asymptotic expansion of the solutions u°?(t,z,¢) of
(1) w.rt. € on &, defined as i(t,z,€) = )

ture which involves the two Gevrey orders 1/k; and 1/k,. Namely, the order 1/k; originates

=0 Hm(t; 2)€” /m! € F[[€], inherits a finer struc-
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from (1) itself and its highest order term e@p-Dka+D=3p+16p-Dka+D 3PP R (5 ) as was the
case in the work [1] mentioned above and the scale 1/k; arises, as a new feature, from the
asymptotic expansion f of the forcing terms f°(t,z,€). We can also describe conditions
for which u®(t, z,€) is the (ko, k1)-sum of #(t, z,€) on &y for some 0 < p < ¢ —1; see Def-
inition 10. More specifically, we can present our two main statements and its application
as follows.

Main results Let k) > ky > 1 be integers. We choose a family {E,}o<p<c-1 of bounded sec-
tors with aperture slightly larger than 1 |k, which defines a good covering in C* (see Defini-
tion 7) and a set of adequate directions 0, € R, 0 < p < ¢ —1 for which the constraints (152)
and (153) hold. We also take an open bounded sector T centered at 0 such that, for every
0 <p < ¢ -1, the product et belongs to a sector with direction 0, and aperture slightly larger
than w/ky, for all € € &, all t € T. We make the assumption that the coefficient cy(t,z,€)
can be written as a convergent series of the special form

coltz,€) = col€) Y conlz €)(et)"

n>0

on a domain D(0,r) x Hg x D(0, €0), where Hg is a strip of width ', such that T C D(0,r),
Uo<p<c-1Ep € D(0,€0) and 0 < ' < B are given positive real numbers. The coefficients
Cou(z,€), n > 0, are supposed to be inverse Fourier transform of functions m > Cgy ,(m,€)
that belong to the Banach space Eg ) (see Definition 2) for some p > max(deg(Q;) + 1,
deg(Qy) + 1) and depend holomorphically on € in D(0, €y) and cy(€) is a holomorphic func-
tion on D(0, €g) vanishing at 0. Since we have in view our principal application (Theorem 3),
we choose the forcing term f°7(t,z,€) as a my, -Fourier-Laplace transform

+00 du
fa (t Z,e) (2 )1/2 / / ¢k2 (I/l, m, 6)6 Et) : lzm dmr

u

where the inner integration is made along some half-line L,,, C Sy, and S, is an unbounded
sector with bisecting direction 0, with small aperture and where w:zp (4, m, €) is a holomor-
phic function w.r.t. u on Sy, defined as an integral transform called acceleration operator
with indices my, and my,,

p(ume)—f 1// hme)G(uh)iIh

where G(u, h) is a kernel function with exponential decay of order k = (E - —) L see (114,).

The integration path Ly; is a half-line in an unbounded sector Uy, with blsectmg direction
0, and 1//,?1” (h, m, €) is a function with exponential growth of order ky w.r.t. h on Uy, UD(0, p)
and exponential decay w.r.t. m on R, satisfying the bounds (156). The function f°¢ (¢, z,€)
represents a bounded holomorphic function on T x Hg x &,. Actually, it turns out that
f°r(t,z,€) can be simply written as a my, -Fourier-Laplace transform of 1//:1” (h,m,€),

ki +oo 2 uvky o AU
p (Y1 _izm
s 1% (u,m,e)e"'<t) "¢ _u dm.
—00 Lyp

oy _
fr(t ze) = e

Our first result stated in Theorem 1 reads as follows. We make the assumption that the
integers 8p, ka, Ay, dy, 81, 1 <1 < D —1 satisfy the inequalities (147), (148), and (160). The
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polynomials Q(X), Q1(X), Q2(X), and R/(X), 0 <1 < D, are submitted to the constraints
(149) on their degrees. We require the existence of constants ror, > 0 such that

’ Q(
R(

im) -
; > rQR
im) QR

forallm e R, all1 <1< D (see (150)) and, moreover, that the quotient Q(im)/Rp(im) be-
longs to some suitable unbounded sector Sqr,, for all m € R (see (151)). Then, if the sup
norms of the coefficients c1,(€)/€, co(€)/€, and cp(€)/e on D(0, €y) are chosen small enough
and provided that the radii ror, 1 <1 < D, are taken large enough, we can construct a
family of holomorphic bounded functions u®?(t,z,€), 0 < p < ¢ —1, defined on the products
T x Hg x &,, which solves the problem (1) with initial data u® (0,z,€) = 0. Similarly to
the forcing term, u® (t,z,€) can be written as a my,-Fourier-Laplace transform

k: +oo b u\ky du
ur(t,z,€) = -0 / / ol (u,m, €)@ " — dm,
(27T) —co JLy, u

0 ) . . .

where wkf (1, m, €) denotes a function with at most exponential growth of order ky in u on
. ) s . e )

So, and exponential decay in m € R, S&ltzsfyll/zga(166)s The function a)kf (4, m, €) is shown to

be the analytic continuation of a function Acckf’k1 (a)kf)(u, m, €) defined only on a bounded

sector Sgp with aperture slightly larger than /k w.r.t. u, for all m € R, with the help of an

acceleration operator with indices my, and my,,

dh
Acc,?f,k1 (a),?f)(u,m,e) = f a),?f(h, m, €)G(u, h)7.
L

p

We show that, in general, a),?f (h, m, €) suffers an exponential growth of order larger than k
(and actually less than k) w.r.t. h on Uy, U D(0, p), and obeys the estimates (168). At this
point u® (t,z, €) cannot be merely expressed as a my, -Fourier-Laplace transform of a)Zf and
is obtained by a version of the so-called accelero-summation procedure, as described in [2],
Chapter 5.

Our second main result, described in Theorem 2, asserts that the functions u®», seen as
maps from E, into F, for 0 < p < ¢ —1, turn out to share on £, a common formal power series
u(e) = 3,20 hme™ Im! € Fe]| as asymptotic expansion of Gevrey order 1/ky. The formal
series ii(€) formally solves (1) where the analytic forcing term f° (t,z,€) is replaced by its
asymptotic expansion f (¢,z,€) € F[[€] of Gevrey order 1/k, (see Lemma 11). Furthermore,
the functions u® and the formal series it have a fine structure which actually involves two
different Gevrey orders of asymptotics. Namely, u®? and it can be written as sums

ie) = ale) + in(e) + inle),  u®(t,z,€) =ale) + uy” (€) + uy’ (€),

where a(€) is a convergent series near € = 0 with coefficients in F and ui1(€) (resp. z(€))
belongs to Fe] and is the asymptotic expansion of Gevrey order 1/k; (resp. 1/kz) of the F-
valued function ulap (€) (resp. u;” (€)) on &,. Besides, under a more restrictive assumption
on the covering {E,}0<p<c-1 and the unbounded sectors {Uy,}o<p<c-1 (see assumption (5)
in Theorem 2), one gets that u® (t,z,€) is even the (ky, k;)-sum of ii(€) on some sector Epos
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with 0 < po < ¢ — 1, meaning that ufp % (€) can be analytically continued on a larger sector
Sxikys containing Ey,, with aperture slightly larger than 7 /ky where it becomes the ki-sum
of i1 (€) and by construction u,° (€) is already the ky-sum of itz (€) on E,,; see Definition 10.

As an important application (Theorem 3), we deal with the special case when the forcing
terms f° (t, z, €) themselves solve a linear partial differential equation with a similar shape
as (2), see (220), whose coefficients are holomorphic functions on D(0,r) x Hg x D(0, €).
When this holds, it turns out that u® (t, z, €) and its asymptotic expansion ii(t, z, €) solves a
nonlinear singularly perturbed PDE with analytic coefficients and forcing term on D(0, r) x
Hg x D(0,€), see (224).

We stress the fact that our application (Theorem 3) relies on the factorization of some
nonlinear differential operator which is an approach that belongs to an active domain of
research in symbolic computation these last years, see for instance [3-8].

We mention that a similar result has been recently obtained by Tahara and Yamazawa,
=0 Un(X)E" € O(CN)[£] with
entire coefficients on CV, N > 1, solutions of general non-homogeneous time depending
linear PDEs of the form

see [9], for the multisummability of formal series (¢, x) = >

O ut Y a8 0%u =£(t,x)

jHle|<L

for given initial data (Biu)(O,x) =¢j(x), 0 <j <m -1 (where 1 < m < L), provided that
the coefficients a;,(t) together with ¢ — f(t,x) are analytic near 0 and that ¢;(x) with the
forcing term x — f(¢,x) belong to a suitable class of entire functions of finite exponential
order on CN. The different levels of multisummability are related to the slopes of a Newton
polygon attached to the main equation and analytic acceleration procedures as described
above are heavily used in their proof.

It is worthwhile noticing that the multisummable structure of formal solutions to linear
and nonlinear meromorphic ODEs has been discovered two decades ago, see for instance
[10-15], but in the framework of PDEs very few results are known. In the linear case in two
complex variables with constant coefficients, we mention the important contributions of
Balser et al. [16] and Michalik [17, 18]. Their strategy consists in the construction of a mul-
tisummable formal solution written as a sum of formal series, each of them associated to a
root of the symbol attached to the PDE using the so-called Puiseux expansion for the roots
of polynomial with holomorphic coefficients. In the linear and nonlinear context of PDEs
that come from a perturbation of ordinary differential equations, we refer to the work of
Ouchi [19, 20], which is based on a Newton polygon approach and accelero-summation
technics as in [9]. Our result concerns more peculiarly multisummability and multiple
scale analysis in the complex parameter €. Also from this point of view, only few advances
have been performed. Among them, we must mention two recent works by Suzuki and
Takei [21] and Takei [22], for WKB solutions of the Schrodinger equation

Y (2) = (z- €222 Y (2)

which possesses 0 as fixed turning point and z, = €2

as movable turning point tending to
infinity as € tends to 0.
In the sequel, we describe our main intermediate results and the sketch of the arguments

needed in their proofs. In a first part, we depart from an auxiliary parameter depending
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initial value differential and convolution equation which is regularly perturbed in its pa-
rameter €; see (70). This equation is formally constructed by making the change of variable
T = et in (1) and by taking the Fourier transform w.r.t. the variable z (as done in our previ-
ous contribution [1]). We construct a formal power series (T, m,e€) = anl Uu,(m,e)T"
solution of (70) whose coefficients m +— U,(m, ) depend holomorphically on € near 0
and belong to a Banach space E,,,) of continuous functions with exponential decay on R
introduced by Costin and Tanveer in [23].

As a first step, we follow the strategy recently developed by Tahara and Yamazawa in [9],
namely we multiply each side of (70) by the power T%*! which transforms it into an equa-
tion (75) which involves only differential operators in T of irregular type at T = 0 of the
form T#97 with B > k; +1 due to the assumption (72) on the shape of (70). Then we apply
a formal Borel transform of order k;, which we call m;, -Borel transform in Definition 4,
to the formal series I with respect to T, denoted by

.L.}’l

o (5m,€) = ) Lom €) o

n>1

Then we show that wy, (t,m, €) formally solves a convolution equation in both variables t
and m, see (83). Under some size constraints on the sup norm of the coefficients ¢ 5(¢€)/¢,
co(€)/e and cr(€)/e near 0, we show that wy, (t,m;, €) is actually convergent for 7 on some
fixed neighborhood of 0 and can be extended to a holomorphic function a),'fl(r, m, €) on
unbounded sectors U, centered at 0 with bisecting direction d and tiny aperture, provided
that the my, -Borel transform of the formal forcing term F(T', m, €), denoted by ¥, (7, m, €)
is convergent near t = 0 and can be extended on U, w.r.t. T as a holomorphic function
w,fl (t,m, €) with exponential growth of order less than ;. Besides, the function a)}fl (t,m,€)
satisfies estimates of the form: there exist constants v > 0 and @, > 0 with

|7
1+ |z|%k

vl

o? (t,m,e)| < wy(1+ |m|) e P
| ( )| < @wa(1+ |ml)

forall t € Uy, allm € R, alle € D(0, €p); see Proposition 11. The proofleans on a fixed point

argument in a Banach space of holomorphic functions F(”i Btk

Since the exponential growth order « of a),‘fl is larger than k;, we cannot take a m, -Laplace

) studied in Section 2.1.

transform of it in the direction d. We need to use a version of what is called an accelero-
summation procedure as described in [2], Chapter 5, which is explained in Section 4.3.
In a second step, we go back to our seminal convolution equation (70) and we multi-
ply each side by the power T%2*! which transforms it into (121). Then we apply a 1, -
Borel transform to the formal series I w.r.t. T, denoted by &x,(t,m,€). We show that
O, (7, m, €) formally solves a convolution equation in both variables v and m, see (123),
where the formal 1, -Borel transform of the forcing term is set as @kz(t, m, €). Now, we
observe that a version of the analytic acceleration transform with indices k, and k; con-
structed in Proposition 13 applied to wlfl(r, m, €), standing for w,’fz(t, m, €), is the k-sum
of Yz, (z,m,€) w.r.t. T on some bounded sector Sf;m with aperture slightly larger than 7 /k,
viewed as a function with values in E(g . Furthermore, w,‘fz (t,m, €) can be extended as
an analytic function on an unbounded sector S;, with aperture slightly larger than 7/«
where it possesses an exponential growth of order less than ky; see Lemma 4. In the sequel,
we focus on the solution a),‘f2 (t,m, €) of the convolution problem (129) which is similar to
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(123) but with the formal forcing term 1/Afk2(t,m,e) replaced by Iﬁ/é(l',m,é). Under some
size restriction on the sup norm of the coefficients ¢ 5(€)/€, co(€)/€, and cp(€)/e near 0,
we show that a)l‘fz(r, m, €) defines a bounded holomorphic function for T on the bounded
sector SZ,K and can be extended to a holomorphic function on unbounded sectors S; with
direction d and tiny aperture, provided that S, stays away from the roots of some polyno-
mial P,,(t) constructed with the help of Q(X) and Rp(X) in (1), see (131). Moreover, the
function a),‘fz(r, m, €) satisfies estimates of the form: there exist constants v’ > 0 and v; > 0
with

IT|
1+ |t]%k

Ve k2

o? (t,m,€)| < vg(1+ |m|) e P
|, ( )| < va(1+1|ml)

forall T € Sy, all m e R, all € € D(0,€p); see Proposition 14. Again, the proof rests on a
fixed point argument in a Banach space of holomorphic functions F”i,' Bika) outlined in
Section 2.2. In Proposition 15, we show that w,‘fz(r, m, €) actually coincides with the ana-
lytic acceleration transform with indices w1, and my, applied to w,‘fl(t, m, €), denoted by
Acc,‘é,k1 (a),‘fl)(r,m,e), as long as 7 lies in the bounded sector SZ’K. As a result, some m, -
Laplace transform of the analytic continuation of Acc;fz’k1 (a),‘fl)(r, m,€), set as UY(T, m, €),
can be considered for all T belonging to a sector Sd oy with bisecting direction d, aper-
ture 6, slightly larger than 7 /k, and radius / > 0. Following the terminology of [2], Sec-
tion 6.1, U%(T, m, €) can be called the (1, , Mg, )-sum of the formal series (T, m, ) in
the direction d. Additionally, U%(T, m,€) solves our primary convolution equation (70),
where the formal forcing term F (T, m, €) is interchanged with F4(T, m, €), which denotes
the (m,, m; )-sum of F in the direction d.

In Theorem 1, we construct a family of actual bounded holomorphic solutions u% (¢, z, €),
0 <p < ¢ -1, of our original problem (1) on domains of the form 7 x Hg x &, described
in the main results above. Namely, the functions u°#(¢,z,€) (resp. f°7 (¢, z,¢€)) are set as
Fourier inverse transforms of L/°7,

u®(t,z,€) = f‘l(m > U°P(et,m,e))(z), for(t,z,€) = f‘l(m — F°(et, m,e))(z),

where the definition of 7! is pointed out in Proposition 9. One proves the crucial prop-
erty that the difference of any two neighboring functions u®+1 (¢, z,€) — u® (¢, z, €) tends to
zero as € — 0 on &,,; N &, faster than a function with exponential decay of order &, uni-
formly w.rt. t € T, z € Hg, with k = k» when the intersection Uy,,,, N Uy, is not empty and
with k = ki, when this intersection is empty. The same estimates hold for the difference
ot z,€) - fO (L, 2, €).

Section 6 is devoted to the study of the asymptotic behavior of u°#(t,z,€) as € tends
to zero. Using the decay estimates on the differences of the functions #° and f°7, we
=0 hme™ Im! € Fle]
(resp.f(e) = u=ofme” Im! € Fe]) of Gevrey order 1/k; for all functions u® (t,z,¢€) (resp.
f°r(t,z,€)) as € tends to 0 on &,. We obtain also a double scale asymptotics for u° as ex-

show the existence of a common asymptotic expansion i(e) = Y

plained in the main results above. The key tool in proving the result is a version of the
Ramis-Sibuya theorem which entails two Gevrey asymptotics orders, described in Sec-
tion 6.1. It is worthwhile noting that a similar version was recently brought into play by
Takei and Suzuki in [21, 22], in order to study parametric multisummability for the com-
plex Schrodinger equation.
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In the last section, we study the particular situation when the formal forcing term
F(T,m,¢) solves a linear differential and convolution initial value problem; see (204). We
multiply each side of this equation by the power T%*! which transforms it into (208). Then
we show that the 1, -Borel transform vy, (7, m, €) formally solves a convolution equation
in both variables 7 and m; see (209). Under a size control of the sup norm of the coeffi-
cients co(€)/e and cp(€)/e near 0, we show that Yy, (t,m,€) is actually convergent near 0
w.r.t. T and can be holomorphically extended as a function I/Ikalp (t,m, €) on any unbounded
sectors Uy, with direction 9, and small aperture, provided that U, stays away from the
roots of some polynomial P,,(t) constructed with the help of Q(X) and Rp(X) in (204).
Additionally, the function w,zp (t,m, €) satisfies estimates of the form: there exists a con-
stant v > 0 with

It evmkl

0 -
Vi (T m, ) < v+ |m]) e ﬂ‘mll + |tk

for all T € Uy, all m € R, all € € D(0,¢€); see Proposition 18. The proof is once more
based upon a fixed point argument in a Banach space of holomorphic functions F(‘f), B kL)
defined in Section 2.1. The latter properties on w,?l” (t,m, €) legitimize all the assumptions
made above on the forcing term F(T,m, €). Now, we can take the m; -Laplace transform
Ezﬁq (lp:l”)(T) of w;lp (z,m,€) w.rt. T in the direction 9,, which yields an analytic solution of
the initial linear equation (204) on some bounded sector Sy, g, ,» with aperture 6y, slightly
larger than 7 /k;. E?,f’kl (w,?lp )(T) coincides with the analytic (my,, my, )-sum F°2 (T, m, €) of
F in direction 0, on the smaller sector Sop,61,h with aperture slightly larger than 7 /k,. We
deduce consequently that the analytic forcing term f°(t, z, €) solves the linear PDE (220)
with analytic coefficients on D(0, r) x Hgr x D(0, €o), forallt € T,z € Hg, € € ,. In ourlast
main result (Theorem 3), we see that the latter issue implies that u°? (¢, z, €) itself solves a
nonlinear PDE (224) with analytic coefficients and forcing term on D(0, r) x Hg' x D(0, €),
forallt e T,ze Hy, € €&,.

The paper is organized as follows.

In Section 2, we define some weighted Banach spaces of continuous functions on
(D(0, p) U U) x R with exponential growths of different orders on unbounded sectors U
w.r.t. the first variable and exponential decay on R w.r.t. the second one. We study the con-
tinuity properties of several kind of linear and nonlinear operators acting on these spaces
that will be useful in Sections 4.2, 4.4 and 7.2.

In Section 3, we recall the definition and the main analytic and algebraic properties of
the m-summability.

In Section 4.1, we introduce an auxiliary differential and convolution problem (70) for
which we construct a formal solution.

In Section 4.2, we show that the m, -Borel transform of this formal solution satisfies a
convolution problem (83) that we can uniquely solve within the Banach spaces described
in Section 2.

In Section 4.3, we describe the properties of a variant of the formal and analytic accel-
eration operators associated to the m;-Borel and m;-Laplace transforms.

In Section 4.4, we see that the 1y, -Borel transform of the formal solution of (70) satisfies
a convolution problem (123). We show that its formal forcing term is x-summable and
that its k-sum is an acceleration of the w1y, -Borel transform of the above formal forcing
term. Then we construct an actual solution to the corresponding problem with the analytic
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continuation of this k-sum as non-homogeneous term, within the Banach spaces defined
in Section 2. We recognize that this actual solution is the analytic continuation of the
acceleration of the m, -Borel transform of the formal solution of (70). Finally, we take its
my, -Laplace transform in order to get an actual solution of (146).

In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions
to our initial Cauchy problem (1). We show that the difference of any two neighboring
solutions is exponentially flat for some integer order in € (Theorem 1).

In Section 6, we show that the actual solutions constructed in Section 5 share a common
formal series as Gevrey asymptotic expansion as € tends to 0 on sectors (Theorem 2). The
result is built on a version of the Ramis-Sibuya theorem with two Gevrey orders stated in
Section 6.1.

In Section 7, we inspect the special case when the forcing term itself solves a linear PDE.
Then we notice that the solutions of (1) constructed in Section 5 actually solve a nonlinear

PDE with holomorphic coefficients and forcing term near the origin (Theorem 3).

2 Banach spaces of functions with exponential growth and decay
The Banach spaces introduced in the next Section 2.1 (resp. Section 2.2) will be crucial in
the construction of analytic solutions of a convolution problem investigated in the forth-

coming Section 4.2 (resp. Section 4.4).

2.1 Banach spaces of functions with exponential growth « and decay of
exponential order 1

We denote D(0,7) the open disc centered at 0 with radius » > 0 in C and D(0, r) its clo-

sure. Let U; be an open unbounded sector in the direction d € R centered at 0 in C. By

convention, the sectors we consider do not contain the origin in C.

Definition1 Letv, 8,1« > 0and p > 0 be positive real numbers. Let k > 1,k > 1 be integers
and d € R. We denote Fff)yﬂ%k',() the vector space of continuous functions (z, m) > h(z,m)
on (D(0, p) U Uy) x R, which are holomorphic with respect to T on D(0, p) U U, and such

that
pl+ |T|2k «
[h@m) iy = sup (1 Iml)" —=——exp(Blm]| = v|[*)[h(z,m)]
7eD(0,0)Ull,meR 7|
is finite. One can check that the normed space (F(‘i sk I (v,B,k«)) is @ Banach space.

Remark These norms are appropriate modifications of those introduced in the work [1],

Section 2.

Throughout the whole subsection, we assume u, 8,v, 0 > 0, k,k > 1,and d € R are fixed.
In the next lemma, we check the continuity property under multiplication operation with
bounded functions.

Lemmal Let (t,m) — a(t,m) be a bounded continuous function on (D(0, p) U Uy) x R by

a constant Cy > 0. We assume that a(t, m) is holomorphic with respect to t on D(0, p) U U,,.
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Then we have

||a(r,m)h(r m <C Hh T,m ||

) ” (,B,u,k k) — (v,B,1,k k) (3)

forall h(t,m) e FU/S/J,/(K)
In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 1 Let x, > -1 be a real number. Let v, > —1 be an integer. We assume that
1+ x2+v2>0.

Ifk > k(

X;il + 1), then there exists a constant Cy > 0 (depending on v, vy, x2) such that

k

/0 (zF —5)s"2f ("%, m) ds < G|f(z,m) ” W,B k) (4)

(v,B,1,k k)
forall f(t,m) e F (U B k)"

Proof Letf(t,m) e F(‘i,ﬁ,u,k,lf)' By definition, we have

k

/ (rk - s)Xzs”zf(s”k, m) ds
0

(v,B.kic)

| |2k

1+t
= sup (1+|m|)“—exp(ﬂ|m|—v|r|’()
7eD(0,0)Ullz,meR Iz|

k

X / {(1 + |ml)" eI exp(—v|s|K/k) |1|/Sk| £ (s Lk, )}B(r,s,m) ds|, (5)
0
where
1 i €XP(]s7%)
B ) _ Blm| Vk( k _ \X2 2
(t,s,m) e T+ 3P |s] (r s) s
Therefore,
&
/ (Tk - S)XZSv2f(S1/k’ Vl’l) ds = C2 “-f(f m) ” (v,8,1,k.k)’ (6)
0 (v,B,1:k k)
where
1 2k 7| hK/k
Cy= sup iexp(—v|r|")/ %2) %(| ¥ — 1) h*2 dh
cebopuuy 1Tl 0 L+h
= sup B(x), (7)

x>0

where

2

1+x e [ exp(v Hy o
B(x) = xlT exp(—\)x )/0 th Z(x h)X2 dh.
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We write B(x) = Bi(x) + By(x), where

1+ 42 2 exp(vir<'*)
By(x) = ——— exp(—va*/¥ / I hkr (v - h)%2 dh,
l(x) xl/k exp( vx ) o 1+ h2 ( )

1+ a2 exp(vh’%)
Bolr) _ wk/ EXPWHT) ) Lavs (o _ )22 g,
2 (%) I exp(-va’*) L1 (x—h)

Now, we study the function B;(x). We first assume that —1 < x, < 0. In that case, we have
(x — h)*2 < (x/2)%2 for all 0 < & < x/2 with x > 0. Since v, > -1, we deduce that

T4 (2\2 e [*2 e
B <—7/7|= v hx*™v2 dh
1) < xl/k <2) ¢ /0 1+h?
1 x 1+ x2+v2 1
<(l+a})——— (= expl —v|[1-— x“”‘) 8
=( )2”% +v2+1) <2> p( < 2“”‘) ®
for all x > 0. Since k > kand 1 + x5 + v > 0, we deduce that there exists a constant K; > 0
with
sup B (x) < Kj. 9)
x>0

We assume now that x» > 0. In this situation, we know that (x — #)*2 <x*2 forall 0 <k <
x/2, with x > 0. Hence, since vy > -1,

1 1
— %2 (x/2 nHlexp( —v(1- x"/k) 10
2UK(E + vy +1) (/2) p( ( 2"/’() 10)

for all x > 0. Again, we deduce that there exists a constant K;; > 0 with

Bilx) < (1 +X )

sup B (x) <Kij. (11)

x>0

In the next step, we focus on the function By (x). First, we observe that 1 + 42 > 1 + (x/2)?
for all x/2 < h < x. Therefore, there exists a constant K, > 0 such that

1+42 1

Ba) = 7y s oxp () /x,z exp (v k2 — e din

1 * 1
< KZW exp(—vx"/k) /(; exp(\)lfz’(”‘)hk*”2 (x—=h)*2dh (12)
for all x > 0. It remains to study the function

X
By1(x) = / exp(v h"”‘)hk*”(x h)* dh
0

for x > 0. By the uniform expansion e = > =0 (VA%)"In! on every compact interval
[0,x], x > 0, we can write
++V X
B21x)_zn'fhk F2 (x — h)*2 dh. (13)

n>0
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Using the Beta integral formula (see [24], Appendix B3) and since x3 > -1, % + vy > -1, we
can write

ne o, 1
v_” COe+ DO + 5 +va+ 1)x%+%+v2+x2+1 (14)

Byi(x) =

1 me 1
per F(E+g+vm+xa+2)

for all x > 0. Bearing in mind that
'(x)/T(x+a) ~1/x* (15)

asx — +00, for any a > 0 (see for instance, [24], Appendix B3), from (14), we get a constant
K51 > 0 such that

1

e ) 6)

1
By1(x) < Kok t2txetl E
n>0

for all x > 0. Using again (15), we know that 1/(n + 1)} ~ T'(n + 1)/T'(n + x2 + 2) as 1 —

+00. Hence, from (16), there exists a constant K55 > 0 such that

1

Byi(x) < Kz.zxiwﬁxz+1 Z RCTSD))
n+ X+

n>0

(vx"/k)n @17)

for all x > 0.

Remembering the asymptotic properties of the generalized Mittag-Leffler function
(known as Wiman function in the literature) E 4(z) = ano Z"/T(B + an), forany o, > 0
(see [24], Appendix B4 or [25], expansion (22), p.210), we get from (17) a constant K, 3 > 0
such that

1 _k Ik
Ba(x) < Kpguk 202+l baslgnet (18)

for all x > 1. Under the assumption that vy + x> + 1 < 7(x2 + 1) and gathering (12), (18), we
get a constant K; 4 > 0 such that

sup B, (x) < Ky4. (19)

x>0

Finally, taking into account the estimates (6), (7), (9), (11), (19), the inequality (4) follows.
O

Proposition 2 Let k,x > 1 be integers such that k > k. Let Q1(X), Q2(X), R(X) € C[X] such
that

deg(R) > deg(Qy), deg(R) > deg(Qy), R(im) #0 (20)

forallm € R. Assume that i > max(deg(Qq) +1,deg(Q2) +1). Let m +— b(m) be a continuous
function on R such that
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[ptr)] = |R(zm>|

for all m € R. Then there exists a constant Cs > 0 (depending on Qy, Qa, R, i, k, k, v) such
that

Hb(m)f (r —s%(// Qi (im — m))f ((s = )%, m — my)

X Qz(iml)g(xl/k, ) 6o x)x dx dml) ds

(v,B, 11,k k)
=G Hf(f’ m) “ (v,Bo1.k k) ||g(r, m) “ W,B koK) (21)

Sorall f(v,m),g(r,m) € F(%,ﬂ,#,kx)‘

Proof Let f(t,m),g(t,m) € F(‘f),ﬂ%k’,(). For any 7 € D(0, p) U Uy, the segment [0, ] is such
that, for any s € [0, 7X], any x € [0, s], the expressions f((s — x)"/X,m — m;) and g(x
are well defined, provided that m, m; € R. By definition, we can write

Hb(m)f (r —s%(/f Qi (im — m))f ((s = )%, m — my)

llk, Wll)

x Qa(irm)g(x"%, m) dx dml) ds
(s~ x)x .8 11kok)
1+ |t|?*
= sup 1+ |ml])" exp(Blm| - v|t|)
7eD(0,0)Ul,meR 7|

X

ok +00 1+|s— x2
/ T —s1/k<// {1+|m mll)ﬂ pim-my L1 |

|s—x|1/’<
x exp(—vls — x| )f ((s — )", m — ml)}

1 2
X {(1 + |my )" Pl ;|—|1jfk| exp(—v|x[**)g ("%, my) }C(s, x, m, ;) dxdml) ds

’

where

€)= SREVD B ZI0D 1)y i ) Qo)
|S _x|l/k|x|1/k
Tr s+ ) Pl

K/k) exp(u|x|K/k) (S _x)x.

Now, we know that there exist Q;,Q,, R > 0 with

|Qu(itm — m))| < Qy (1+ i — )5, | Qulimy)| < (1 + [y )%,

(22)
|R(im)| = R(1+ |m]) "™

for all m, m; € R. Therefore,
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Tk 1 S +00
Hb(m) | -9t ( [ @t me(s -7, - m)

1
X Q2(im1)g(xl/k’m1) ( dxdml) ds
s =) W, Bukk)
< Glf@,m W Botikoic) lg(z, m)| W, Bo ki)’ (23)
where
2%
C3 = sup (1+|m|)ul+|1| exp(ﬁ|m|—v|r|") 1

7eD(0,p)Ullz,meR Il R+ |m|)deg(R)

h +00
Kk Uk exp(—B|m|) exp(-B|m — m|)
« /0 (Il - ) (/0 /_w

L+ [m = my[)* (1 + [ | )
d d
« 531222(1 +m— Wl1|) eg(Ql)(l + |m1|) eg(Q2)

eIk

(h _x)l/kxl/k
1+ (h-x)2)1 +a2)

1
x CXp(\)(I’l _ x)K/k) exp(vx’(/k) = dx dm1> dh. (24)
Now, since k > k, we have
hK/k > (h _x)K/k +xK/k (25)

for all # > 0, all x € [0, /]. Indeed, let x = hu where u € [0,1]. Then the inequality (25) is
equivalent to show that

1> (1 —u)* 4 yk (26)

for all u € [0,1]. Let ¢(u) = (1 — u)*’* + u*'* on [0,1]. We have ¢’ (1) = %(u%_l —(L-u)F™).
Since k > k, the function ¥ (z) = Pt increasing on [0,1], and therefore we find that
@' (u)<0if0 <u<1/2,¢'(u)=0,ifu=1/2and ¢'(u) > 0if1/2 < u < 1.Since p(0) = p(1) = 1,
we get that ¢(u) <1 for all u € [0,1]. Therefore, (26) holds and (25) is proved.

Using the triangular inequality |m| < |my| + |m — |, for all m,m; € R, we find that
C3 < C3,C39 where

Q )M—deg(R)

9]
Csy = —

sup (1 + |m|

meR

+00
1
X dm 27
f_w (L [ — g )@ (1 [y e—deal@) = 27

which is finite whenever ¢ > max(deg(Q;) +1,deg(Q;) + 1) under the assumption (20) using
the same estimates as in Lemma 4 of [26] (see also Lemma 2.2 from [23]), and where

1+ |t|?*

Csa=  sup exp(-v|z|¥)

7eD(0,0)Uly ||

J

|zl ( — x) MUk 1

h
k 1/k Kk
(171 = )" exp(vh )/ i g e 29

0
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From (28) we find that C3, < C33, where

2 X
C3.3 = sup 1+1—/ch exp(_vxl(/k) / (x _ h/)l/k eXp(\)h/K/k)
x>0 X 0

h’ 1 1
dx' ) dn'. 29
X(./o @+ =2)) L +52) (g — gk % x) (29)

By the change of variable " = i'u, for u € [0, 1], we can write

’ 1 1
dx’'
/0 A+ =)D +x2) gy - x/)l—%x/l—%

1 /1 1
_ du=Ji (). (30)
HE o (2= u) (U ) (1 - )Rk o

Using a partial fraction decomposition, we can split Ji (%) = J1 (W) + Jox (W), where

1 1 3-2
Ju(H) = / - du,

St e o @ane - up - weh

(31)
1 2u+1

1
Jox(H') = / du.
) WSR2 +4) Jo (1+ i2u2)(1 - u) kul

From now on, we assume that k > 2. By construction of J; x(4') and J,x(%’), we see that
there exists a constant j; > 0 such that

’ jk
]k(h) = m (32)

forall #’ > 0. From (29) and (32), we deduce that C33 < sup,., Cs3(x), where

» x ; h//(/k
Cs3(x) = (1 + %) exp(-va’¥) / ]kexzp(iv) dn'. (33)
o WYER(W? + 4)

From L'Hospital rule, we know that

(1+x2)2
. = . 2
lim Cs3(x) = lim > T 2 +d
X—> +00 X—+00 xl—; v%xk_ (1 +x2) —_ 2%

which is finite if ¥ > k and when k > 2. Therefore, we get a constant Cs3 > 0 such that

sup C33(x) < Cs3. (34)
x>0
Taking into account the estimates for (24), (27), (28), (29), (33) and (34), we obtain the
result (21).
It remains to consider the case k = 1. In that case, we know from Corollary 4.9 of [27]
that there exists a constant j; > 0 such that

’ jl
R = 2 (35)
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for all 2 > 0. From (29) and (35), we deduce that C33 < sup,., Cs31(x), where

~ o [Fiexp(vh™)
Cs31(x) = (1 + %) exp(-va*) /0 hhsi-rl dn'. (36)
From the L'Hospital rule, we know that
(1 +x2)

lim C x) = lim s
m 33.1(%) w100 VI 1(1 + x2) — 2%

which is finite whenever « > 1. Therefore, we get a constant Cs31 > 0 such that

sup C331(%) < Ca31. (37)

x>0

Taking into account the estimates for (24), (27), (28), (29), (36), and (37), we obtain the
result (21) for k = 1. O

Definition 2 Let 8,1 € R. We denote E ) the vector space of continuous functions
h:R — C such that

| 72(m) ”(ﬁ,u) = su%(l +|m|)" exp(Blml)|h(m)|

is finite. The space Eg ,,) equipped with the norm || - ||, is a Banach space.

Proposition 3 Let k,x > 1 be integers such that k > k. Let Q(X), R(X) € C[X] be polyno-

mials such that
deg(R) > deg(Q), R(im) #0 (38)

for all m € R. Assume that u > deg(Q) + 1. Let m — b(m) be a continuous function such
that

1
IR(im)|

|b(m)| <

for all m € R. Then there exists a constant Cy > 0 (depending on Q, R, u, k, k, v) such that

el

+00 d
/ S ) QUi )5 ) o

ok
Hb(m) / (tF -5)
0 (V:Bt ki)

= Calfem]l s le@m) [ 000 (39)

for all f(m) € Eg,,), all g(t,m) € F(‘i’ﬂ’u,k,l().

Proof The proof follows the same lines of arguments as those of Propositions 1 and 2. Let

fm) € Egy, g(t,m) e Fg),ﬁ,u,k,x)' We can write
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x 1 [t d
Ny := Hb(m)/ (cF -s)* / f(m —m)QUimy)g (s, my) dmlf
0 —00

(v,Bs ko)

| |2k

1+t
= sup 1+ |ml)"
7eD(0,p)Ull;,meR | |

exp(Blm| - v|z|)

X

ok +00
b(m)/0 / {(1+ |m—m1|)#exp(,3|m—m1|)f(m—m1)}

I ey LIS
x 3 (1+ |m])" exp(Blm|) exp(-vls| )Wg(s ,1my)

x D(t,s, m,m) dm; ds|, (40)

where

D(T) S, m, ml) =

Q(iml)e—ﬁlmlle—ﬂ\m—mﬂ eXp(U|S|K/k)| |1/k( . )1/k1
S T —S —.
A+ |m—my (1 + [m])" L+ 1s]? s

Again, we know that there exist constants £,R > 0 such that
. d ) deg(R
|QUm)| < Q1+ 1)) 9, |Rim)| = R(1+ |m]) =P

for all m, m; € R. By means of the triangular inequality |m| < |m| + |m — m; |, we find that

NZ < C4-.1C4.2 ”_f(m) ” Bw) ||g(7:) Vl’l) ” W,Bokk)’ (41)
where
1 2%k [Tk Btk
Co=  sup +7] exp(—v|r|")/ exp(v i )h%’l(lrlk ~ h)l/k dh
7eD(0,p)Uly Il 0 1+h
and
2 p-deg® [ 1
Cyo=— 1 dm;.
2= g Sup(L+ ) /,oo (Lt 1 — g (L + g ypdea@

Under the hypothesis « > k and from the estimates (7), (11), and (19) in the special case
x2 = 1/k and v, = —1, we know that Cy is finite.

From the estimates for (27), we know that Cy; is finite under the assumption (38) pro-
vided that u > deg(Q) + 1. Finally, gathering the latter bound estimates together with (41)
yields the result (39). O

In the next proposition, we recall from [1], Proposition 5, that (Eg,,.), || - [l 8,)) is a Banach

algebra for some noncommutative product  introduced below.

Proposition 4 Let Q;(X), Q2(X), R(X) € C[X] be polynomials such that

deg(R) = deg(Q1),  deg(R) = deg(Qa),  R(im) #0, (42)
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for all m € R. Assume that p > max(deg(Q;) + 1,deg(Q,) + 1). Then there exists a constant
Cs > 0 (depending on Q1, Qq, R, 1) such that

H R(;m) / Q= ) 1 ) Qatim gl

(B>11)
< Gslfm)] 5.0l 4., (43)

for all f(m),g(m) € Eg,y. Therefore, (Eg )|l - |l(s,n)) becomes a Banach algebra for the
product x defined by

glm) = Jﬁ / Q0= ) 1 ) Qatim gl .

Asa particular case, when f,g € Eg ) with B > 0 and u > 1, the classical convolution prod-
uct

e g(m) = / Fm = my)glmy) dmy
belongs to Eg,,,).

2.2 Banach spaces of functions with exponential growth k and decay of
exponential order 1

In this subsection, we mainly recall some functional properties of the Banach spaces al-
ready introduced in the work [1], Section 2. The Banach spaces we consider here coincide
with those introduced in [1] except the fact that they are not depending on a complex pa-
rameter € and that the functions living in these spaces are not holomorphic on a disc cen-
tered at O but only on a bounded sector centered at 0. For this reason, all the propositions
are given without proof except Proposition 5, which is an improved version of Proposi-
tions 1 and 2 of [1].

We denote by S; an open bounded sector centered at 0 in the direction d € R and S its
closure. Let S be an open unbounded sector in the direction d. By convention, we recall,

the sectors we consider throughout the paper do not contain the origin in C.

Definition 3 Letv, 8, i > 0 be positive real numbers. Let k > 1 be an integer and letd € R.
We denote F(di,ﬂ,u,k) the vector space of continuous functions (t,m) +— h(t,m) on (:S'g U
S4) x R, which are holomorphic with respect to T on SZ US4 and such that

|'L'|2k

1
”h(r,m) H(V’ﬂ‘ﬂ,k) = sup (1 + |m|)u * exp(ﬁ|m| - v|r|k)|h(t,m)’

1e5bUS,meR Izl
is finite. One can check that the normed space (F(‘i, s |l lv,8,14)) is a Banach space.
Throughout the whole subsection, we assume that p, 8,v >0 and k > 1, d € R are fixed.

In the next lemma, we check the continuity property by multiplication operation with
bounded functions.
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Lemma 2 Let (t,m) — a(t,m) be a bounded continuous function on (Sz UsS,) x R, which
is holomorphic with respect to T on SZ US,. Then we have

|a(z, m)h(z,m) ”(v,ﬂ,u,k) = ( _sup ’ﬂ(t’m)D |z, m) ”(v,ﬂ,u,k) (44)
TeS USgmeR
Jor all h(r,m) € F{, ;4.

In the next proposition, we study the continuity property of some convolution operators
acting on the latter Banach spaces.

Proposition 5 Let y1 > 0 and x, > —1 be real numbers. Let vy, > —1 be an integer. We
consider a holomorphic function a,, «(t) on SZ U S,, continuous on Sz U Sy, such that

ans(0)] £
= W eon
forallt Sfi US4

If1+ xo+ vy >0 and y, > vy, then there exists a constant Cg > 0 (depending on v, vy, X2,
1) such that

< GCs||f(z,m) (45)
(,8,14,k) ° ”f ” (,8,14,k)

Lk
Ay k(1) / (‘L’k - S)Xzs”zf(s”k, m) ds
0

forallf(t,m) e F({f;,ﬂ,u,k)'

Proof The proof follows similar arguments to those in Proposition 1. Indeed, let f (7, m) €

F(dv, k) By definition, we have

k

am,k(r)/r (tF —5)"s"2f (%, m) ds
0

(v,B,1:k)
1+ |7
= sup (l + |m|)“ %

k
exp(Blm| - v|t|)
reS’ZUSd,mE]R | |

k
' . 1+ s
X ayl,k(r)/ {(l+|m|)ﬂeﬁ 'exp(-vls|) Pl f(sl/k,m)}
0
S ]:(T’Sy m)dS , (46)
where
1 s xp(Vs))
F(r,s,m) = Blml Vk(gk _ )2 g2
o) = i e ()
Therefore,
&
tlyl,k(f)‘/o (Tk_S)XZSVZf(SI/k,Wl) ds < C(, ”f(r’m)”(v,ﬁ,u,k)’ (47)
(v,B,1:k)
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where
14 7|2 1 Iz h
Cs = sup +l exp(—v|r|k) 7 / exp(vz)h% (|r|k —h)mh"2 dh
cestsy 1Tl A+l fy Teh
= sup F(x),
x>0
where

2

l+x 1 “exp(vh) 1., ;
F) = xlk exXp(-va) 1+axn /o 1+h2 HET2 e = 1 dh.

We write F(x) = F1(x) + F,(x), where

1+x? 1 ¥2 exp(vh) 1,
- _ xtV _ h)X
Fi(x) = R exp(-vx) Ls /0 112 hx*™2(x — h)*2 dh,

1+a2 1 * exp(vh) 1
F. = — - &2 (x — h)*2 dh.
2(8) = - exp(v) f SR e

Now, we study the function F;(x). We first assume that —1 < x, < 0. In that case, we have
(x — h)*X2 < (x/2)*2 for all 0 < & < x/2 with x > 0. We deduce that

1+x2 /x\ X2 1 x/2 eVt 1
Fx)<——|=) ™ he*2 dh
1) < K1k (2) ¢ (1+x)V1/0 1+h?

EY(Re p— L (- (48)
S e o 22
- 2UK(E + vy +1)\ 2 1+x)n P\™2

for all x > 0. Bearing in mind that 1+ x, + v, > 0 and since 1 +x > 1 for all x > 0, we deduce

that there exists a constant Kj > 0 with

sup Fi(x) < Kj. (49)

x>0

We assume now that x, > 0. In this situation, we know that (x — #)*2 <x*X2 forall 0 <X <
x/2, with x > 0. Hence,

Fi(x) < (1+4%) X2 (x/z)vzﬂﬁ exp (-7) (50)

2UK(E + vy +1)
for all x > 0. Again, we deduce that there exists a constant K;; > 0 with

sup F (x) <Kj;. (51)

x>0

In the next step, we focus on the function F,(x). First, we observe that 1 + 4> > 1 + (x/2)?
for all x/2 < I < x. Therefore, there exists a constant K, > 0 such that

1+a2 x

1 1 1
- _ - 7tV _ X
Fx) < o (92_6)2 oI exp(—vx) T /m exp(vi)hk "2 (x — h)** dh

1 * 1
- _ V2 _ X2
Ssz”k T exp( ux)/o exp(vi)h« "2 (x — h)*% dh (52)
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for all x > 0. Now, from the estimates (18), we know that there exists a constant K3 > 0
such that

X
F1(x) = / exp(vl/z)h%'v2 (x—h)*2dh< Kg.gx%wze”" (53)
0

for all x > 1. From (52) we get the existence of a constant F, > 0 with

sup Fz(x) < Fz. (54')
x€[0,1]

On the other hand, we also have 1 + x > x for all x > 1. Since y; > v, and due to (52) with

(53), we get a constant F, > 0 with

sup Fy(x) < . (55)
x>1
Gathering the estimates (47), (49), (51), (54), and (55), we finally obtain (45). O

The next two propositions are already stated as Propositions 3 and 4 in [1].
Proposition 6 Let k > 1 be an integer. Let Q1(X), Q2(X), R(X) € C[X] such that
deg(R) > deg(Q1),  deg(R) >deg(Qy),  R(im) #0 (56)

forallm € R. Assume that i > max(deg(Qy) +1,deg(Q2) +1). Let m +— b(m) be a continuous
function on R such that

50| = Tz

for all m € R. Then there exists a constant C; > 0 (depending on Qy, Qq, R, 1, k, v) such
that

i

‘L'k S +00
Hb(m) fo (t* -s) ( /0 f_ N Q1 (i(m — m))f ((s = )%, m — my)

1
x Qaimm)g (%, my) - dx dm1> ds

(v,B,11,k)

=G Hf(f’ m) ” W, B,k Hg(r, m) ” ,8,,k) (57)
forall f(t,m),g(t,m) € Fg),ﬂ,ﬂ,k)'
Proposition 7 Let k > 1 be an integer. Let Q(X), R(X) € C[X] be polynomials such that
deg(R) > deg(Q),  R(im) #0 (58)

for all m € R. Assume that p > deg(Q) + 1. Let m — b(m) be a continuous function such
that

|b(m)| <

[R(im)|
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for all m € R. Then there exists a constant Cg > 0 (depending on Q, R, u, k, v) such that

k

Hb(m)/ (rk—s)
0 (v,B,10.k)

=G |Lf(m) ” (B0 Hg(r, m) ” ,B,,k) (59)

f Flom = m)QUimy)g (s, m )dmI?

B

for all f(m) € Eg ., all g(z, m)EFVﬂ/J,k
3 Laplace transform, asymptotic expansions and Fourier transform

We recall the definition of k-Borel summability of formal series with coefficients in a Ba-
nach space which is a slightly modified version of the one given in [2], Section 3.2, that
was introduced in [1]. All the properties stated in this section are already contained in our
previous work [1].

Definition 4 Let k > 1 be an integer. Let m(n) be the sequence defined by

my(n) = F(%) - /wo Lot gy
0

for all # > 1. A formal series

X(T) = ZanT” e TE[T]

n=1

with coefficients in a Banach space (E, || - ||g) is said to be m-summable with respect to T’
in the direction d € [0, 27) if

(i) there exists p € R, such that the following formal series, called a formal m;-Borel
transform of X R

[e¢]

By, (X)(7) = Zr( )r e tE[z],

is absolutely convergent for || < p;

(ii) there exists § > O such that the series B,,, (X)(z) can be analytically continued with
respect to 7 in a sector S;5 = {t € C*: |d — arg(r)| < §}. Moreover, there exist C > 0 and
K > 0 such that

| B X)) | < CXTF
forall T € Sy5.

If this is so, the vector valued m-Laplace transform of B,,, (X)(7) in the direction d is
defined by

X ) d
;Cilnk (Bmk(X))(T) =k Bmk(X)(u) —(u/T u

Ly
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along a half-line L, = R,e” C S5 U {0}, where y depends on T and is chosen in such a
way that cos(k(y —arg(T))) > 8; > 0, for some fixed §;. The function Lfnk(Bmk O)NT) is

well defined, holomorphic and bounded in any sector

Sqonuk ={T €C*:|T| <R,

d—arg(T)| <0/2},

where % <0< % + 268 and 0 < R < 8;/K. This function is called the m;-sum of the formal
series X(7) in the direction d.
In the next proposition, we give some identities for the m;-Borel transform that will be

useful in the sequel.

Proposition 8 Let f(t) = Do ful”, 8(8) =D, gut" be formal series whose coefficients f,,,
g belong to some Banach space (E, | - ||g). We assume that (E, || - ||g) is a Banach algebra
for some product x. Let k,m > 1 be integers. The following formal identities hold.

By, (10, (1)) () = kt* B, (F(2))(v), (60)

N k T e R
BT 00 = iy [ (=9 B (10)6™) S -

I'(

and

k
A ~ T -~ K A 1
By, (F(0) x3(0)(¢) = 7 / By FO) (7" =9)") % B @) () (55 45 (62
0 _
In the following proposition, we recall some properties of the inverse Fourier transform

Proposition9 Letf € Eg,,) with 8 >0, u > 1. The inverse Fourier transform of f is defined
by

1

FH)x) = W/ f(m) exp(ixm) dm

for all x € R. The function F\(f) extends to an analytic function on the strip

Hg = {ze(C/’Im(z)} <ﬁ}. (63)
Let ¢(m) = imf(m) € Eg,,-1). Then we have

9 F1(f)(2) = FH()(2) (64)
forall z e Hg.

Let g € Eg ) and let (m) = Wf x g(m), the convolution product of f and g, for all
m € R. From Proposition 4, we know that € Eg ,,). Moreover, we have

FHNRF @) = F (W)@ (65)

forall z e Hyg.
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4 Formal and analytic solutions of convolution initial value problems with
complex parameters

4.1 Formal solutions of the main convolution initial value problem

Let k1, k; > 1, D > 2 be integers such that k; > k;. Let §; > 1 be integers such that

1=4y, 8y < 8141, (66)
foralll</<D-1.Foralll </<D-1,letd;, A; > 0 be nonnegative integers such that

d; >, A —d;j+8,-1>0. (67)
Let Q(X), Q1(X), Q2(X), Ry(X) € C[X], 0 <[ < D, be polynomials such that

deg(Q) > deg(Rp) > deg(R), deg(Rp) > deg(Qu), deg(Rp) > deg(Qy),

(68)

forallm e R, all 0 < < D -1. We consider sequences of functions m +— Cj,(m, €), for all
n > 0,and m +— F,(m,€), forall n > 1, that belong to the Banach space E ,,) for some 8 > 0
and p > max(deg(Q;) + 1,deg(Q,) + 1) and which depend holomorphically on € € D(0, €j)
for some ¢ > 0. We assume that there exist constants Ky, To > 0 such that

|Contm @] , . <Ko = (69)
(B, To

forall n > 1, for all € € D(0, ¢). We define Co(T, m, €) = anl Co,n(m, €)T" which is a con-
vergent series on D(0, T/2) with values in Eg ) and F(T,m,€) =), _, F,(m,€)T", which
is a formal series with coefficients in Eg ). Let ci2(€), co(€), co0(€), and cg(€) be bounded

n>1

holomorphic functions on D(0, €g) which vanish at the origin ¢ = 0. We consider the fol-
lowing initial value problem:

QUim) (a7 U(T, m, €)) — TOP DV VPR (i) U(T, m, €)

. (C;;gf/)z Qi (i(m — my))U(T, m — my, €)Qa(imy)U(T, my, €) dimy

D-1
+ Y Ri(im)e M A U (T, m, €)
=1

cole +00
71% /;oo CO(Ttm_ml’E)RO(iml)u(T’ mlre)dml
| coole +00 ‘
1% /_oo Co,o(m — my, €)Ro (im)U(T, my, €) drm
+ € tep(e)F(T,m, €) (70)

for given initial data U(0,m,€) =0.
Proposition 10 There exists a unique formal series

(T, m,e) = Z u,(m,e)T"

n>1
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solution of (70) with initial data U(0, m, €) = 0, where the coefficients m +— U, (m, €) belong
to Eg ) for B> 0 and > max(deg(Qy) + 1,deg(Q2) + 1) given above and depend holomor-
phically on € in D(0, €j).

Proof From Proposition 4 and the conditions stated above, we find that the coefficients
U,(m, €) of U(T, m,€) are well defined, belong to E, ) for all € € D(0, ¢), all n > 1, and
satisfy the following recursion relation:

(n+1)Uys1(m,€)

Rn(i sp-1
- 5(2;1”1)) }—0[ (n+ 8 — (8p — 1)ka + 1) = ) Uirrsp (31 kp 1) (71, €)
! cple) [T .
¥ Q(im) Qm)2 | Q (l(m - Wll))Un1 (m — my, €)

m+ny=nn;>1,ny>1

X Qo (im)U,, (my, €) dmy

2L Ry(im) =
+ — Q(lm) (EAl_dﬁ-al_l l__ol(n + 81 - dl _])) un+51—dl(m’ 6)
= ]_
6_1 C()(G) +00
—_— Con —m, €)Ry(imy) U, ,€)di
+ ) n1+,,2:,,,2,,1221,,,221 ) /_OO o, (M — my, €)Ro(imy) U, (my, €) dimy
G e )
+ Q) |- Co,0(m — my, €)Ro(imy) U, (my, €) drmy
ecr(e)
F,(m, 71
+ Qim) n(1m, €) (71)
for all n > max(max;<;<p_1 dj, 8p — 1)(ky + 1)). O

4.2 Analytic solutions for an auxiliary convolution problem resulting from a
my, -Borel transform applied to the main convolution initial value problem
We make the additional assumption that

dy> (8= 1)(ki +1) (72)

foralll <!/ <D-1. Using (8.7) from [9], p.3630, we can expand the operators T‘Sl(k”l)a;’
in the form

Tﬁl(k1+1)8§[ — (Tk1+18T)5[ + Z Aal,kal(Bl—p)(Tk1+laT)P, (73)
1<p<é;-1

where A;,,, p=1,...,8, — 1 are real numbers, for all 1 </ < D. We define integers d},k1 >0
in order to satisfy

di+ki+1=8(k +1)+ d,l,k1 (74)

foralll </ <D -1.We also rewrite (§p —1)(ky +1) = (6p — 1)(ky + 1) + (6p — 1) (ko — ky).
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Multiplying (70) by T5*! and using (73), we can rewrite (70) in the form

Q(im) (T a7 U(T, m, €))
= Rp(im) TP Dk (TR 19, )P (T, €)

+ Rp(im) Z Aspp T6p-Dk2—k1) k1 (6p—p) (Tkl +13T)1’ U(T, m,e)

1<p=<ép-1
—1 kg +1 CI,Z(E) oo , s
He T Qi (i(m — m))U(T, m = my, €) Qo (irm)U(T, my, €) dmy
T) —00
D-1 1
+ ZRl(im) (EAz—dHS[—l le»kl (Tk”laT)alU(T, m, €)
I=1

4811 k1 (8y—p)+d}
b 3 Ay et i, (Tkl”aT)pU(T,m,e))
1<p<é;-1

kg Co(€) [T

Co(T,m — my, €)Ro(im)U(T, my, €) dmy

(27-[)1/2 oo
1ok Cool€) [T )
ks (207;))1/2 Co,o(m — my, €)Ro(im)U(T, my, €) dmy

+ e ep(e) T E(T, my €). (75)

We denote wy, (t,m,€) the formal my -Borel transform of u (T, m, €) with respect to T,
@i, (T, m, €) the formal my, -Borel transform of Co (T, m, €) with respect to T and Yy, (z, m, €)

the formal m1;, -Borel transform of F(T, m, €) with respect to T. More precisely,

" "
wi (T,m,€) = Z Uy (m, €) =, @x (T, m,€) = Z Con(m, €)=~
n>1 F(E) n>1 F(H)
r}’l
Vi (T, m, €) = ZFn(m,e)F—n~
n>1 (H)

Using (69) we find that, for any « > ki, the function ¢y, (t,m, €) belongs to F(‘f),ﬂ’#’kl’,()

all € € D(0, €p), any unbounded sector U, centered at 0 with bisecting direction d € R, for

for

some v > 0. Indeed, we have

|| Piq (7:’ m, E) H (v,B,1,k1,K)

1+|t)?h ||
< Z”CO'”(m’e)”(ﬂ,m( sup ———exp(-v[z]) s ) (76)
) cebopuuy 1Tl (E)
By using the classical estimates
mp "™
supx™ exp(—mipx) = (—1> e (77)
x>0 145

for any real numbers m; > 0, m, > 0, and the Stirling formula T'(n/k;) ~ (27)"? x

n_1
(n/k))*"2e* as n tends to +00, we get two constants A;,A; > 0 depending on v, &,
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Kk such that
1+ |72 7|
sup exp(—v|r|K)F -
7eD(0,0)Uly Il (E)
e e—Vx
=sup(1+ kaI/K)le -
x>0 F(H)
1% 12k 5
n— « n— n-— K K n-1 , 2k
< (( ) e r + ( + —1) e_(K1+K1))/F(n/k1)
VK VK VK
<A1(A)" (78)

for all n > 1. Therefore, if the inequality A, < T, holds, we get the estimates

ALK, 1
—_
To 1-7

” golq (T’ m, E) H .otk k) < Al Z ” CO,n(mr E) ” (ﬁ#)(A2)n < (79)

n>1

On the other hand, we make the assumption that yy, (v, m,€) € F(gi,ﬂ,u,kbkl)’ for all
€ € D(0, ¢), for some unbounded sector U, with bisecting direction d € R, where v is
chosen above. We will make the convention to denote w,‘fl the analytic continuation of
the convergent power series ¥, on the domain U U D(0, p). In particular, we find that
w,fl(r,m,e) eF?

0Bk k) for any « > kj. We also assume that there exists a constant Lyy >0
such that

”wﬁl(r’m’e)”(v,ﬁ,u,kl,kl) = Sy (80)

for all € € D(0, €p). In particular, we notice that

”“ﬁ/?; (T’m’e)”(v,ﬁ,u,kl,i() = é-‘/’kl (81)

for any « > k;. We require that there exists a constant 7, > 0 such that

= rQ,Rl (82)

Q(im) ‘
R/(im)

forallmeR,alll1 </ <D.
Using the computation rules for the formal m, -Borel transform in Proposition 8, we
deduce the following equation satisfied by wy, (7, m,€):

Q(im) (klrkl Wi (T,m,€))

ki i (3p-1lkyky) d
, T Op-Dky-ki) ; o s
k ) 1/k
= Rp(im) — T / (1' 1_ s) k1 leS Da)/q (S / L om, E) —
F(==7"5) Jo s

h

+Rolim) A“D'Pr(<5D—1><k2—k1>+/q<aD—p>)

1<p<ép-1 ky

(p-1(ky—k1)+k1 (6p-p ds

4 )
X/o (th -s) 5 _lkfspa)kl(sl/kl,m,e)?
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ki
1 ok /r 1 (.L.kl _ S)l/kl
Fﬂ+%)0

C12(f/)2 f/ Qi (ilm = my))aog, (s = %)™, 1 =y, €

ds

x Qa(imy)wy, (x5, my, €) .

6o x) dxdml)

1
k g

o h T a ds
+ Z Ry(im) (eAl_dlﬂsl_l — /(; (tkl - s) TR (kl‘sls‘slwk1 (sl/kl, m, e)) —
I=1

d,
r(t) ’

T
+ Z A(Sl Al dy+8;-1
1<p=<é;-1 1"( lkl +8 — )

ky

15t dl

T Lk
« / ('L’kl _ S) —,(1—1+8r1071 (kfspa)kl (Sllkl, m, G)) %)
0
a .L.kl /rkl (Tkl ~ S)l/kl
F(l + kl) 0

co(€) ik
2’ wh (s =2, m —my, €)

d.
dxdm1> s
s

X Ro(imy)wy, (x” k

, 1111, €)

1
(s—x)x

k1 ! +00
a7 : / (4 —s)l/kl Co,o(lf/)2 (/ Cool— my€)
ra+ o) b CEAVAN

d
X Ro(imy)wy, (sl/ Lom, e) dm1> s
s

-1 ( ) 'L'kl /rkl ( & )l/kl w‘d ( 1/ky )dS (83)
+€ crl€)————— T —S s, m,e)—.
ras kl—l) 0 k s

In the next proposition, we give sufficient conditions under which (83) has a solution

wkl(t m, €) in the Banach space F where 8, u are defined above and for well cho-

(0 )
sen k > k.

Proposition 11 Under the assumption that

l:i_l’ ko > d1+(1—5l) (84)
K k1 k2 k2 - k1 d[ + (1 - 5[)(k1 + 1)

forall1 <1 <D -1, there exist radii rqr, >0,1 <! < D, a constant @ > 0, and constants
1,2 80,05 €05 §1, $1,0, §F> 2 > O (depending on Qu, Qa, ki, 4, v, €0, Ry, Ay, 8y, dyfor1 <1 <D-1)

such that if
c(€) co(€)
sup <&, sup =105 ||¢/<1(Tr m, €) ”(U Biuk1C) <&
eeD(0,e9)l € €€D(0,e0) R
co,0(€)
—— [ = %00 [ Co,o(Vﬂ;G)”(ﬂ 0 = o (85)
€eD(0,e0) € ’
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wp T gy mel i <6

ceD(0,60)] €

for all € € D(0,¢€0), (83) has a unique solution a)k (t,m,€) in the space F (Uﬁﬂk ) where
B, > 0 are defined in Proposition 10 which verifies ||a)kl(t,m,e)|| B k) < @, for all
€ € D(0, ¢).

Proof We start the proof with a lemma which provides appropriate conditions in order to

apply a fixed point theorem.

Lemma 3 One can choose the constants rog, > 0, for 1 <1 < D, a small enough constant
@, and constants {1, o, 0,0, C15 $1,0, CF> §2 > O (depending on Qy, Qq, ky, 1, v, €0, Ry, Ay, 85,
dj for1 <1< D -1) such that if (85) holds for all € € D(0, €y), the map 7—[’;1 defined by

’Hfl (w(t,m))
k:
Rp(im) 1 vl X Bp-Dlka-kp) o s Vi ds
= Qlim) o1 (Cohke=k) / (th-s) h ks w(s %m)?
1 (T)
Rp(im) 1
+ . A5 P _ — —
Q(im) 13§)-1 PP e 1 (Go=Dik2 2>+k1<aD 2y
th (p-1)(ky—k1)+ky (Sp—p) d
x/ (rkl—s)k— lkpsp (”kl,m)—s
0 s
ki
+ 6_1 1 /Z (tkl _S)I/kl
Qim)ki I'(1 + kl) 0
a, 2(6) 1k
o)z’ Ql i(m — my))w((s — %) m = my)
1 ds
x Qa(imy)w(x"", my) dxdm; | —
(s —x)x s
ki dl
+ Z Rl((lm) ( Aj—dj+8;-1 ; /‘T (Tkl _ S)i(’ifl_l (kISZS(SIW(Sl/k],m)) é
Q(im) fL( lkl) 0 s
+ Z AélpeA[_dl-HSl_l - 1
” d
1<p=§-1 klp(z_/f +8,-p)

N

h Ay
x / (‘L'kl _ S) T1+5[—P—1 (kapW(sl/kl , m)) é)
0

g ol b _ gyl

QUim)kI'(1+ L) ) Jo

1
dx dn é
(s— x)x s

N 6_1 Co, 0 / ki _ l//q
Qim)kT'( 1 + 1)

1/k1

X Ro(iml)w(x ,ml)
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1 o0 . X ds
X W (/_oo Co,o(m — Wll,G)RO(lWll)W(SU 1;”’11) dml) P
ki
- cr(€) ’ Uk ds
Gmer Dy e (86)
ky

satisfies the next properties.

(i) The following inclusion holds:
HA(B(0, ) C B0, w), (87)

where B(0, @) is the closed ball of radius w > 0 centered at 0 in Fvﬁuk K),for all € €
D(O, 60).

(ii) We have

1
|HE (wr) = HE (ws) | Wbk = 5 Zlwr = wall @,k (88)

for all w, w, € B(0,w), for all € € D(0, €).

Proof We first check the property (87). Let € € D(0, ¢) and w(z,m) be in F

We
(v,B,1.k1,6)
take £1,2, €05 £0,0, €15 $1,05 £2, Cp» @ > 0 such that (85) holds and ||w(t, m) g,k ) < o for
all € € D(0, €p).

Since « > k; and (68) hold, using Proposition 2, we find that

-1 ci2(€) g 1/k1
HG Q(zm)k1r<1+1>/

x (WS/(; [ Qi (i(m = my))w((s — )%, m — my)

1 d
x Qz(iml)w(xl/kl,ml) ) dxdm1>—s

§-Xx $ N wp ki)
G381 Cstipmw?
= 2 1/2/ r ”Wrm)”vﬂ/;,kl;( = 2 1/2kr1 1y (89)
(@7) Pk D(1+ @) Pk (L + 1)

Due to the lower bound assumption (82) and taking into account the definition of « in
(84), we get from Lemma 1 and Proposition 1

H Rp lWl) 1 /rkl @Gp-Dky=k1) _;

ds
ke _ )—k— 3D Sp, (ki 0\ 42
(T s 1 k°s w(s ,m)
Q(im) JyI'( p=1)( /<2 kl)) o
Coki 3p C2ka
< w(t, m) < @ (90)
ro.rpk F(M) ” H(vvﬂ,/t,klyk) ’ RDkll—-((SD—l)k(fz—kl))
H Rp lWl) 1
5p—1)(ka—k1)+k1 (0D
Q(zm) klr(%W)
A (Bp-1)(ky—k))+k1 (8p—p) ds
x / (‘L’kl —S)k— lkpsp ( Ukl,m)—
0 S

(v,8,14,k1,k)
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e ]
B ro.rpk F(M ’ (v,8,10,k1,K)
Aspp| Coky
= | 58D110|k 2k)+k O, & (91)
TQ.Rp /(IF(M)

foralll<p<dp-1.
From assumption (68) and due to the second constraint in (84), we get from Lemma 1

and Proposition 1

fkl dll,k
H Ry(im) e Ni=dp+8-1 71511 / (rkl _s)_1 (k81s51w( 1/ky m)) ds
Q(lm) klr(i,_iq) 0 W, Boiki i)
s
< |€|A1—d1+51—1 1 C2k ||w T, m) ”
= " b (k1)
e
1 Gk
< et — —1 (92)
o fr (o)
foralll </<D-1and
H Rl lm A[*d[ﬂs[fl 1
dl
am” W5 p)
o d”‘l ds
« (qu —s) +81-p- l(k‘” pw( 1/ky m))
s
0 (v,B8, k1)
1 Cok?
Aj—-dj+8;-1 2K
=< |6| = rQRl |A3[:P| dllk ”W(T’ m) ||(U,ﬁ,,u,k1,K)
’ kll—‘(k’—l + 45 —p)
1
Cold
<pefprart Ljq o SN (93)
QR klr(dk1 +8,-p)
forall1 <p < 4§, - 1. Since k > k; and (68) we get from Proposition 2 that
”6_1 / ko 1//(1
Q(tm)kll"(l + )
1 S +00 l/k
X[ ———=s s—x)"",m—my, €
(G [, [ ontts=aom=m
1 ds
X Ro(iml)w(x”kl, ml) dx dm1> —
(s —x)x S M.k
C3810
= GO D) 5 o (@ m, O gt 1@ i
C.
381,0 L. (94)

< 02>
T @)1+ L)
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Since k > k; and (68) we deduce from Proposition 3 that

-1 COO ko 1/1(1 1 +00 )
”6 Q(lm)kll"(l + ) / (27)12 (/_Oo Coo(m —my, €)

d
X Ro(iml)w(sl/kl,ml) dml) $
s

(v,8,14,k1 k)

Caboo
= Tk rar L) T | Cootm, )| 5 o [WEm) 50000
400y (95)

< v 0
T @)1+ kil)

and finally bearing in mind Proposition 1 we find that

k1

i d
Hel‘Le)l/ (rkl _ )1/k1¢k1< 1/k1,m e) S
Q(lm)klr(l + E) 0 s B 1k
1 C2§F d
< su T,m, €
=39 i @+ 0 1A N osnn
1 C
28F 6. 06

<su
= b [QUm)| kD (L+ 1)

Now, we choose rqr, >0, for 1 <1 < D, &1,2, 0,0, $0, $F» $1,0, §15 2 > 0 and @ > 0 such that

Cstipm? Czka
+ o
Qo) 2k (1 + kl_l) rQ,RDkIF(((SD_lz((lkz_kl))
D-1 s
|A8Dplc2kp Aj-dj+6;-1 1 C2kll
i o (o o—h) ki Gpp)y @ 2% y al
1<p=<ép-1"QRp (—) I=1 QR klr(]’('_fl)
—di+8 Czkp C3§ ,0
’ Z Al o T rom, ! 4 1 T (27)12k li(l + L)glw
1<p<é-1 QR kll”(;(’—ll‘l +8;—p) 1 K
Calo,0 1 Catr
+ —gow + sup 0 < (97)
2m) 2kl (1 + 1) mek |QUIm)| kiT(1+ 1)

Gathering all the norm estimates (89), (90), (91), (92), (93), (94), (95), and (96) together
with the constraint (97), one gets (87).

Now, we check the second property (88). Let wy(z, m), wa(t, m) be in F(Li,ﬂ,u,kl,x)' We take
@ > 0 such that

”WI(T’WI) ”(v,ﬁ,u,kbk) =@,

for [ =1,2, for all € € D(0, ¢g). One can write

Qu(i(m — my))wi((s = 2)8, m — 1) Qa (i) wy (511, )

— Qu(i(m — my))ywa ((s = )", 1 — 1) Qa (immy) wa (6%, 111
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= Qi (i(m — my)) (w1 ((s = )™, m — 1) = wa (s — )8, 1 — my) )
X Qa(imy)wy (xl/kl»ml)
+ Q1 (i(m — my))wa ((s — )™, m — my )

x Qo (imy) (wy (x”kl,ml) - Wy (x”kl,ml)) (98)

and taking into account that ¥ > ki, (68), (98) and using Proposition 2, we find that

k

2(€) o |
C1o(€ 1)/ (Tk _S)l/k

| @t
Q(im)kI'(1 + ) Jo

X (ﬁs/o / (Qu(i(m — my))wi (s — )5, m — my)

x Qa(imy)wy (x4, my) — Q (i(m — my))wa((s = %), m — )

X Qz(iWu)Wz(xl/kl,ml)) 5o ) dx dml) ds
(v,8,10,k1,)
G312
< P As D) I w1, m) = wa@,m)| oo I @m | g
+waem) g 0)
C3l122@

wi(t,m) — wz(t,m)” (99)

e )
T a2k A + k%) ” (v,B,11.k1,6)

On the other hand, from the estimates (90), (91), (92), (93), (94), (95) and under the con-
straints (68), (84), and the lower bound assumption (82), we deduce that

ki

Rp(im 1 t Op-Diky k1) _
D ) (_L,kl —S) 13t lkaSBD
Q(im) j (o=l kz [PENCEINA
ds
% (W1 (51/k1’ m) — Wy (sl/kl,m)) ?
(v,B,11,k1,k)
Gk
= | wi(r,m) — wy(r,m) . (100)
”Q,RD/ﬁF(W) (v,Bk1 k)
and that
H Rp zm) 1
Q(lm P klr(%?”ﬂ(w)
o (6p-1)(kg—k1)+k1 (p—p) ds
X ] (‘Ckl —5)+_lkfs”(w1(s”kl,m) _ Wz(sl/kl,m))?
’ (v,B, k1)
Asp | Cok
|Asp,p| Caky ||w1(r,m) —wy(t,m) || (101)

= rargh [ (o0l RI o7 ko)

K



Lastra and Malek Advances in Difference Equations (2015) 2015:200 Page 34 of 78

foralll <p <3p—-1andalso

Ry(im) 1 M dllkl
H l im Al dj+8;— 7[ (Tkl —S)T_l

Q(lm) kT uq)
PRy 1/kp 1k ds
o) ) S|
V,0,U,K1,K
1 Gk
< |e|Arditdi- —2—”w1 (t,m) —wy(r,m ” (0B k1) (102)
rQR’kF( 1k1) L
forall1 </ <D -1 together with
” Rl lm Al—d[+81—l 1
im d
i’ (- p)
! duq d
k +8-p-1 1/k 1/k S
X[ ) R o 5 m) — a0 ))
0 5 k)
_ Coll
< |e|Aimdiréi-1 |A5, p|—||wl(r,m)—Wz(f»m) | sy (103)

TR (S8 + 8- p)

for all 1 < p < §; — 1. Finally, we also obtain

_IL k1 N Vi 1 s p+00 "
Hé Q(im)k T'(1 + %)/0 (=) <(2n)1/25/0 /_Oo i (s =), m — my, )

d
X Ro(iml)(wl (xl/kl, ml) — Wy (xl/kl, ml)) dxdm1> e
(s —x)x (v Bopki k)
G361
< WI‘(I)Q [wi(z, m) = wa(z, m) ” (0, Brk1 ) (104)
and
+00
1 Coole) (€) / . l/lq 1 / Coolm— my,€)
Qim)ka (1 + £-) @2\
. 1/k 1/k ds
X Ro(zml)(wl (S 1, Wll) W2( 1 ml)) dm1
S M.k
Cabo,
< WCO [wi(z, m) — wa(z, m)” Bk’ (105)
Now, we take @, 7, > 0, for 1 </ <D, and 1,3, {0,0, $0, {1,0, §1 > O such that
C38102w@ CokP
Qo) 2k (1 + k%) '”QRDk I( (6p— 1(1kz k1))
+ |A8Dp|C2kp + Z Al dj+8;-1 1 Czkfl
kT ( Bp-D) (k- /]? +ki(8p 17)) = rQleF( l/q)

1<p=<ép-1 "QRpX1
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A1 1 ok} Cs810
L D e Y @ 0
1<p=8-1 QR le(;(‘—fl +8-p) 1 ky
C
200 <1, (106)

T e (1t 1)

I3

Bearing in mind the estimates (99), (100), (101), (102), (103), (104), (105) with the con-
straint (106), one gets (88). Finally, we choose rgr, > 0, for 1 <1 < D, &1,2, 80,0, S0, CF» $1,05
21,82 > 0 and @ > 0 such that both (97), (106) are fulfilled. This yields our lemma. a

. z d
We consider the ball B(0,w) C F( g ok

plete metric space for the norm || - [[(,5,.4 ¢)- From the lemma above, we find that %

) constructed in Lemma 3 which is a com-

is a contractive map from B(0, =) into itself. Due to the classical contractive mapping
theorem, we deduce that the map Hfl has a unique fixed point denoted by a),‘fl(r,m,e)
(ie. ’Hlj (a),”fl(r, m,€)) = a),fl(r, m, €)) in B(0, ), for all € € D(0, €). Moreover, the function
w,’fl (t,m, €) depends holomorphically on € in D(0, €p). By construction, w,’fl (t,m, €) defines
a solution of (83). This yields Proposition 11. O

4.3 Formal and analytic acceleration operators

In this section, we give a definition of the formal and analytic acceleration operator which
is a slightly modified version of the one given in [2], Chapter 5, adapted to our definitions of
my-Laplace and m-Borel transforms. First we give a definition for the formal transform.

Definition 5 Let k > k > 0 be real numbers. Let /(1) = 2 w1 fut” € TC[7] be a formal
series. We define the formal acceleration operator with indices my, m by

N N r%
A F €)= fr Figis" € £C[£].
n>1 k

Notice that if one defines the formal m-Laplace transform fmk (f ) and the formal m;-
Borel transform l%mﬁ (f ) of f (z) by

A 2> n n 5 7 _ f;’l n
Lt =3 Ar (7)1 Bu@ =3 2

n=1 ISy
then the formal acceleration operator flmi(,mk can also be defined as
A f €)= B, 0 Lon)PIE).
In the next definition, we define the analytic transforms.

Proposition 12 Let k >k > 0 be real numbers. Let S(d, % + 8, p) be a bounded sector of
radius p with aperture % +38, for some § > 0, and with direction d. Let F : S(d, % +68,p) > C

be a bounded analytic function such that there exist a formal series F(z) = Yo Fn' €
Clz] and two constants C,K > 0 with
N-1
F(z) - Y F,2"| < CKNT(1+ N/k)|z[Y (107)
n=1
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forallz € $(d, % +8,p), all N > 2. The analytic my-Borel transform of F in the direction d
is defined as

—k Z\K\ Z*
(BZ%F)(Z)= %/ﬁF(u)exp((;> >ﬁdu, (108)

where yy is the closed Hankel path starting from the origin along the segment [0, (p/2) x
i(de 2+ 8 i(de Z 48 id-z 8%

PRatTas )] ,following the arc of circle [(/o/Z)el(d+ %2 ), (p/2)e @52 )] and going back to the

id-z_8
origin along the segment [(,0/2)el(d7 % 2 ), 0] where 0 < 8’ < 8, which can be chosen as close to
3 as needed. Then the function (B:in,-(F )(Z2) is analytic on the unbounded sector S(d, ") with
direction d and aperture 8" where 0 < 8" < §', which can be chosen as close to §' as needed.
Moreover, zf(B F) = 1 Fu Z"IT(n/k) denotes the formal my-Borel transform of F,

then for any given p’ > O there exist two constants C,K > 0 with

N-1
(B3, F)2) - Z I;)Z” < CKNT(1+N/k)|Z|N (109)

forall Z € S(d,8") N D(0, p'), all N > 2, where k is defined as 1/x = 1/k — 1/k. Finally, the
my-Borel operator Bflni( is the right inverse operator of the my-Laplace transform, namely
we have

£, (v (By, F)W)(T) = F(T), (110)
Jorall T € $(d, 7 + ', p/2).

Proof The proof follows the same lines of arguments as Theorem 2, Section 2.3 in [2].
Namely, one can check that if F(z) = 2", for an integer n > 0, then

B, F(Z) = Z"IT (n/k) (111)

for all Z € S(d,8") by using the change of variable u = z/w!/ k in the integral (108) and a
path deformation, bearing in mind the Hankel formula

1 1 _n
= f/w ke dw,
F(;) 2im J,

where y is the path of integration from infinity along the ray arg(w) = -7 to the unit disc,
then around the circle and back to infinity along the ray arg(w) = 7. From the asymptotic
expansion (107) and using the same integrals estimates as in Theorem 2, Section 2.3 in
[2], together with the Stirling formula, for any given p’ > 0, we get two constants C,K>0
such that

N-1

n ( +N/k)
B¢ F(Z)- § 7" = |BE (Ry1F)(Z)| < CKN ———2|Z|N
i — (%) 1B (R4 F)(2)] raaN

where Ry_1F(u) = F(u) — ZN 'F,u", forall N > 2, forall Z € S(d,8”) N D(0, p’). Therefore
(109) follows.
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In the last part of the proof, we show the identity (110). We follow the same lines of
arguments as Theorem 3 in Section 2.4 from [2]. Using Fubini’s theorem, we can write

d d
Em& (vi> (Bm%F)(V))(T)
~ . 7 -
= l}/ (—L/ F(u)e(ﬁ)k d du)e_(%)kﬂ
L 2[7-[ Vi uk+1 14
- _L Fg”) exp Vi( i - L /~<VI~(_1 dv ) du. (112)
2irr Jy ukt \Ji, uk Tk

Therefore, by direct integration, we deduce that

k
k /F(u) T (113)

2im u Tk _yk

‘Cfn,} (vi> (Bfnl_( F)W))(T) =

Now, the function u > £ ( ) I

- has in the interior of y; exactly one singularity at u = T
(since T is assumed to belong to S(d Z + &/, p/2)), this being a pole of order one, with

residue —F(T)/k. The residue theorem completes the proof of (110). O

Proposition 13 Let S(d, «) be an unbounded sector with direction d € R and aperture o.
Let k> k>0 be given real numbers and let k > 0 be the real number defined by 1/x =
1/k - 1/k. Let f:S(d,«) UD(0,r) — C be an analytic function with f(0) = 0 and such that
there exist C,M > 0 with

F)| < cetrr

forall h e S(d,a) UD(O,r).
Forall 0 < &' < mw/k (which can be chosen close to 7w /x), we define the kernel function

kk - n\* kN 4
vt ]l 8-}

dks'

i(de 2+ 8
where V1 s is the path smrting from 0 along the half-line R, %) and back to the

8
origin along the half-line R+e %7 The function G(&, h) is well defined and satisfies the
following estimates: there exist ¢y, ¢y > 0 such that

|G, )| <a exp(—cz<:gl:> ) (114)

forallhe Ly =R.e and all & € S(d,8") for 0 < 8" <8 (which can be chosen close to §').
Then, for any 0 < p < (co/ M)V, the function

dh
d = h)G(€,h)— =
A ©= [ G =5

defines an analytic function on the bounded sector Sy, 5, with aperture *- + 8, for any 0 <
8 < a, in the direction d, and with radius p and which satisfies the requirement that there
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exist C,K > 0 with
N-1
I'(n/k
g&) - f WI8) en) < CINP (1L + N IE Y (115)
= T'(n/k)

for all & € Suys,, all N > 2, where g(§) = Zn>1ﬁ,
m,;:mkf(g) wheref(h) = =1 fult" is the (convergent) Taylor expansion at h =0 of f on
D(0,r).
In other words, g(&) is the k-sum of 3(€) on Sy, in the sense of the definition [2] from
Section 3.2.

is the formal acceleration

Proof We first show the estimates (114). We follow the idea of proof of Lemma 1, Sec-
tion 5.1 in [2]. We make the change of variable u = hi in the integral G(§, /1) and we deform

the path of the integration in order to get the expression

Gl&, )__ﬁ@) / Wik emik 1 o
2im \h) Jy k1

where y; is the closed Hankel path defined in Proposition 12 with the direction d = 0.
Hence, we recognize that G(&, /1) can be written as an analytic Borel transform G(&, /) =
k(BY. ek)(“;‘/h) where e (1) = ", From Exercise 1 in Section 2.2 from [2], we know
that ek(u) has 0 as formal power series expansion of Gevrey order k on any sector 50,%+5
with direction O for any 0 < § < w/k. From Proposition 12, we deduce that (Bfnl}ek)(Z)
has 0 as formal series expansion of Gevrey order x on any unbounded sector Sy ;7 where
0< 8" < 8" <8 <m/k (where §8” can be chosen close to 7/«). Finally, using Exercise 3 in
Section 2.2 from [2], we get two constants ¢;, ¢; > 0 such that

(B, e)(2)] < e

for all Z € Sy 5. The estimates (114) follow.
In order to show the asymptotic expansion with bound estimates (115), we first check
that if (/) = 1", for an integer n > 0, then

T(n/k)
= 116
A €)= 1 8" (116)

on Sz, Indeed using Fubini’s theorem, we can write

d __k O AW £k
'Am m,(f(g) 2 (k\/th e I >€ ul~<+1 du

dkﬁ’

From the definition of the Gamma function we know that

cd
k/ he " —=£fnk(h")(u)=l“(%)u”,
Lg

Page 38 of 78
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and bearing in mind (111), after a path deformation, we recognize that

'(n/k) £
T(n/k)

n n
A S ) = r(;)% (")) =

Since the Taylor expansion of f at &z = 0 is convergent, there exist two constants Cr, K; > 0
such that

N-1
W—zfnh"

n=1

< GKH|nN (117)

for all 1 € D(0,r), all N > 2. Taking the expansion (117) and the exponential growth esti-
mates (114), using the same integrals estimates as in Exercise 3 in Section 2.1 of [2], we get
two constants C, K > 0 such that

A S(E) - Z_lfn%s"
" (%)

n=

= AL RaDE)] = KN T NIIET,

where Ry_1f(h) = f(h) = SN £l for all N > 2, all & € Sy 5. O

4.4 Analytic solutions for an auxiliary convolution problem resulting from a

my,-Borel transform applied to the main convolution initial value problem
We keep the notations of Sections 4.1 and 4.2. For the integers d;, §;, for 1 <[ <D -1, that
satisfy the constraints (66), (67), and (72), we make the additional assumption that there
exist integers dj; > 0 such that

di+ky+1=8(ky +1) +dj, (118)

for all1 </ < D - 1. In order to ensure the positivity of the integers dlz,kz, we impose the
following assumption on the integers dll,/q:

dll,kl > (8; — (ko — ky), (119)

for all 1 </ < D - 1. Indeed, by the definition of dll'kl in (74), the constraint (118) can be
rewritten dj, = dj, +ky — ki = 8i(ky — k1). Using (8.7) from [9], p.3630, we can expand the
operators T%®* 203! in the form

T,;,(kzﬂ)a;l _ (Tk2*1aT)‘” + Z AabpTkz(srp)(TkzuaT)p’ (120)
l=p=é;-1

where Aj,,, p=1,...,8;— 1 are real numbers, forall1 </ <D.
Multiplying (70) by T%2*! and using (120), we can rewrite (70) in the form

QUim) (T 9 U(T, m,€)) — Rp(im) (T 37) P U(T, m, €)

=Rp(im) Y Asy, TP (TR 9r) LT, m,€)
1=p=ép-1

c12(€) e

—1 ko +1
+e T
Q)12 J_o

Qi (i(m — my))U(T, m — my, €)Qa(im)U(T, my, €) dimy
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D-1
2
+ ZRl(im) (EAldHB[l le,kz (Tk2+18T)5l U(T, m, )
=1

B 2
P YD A (U7, ) )

1<p<é;-1
ekt (;;'()61)/2 Co(T,m — my, €)Ro(im1)U(T, my, €) dnny
ko1 C00(€) [T )
etrhd (2° 0)1,2 Co,o(m = my, )Ry (irm)U(T, my, €) dmy
+ e Yep(e) T E(T, m,€). (121)

We denote @, (t,m;,€) the formal m, -Borel transform of U(T, m, €) with respect to T,
@k, (T, m, €) the formal my,-Borel transform of Cy(T,m, €) with respect to T and g@/@(r,
m, €) the formal m1y, -Borel transform of F(T', m, €) with respect to T,

Oy (T,m, €) = ZU (m, e) @i, (T,m,€) = ZCO,,(m,e)

n>1 ( ), n>1 (2)
122)
Vi (T,m,€) = Y Fy(m, €)=~
k m ; m F(kz)

Using the computation rules for the formal #1, -Borel transform in Proposition 8, we de-
duce the following equation satisfied by @, (t, m, €):

QUim) (ks T2 éoy, (v, m, €)) — (kzrkz)aDRD(im)c?)kz(r,m,e)

. 5 1 A ds
= Rp(im) Z Aspp—— / D=P~ (k‘gspa)k (l/kz m, 6))
P F(8 —P) s
k
LT NS
D) O
I3 0
C1,2
((271 7S / / Qu (i — my))dogy ((s — %)V%2, 1 — 1y, €)
1 d
x Qy(imy)éy, (62, my, €) dx dm, o
(s —w)x s
ky k2 d%kz d
Ag—dp+8 i k ou 88 1k S
+ ZR[(lWI)( [=ar+or= - / (T2 -s) R (kz Is% o, (s Z,m,e))?
()
k
+ Z AalpeAlfdl-HSlfl T
’ 2
l<p=<f;-1 I( 212‘2 +8-p)

ko d?

i k 22 5y-p-1 ~ 1/k:
X / (T2 -s) R (ko?s” o, (52, m, €))
0

3 ‘L'k2 /1:
te o1,
F(l+ E) 0

X Ro (iml)é\)k2 (xl

7)

S
(=9 (s [ [ pulls=a"m =)

dx dml) é

N

kg

, My, 6)

1
(s —x)x
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ko k2
T C €
+€—1—1/ ('L'k2 _S)l//Q 0,0( )
ra+ E) 0 (27)Y2
+00

d
X (/ Co,o(m — my, €)Ro(imy) ok, (Sl/kz, my,€) dml) =
oo s
1 h o k Uky % 0 1k ds
+€ cple) —— T2 —5 s m,e)—. 123
F()F(“%)/O (¢ )4, (5742, ) (123)

We recall from [1] that ¢y, (t,m,€) € thﬁ,u.kz) for all € € D(0, €y), any unbounded sector S,

and any bounded sector SZ centered at 0 with bisecting direction d € R, for some v > 0.
From Section 4.2, we recall that w,fll(f,m,e) € Fgﬂxﬁvﬂvkbkl)’ for all € € D(0, ), for some

unbounded sector U, with bisecting direction d € R, where v is chosen in that section.

Lemma 4 The function

dh
w,fz(r, m, €)= Ai‘kzvmkl (h > w,ﬁ’l (h, m,e))(r) = 9 w,fl (h,m,e)G(r,h);

is analytic on an unbounded sector Sy, s with aperture % + § in the direction d, for any
0 < § < ap(Uy) where ap(U,) denotes the aperture of the sector U, and has estimates of the
Jorm: there exist constants Cy, >0 and v' >0 such that

k4

|1/f1il2(f¢m;€)| < Cx//kz (1 + |Wl|)_“€_ﬁ|m‘ m

exp(v'|7[%) (124)

for all T € Sy 5, all m € R, all € € D(0,¢€p). In particular, we find that Afnkz,mkl (h —
w,fl (h,m,e))(z) € F("‘l),,ﬂ,u,kz)for any unbounded sector S; and bounded sector SZ with aper-

ture - + 8, with & as above, and we carry a constant ¢y, >0 with

[ v, m,€)]

W k) = Sy (125)
forall e € D(0, €).

Proof Bearing in mind the inclusion (81) we already know from Proposition 13 that the
function 7 1/f,ﬁl2 (t,m, €) defines a holomorphic and bounded function (with bound in-
dependent of € € D(0, €9)) on a sector S, s ., y/x 2 With direction d, aperture % + §, and
radius (cp/v)*/2, for some § > 0 and the constant c, introduced in (114), for all m € R, all
€ € D(0, €).

From the assumption that the function w,fl (t,m, €) belongs to the space F?

(v Bk k) S€€
(80), we know that the 1, -Laplace transform

ky
Efi,/ (h > w,f (h, m,e))(u) =k 1//,? (h,m,€) exp(—(ﬁ) )ﬁ
ki 1 i” 1 u h

defines a holomorphic and bounded function (by a constant that does not depend on € €

D(0,¢€p)) on asector S, in the direction d, with radius ¢ and aperture 6 which satisfies

lf—z +E<0< lf—z + % +ap(Uyg), where ap(U,) is the aperture of Uy, for some o’ > 0.



Lastra and Malek Advances in Difference Equations (2015) 2015:200 Page 42 of 78

Hence, by using a path deformation and the Fubini theorem, we can rewrite the function
w,fz(r, m, €) in the form

i ( e)——~§i ce (hk+¢f(h €))(u) (e e
& o 2im Vd,kz.s/,g//z " h " we k2+1
=By, (L, (> v nm, ) @) (0), (126)

where Vi, 502 is the closed Hankel path starting from the origin along the segment

5/

[o,(o712)¢ ")

. T . 8 : z &
following the arc of circle [(G’/Z)el(d+7‘5+7), (o'/ 2)el<dﬁ%77)] and going back to the origin

along the segment [(o//2)ei(d_%_%), 0], where 0 < 8" < % + ap({/,) that can be chosen close
to T +ap(Uy).

Therefore, from Proposition 12, we know that t lp,fz(r,m,e) defines a holomorphic
function on the unbounded sector S(d,8”) where 0 < §” < §, which can be chosen close
to &, for all m € R, all € € D(0, €y). Now, we turn to the estimates (124). From the rep-
resentation (126), we get the following estimates: there exist constants Ej, E;, E3 > 0 such
that

’

EyePim k 7 Itk | T|R2
d 1 Eoltl™2 | k2 e B3(5)2
<
|1/fk2(r,m,e)| = rm) e 7| +/o vy ds

Eyefm 1 2 ko g1k
< 1 eEzlflk2 |‘E|k2 + e E3(57)21T12 127)
1+ |m|)# Ezk,

forall t € S(d,8"”),allm e R, all € € D(0, ¢y). Besides, from the asymptotic expansion (109),
we get in particular the existence of a constant Ey > 0 such that

Ee-Blml
d Lo
[y (T,m,e€)| < TN (128)

for all T € S(d,8”) N D(0, p’) and some p’ > 0. Finally, combining the estimates (127) and
(128) yields (124). O

We consider now the following problem:

Q(im)(kgthwkz(r, m,e€)) — (kzrkz)aDRD(im)wkz(t,m,e)

ke
ke _ ds

[ o )

=Rp(im) Y Asppr——r
P I'6p-p) Jo

k
1 ka /r 2 (.L-kz _S)l/kz
Fu+%)0

(s [ liom=mous (s =50 m =m0

ds
s

N

1/ko

X QZ(iml)wkz (x » 1, € ) dxdml)

(s —x)
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— 2
S Ardps T2 " k o 8 8 17k ds
+ ZRl(lWl) e —— (r 2 —S) ky (kz lg ’a)kz(s 2,m,e))—
=1 r( 2y Jo §
- =
Z Aj=dy+8;-1 T
+ Ag petiriroTt —
1=p=§-1 I°( 5o+ -p)
ko d[2k2 d
2 L si—p— S
x f (‘L’k2 —s) % +8-p l(kgpspa)kz(Sl/kzym;€>)—)
0 S
ko ) s p+oo
T cole
vl / (e _s)“b( ole) / / 01 (5 =22, m = my )
Fd+4)Jo (2m) 0 J-oo
1 ds
x Ro(im)wy, (xl/k2,m1,e) dxdm; | —
(s —x)x s
ko k2
T Coole
+ 6—171/ (Tk2 _S)l/k2 0,0(1)2
ra+ 5) 0 @)V
+00 k ds
X (/ CO,O(m - ml’E)RO(iml)a)kz (Sl/ 2,1’}’[1, 6) dml) ?
—00
ko ) d
-1 T ko 1k d 1/ko S
+€ crl€) ——— T2 -5 s, m,e)— 129
F()F(1+%)/o (2% =) (52 m, ) (129)

for vanishing initial data wy,(0,m,€) = 0, where w,fz(r,m,e) has been constructed in
Lemma 4.
We make the additional assumption that there exists an unbounded sector

SQ,RD = {Z € C/|Z| > TQ.Rp» |arg(z) - dQ,RD| < nQ,RD}
with direction dgr,, € R, aperture 1qr, > 0 for some radius rgg,, > 0 such that

Q(im)

130
Rp(im) & >k (130)

for all m € R. We factorize the polynomial P, (t) = Q(im)k, — RD(im)ng7:(‘31"1)’<2 in the

form
8p-1)ka-1
Pu(t) = -Rp(im)k” ] (z-a(m)), (131)
1=0
where

qi(m) = (M) (zﬁjyll)k2
|RD(im)|ng*1

Q(im) 1 2l
) exp(«/—_1<arg<RD(im)ng_l> (6p = Dky i (6p = Dky )) (152)

forall0 <[/<(8p-1)k, —1,allm e R.
We choose an unbounded sector S, centered at 0, a small closed disc D(0, p) and we

prescribe the sector Sq g, in such a way that the following conditions hold.
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(1) There exists a constant M; > 0 such that
|t = qu(m)| = My (1 +]7]) (133)

forall0 << (8p—1ky—1,all m € R, all T € S; UD(0, p). Indeed, from (130) and the
explicit expression (132) of g;(m), we first observe that |g;(m)| > 2p for every m € R, all
0 <! < (8p —1)ky — 1 for an appropriate choice of roz,, and of p > 0. We also see that, for
allme R, all 0 < < (8p — 1)k — 1, the roots g;(m) remain in a union U of unbounded
sectors centered at O that do not cover a full neighborhood of the origin in C* provided
that 7z, is small enough. Therefore, one can choose an adequate sector S; such that
S4 NU = @ with the property that, for all 0 < < (§p — 1)k, — 1, the quotients g;(m)/z lie
outside some small disc centered at 1 in C for all v € S4, all m € R. This yields (133) for
some small constant M; > 0.
(2) There exists a constant M, > 0 such that

|7 = a1, (m)| = Ma|qu, (m)] (134)

for some [y € {0,...,(8p — ks —1}, all m € R, all T € S, UD(0, p). Indeed, for the sector S,
and the disc D(0, p) chosen as above in (1), we notice that, for any fixed 0 < [y < (8p — 1)k, —
1, the quotient t/g;, (m) stays outside a small disc centered at 1in C for all r € S, UD(0, p),
all m € R. Hence (134) must hold for some small constant M, > 0.

By construction of the roots (132) in the factorization (131) and using the lower bound
estimates (133), (134), we get a constant Cp > 0 such that

. 1

|Q(im)| ) Gp-Dky (1 + |T|)(5D—1)k2—1

|Rp(im) k3P~

|P(T)] = MPP 7 My | Ry (i) | K3 (

ng 1
2 —(rorp) P02 |Rp (im)|
(k") o2

! +x)(5D*1)k2*1 (6p-1)—-L
X(“‘JEW 1+ frf) ™
(L4 ak2) PR

> M?D_I)IQ_IM

_ ﬁ . ko (lSD—l)—kL
= Cp(ror,) P07% |Rp(im)|(1 + |7|) 2 (135)

forall T € S;UD(0, p), all m e R.
In the next proposition, we give sufficient conditions under which (129) has a solution

d

d : ’
a)kz(t, m, €) in the Banach space FC 8 0k) where V', B, u are defined above.

Proposition 14 Under the assumption that

1
Sp =8+ — (136)
ko
for all 1 <1 <D -1, there exist a radius rqr, > 0, a constant v > 0, and constants

61,2, 50,0 S0» §15 §1,0» SF» G2 > 0 (dependlng on Ql! QZ’ k2’ CP! M, V, €0, er Alr 817 dl fOV
1<1<D-1) such that if

c2(€) co(e)
€

= G1,2 sup = 61,05 ||<Pk2(f»m»€)’

<a
/ p— b
€eD(0,0) (Bopik)

€€D(0,¢0)
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co,0(€)
——| < 60,0 [ Co,o(m,f)”(ﬂ ) = S0 (137)
€eD(0,¢0) € ’
CF( ) d
gF’ H l/sz( (CHINN) < 2
eeD( () ,€0)

for all € € D(0, €y), (129) has a unique solution a),”(lz (t,m,€) in the space F(Lf/,ﬂ,/t,kz) with the
property that ||a),‘32(t,m,e)||(v/,ﬁ,ﬂyk2) <w, for all € € D(0,¢), where 8, 1u > 0 are defined
above, for any unbounded sector S, that satisfies the constraints (133), (134) and for any

bounded sector S, with aperture strictly larger than T such that
SEcD(,p),  S5C Suws (138)

where D(0, p) fulfills the constraints (133), (134) and where the sector S, s with aperture
* + 0 is defined in Lemma 4, where 0 < § < ap(Uy).

Proof We start the proof with a lemma which provides appropriate conditions in order to
apply a fixed point theorem.

Lemma5 One can choose the constant ror;, > 0, a constant v small enough and constants
§1,21 §0,0’ S0, S1» gl,O’ Gry G2 > 0 (dependlng on Ql; QZr k27 CP’ M, V, €0, Rl: Al; 817 dlfor 1 E l E
D —1) such that if (137) holds for all € € D(0, €,), the map H’} defined by

'Hf2 (w(r, m))

ds
s

Rp(im) . )
Rz A‘SDPr(aD p)/ s )

1<p<ép-1

+6_1 / ky _ 1//(2
m(t)F 1+ 2 & =)

x(czlri(f/)z // Ql l(Wl ml))w((s )R - ml)
Q

1 ds
X Qq(imy)w ( 1k 2,m1) dxdml)—
(s—x)x s
D-1 ky d?
im 1 T bk _ ds
n l( ) EAl—dlﬂSlfl (Tkz _ S) % 1(/(251551‘4}(51//(2, m)) it
Ay s
=1 NG~
A Aj—dj+8;-1 1
+ 81.p€ 2
1<p<§-1 F(;(‘—;Q +8-p)
th i d
82 L s—p—1 S
x/ (‘L'k2 —s) kp TP (kgps"w(sl/kz,m))—)
0 S

ko

1 T
+€—1—1/ (Tkz _S)l/kz
Pp(0)l 1+ ) Jo

(e [t

ds

1k dx dml) —

X Ro(iml)w(x ,ml)

N

1
(s —x)x
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k:

4 1 v % 1k €0,0(€)
tel (r -s) )2
Pu(0)T 1+ ) Jo (2m)

+00 d
X (/ Coo(m —my, G)Ro(iml)W(SUkZ, m) dml) =2
—o0 s
-1 ( ) 1 /rk2( & )1/k2wd ( 1/ky )dS (139)
+e cpl€) ————— 2 g s m,e)—
TR oras 1) Jo & s
satisfies the next properties.
(i) The following inclusion holds:
H2(B(0,v)) C B(0,v), (140)
where B(0, v) is the closed ball of radius v > 0 centered at 0 in F(’i,’ﬂ%kz),for all e € D(0, €p).
(ii) We have
[ w1) - 2 (w)| < Sl - walor (141)
e W1 e N2 (v Bpky) = 9 I 211V, Bspk2)

for all wy, w,, € B(0,v), for all € € D(0, &).

The proof of Lemma 5 follows the same lines of arguments as Lemma 2 in Proposition 9
of [1] and rests on Lemma 2, Propositions 5, 6, and 7 given in Section 2.2. Therefore, we
omit the details.

We consider the ball B(0,v) C F(‘i ko) constructed in Lemma 5 which is a complete
metric space for the norm || - ||(/ g,ky)- From the lemma above, we find that 72 is a
contractive map from B(0, v) into itself. Due to the classical contractive mapping theo-
rem, we deduce that the map ’Hl? has a unique fixed point denoted by a),‘fz(r,m,e) (ie.
H'g2(w,f2(r,m,e)) = w,‘fz(r,m,e)) in B(0,v), for all € € D(0,¢y). Moreover, the function
a),‘fz(r,m,e) depends holomorphically on € in D(0,€p). By construction, w,‘é(t,m,e) de-

fines a solution of (129). This yields the proposition. d

In the next proposition, we present the link, by means of the analytic acceleration op-
erator defined in Proposition 13, between the holomorphic solution of the problem (83)
constructed in Proposition 11 and the solution of the problem (129) found in Proposi-
tion 14.

Proposition 15 Let us consider the function w,‘fl (t,m, €) constructed in Proposition 11 and
which solves (83). The function

d (. d d
T > Accy, i (o, ) (T, m,€) = Ay

(h—> of (h,m,€)) ()

dh
_ / of, (nm, )G, )%
Lq

defines an analytic function on a sector Sy, s (., )iic j, With direction d, aperture - + 8, and

co/v)
radius (cy/v)V* /2, for any 0 < § < ap(U,) and for a constant c, introduced in (114), with the

property that Accfzvk1 (w,‘fl)(O, m,e) =0, forallmeR, all e € D(0, €).
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Moreover, for all fixed € € D(0, €y), the identity
ACCZzJﬂ (w,‘jl)(l',m,e) = wZ2(T’m’6) (142)

holds for all T € S, 5 (¢, jwyiix 2> all m € R, provided that v > 0 is chosen in such a way that
S, icomle sz C SZ holds where SZ is the bounded sector introduced in Proposition 14.

As a consequence of Proposition 14, the function T — Accf%,q (a),”fl)(r, m, €) has an ana-
lytic continuation on the union SZ U S, where the sector S; has been described in Proposi-
tion 14, denoted again by Acc,”(lz,k1 (a)l‘fl)(r, m, €) which satisfies estimates of the form: there
exists a constant kaz > 0 with

k4

|Acef, s, (0f ) (T, m,€)] < Coy (1+ml) e P! T 1=

exp(v'|7[%) (143)

forallt e Sg USy, allmeR, all e € D(0,¢€p).

Proof From Proposition 11, we point out that a),‘fl (t,m, €) belongs to the space F(dvvﬁ] kLK)

and that ||a),”(l1 o,k 6) < @ for all € € D(0,€y). Due to Proposition 13, we deduce that
the function 7 —~ Acc,”(lz, k (co,‘f1 )(t,m, €) defines a holomorphic and bounded function with
values in the Banach space Eg,,,) (with bound independent of €) on a sector S, 5 (., /yi/x 12
with direction d, aperture ¥ + §, and radius (c2/v)¥/2, for any 0 < 8§ < ap(U,) and for a
constant ¢, introduced in (114), for all € € D(0, €).

Now, as a result of Proposition 13, we also know that the function 7 — Acc;lek1 (a),fl)(r,
m, €) is the «-sum of the formal series

Ay, (> 01 (1,m,€)) (T) = dogy (T, 1, €)

viewed as a formal series in T with coefficients in the Banach space Eg ), on S, 5 (¢, vt/ 25
for all € € D(0, €p). In particular, one sees that Acclek1 (w,‘fl)(O, m,€) =0, for all e € D(0, €).

Likewise, we notice from Lemma 4 that the function t — wl‘é (t,m,€) is the k-sum
on Sy, 5 (cymyic 2 Of the formal series Y, (t,m, €) defined in (122), viewed as a formal se-
ries in T with coefficients in the Banach space Eg ), for all € € D(0,¢q). We recall that
@k, (T, m, €) formally solves (123) for vanishing initial data dx, (0, 71, €) = 0. Using the stan-
dard stability properties of the «-sums of the formal series with respect to algebraic oper-
ations and integration (see [2], Section 3.3, Theorem 2, p.28), we deduce that the function

Acc,”fz,k1 (a),‘fl)(r,m,e) satisfies (129) for all T € S, 5 ., )12, All m € R, all € € D(0, &), for

co/v
vanishing initial data Acc‘,fz,kl (wfl)(O, m, €)= 0.
In order to justify the identity (142), we need to define some additional Banach space.

We keep the aforementioned notations.

Definition 6 Let /' = (c3/v)"“/2. We denote H, gk, ) the vector space of continuous
functions (t,m) — h(t,m) on Sy, s x R, holomorphic with respect to T on Sy, 5, such
that

” h(z,m) H (v, Bk,

1+ |t|?k
= sup (1+|m|)”|7|
reS¢KjﬁumeR | |

exp(Blm| —v'|7|*2) |h(z, m)| (144)
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is finite. One can check that H(, g .k, i) endowed with the norm | - ||/ g,y is @ Banach
space.
d

v, B,1.ko
and S’ described in Proposition 14, then it belongs to the space Hy,g,.,,») (provided that

Remark Notice that if a function /(t, m) belongs to the space F| ) for the sectors S,

v > 0 is chosen such that S;, 5 C SZ) and, moreover,

”h(f’m) H(u’,ﬂ,u,kz,h’) = “h(f’m)| ' Bouka)

holds.

From the remark above, one deduces that the functions ¢, (7, m, €) and w,‘é (t,m,€) be-
long to the space H, g ..k, i)-
In the following, one can reproduce the same lines of arguments as in the proof of Propo-

sition 14 just by replacing the Banach space F(‘i , y bY Hi g1k, ')» ODE gets the follow-

Botnrka
ing.

Lemma 6 Under the assumption that (136) holds, for the radius rqr,, > 0, the constants
v and $13, 50,0, S0» S1, S1,0 SF» G2 given in Proposition 14 for which the constraints (137)
hold, (129) has a unique solution wy, i (t,m,€) in the space Hyy g . k, ) With the property
that || Wiy (T, m, €|l g ko i) < U, for all € € D(0, ).

P s . d d .

Taking into account Proposition 14, since W, (t,m, €) belongs to F(V,, Boika)’ italso belongs
to the space H(, g .k, 1) Moreover, since 7 Acc;fz,k1 (a),‘fl)(r, m, €) defines a holomorphic
and bounded function with values in the Banach space E ) (with bound independent
of €) on S, s, that vanishes at v = 0, we also find that Acc;fz,kl (w,‘fl)(r, m, €) belongs to
H pyuko it

As a summary, we have seen that both wfz(t,m,e) and Acclekl(w,‘fl)(r,m,e) solve
the same equation (129) for vanishing initial data and belong to Hs g .k, x). Moreover,
one can check that the constant v > 0 in Lemma 6 and Proposition 14 can be chosen
sufficiently large such that || Acczz‘k1 (w,‘fl)(r,m,e)ll(,,/,ﬂ,u,kz,h/) < v holds, if the constants
$1,25 50,0, $1,0, SF > 0 are chosen small enough and rz,, > 0 is taken large enough. By con-
struction, we already know that ||a)f2(r,m,e)||(uxyﬂ,,hk2,h/) < v. Therefore, from Lemma 6,
we find that they must be equal. Proposition 15 follows. d

Now, we define the m1,-Laplace transforms

uyky d
FHYT,m, €)=k w,fz(u, m,e)e’(T)k2 —u,
Ly u
(145)
u vk A
UYT,m,e€):= kg/ a),‘fz(u,m,e)e’(T)k2 —u,

Lq

which, according to the estimates (124) and (143), are E(g ,,)-valued bounded holomorphic
functions on the sector S, with bisecting direction d, aperture ;:_2 <6< ;:—2 +ap(S4), and
radius /', where /' > 0 is some positive real number, for all € € D(0, €).

Remark The analytic functions F¥(T,m,e¢) (resp. U%(T,m,€)) can be called the (m, 5
my,)-sums in the direction d of the formal series F(T',m,€) (resp. U(T,m,€)) introduced
in the Section 4.1, following the terminology of [2], Section 6.1.
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In the next proposition, we construct analytic solutions to the problem (70) with analytic

forcing term and for vanishing initial data.

Proposition 16 The function U’ (T, m, €) solves the following equation:

Q(im) (37U (T, m, €)) — TPV, DL Ry (im) U (T, m, €)

=¢! (Czlyigf/)Z / Qi (i(m — m))\U(T, m — my, €) Qo (imm) U(T, my, €) dmy

D1
+ Z Ry(im)edi-dr+di1 lea‘}’ U(T, m,e)
I=1

o1 cole) [T .
1(2;)1/2 Co(T, m — my, €)Ro(im ) UN(T, my, €) dimy
1 Co,o(f) oo . d
2m)2 Co,o(m — my, €)Ro(imy) U (T, my, €) dm,
+ e cp(e)FUT, m,€) (146)

for given initial data Uu40,m,e) = 0,forall T € Syp, meR,all e € D(0,€p).

Proof Since the function w,‘fz (u, m, €) solves the integral equation (129), one can check by
direct computations similar to those described in Proposition 8, using the integral repre-
sentations (145) that L/%(T, m, €) solves (121) where the formal series F(T, m, €) is replaced
by F(T,m,€) and hence solves (70) where F*(T,m, €) must be put in place of F(T,m,¢).

O
5 Analytic solutions of a nonlinear initial value Cauchy problem with analytic
forcing term on sectors and with complex parameter
Let k1, k; > 1, D > 2 be integers such that k; > k;. Let §; > 1 be integers such that
1= 81) 8[ < 81+1» (147)

foralll1</<D-1.Foralll </<D-1,letd;, A;> 0 be nonnegative integers such that

dl > 8y, A — d[ +6;,—-1>0. (148)

Let Q(X), Q1(X), Q2(X), Ry(X) € C[X], 0 <[ < D, be polynomials such that

deg(Q) > deg(Rp) > deg(R;), deg(Rp) > deg(Qy), deg(Rp) > deg(Qy),

(149)
Q(im) #0, R,(im) #0, Rp(im) #0
forallmeR,all0</<D-1.
We require that there exists a constant oz, > 0 such that
’ Q(l.M) ‘ > roR, (150)

Ry(im)
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forall m e R, all 1 </ < D. We make the additional assumption that there exists an un-

bounded sector

Sorp = {Z € Cllz| = rorps {arg(z) - dQ,RD| < ﬁQ,RD}

with direction dqr,, € R, aperture nqz,, > 0 for the radius rq g, > 0 given above, such that

Q(im)

151
RpGim) & ~FP (151)

for all m € R.

Definition 7 Let ¢ > 2 be an integer. For all 0 < p < ¢ — 1, we consider open sectors &,
centered at 0, with radius €y, and opening % + Kp, with k, > 0 small enough such that £, N
Ep1 9, forall 0 < p < ¢ —1 (with the convention that £, = &). Moreover, we assume that
the intersection of any three different elements in {€,}o<p<c-1 is empty and that U;;é &=
U\ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {£,}9<,<.—1 is called
a good covering in C*.

Definition 8 Let {£,}0<p<.-_1 be a good covering in C*. Let 7 be an open bounded sector

centered at 0 with radius 77 and consider a family of open sectors

Sop 0.0t = {T e C*/|T| < eorr,s

0, - arg(T)| < 0/2}

with aperture 6 > /k, and where 0, € R, for all 0 < p < ¢ —1, are directions which satisfy
the following constraints: Let g;(m1) be the roots of the polynomials (131) defined by (132)
and Sp,, 0 < p < ¢ — 1, be unbounded sectors centered at 0 with directions 9, and with
small aperture. Let p > 0 be a positive real number. We assume that:

(1) There exists a constant M; > 0 such that

|t —qu(m)| = My(1+ 7)) (152)

forall0 </<(dp-Dky -1l allmeR,allt €S, UD(0,p), forall 0 <p<¢—1.
(2) There exists a constant M, > 0 such that

T = qiy (m)| = M| qu, (m)| (153)

for some [y €{0,...,(6p — 1)k —1},allm e R,all T € Sap UD(O,p), foral0<p<g¢-1.

(3) There exist a family of unbounded sectors Uy, with bisecting direction 9, and
bounded sectors Sgp with bisecting direction 9, with radius less than p, with aperture
% + 8y, with 0 < 5, < ap(L[ap), for all 0 < p < ¢ —1, with the property that Sgp N ngl <0
for all 0 < p < ¢ —1 (with the convention that 0. = ).

(4)Forall0 <p<g¢-1foralteT,aleecé, wehaveete Sap,gyeorT.

We say that the family {(So,6.e0r)o<p<c-1, T} is associated to the good covering

{511}05175;—1'
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We consider a good covering {&,}o<p<.-1 and a family of sectors {(So,,6,¢9r-)o<p<c-1, T}
associated to it. For all 0 < p < ¢ — 1, we consider the following nonlinear initial value
problem with forcing term:

Q(az) (3£M0p (t: z, E))
= c12(6)(Qu(0)u’ (¢, 2,€)) (Qu(3)u (¢, 2, €))

D1
+ €@p~ Dk +1)=3p+14(6p-D)(ka+1) 3fDRD(BZ)u°P(t, Z,€) + Z ebig HflRl(Bz)uDP(t, z,€)
I=1

+¢o(t,2,€)Ro(3,)u’ (t,z,€) + cF(e)fDP (t,z,€) (154)

for given initial data #°(0,z,€) = 0.

The functions c;,(€) and c¢g(€) are holomorphic and bounded on the disc D(0, ¢p) and
are such that ¢;5(0) = ¢¢(0) = 0. The coefficient cy(t,z, €) and the forcing term f°7 (¢, z, €)
are constructed as follows. Let ¢y(€) and ¢y o(€) be holomorphic and bounded functions
on the disc D(0, €p) which satisfy c(0) = ¢g,0(0) = 0. We consider sequences of functions
m > Co,(m,e), for n > 0, and m +— F,(m,€), for n > 1, that belong to the Banach space
E,.) forsome B > 0, i > max(deg(Q1) +1,deg(Q,) +1), and which depend holomorphically
on € € D(0,¢€p). We assume that there exist constants Ky, 7o > 0 such that (69) holds for
all 7 > 1, for all € € D(0, ¢g). We deduce that the function

Co(T,z,€) = co0(€)F " (m— Cool(m,€))(z) + Zco(e)}"1 (m > Con(m, €))(2)T"

n>1

represents a bounded holomorphic function on D(0, Ty/2) x Hg x D(0,€) for any 0 <
B’ < B (where F! denotes the inverse Fourier transform defined in Proposition 9). We
define the coefficient ¢y (¢, z, €) as

co(t,z,€) = Cy(€t, z,€). (155)

The function ¢y is holomorphic and bounded on D(0, r) x Hg x D(0, €y) where reg < Ty/2.
We make the assumption that the formal m1; -Borel transform

w/q(r: m, 6) = ZFn(m) 6)

n>1

TVI
K

is convergent on the disc D(0, p) given in Definition 8 and can be analytically continued

w.r.t. T as a function 7 wkal”(t,m,e) on the domain Uy, U D(0, p), where Uy, is the
L . . o op

unbounded sector given in Definition 8, with Vi, (t,m,€) € F(V;,Bvll-rkbkl) and such that there

exists a constant ¢y, > 0 such that

”w/zp(l"m’e)H(v,ﬁ,M,kl,kl) =Sy (156)

for all € € D(0, p).
From Lemma 4, we know that the accelerated function

Yol (v m€) = At (> 0" (h,m,€)) ()
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. 0
defines a function that belongs to the space F; ;

the bounded sector Sgp given in Definition 8. Moreover, we get a constant ¢y, >0 with

) for the unbounded sector S, and

0
”w’Qp(t’m’G)H(u/,ﬂ,u,kz) = Q”kz (157)
for all € € D(0, €y). We take the my,-Laplace transform

u vy A
F(T,m,€) := k2/ Vel (w, m,e)e 12 L, (158)
Loy u

which exists for all 7' € Sy, 0,7, m € R, € € D(0, €), where S, 0, is a sector with bisecting
direction 9, aperture ,f—z <0< ,7:—2 + ap(Sap), and radius /', where /' > 0 is some positive
real number, for all € € D(0, €).

We define the forcing term f°¢ (¢, z, €) as

for(t,z,€) = F! (m — F%(et, m,e))(z). (159)

By construction, f°7(t,z, €) represents a bounded holomorphic function on 7 x Hg x &,
(provided that the radius ry of 7 satisfies the inequality eqr < /', which will be assumed
in the sequel).

In the next first main result, we construct a family of actual holomorphic solutions to
(154) for given initial data at ¢ = 0 being identically equal to zero, defined on the sectors
&, with respect to the complex parameter €. We can also control the difference between
any two neighboring solutions on the intersection of sectors £, N &,.1.

Theorem1 We consider (154) and we assume that the constraints (147), (148), (149), (150),
and (151) hold. We also make the additional assumption that

1 1 1
di+ki+1=8(k +1) +dj, , dj, >0, ==
ki ky K ki Kk

(160)

kzk_zkl > - +d(11+_(;l)(/fi)+ 7 dig > 6= (ky - ky), dp > &+ kig
for1 <1< D-1. Let the coefficient cy(t, z, €) and the forcing terms f°? (t, z, €) be constructed
as in (155), (159). Let a good covering {E,}o<p<c-1 in C* be given, for which a family of sectors
{(SDP,Q,EO,T)OSPS_l, T} associated to this good covering can be considered.

Then there exist radii ror, > 0 large enough, for 1 <1 < D and constants {13, $0,0, 1,0, §F >
0 small enough, such that if

c12(€) co(e)
sup | —— | =42, sup <&1,00
eeD(0,60) € eeD(0,¢0) ( 6 )
161
co,0(€) cr(€)
—| < o0,0, <<{r
eeD(0,60) € eeD(0,60) €

and also for every 0 < p < ¢ — 1, one can construct a solution u®?(t,z,¢) of (154) with
u®(0,z,€) = 0, which defines a bounded holomorphic function on the domain T x Hg x &,
for any given 0 < B’ < B.

Moreover, the next estimates hold for the solution u® and the forcing term f°¢: there exist
constants 0 < h" < ry, Ky, M, > 0 (independent of €) with the following properties:
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(1) Assume that the unbounded sectors Uy, and Uy ,,, have a sufficiently large aperture

in such a way that Uy, N Us,,, contains the sector Uy, = {T € C*/arg(t) € [0, 0,411},

then
_Mp
sup |u°1’*1 (t,z,€) —u®r(t, Z,€)| <Kye 12,
teTﬂD(O,h”),zeHﬁ/
. (162)

_Mp
sup [fal“l(t, z,€) —f°(t,z, e)| <Kye leff2
teTND(O") zeHy

foralle € £,,1 NE,,.

(2) Assume that the unbounded sectors Uy, and Uy il have an empty intersection, then

_Mp
sup |ual’*1(t, z,€) —u’r(t, Z,€)| <Kye 11,
teTﬂD(O,h”),zeHﬁ/
" (163)

sup [f2r(t,z,€) — £ (t,z,€)| < Kpe €T
teTmD(O,h”),zeHﬁ/

foralle € E,,1 NE,,.

Proof Let 0 <p < ¢ — 1. Under the assumptions of Theorem 1, using Proposition 16, one

can construct a function U° (T, m, €) which satisfies LI°?(0, m, €) = 0 and solves the equa-
tion

QUim) (37U (T, m, €)) — TP D®D 2 R (i) LI (T, m, €)

- (621;55/)2 Qi (i0m = m)) U (T, m = iy, €)Qu(im) U (T, my, €) drmy
D1

+ Z Ry(im)eP-ar+d-ld 8;’ U (T, m,e€)
=1

1 CO(E) +oo ) N
(n)i72 Co(T,m — my, €)Ro(im) U (T, m, €) drm

) Co,o(f) oo . 2
Co,o(m — my, €)Ro (im)U°P (T, my, €) dmy
oz |,

+ € lep(€)Fo (T, m,€), (164)
where Co(T,m,€) =3, Con(m,e)T" is a convergent series on D(0, Tp/2) with values
in Eg, and F°(T,m,e¢) is given by (158), for all € € D(0,¢p). The function (T,m) >
U (T, m,e) is well defined on the domain Sopon X R.

Moreover, U°? (T, m, €) can be written as My, -Laplace transform

ko
LlaI’(T,m,e):kZ/ wa(u,m,e)exp(—(%) )d—” (165)

Ly, u

along a half-line L,, = Rw‘ﬁh’!’ C Sy, U {0} (the direction y, may depend on T'), where
a)zf(r,m,e) defines a continuous function on (S’a’p U Ss,) x R x D(0, &), which is holo-
morphic with respect to (t,€) on (Sgp U Ss,) x D(0,€0) for any m € R and satisfies the
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estimates: there exists a constant C o, >0 with
ko
|7l

mexp(v’|r|k2) (166)

’w/?;](t’m’e)’ <C 2 (1 + |m|)_"e—l3WI

. . 0 .
forall T € S’;p U Sy, all m € R, all € € D(0,€). Besides, the function wkf(t,m,e) is the
analytic continuation w.r.t. T of the function

dh
T Acey’y (w7) (1, m,e€) = / oy (U €)G(T, 1), (167)
L1

sz

where the path of integration is a half-line LV,} = Rmﬁy!g C Uy, (the direction ypl may

depend on 1), which defines an analytic function on S, 5. (e, ik /2 C Sgp which is a sec-

cy/v)
tor with bisecting direction 0,, aperture % + 8y, and radius (ca/ V)Y€ /2. We recall that
a);f’(h, m, €) defines a continuous function on (L[Dp UD(0, p)) x R x D(0, €p), which is holo-
morphic w.r.t. (z,€) on (Uy, UD(0, p)) x D(0, &), for any m € R, and satisfies the estimates:
there exists a constant Cwa » >0 with

k1
7]

Op i _—Blm|
e 0, )] = Cpp (4 ) T 3

exp(vit[9) (168)
forall T € Uy, UD(0, p), all m € R, all € € D(0, €).
Using the estimates (166), we find that the function

(T,2) > U(T,z,€) = F ' (m> U (T,m,e))(z)

defines a bounded holomorphic function on Sy, 9w X Hg, for all € € D(0, €) and any 0 <
B’ < B.Forall 0 <p < ¢ -1, we define

ko 00 N u\*\ . du
0 _qT0 _ p izm
u’?(t,z,e) =U?(et, z,€) = —(271)1/2 /_oo /Lyp O (u,m,e)exp(—<—€t> e” " dm.

Taking into account the construction provided in (4) from Definition 8, the function
u® (t,z,€) defines a bounded holomorphic function on the domain 7" x Hg x &,. More-
over, we have u%(0,z,¢) = 0 and using the properties of the Fourier inverse trans-
form from Proposition 9, we deduce that u°»(t,z,€) solves the main equation (154) on
T x Hy x &,p.

Now, we proceed to the proof of the estimates (162). We detail only the arguments for
the functions #° since the estimates for the forcing terms f° follow the same line of
discourse as below with the help of the estimates (157) instead of (166).

Let 0 < p < ¢ — 1 such that U, N Uy, contains the sector Uy, First of all,
from the integral representation (167) by using a path deformation between Ly[; and

2
§+kll (“’klpﬂ)(fym&) must

coincide on the domain (Sap,x,sp,(q/u)l/"/z N Sapﬂ,mpﬂ,(cz/v)uk/2) x R x D(0,€p). Hence,

. 0 2 2
L1 ,we observe that the functions Acc,”, (w,”)(t,m,€) and Acc
Yp+l ko k1 \"ky k:

) . 0
there exists a function that we denote a)kf sl

SopicspmlcamVe2 Y So, 108, (camie 2 continuous wort. m on R, holomorphic w.r.t. € on

(t, m, €) which is holomorphic w.r.t. T on
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D(0, €9) which coincides with ACCZ;,(] (wzlp)(r,m,e) 0N Sy, 5, (ca)lVi 12 X R x D(0,¢€p) and

co/v)

p+1

p+l
with Accy i (a)k

)(T,m,€) on Sopiniotplcamiiey X R X D(0, €p).
Now, we put p,, = (c2/v)"¥/2. Using the fact that the function

ko
U a):p Oprl (u,m,e)exp(—(g) )/u

is holomorphic on Sy, 5,0, YU So,,1,6,8y.1.0, fOr all (m,€) € R x D(0, €9), its integral along
the union of a segment starting from 0 to (p, ,/2)e"?*1, an arc of circle with radius p, /2
which connects (p,,/2)e"7*! and (p,/2)e”?, and a segment starting from (p, ,/2)e”? to
0, is equal to zero. Therefore, we can write the difference u°+1 — 4° as a sum of three
integrals,

ut’l’*l(t, z,€) —u’r(t,z,€)

+00
1 _(urky du
a),”+ (u, m, €)@ 7" = dm
27.[ (97172 ky

u
ﬂv i /2, Yp+l

ky oo (Ly o AU
_W/_oo/ a)k(ume)e € udm

Lpy i1 2:vp

+00
ap,apﬂ (ke "7
(27.[)1/2 / L (u, m,€)e” (@)% Idm’ (169)

P 12,vp, Vp+l

where L, 12,,.1 = [pvu/2, +00)el?rH, Lo, 2, = [Pvil2, +00)e”?, and Cour 12,71 1S AN ALC
of circle with radius p,,/2 connecting (p,,/2)e”” and (p,,/2)e»+* with a well chosen
orientation.

We give estimates for the quantity

ko +oo o
1= | 51 ’M(u,m,E) ()% e .
(277)1/2 —00 L u

v I2,Ypi1

By construction, the direction y,.,; (which depends on €t) is chosen in such a way that
cos(ky(yp+1 —arg(et))) = 61, forall € € £, N Ep,y, all £ € T, for some fixed &, > 0. From the
estimates (166), we find that

+00 r
Co 1 +|m|) e P ——
= (27 )1/2 / /pw/z kzpﬂ ) e 1+ r2k

cos(k: —arg(et dr
< exp(v'r) ex p< ( 2()/1|a+; . glet))) rk2> i 1
€ r
kZC Op+1 k:
@ +00 , +00 5 r 2
< 7?2 / e Bl exp(—(—;< —1/|e|k2> (—) )dr
@m)V?2 J o Poyel2 |£[*2 €]
2k2 CwDP+1 +00 +00 |€|k2
< / e P dm
= (2m)2 o o /2 (|;T_’1<2 _ v’|6|k2)k2(pV2”< Yka-1

y (lj}q v |E|k2)k2rk2 . 5 /l |k2 ’ ko p
X - —V |€ — r
el PU e €]
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2k2 C Dp+1

“ky

(2m)12 B- 'B)(ItIkZ w|e|k2)k2('o"7v")k271

x exp| - ! -v'lel® (puc/2)
PU\ e ek

2k,C o,
? w:zp ' |E|k2 exol s (pv,K /2)k2 (170)
@O (B - B)oaky( 2=yt TP\ T2 e

e[

forall £ € 7 and |Im(z)| < B’ with || < ((S‘S—I,Q)l/kz, for some 8, > 0, forall € € £, N ..
2+V'€
In the same way, we also give estimates for the integral

+00
(£Y2 izm du
I = ‘(271)1/2/ / a)k2 P (u,m,e)e ) e Idm‘

Ly, i 12,vp

Namely, the direction y, (which depends on €t) is chosen in such a way that cos(kx(y, —
arg(ez))) = &y, foralle € £,NE,,, allt € T, for some fixed &; > 0. Again from the estimates
(166) and following the same steps as in (170), we find that

2k2C op k k

, |6| 2 (;Ov K/2) 2
I k2 gy KT 171
2= 00 (B Bssky(C et ‘”‘p( e (7D

forall t € 7 and |Im(z)| < B’ with || < ( —L )V, for some 8, > 0, for all € € £, N .
vy
Finally, we give upper bound estlmates for the integral

+00
DP Op+1 (k2 izm du
u,m, e)e e g
3 (27_[)1/2 / / ( 4] ) u

PU i 12, YpVp+l

By construction, the arc of circle C,,,/2,4,,,,, is chosen in such a way that cos(kx(0 -

arg(et))) > &y, for all € € [y, vpul (f vy < Vpi1), 0 € [Vps1, ¥p] (Gf Ypa1 < ¥p), forall t € T,
all e € £, N &4, for some fixed §; > 0. Bearing in mind (166), we find that

- k2 /+OO
3 < ———
(2”)1/2 oo

— ko
x exp(v' (pu /2)'2) exp <_ cos(k2(4|96t|lirg(et))) <p;,,() )e—mlm(z) do ’ dm

Pvcl2
1+ (pv,;c /2)2k2

Yp+1
/ max{C ap,C 0p+1}(1+ |m|) e
Y

» ke Pk

k (maX{C DpyC Opil })

+00

Yo %k / ~(B-B)\m]|

< e dm
(27.[)1/2 oo

=y 225 exp (2 e (£22)
) e el

2k2(max{C o) C o 1

ko kz

Pusc /2"
OB p) T V’”“' p( 3( €] ) ) 172

forall £ € 7 and | Im(z)| < B’ with |¢] < ( )l/k2 for some 8, >0, foralle € £, N Ep1.




Lastra and Malek Advances in Difference Equations (2015) 2015:200 Page 57 of 78

Finally, gathering the three above inequalities, (170), (171), and (172), we deduce from
the decomposition (169) that

|u®r1(t,2,€) — u® (£, 2, €)|

2ky(C 0, + C o,
2elCy G el oo g, (Pos2
ST (BB TP\ e

2k2(max{cwff ’Cw:;’”})| P 5. [ Prl? k2
@uyr(p_p)  rT T SR T Ty

forall £ € T and |Im(z)| < B’ with |¢] < (58—‘,(2)1”‘2, for some 8, > 0, forall € € £, N Epa1.

/
2+ €

Therefore, the inequality (162) holds.

In the last part of the proof, we show the estimates (163). Again, we only describe the
arguments for the functions u® since exactly the same analysis can be made for the forcing
term f° using the estimates (156) and (157) instead of (166) and (168).

Let 0 < p < ¢ —1 such that Uy, NUs,, = 1. We first consider the following.

Lemma 7 There exist two constants KI;“,M;,4 > 0 such that

|ACCZ§;<11 (wzl’“l)(t, m,€) — Achf}k1 (a)zlp)(r, m,e)|

A

M _
El(fexp<—| T >(1+|m|) 1 g=Blm| (173)
T K

Jorall € € Epii NEp, all T € So,, 08501000 N Sopcsppuer all m e R.

. . 2
Proof We first notice that the functions t — “)le (t,m,e) and 7 —~ a)kf’ 1

alytic continuations of the common 1, -Borel transform wy, (t,m,€) = 3, . U,(m, €)t"/

T,M,€) are an-

['(n/ky), which defines a continuous function on D(0, p) x R x D(0, €y), holomorphic w.r.t.
(t,€) on D(0, p) x D(0, €o) for any m € R with estimates: there exists a constant C‘”lq >0
with

kd

[z|*
1+ 7%k e (174)

’a)kl(r,m,e)’ < C"”q (1 + |m|)*l‘e—ﬂ\ml
for all T € D(0, p), all m € R, all € € D(0, €p). From the proof of Proposition 13, we know
that the function G(z,%) is holomorphic w.r.t. (t,%) € C* whenever t/h belongs to an
open unbounded sector with direction d = 0 and aperture /«. As a result, the integral of
the function &1+ wy, (h,m, €)G(z, h)/h, for all (m,€) € R x D(0, €0), all T € Sy, 48,1100, N

1
So,.65.00,» AlONg the union of a segment starting from 0 to (p/ 2)e'’r+1, an arc of circle with

1 1 .1
radius p/2 which connects (p/2)e"”7*! and (p/2)e’”? and a segment starting from (p/2)e'””
. . . 0p+1 ap+1 ap Dp
to 0, is equal to zero. Therefore, we can write the difference Acc (a)k1 ) — Acc (a)k1 )
as a sum of three integrals

0p41 Op+1 0 0
Ace,y (a)kf“ )z, m,e) - Acc,r (w,q")(r,m,e)

= w:f”(h,m,e)G(t,h)%
L

1
12750
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dh
- gy (O, €)G(T, 1)~

L
p/Z,V}

dh
+ wkl (h) WI,E)G(T, h)?; (175)

C a1
p/2,Vp,Vp+1

1
=[p/2,+00)e"r, L . 1 =[p/2, +oo)e”/1’ and C 1s an arc of circle

where L p2vbl,

P12 p 0 oI2yp
with radius p/2 connecting (,0/2)@”’17 and (,0/2)6”’1”1 with a well-chosen orientation.

We give estimates for the quantity

/L f’“(hme) (r,h); .

dh ‘
1
12,7501

From the estimates (114) and (168), we find that

A< /+00 Cawl (1+|ml) R — a
+|m|) e e’ crexpl —c
L= 12 1+ r2k 1EXP —©2 |‘C| r

+00 Tl¥ ¢ — |TI¥V Kr/c—l
<aClt 1+ |ml)” Me_ﬁ""‘/ L = (2 = I71"v)
o2 (ca— T V) (p/2)% |T|*

o))

« /2\*
i1 (1 1 —Blm| || (e — 1) [ P2
=y (L) e o Garayt P~ = T

ITl*

(1= )k (p/2)<

ol (e 1)2))

foralle e £, NEp,allT e S0yt 8pi1puse [V S0pc8p,00,00 Al M ER.

Op+1 133
§c1Cw§1 (1+ |m|) —Blm|

In the same way, we also give estimates for the integral

dh
i - /L wg! (hym,€)G(r, )=,

/J/Z,VI}

Namely, from the estimates (114) and (168), following the same steps as above in (176), we
find that

7|

(1= o) (p/2)<

ol (o))

foralle € £ NEy aAll T € Sa, k8,100 N Sopicpn,0 Al M ER.

I < clcwk (1+ |m]) e P

Finally, we give upper bound estimates for the integral

Ig“ = / wi, (h, m,e)G(t,h)% ‘
C 1

P2V
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Bearing in mind (114) and (174), we find that

Ypn pl2 « p/2
< C,. (1 K =Blm|___ F'=  v(p/2) _ 4o
= /}:1 o ( + |m|) 1+(/0/2)21(16 ¢ exp| —ca | |

p

12\
<aiCuy 217~ hal 0 1) e exp(~a - 1e1) (22))
<C1C

1 12\
<aCu, 517, nmumvﬂ“wC@QGJX%>) s

foralle € £, NEy aAll T € Sa,, 108,100 N Sopic8p0,0 Al M ER.
Finally, gathering the above inequalities, (176), (177), and (178), we deduce from the de-
composition (175) that

1

’Acclz”kll (wzl"”)(r, m,e) — Acc,i’f’k1 (a),ff)(r, m,e)|

Py
ea(1 = 3 )c(p/2)<

<on(-(=(1-)(57) )
wklgb/ —yla| @+ m) ™ _ﬂmlexp<—(cz<1—%>>(%/|2)'(> 179)

< cl(Cw’,f:l + CZi’l)(l +|m|) e P

+61C

foralle e £, NEy all T e Sopi1 kbt pue () Sopkspon,r all m € R. We conclude that the
inequality (173) holds. O

Using the analytic continuation property (167) and the fact that the functions u —
wZ’(u, m,e)exp(—(i)kz)/u (resp. u — a),?2 (u,m, e)exp(-(; )’Q)/u) are holomorphic on
Sb U Sy, (resp. on Sb , USy,), we can deform the straight lines of integration L, (resp.

Vp+1) in such a way that

uri(t,z,€) — u (t,z,€)

k; +00 N
= —21/2/ / a),f;’“ (u,m,e)exp(_(_) )elzm_ dm
(27‘[) —00 pr /Z,le €t u
k- +00 4 k o
_ —21/2/ / wzl’(u,m,e)exp(_<_) )elzm_udm
(2m) 0 Ly 2 p .

ko oo Opi u\\ ., du
+—(2ﬂ)1/2.[m/c a)kf (ume)exp( 5) )ez 7a,’m

Pvic/26p,ps17p+1

k2 o op u = izmdu
_W/_oo/c a)kz(u,m,e)exp<—<5) e 7dm

Pv,ic /Zﬂp p+1YP

+00
Op+l ( Opsl op op
(271)1/2 / /L Acck2 k1 (a)k1 ), m,€) — Ace,r) (a)k1 ), m, €))

00vx/29pp+1

xexp( <1> >ei @dm, (180)
€t u
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= [pvi/2, +oo)e*ﬁ7/P C, is

an arc of circle with radius p, /2, connecting (,ov,,(/Z)e“/_el’»lf’+1 and (py /2)6‘/’_11’!7+1 with

-1
Where LPU,K/21VP+1 = [pU,K/Z’ +oo)e\/_}/p+1, va,)(/z

Yp P,k /Z,Qp,pﬂyl’pﬂ

a well-chosen orientation, where 6,,,; denotes the bisecting direction of the sector

Sopi1 kst v NV So,,8p00, and likewise C, is an arc of circle with radius p, /2,

VK /Z,Qppﬂ,yp
connecting the points (o, ./ 2)eY¥r+1 and (v, /2)e¥ 17 with a well chosen orientation
and ﬁnally LO,,OU,,( /2,91;,}”1 = [0) 10\),/( /2]eﬁ9p,p+l .

Following the same lines of arguments as in the estimates (170) and (172), we get the

inequalities
+oo U du
Ji= / / a)" (1, m, €) ex ( (—) )e —dm’
! (27‘[)1/2 Lo 2yt k P et u
2k,C o,
oy el oo s, (ol
@O (B - Bsak(BEyeT O\ e )
oo u A
I = / / ?(u,m,€)ex ( (—) —dm‘
2 (27‘[)1/2 pumyp P et u

2k C
ey el (s, (Pral2®
= @m)2 (B- B)oska(Br )t TP\ T el )

+00 Ot
]3:‘ / / w,’t (u,m,e)exp(
(27.[)1/2 Cou 26 ko

pp+1Vp+l

2k, C o,
e et = 01225 exp( =8, [ 22202 "’
Qm)2(g—p) PPy U el ’

+00 , " kz du
aom ) | otumen(-(5) ) am

v,k 120 pa1o¥p

Ja

2k, C o P
< kzp | 0 +1| IOU,K exp (—82 (Pv,;{/2> 2)
@m)V2(6 - B) P2 lel

forallt € T and | Im(z)| < B’ with |¢| < (85—1,(2)1”‘2, for some 81,8, > 0, foralle € £,NEp.1.
2+V€

In the last part of the proof, it remains to give upper bounds for the integral

+00
Op+l (¢ Op+l op op
Js = @) 1/2/ /L Acck2 L (a)k )(u,nfz,e)—Acckz,k1 (a)kl)(u,m,e))
0,00,k 12,0,

'pp+1

X exp(—(ﬁ) )e @dm‘
€L u

By construction, there exists §; > 0 such that cos(k2(6,,.1 — arg(et))) > 8, foralle € £, N
Epi1yall £ € T. From Lemma 7, we find that

kz +00 Pvicl2 A b B M}-;4
]5 < W/: / 1<19 (1+ |WZ|) e exXp _r_’(

X exp cos(kz(é?p p+1 — arg(et))) o ) omim(e dr dr .
let|k2 r
koK o ,
—(B-B")|m|
< W /:OO e dm X]5(6t), (182)
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where

Pvcl2 MA S d
J5(et) = exp| - L exp Lk —r. (183)
0 r< |€t|k2 r

The study of estimates for J5(et) as € tends to zero rests on the following two lemmas.

Lemma 8 (Watson’s lemma. Exercise 4, p.16in [2]) Letb > 0 andf : [0,b] — C bea contin-
uous function having the formal expansion ) ., a,t" € C[t] as its asymptotic expansion
of Gevrey order k > 0 at 0, meaning there exist C, M > 0 such that

< CMNN¥|tN,

N-1
}/(t) - Zant"

n=0

forevery N >1and t € [0,38], for some 0 < § < b. Then the function

b
I(x) = fo F(s)e ¥ ds

n+1

admits the formal power series ), _, a,n'x™' € Cx] as its asymptotic expansion of Gevrey

order k +1 at 0, it is to say, there exist C,K > 0 such that

N-1

I(x) — Z aunix™!

n=0

< ékN-#l(N + 1)!1+K |x|N+l’

forevery N > 0 and x € [0,8] for some 0 <8’ < b.

Lemma 9 (Exercise 3, p.18 in [2]) Let$,q > 0, and  : [0,8] — C be a continuous function.
The following assertions are equivalent:
(1) There exist C,M > 0 such that |y (x)| < CM"n!|x|", foreveryn e N, n > 0, and
x € [0,6].

1
(2) There exist C',M' > 0 such that | (x)| < C'e™M'*7 , for every x € (0, 8].

We make the change of variable 72 = s in the integral (183) and we get

pen - [ (M 5 \ds
€t) = — exp| ——=— | exp[ ———s ) —.
> ks Jo P sklka P let)k2” ) s

A
We put ¥.4,,(s) = exp(—%)/s. From Lemma 9, there exist constants C, M > 0 such that
n k—2 n
[Wa,(s)] < CM"(n!) ¥ |s]

for all n > 0, all s € [0, (p,,/2)*]. In other words, Ap(s) admits the null formal series
0 e C[s] as asymptotic expansion of Gevrey order ky/i on [0, (p,,/2)*?]. By Lemma 8, we
deduce that the function

(Pv,l( / 2)/<2 B
Ly = / Vap(s)e ds
0
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has the formal series 0 € C[x] as asymptotic expansion of Gevrey order I% +1= lli—z on
1

some segment [0,8'] with 0 < 8’ < (p,,/2)%>. Hence, using again Lemma 9, we get two
constants C', M’ > 0 with

1 ! M
Apx) < C'exp S

for x € [0,6’]. We deduce the existence of two constants Cj, > 0, My, > 0 with

Js(et) < Cj, exp(— My ) (184)

etk

foralle € £,NEy y,allt € TND(0,h.4,), for some /14, > 0. Gathering the last inequality,
(184), and (182) yields

2C; kKA M
Js727p p< s ) (185)

< > P _
s = @m)V2(B - ) . h’:f‘,p|e|k1

foralle € £, N &y, allt € T ND(0, /1 4,).
In conclusion, taking into account the above inequalities (181) and (185), we deduce from
the decomposition (180) that

|uri(t,2,€) — u®? (8,2, €)|

2ky(C 2, +C 2p)
Pyt T ey el (pur/2)2

< B Sl
ST (B poska(BE )T exp( 2 ek )
Py,

2/(2
+ m (Cw:2p+1 |yp+1 - 9pyp+1| + kabzp |)/p - 9p,p+l |) T

(%))
X exp| =92

€]

2C) ko K ( M, )
+ exp| —
@m)V2(B - p) P h/;l"p|e|/<1

for all ¢t € T with |¢] < (85—1,<2)1/k2 and |t| < ha, for some constants 8,8,/.4, > 0,
2 +V'€

[Im(z)| < B', for all € € £, N E,,1. Therefore the inequality (163) holds. O

6 Existence of formal series solutions in the complex parameter and
asymptotic expansion in two levels
6.1 Summable and multisummable formal series and a Ramis-Sibuya theorem
with two levels
In the next definitions we recall the meaning of Gevrey asymptotic expansions for
holomorphic functions and k-summability. We also give the signification of (ky, k1)-
summability for power series in a Banach space, as described in [2].

Definition 9 Let (E, || - ||z) be a complex Banach space and let £ be a bounded open sector
centered at 0. Let k > 0 be a positive real number. We say that a holomorphic function f :

& — E admits a formal power series f(€) = > =0 @n€” € E[€] as its asymptotic expansion

of Gevrey order 1/k if, for any closed proper subsector YW C £ centered at 0, there exist
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C,M > 0 with

N-1
H'/(e) — Z a,€”
n=0

forall N >1,alle e W.
If, moreover, the aperture of £ is larger than

< CMN(NY)YReN (186)
E

b
3
f is the unique holomorphic function on & satisfying (186). In that case, we say that f is

+ & for some § > 0, then the function

k-summable on £ and that f defines its k-sum on £. In addition, the function f can be

reconstructed from the analytic continuation of the k;-Borel transform

n

Ao T
Bk;f("—') = Zﬂnr

n
n>0 + ky )

on an unbounded sector and by applying a k;-Laplace transform to it; see Section 3.2 from

[2].

Definition 10 Let (E, || - ||g) be a complex Banach space and let O < k; < k; be two positive
real numbers. Let £ be a bounded open sector centered at 0 with aperture ,f—z + 8, for some
8, > 0 and let F be a bounded open sector centered at 0 with aperture ,’:—1 + & for some
81 > 0 such that the inclusion £ C F holds.

A formal power seriesf(e) =D ,=oan€" € E[€] is said to be (ky, ky)-summable on & if
there exist a formal series fy(¢) € E[¢] which is k,-summable on € with ky-sum f; : £ — E
and a second formal series f; (¢) € E[[¢] which is k; -summable on F with k;-sum f; : F — E
such that f = fl + fz Furthermore, the holomorphic function f(¢) = fi(€) + f2(€) defined on
€ is called the (ko, k1)-sum of f on &. In that case, the function f(€) can be reconstructed
from the analytic continuation of the k; -Borel transform of j’ by applying successively some
acceleration operator and Laplace transform of order k»; see Section 6.1 from [2].

In this section, we state a version of the classical Ramis-Sibuya theorem (see [28], The-
orem XI-2-3) with two different Gevrey levels which describes also the case when mul-
tisummability holds on some sector. We mention that a similar multi-level version of the
Ramis-Sibuya theorem has already been stated in [22] and also in a previous work of the
authors; see [29].

Theorem (RS) Let 0 < ky < ky be positive real numbers. Let (E, || - ||g) be a Banach space
over C and {&;}o<i<v-1 be a good covering in C*; see Definition 7. For all 0 <i <v -1, let
G; be a holomorphic function from &; into the Banach space (E, || - ||g) and let the cocycle
Aj(€) = Giy1(€) — Gi(€) be a holomorphic function from the sector Z; = £;,1 N E; into E (with
the convention that &, = &y and G, = Gy). We make the following assumptions.

(1) The functions G;(€) are bounded as € € &; tends to the origin in C, forall 0 <i<v-1.

(2) For some finite subset I, C {0,...,v — 1} and for all i € I, the functions A;(€) are ex-
ponentially flat on Z; of order ky, for all 0 < i < v —1. This means that there exist constants
K;, M; > 0 such that

[ A, < Krexp( -~ (187)
HE

foralle € Z;.
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(3) Forallie I, ={0,...,v — 1} \ Ly, the functions A;(€) are exponentially flat of order k,
on Z;, for all 0 < i <v —1. This means that there exist constants K;, M; > 0 such that

M;
(NG §K,«exp(—|€|k2> (188)
foralle € Z,.

Then there exist a convergent power series a(e) € E{e} near € = 0 and two formal series
G(€), G*(e) € E[e] such that G;(€) obeys the following decomposition:

Gi(e) = a(e) + G}(e) + Giz(e), (189)

where G (€) is holomorphic on &; and has GY(e) as asymptotic expansion of Gevrey order
1/ki on &;, G2(€) is holomorphic on &; and carries G2(€) as asymptotic expansion of Gevrey
order 1/ky on &;, forall 0 <i<v-1.

Assume, moreover, that some integer iy € I is such that Is, ;, 5, = {io — 615...,10,...,10 +
82} C I, for some integers 81,8, > 0 and with the property that

gy CSwc | & (190)

hEIal,,'O',sz

where Sy, is a sector centered at O with aperture a bit larger than w /k,. Then the formal
series G(e€) is (ky, k)-summable on Ei, and its (ky, ki)-sum is Gy, (€) on &;.

Proof We consider two holomorphic cocycles A}(e) and Aiz(e) defined on the sectors Z;
in the following way:

Ai(e) ifiel, 0 ifiel,
A}(e): l( ) 1 AIZ(G): 1
0 ifiel, Afe) ifiel

foralle € Z;, all 0 <i < v —1. We need the following lemma.

Lemmal0 (1) Forall 0 <i <v -1, there exist bounded holomorphic functions \I’} £ —C
such that

Aj(€) = W}, (e) - Wi(e) (191)
forall € € Z;, where by convention Wl(e) = W}(€). Moreover, there exist coefficients ¢}, € E,

m > 0, such that, for each 0 <[ <v —1 and any closed proper subsector VW C &, centered
at 0, there exist two constants k;,M; > 0 with

< Ky (MM e ™ (192)

foralle e W, all M > 1.
(2) Forall 0 < i <v -1, there exist bounded holomorphic functions \IJI2 : & — Csuch that

A}(e) =W} (€) - Wi (e) 193)
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forall € € Z;, where by convention W (¢) = W2(€). Moreover, there exist coefficients ¢?, € E,
m > 0, such that, for each 0 <[ <v —1 and any closed proper subsector VW C &, centered

at 0, there exist two constants k;,M; > 0 with

< Ky (MM (M) ke e M (194)
E

M-1
Wie) =D ope”
m=0

foralle e W, all M > 1.

Proof The proof is a consequence of Lemma XI-2-6 from [28], which provides the so-

called classical Ramis-Sibuya theorem in Gevrey classes. O

We consider now the bounded holomorphic functions
ai(€) = Gi(e) — ¥} (e) - W] (e)
forall 0 <i<v-1,all € € £. By definition, for i € [; or i € I, we have
aia(€) - ai(€) = Gin(€) - Gile) - Aj(€) = Aj(€) = Gil€) — Gile) — Ae) = 0

for all € € Z;. Therefore, each a;(¢) is the restriction on &; of a holomorphic function a(e)
on D(0,7) \ {0}. Since a(e) is, moreover, bounded on D(0,7) \ {0}, the origin turns out to
be a removable singularity for a(e), which, as a consequence, defines a convergent power
series on D(0,r).

Finally, one can write the following decomposition:
Gi(e) = ale) + \D}(e) + ‘-Iliz(e)

foralle € &, all 0 <i < v —1. Moreover, a(e€) is a convergent power series and from (192)
we know that W} (¢) has the series G'(¢) = > =0 P€™ as asymptotic expansion of Gevrey
order 1/k, on &; and due to (194) W?(e) carries the series G*(¢) = > =0 P €™ as asymptotic
expansion of Gevrey order 1/k; on &;, for all 0 < i < v — 1. Therefore, the decomposition
(189) holds.

Assume now that some integer iy € I is such that I, ;, 5, = {io — 61,...,00,...,i0 + 82} C
I, for some integers 1,8, > 0 and with the property (190). Then, in the decomposition
(189), we observe from the construction above that the function G; (€) can be analytically
continued on the sector Sy, and has the formal series G'(€) as asymptotic expansion of
Gevrey order 1/k; on Sy i, (this is the consequence of the fact that A}q(e) =0forh €5 y.5,)-
Hence, G}O (e) is the kq-sum of Gl(e) on Sy, in the sense of Definition 9. Moreover, we
already know that the function Gi20 (€) has G%(¢) as an asymptotic expansion of Gevrey
order 1/k; on &;;, meaning that Giz0 (¢) is the ky-sum of G%(¢) on &, In other words, by
Definition 10, the formal series G(¢) is (ky, k1)-summable on &, and its (k, k;)-sum is the
function Gj, (€) = a(e) + G} (€) + G}, (€) on &. O
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6.2 Construction of formal power series solutions in the complex parameter with
two levels of asymptotics

In this subsection, we establish the second main result of our work, namely the existence
of a formal power series i(t, z, €) in the parameter € whose coefficients are bounded holo-
morphic functions on the product of a sector with small radius centered at 0 and a strip
in C? that is a solution of (195) and which is the common Gevrey asymptotic expansion of
order 1/k; of the actual solutions u°#(¢,z, €) of (154) constructed in Theorem 1. Further-
more, this formal series 7 and the corresponding functions u° have a fine structure which
involves two levels of Gevrey asymptotics.

We first start by showing that the forcing terms f°7 (¢, z, € ) share a common formal power
series f (t,z,€) in € as asymptotic expansion of Gevrey order 1/k; on &,.

Lemma 11 Let us assume that the hypotheses of Theorem 1 hold. Then there exists a formal
power series

tz, metz Ve [m!

m=>0

whose coefficients f,,(t,z) belong to the Banach space F of bounded holomorphic functions
on (T N D(0,1")) x Hg equipped with supremum norm, where " > 0 is constructed in
Theorem 1, which is the common asymptotic expansion of Gevrey order 11k, on &, of the
Sfunctions f°, seen as holomorphic functions from &, into F, forall 0 <p < ¢ - 1.

Proof 'We consider the family of functions f°7(¢,z,¢), 0 < p < ¢ — 1 constructed in (159).
For all 0 < p < ¢ — 1, we define G];(e) := (t,z) = f°(t,z,€), which is by construction a
holomorphic and bounded function from &, into the Banach space I of bounded holo-
morphic functions on (7 N.D(0, /")) x Hp equipped with the supremum norm, where 7
is introduced in Definition 8 and /%" > 0 is set in Theorem 1.

Bearing in mind the estimates (162) and (163) and from the fact that ky > kq, we see
in particular that the cocycle e, (€)= (€) — G, »(€) is exponentially flat of order k; on
Zy=E,NEp, forall0<p<g¢-1.

From Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent
power series @ (¢) € F{e} and a formal series GY (e) € F[e] such that G{,(e) obeys the
following decomposition:

p+l

Gl(e) =d () + G (e),

p

where G;,f (€) is holomorphic on &, and has G (€) as its asymptotic expansion of Gevrey
order 1/k; on £,, We define

fltz,€) =Y fult,2)e™ Im = dl (€) + G (e).

m=>0

The second main result of this work can be stated as follows.

Theorem 2 (a) Let us assume that the hypotheses of Theorem 1 hold. Then there exists a
formal power series

u(t,z, € Zh (t,2)e™ Im!,

m=>0
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a solution of the equation

Q(az)(ati’\t(t: Z, 6))
= Cl,Z(G)(Ql(az)ﬁ(t: 2, 6)) (QZ(az)ﬁ(t: 2, E))

D-1
+ €Op Vo =3p 00Dkt D B0 R, (3, )ii(t, z,€) + Y €214 D) Ry (D, )it 2, €)
=1

+ ¢o(t, z,€)Ro(0,)1(t, z,€) + cF(e)f(t, Z,€) (195)

whose coefficients h,,(t, z) belong to the Banach space IF of bounded holomorphic functions
on (T N D(0,h")) x Hy equipped with supremum norm, where h” > 0 is constructed in
Theorem 1, which is the common asymptotic expansion of Gevrey order 1/ky on &, of the
Sfunctions u®», seen as holomorphic functions from &, into I, for all 0 < p < ¢ — 1. Addi-
tionally, the formal series can be decomposed into a sum of three terms,

u(t,z,e€) = al(t,z,e) + i (t, z,€) + thr (£, 2, €),

where a(t,z,€) € Fle} is a convergent series near € = 0 and ,(t,z,€), il5(t, 2z, €) belong to
F[e] with the property that, accordingly, the function u®r shares a similar decomposition:

u (t,z,€) = alt,z,€) + uf” (t,z,€) + uZ”(t, z,€),

where € uf” (¢, z,€) is a F-valued function having ii1(t,z, €) as asymptotic expansion of
Gevrey order 1/k on £, and where € — usp(t, z,€) is a F-valued function having (¢, z, €)
as asymptotic expansion of Gevrey order 1/ky on &y, forall 0 <p < ¢ - 1.

(b) We make now the further assumption completing the four properties described in
Definition 8 that the good covering {E,}o<p<c-1 and that the family of unbounded sectors
{Us, Yo<p<c-1 satisfy the following property:

(5) There exist 0 < py < ¢ —1 and two integers 81,8y > 0 such that, for all p € Iy, 5, =
{po—"51,...,P0s-..,po + 82}, the unbounded sectors Uy, are such that the intersection Uy, N

Us,,, contains the sector Uy, = {T € C*/arg(t) € [0y, 0p.1]} and such that

Dp+1

EPO C Sﬂ//q C U gh’

helsy po.sy

where Sy i, is a sector centered at O with aperture slightly larger than 7 /ki.
Then the formal series ii(t, z,€) is (ky, ki)-summable on E,, and its (ky, ki)-sum is given
by u® (t,z,€).

Proof 'We consider the family of functions u° (¢,z,¢), 0 < p < ¢ — 1 constructed in Theo-
rem 1. Forall0 <p < ¢ —1, we define G, (€) := (¢,2) = u®(¢,z,€), which is by construction
a holomorphic and bounded function from &, into the Banach space F of bounded holo-
morphic functions on (7 N D(0,/4")) x Hg equipped with the supremum norm, where
T is introduced in Definition 8, #” > 0 is set in Theorem 1 and B’ > 0 is the width of the
strip Hg' on which the coefficient ¢y (¢, z, €) and the forcing term f°7 (¢, z, €) are defined with
respect to z; see (155) and (159).
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Bearing in mind the estimates (162) and (163) we see that the cocycle ©,(€) = Gp,1(€) -
Gy(€) is exponentially flat of order k, on Z, = £, N &y, forallp e I, C {0,..., ¢ — 1} such
that the intersection Uy, N Uy,,, contains the sector Usyo, and is exponentially flat of
orderkjonZy, = E,NEpy, forallp € 1 C{0,..., ¢ —1} such that the intersection Uy, N U,
is empty.

From Theorem (RS) stated above in Section 6.1, we deduce the existence of a convergent
power series a(e) € F{e} and two formal series Gl(e), G2(e) € F[e] such that G,(€) obeys

the following decomposition:
Gple) = ale) + Gll,(e) + G;(e),

where G;(e) is holomorphic on &, and has G'(e) as its asymptotic expansion of Gevrey
order 1/k; on &, G;(e) is holomorphic on &, and carries G(e) asiits asymptotic expansion
of Gevrey order 1/k; on &,, forall 0 < p <v —1. We set

u(t,z,€) = Z ho(t,2)€” Im) = a(e) + G (€) + G2(e).

m=>0

This yields the first part (a) of Theorem 2.

Furthermore, under the assumption (b) (5) described above, Theorem (RS) claims that
the formal series G(€) = a(e) + G (¢) + G2(¢) is (ky, k1)-summable on &y, and that its (ka, k1)-
sum is given by Gy, (€).

It remains to show that the formal series (¢, z, €) solves the main equation (195). Since
u® (t,z,€) (resp. f°(t,z,€) ) has i(t,z,€) (resp. f(t, z,€)) as its asymptotic expansion of

Gevrey order 1/k; on &,, we have in particular

lim sup |0 u® (t,2,€) — hyu(t,2)| = 0
€ 0.€€8 teTNDOI")2eHyy
(196)

lim sup yag”fap(t,z,e) —fm(t,z)‘ =0
€= 0€€8p 1eTND(O ") 2eHpy

forall0 <p < ¢-1,allm > 0. Now, we choose some p € {0,..., ¢ —1}. By construction, the
function u®#(t, z, €) is a solution of (154). We take the derivative of order m > 0 w.r.t. € on
the left- and right-hand side of (154). From the Leibniz rule, we deduce that 87" (¢, z, €)

verifies the following equation:

Q(3,)d, /' u (t, z,€)

=Y @ Q@) (2, 0)
my'mylms!

mi+my+m3=m

m!
x (Q2(82)86'”3uap(t,Z,6)) + E —— ‘aeml (6(8D—1)(/<2+1)—8D+1)t(SD—l)(k2+1)
1:mMo.
my+mo=m

x 0.° Rp(3,)02 u® (¢, 2, €)

D-1 !
+ Z( Z o 8m1( Az) d1851Rl(8 )3m2uaﬂ(t Z,é))

=1 “my+mp=m
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+ Z 8m1c0(t z,e)Ro(az)a’"zuDP(t Z,€)
Wl1 my

my+my=m

m‘ m nm
D D e LA SR R 197)

my+mo=m

forall m > 0, all (t,z,€) € (T ND(0,h")) x Hg x E,. If we let € tend to zero in (197) and if
we use (196), we get the recursion

Q(0,)0:hu (2, 2)
= Y e (1) O QU0 6) Qa0 (1:2)

my+my+mz=m
m!

t(éD =1)( k2+1)85DR h . (E
+ (G —DUo 1) 0y + 1) D(0) = (5 p-1) (ko 1) -5 +1) (5 2)

D-1
+ Z o " tdla‘”Rl(az)hm at,2)
=1
Z 8m1co)(t 2,0)Ro (), (£, 2)
Z amlcF) 0)fouy (£,2) (198)

for all m > maxi<;<p_1{A;, (6p —1)(ky + 1) = 6p + 1}, all (¢,2) € (T N D(0,4")) x Hg. Since

the functions c;5(€), ¢o(t, z, €), and cg(€) are analytic w.r.t. € at 0, we know that

az(e)=) Mém’ colt,z €)=Y Mem,

— m! — m!
. (8"cr)(0) _ (199)
c
cr(e) = Z %e”’
m>0 :

forall € € D(0,€), all z € Hg'. On the other hand, one can check by direct inspection from
the recursion (198) and the expansions (199) that the series ii(¢,z,€) = ) _ .- o hu(t, 2)€™ /m!
formally solves (195). O

7 Application. Construction of analytic and formal solutions in a complex
parameter of a nonlinear initial value Cauchy problem with analytic
coefficients and forcing term near the origin in C3

In this section, we give sufficient conditions on the forcing term F(T',m,¢€) for the func-

tions % (¢, z, €) and its corresponding formal power series expansion (¢, z, €) w.r.t. € con-

structed in Theorem 1 and Theorem 2 to solve a nonlinear problem with holomorphic

coeflicients and forcing term near the origin given by (224).

7.1 Alinear convolution initial value problem satisfied by the formal forcing term
F(T,m,€)
Let k; > 1 be the integer defined above in Section 5 and let D > 2 be an integer. For 1 <

[ <D,letd; 8, A; > 0, be nonnegative integers. We assume that
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1= 81) 61 < 6[+11 (200)
forall 1 </ <D — 1. We make also the assumption that

dp = (8p —1)(ky +1), d; > (8, - 1)(ky +1),

(201)
A-d;+8,-1>0, Ap=dp-ép+1
forall1 </<D-1.Let Q(X),R;(X) € C[X], 0 <[ <D, be polynomials such that
deg(Q) > deg(Rp) > deg(R)), Q(im) #0, Rp(im) # 0 (202)

forall m e R, all 0 </ <D —1. Let B, > 0 be the integers defined above in Section 5.
We consider sequences of functions m +— Cy,(m,€), for all n > 0, and m +— F,(m,¢), for
all # > 1, that belong to the Banach space E ) and which depend holomorphically on
€ € D(0,€9). We assume that there exist constants Ky, Ty > 0 such that

n

1\ 1
o gy <Ko 3 )+ Emell g <Ko ) (203)
for all n > 1, for all € € D(0, ¢g). We define

Co(T,m,€) =Y Coulm,e)T",  E(T,me)=y F,(me)T"

n>1 n>1

which are convergent series on D(0, T(/2) with values in Eg,,,). Let c(€), co,0(€) and cg(€)
be bounded holomorphic functions on D(0, €p) which vanish at the origin € = 0.

F,(m,e)T", where the
coefficients F,(m, €) are defined after the problem (154) in Section 5 satisfies the linear

We make the assumption that the formal series F(T,m,€) = Y

n>1

initial value problem

Q(im) (07 F(T, m,€))

D
= ZRl(im)osAl’dl"‘sl’1 leaglF(T, m,€)
I=1
4 Cole) [*

(2]_[)1/2 C()(T,}’}’l—ml,E)RQ(iVH1)F(T,ml,€)dml

) Co,o(f) e .
e e Co,o(m — my, €)Ro(im)F(T, my, €) dimy
2 J o

+ € tep(e)F(T, m, €) (204)

for given initial data F(0,m,€) = 0.
The existence and uniqueness of the formal power series solution of (204) is ensured by
the following.

Proposition 17 There exists a unique formal series

F(T,m,e) = ZF,,(m,e)T”,

n>1
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a solution of (204) with initial data F(0,m,€) = 0, where the coefficients m +> F,(m,€)
belong to E ) for B, i > 0 given above and depend holomorphically on € in D(0, ).

Proof From Proposition 4, we find that the coefficients F,(m,€) of F(T,m, €) are well de-
fined, belong to E ) for all € € D(0,€p), all # > 1, and satisfy the following recursion

relation:

(I’l + 1)Fn+1(W1) 6)

D . 8-1
= Z Q(zm)< Aj-dp+8-1 l_[(n+61 dz—])) w+dy—d; (171, €)

=1 j=0
e eg(e) 1 00
+ Y ==z |  Comlm—my,e)Ro(im)F,,(m,e)dm
Qim) | (2m)12 /W -
1+ny=n,n1>1,np>1
€ eoo(€) +00 )
+ m f Co,0(m — my, )Ry (imy)F,(my, €) dimy
e lep(e)
3 (;ﬂ) F,(m,e€) (205)
for all n > max;<;<p d;. O

7.2 Analytic solutions for an auxiliary linear convolution problem resulting from
a my, -Borel transform applied to the linear initial value convolution problem
Using (8.7) from [9], p.3630, we can expand the operators 7% i+1) 8 in the form

T(;l ki+1) 861 (Tkl+13 Z AS T/q 3-p) (Tk1+18 ) (206)
1<p<é;-1

where As,,, p=1,...,8; — 1 are real numbers, for all 1 </ < D. We define integers d;z, >0
to satisfy

d[ + /q +1= 61(/(1 + 1) + dl,k1 (207)

for all 1 < [ < D. Multiplying (204) by T%*! and using (206), (207) we can rewrite (204)
in the form

QUim)(TM* 37 F(T,m,€))

D
= Z R;(im) (e A-di+di-1pdig (Tkl+1 BT)SIF(T, m, €)
=1

+ Z Aa,,pGAl_d”al_l Tk1(51—p)+d1,kl (Tk1+18T)pF(T, m, 6))
1=p=§;-1

+00

71 Tk1+1 CO(G) C()(T,I’Vl - mlxe)RO(iml)F(T’ mlte)dml

( )1/2
(€

—1 Tkl +1 Co,0l€ )

(27)172
+ € Lep(e) T YE(T, m, €). (208)

/ Co(m = 1, €)Ro(im)E(T, my, ) dm,

Page 71 of 78
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As above, we denote vy, (t,m,€) the formal my, -Borel transform of F(T,m,e) wrt. T
and @y, (t,m,€) the formal my, -Borel transform of Co(T,m,€) with respect to 7" and
1/fk1 (t,m, €) the formal m, -Borel transform of F(T, m, €) w.rt. T,

Wﬁmd—ZFmd @1, (T,m,€) = ZQMMQ

e Tz )' et r(g)
Yy (t,m,€) = ZF M, €)
n>1 k)

Following a similar reasoning as in the steps (76), (77) (78), and (79), using (203) we
find that ¢, (t,m,€) € Fvﬁﬂk1 ) and ¥ (7, m,€) € Fvﬂukl k) for all € € D(0, ¢p), for all
the unbounded sectors U,, centered at 0 and bisecting direction 0, € R introduced in
Definition 8, for some v > 0.

Observe that dp, = 0. Using the computation rules for the formal m, -Borel transform
in Proposition 8, we deduce the following equation satisfied by v, (t, m, €):

Qim) (k" Yy, (1, m, €))

= Rp(im) (kar“Dkl Vi (T, m, €)

th = X p-p-1 ds
R 1 _ D7 P 1/ky
CY A [ 9 R 6 me) %)

1=p=ép-1
— th o ik s ds
+ ZRl(lm) (GA[—dl+31—l < f ('Ckl —S) k1 (kllsﬁlw ( 1/ky ,m, 6))
Sky Jo s
I=1 F( i )
ky

T
Aj-dy+ép-1_ 0~

+ Z Asl’pe dl,kl
1<p<§;-1 F( 1 + 61 _P)

<
0
k1 rh
a T ko \Vk co(€) f / 1/ky
e 09" (G [ [, entimn e
1
dvdm )5
(s —w)x s

ki
a .L./q /-T 1 (_L_kl _S)l/kl CO.O(E)
T+ ) Jo @)

() B m, ) 2

X RO (iml)‘(ﬂ/q (xl/kl , 1, E)

+00 ds
X (/ Co,0(m — my, €)Ro (im) Yy, (s, 1y, €) dml) .
k1 k1 d
-1 T k _ 17k 1/ki _S 209
te CF(6)7F(1+ kil)/o (T =) Ty (s, m ) < (209)

We make the additional assumption that there exists an unbounded sector

SQ Rp = {Z S C/|Z| > rq, Rp» arg(z) dQ:RD| = ”QYRD}
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with direction dqr,, € R, aperture nq,r,, > 0 for some radius rq gy, > 0, such that

Q(im)
Rp (im)

€ SQ,RD (210)

for all m € R. We factorize the polynomial P,,(t) = Q(im)k; — RD(im)kat(aD‘Dkl in the

form
(ép-1)k1-1
P,(t) =—Rp(imk> [] (r-a0m), (211)
=0
where

1

(m)_< 1Qim)| )w»wh
Y=\ Ro (im) P

Q(im) 1 27l
X e (ﬁ(arg<RD(im)ka_l) Go— Dk ' G- Dk )) 212

forall0 </ <(0p-1k—1,allmeR.

We choose the family of unbounded sectors U, centered at 0, a small closed disc D(0, p)
(introduced in Definition 8) and we prescribe the sector Sqr, in such a way that the fol-
lowing conditions hold.

(1) There exists a constant M; > 0 such that

|7 - qu(m)| = My (1 + 7)) (213)

forall0</<(@@p-1Dki—-1l,allmeR,allt e L[apUD(O,,o),forallO <p<g¢-1
(2) There exists a constant M, > 0 such that

|7 — quy ()| = My |qy, ()| (214)

for some [y € {0,...,(dp ~ Dk — 1}, allm e R, all T € Uy, UD(0,p), forall0 <p <¢-1.
By construction of the roots (212) in the factorization (211) and using the lower bound
estimates (213), (214), we get a constant Cp > 0 such that

1
im (p-Dk; Dk —
1Q( )| ) D=VA (1 + |‘L'|)(6D 1)k-1

P, () ZM(‘SD_l)kl_le Rp (im) k‘SD <4
[Pue)] = My | g IRp (im) kP!

1))
ky

1
(k*P~1)Bp7R

) (1+]7 |k1)(8D71)7%

1
> M?D_l)kl_le (VQ,RD) Bp-Dk |RD(im) |

(1+x%) (6p-1)k1-1

X (mln ﬁ

x>0 (1 +xk1)( D—l)—ﬁ
1 1L

= Cplrqry) ™ [Rp (im)|(1 + ]}1) PV (215)

forall T € U, UD(0,p),allmeR,all0<p<c¢-—1.
In the next proposition, we give sufficient conditions under which (209) has a solution
w,zp(r, m, €) in the Banach space F(a]fﬂ,u,kl,kl) where 8, u are defined above.
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Proposition 18 Under the assumption that

1
dp>6;+— (216)
ki

for all 1 <1 <D -1, there exist a radius rqg,, > 0, a constant v > 0, and constants
$0,0°S0:S1» S1,00 SFr So > 0 (depending on ki, Cp, 1, v, €0, Ry, Ay, 8, d; for 0 <1 < D) such

that if
co(€)
sup <610 o (T, m,€) <6
GED(O,G()) € ” 1 H (Vyﬂ,/l.,kl,kl)
Co,o(e)
sup <So0  [Coolm €)= S0 (217)
eeD(0,¢0) €
ce(€)
sup =Sp Vi (v,m,€) <6
€eD(0,60)l € ” ! ” Wikl

forall e € D(0, €p), (209) has a unique solution w:lp(t, m, €) in the space F&%,u,kl,kl) with the
property that ||¢,Zp(t,m,e)||(u,5,,hk1,k1) <, for all € € D(0,¢€p), where B8, > 0 are defined
above, for any unbounded sector Uy, and disc D(0, p) that satisfy the constraints (213),
(214), forall0 <p <¢ -1.

The proof of Proposition 18 follows exactly the same steps as the corresponding one of
Proposition 14, therefore we skip completely the details.

As a result, we find that the miy -Borel transform v, (t,m,€) of the formal series
F(T,m,e) solution of (204) is convergent w.r.t. T on D(0, p) as series in coefficients in
Eg,), for all € € D(0,¢€p), and can be analytically continued on each unbounded sector

Uy, as a function 7 w,z”(r, m, €) which belongs to the space £

(0 ok k) In other words,

the assumed constraints (156) are fulfilled.

7.3 Alinear initial value Cauchy problem satisfied by the analytic forcing terms
for(t,z,€)

We keep the notations and the assumptions made in the previous subsection. From the

assumption (203), we deduce that the functions

Co(T,z,€) = coo(e) F (m > Cop(m,e€))(2)

+ nzzl co(e) F! (m — Co,(m, e))(z) 7", (218)

lV’(T,z,e) = Zf’l(m — F,,(m,e))(z)T"

n>1

represent bounded holomorphic functions on D(0, Ty/2) x Hg x D(0, €y) forany 0 < g’ <
B (where F! denotes the inverse Fourier transform defined in Proposition 9). We define
the coefficients

C()(t,Z,E) = éo(ét;Z,E): f(tlzﬂe) = ]?(Et,Z,E), (219)

which are holomorphic and bounded on D(0,7) x Hg' x D(0, €9) where req < To/2.
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Proposition 19 Under the constraints (200), (201), (202), (203) and the assumptions
(210), (213), (214), (216), (217), the forcing term f°?(t, z, €) represented by (159) solves the
following linear Cauchy problem:

Q(3,) (3 (t,2,€))

— 6(3])—1)(/(1+1)—5D+1t(5])—1)(k1+1) atsDRD(az)f‘Op (t, z, 6)

D-1
+ Y €Mt R (8,2, €) + colt 2, R (3:)f 7 (£, 2,€) + ()t z,€)  (220)
I=1

Sor given initial data f°7(0,z,€) =0, forall t € T, z € Hy, and € € E, (provided that the
radius v of T fulfills the restriction eogrr < min(', Tp/2,To/2)).

Proof From Proposition 18, we know that the formal series F(T,m, €) = anl F,(m,e)T"
is my, -summable w.r.t. T in all directions 9,, 0 < p < ¢ — 1 (in the sense of Definition 4).
Therefore, from the estimates (156), we deduce that the i, -Laplace transform

gy du

L’ZZ(I (t— w:f’(t,m,e))(T) =k w,fl”(u, m, €)et

Lap

defines a bounded and holomorphic function on any sector SDP'%”“% w.rt. T, forall m e
1

R, all € € D(0, €p), where Sap,gkl,h;( is a sector with bisecting direction 0,, aperture 1’(’—1 <
1

Ok, < ,7:—1 + ap(Us,), and some radius /> 0. Moreover, using the algebraic properties of
the my, -sums we deduce that Ef,f’,q (T — w,zp(f,m,e))(T) solves (208) and then (204) for
all T e Sapﬁkl:h;q’ all m e R, all € € D(0,€g), vanishes at T = 0. Now, let F°(T,m, €) be as
defined in (158).

Lemma 12 The identity
Fo(T,m,€) = 63,{’,(1 (t—~ w,zp(f,m,é))(T)

holds, for all T € Sy, 00, m € R, € € D(0, €0), as defined just after the definition (158), for
/?_2 <f< ,f—z +ap(Sy,), and some radius h' > 0.

Proof By construction, we can write

F° (T, m,¢) :kZ/
L

5 _%ukz o B ﬁ ky . E ko dv @ e_(%)kg @
2im v P v % vierl | u
Dp,kz,y

for some 0 < &' < %, where V5, 1, s is defined in Proposition 13. Using Fubini’s theorem

( Uk (b m,€)
op \Wioy

yields

Fr(T,me) =k | WF (hm, AT, h)%, (221)



Lastra and Malek Advances in Difference Equations (2015) 2015:200 Page 76 of 78

where
_ ki ko B
wonn ] (] ol ()Y Yot
Lo, 2im Vopkad 1% v ykat u
= E?sz (ur— (Bfn’j(z (v e ))(@)(T) (222)

forall T € Sy, 0, m € R, € € D(0,€). But we observe from the inversion formula (110)
that A(T, 1) = exp(—(h/T)"). Gathering (221) and (222) yields Lemma 12. O

From Lemma 12, we deduce that F% (T, m,€) solves (204) for all T € Sop0n, Al m e
R, and all € € D(0,¢p). Hence, using the properties of the Fourier inverse transform
from Proposition 9, we deduce that the analytic forcing term f°r(¢,z,€) = F1(m
F® (et,m, €))(z) solves the linear Cauchy problem (220), for all ¢ € T, all z € Hg, and all
ecé, O

We are in a position to state the main result of this section.

Theorem 3 We take for granted that the assumptions of Theorem 1 hold. We also make the
hypothesis that the constraints (200), (201), (202), (203) and the assumptions (210), (213),
(214), (216), (217) hold. We denote P(t,z,€,d;,0,) and P(t,z, €, 0y, 3,) the linear differential
operators

P(t,2,€, 8, ;) = Q(3,)d, — 0~k D=0 s1ep Dk D)0 Ry ()

D-1

=) €Mty Ry (D) ~ colt, 2, €)Ro (85),

=1
(223)
P(t,2,€, 3y, 9;) = Q(0,)9, — €@~ Das=dn+l Gp-Dlkapio Ry (5 )

D-1

=3 Bl R (8.) — colt, 2, €)Ro(8).
=1

Then the functions u®r (t,z,€) constructed in Theorem 1 solve the following nonlinear PDE:

P(t; zZ, €, at: aZ)P(t) Z,€, 8t1 82)140[’ (tr z, 6)
= c12(€)P(t,2,€, 8, 0,) (Qu (3)u’ (8,2, €) Qa(3,)u’? (8, 2, €))
+cr(e)cp(e)f(t, z,€) (224)
whose coefficients and forcing term £ are analytic functions on D(0,r1) x Hg x D(0, €),

with vanishing initial data u®»(0,z,€) = 0, forallt € T,allz € Hy and all € € E,. Moreover,

the formal power series tu(t,z,€) =Y, - o hu(t, 2)€™ /m! constructed in Theorem 2 formally

m=>0

solves the same equation (224).

Proof The reason why u® (¢, z, €) solves (224) follows directly from the fact that u°»(t, z, €)

solves the nonlinear equation

P(t,z,€,0;, 3,)u’ (t,z,€)

= 01,2(6)(Q1(8z)uap(tr z, G)QZ(az)uap(tx z, E)) + CF(E)po (t: z, E)
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according to Theorem 1 and from the additional feature that /%7 (¢, z, €) solves the linear

equation
P(t,2,€,0;,0,)f 7 (t, 2, €) = ce(e)f(t, 2, €),

as shown in Proposition 19. Finally in order to show that #(¢, z, €) formally solves (224)
we see that with the help of the second equality in (196) and following exactly the same
lines of arguments as in the last part of Theorem 2, one can show that the power series

f (t,z,€) = 3, fin(t, 2)€™ /m! constructed in Lemma 11 formally solves the linear equation
P(t,2,€,0, .)f (t,7,€) = cele)f(t, z,). (225)

Combining (195) and (225) yields the result. O
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