This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Carbon accumulation in the biomass and soil of different aged secondary forests in the Humid Tropics of Costa Rica

William Fonseca¹, José María Rey Benayas², Federico E. Alice³

¹Corresponding author. Escuela de Ciencias Ambientales, Universidad Nacional de Costa Rica, Campus Omar Dengo 86-3000, Heredia, Costa Rica. wfonseca@una.ac.cr

²Departamento de Ecología, Universidad de Alcalá, España. e-mail: josem.rey@uah.es

³Escuela de Ciencias Ambientales, Universidad Nacional de Costa Rica, Heredia, Costa Rica. falice@costarricense.cr
Abstract

Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3 (± 3.3) and 50.3% (± 2.9). Average carbon content in the soil was 4.1% (± 2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha⁻¹ and the mean annual increment for carbon in the biomass was 4.2 Mg ha⁻¹ year⁻¹. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha⁻¹ year⁻¹. Total stored carbon in the forest was 180.4 Mg ha⁻¹ at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R² adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.

Key words: biomass models, carbon pools, tree plantations, natural regeneration, succession age.

1. Introduction

Growing forests and tree plantations and their soils are major sinks of atmospheric carbon (FAO, 2006; IPCC, 2007; Saugier and Pontailler, 2006; Schimel et al., 2001), and thus the influence of forests in the global carbon cycle is now widely recognized (Basu, 2009; Bonan, 2008; González et al., 2008). Forest vegetation captures atmospheric CO₂ through photosynthesis and stores it mainly in hard biomass (wood) with a slow turnover rate of 14-19 years for native forests in Chile (Gayoso and Guerra, 2005), around 50 to 100 years in the Amazon (Vieira et al., 2005) and an average of 50 years according to Reeburgh (1997). This rate has been
estimated for one to two decades for secondary forests in Puerto Rico when considering litter (Ostertag et al.,
2008). Atmospheric carbon incorporation rates into the biomass or soil tend to decrease with forest age, being
it higher at young or intermediate ages (Gayoso and Guerra, 2005; Ostertag et al., 2008; Saynes et al., 2005).

Forests also mobilize atmospheric carbon through plant respiration and organic material decomposition,
although these losses are usually less than the gains. An exception is old growth forests or forests suffering
from acute degradation, where losses can exceed gains (CATIE, 2002). Forests, in addition, may transfer
organic material towards the water table or groundwater or other aquatic ecosystems (FAO, 2002; Percy et al.,
2003).

The world’s forest cover is now around 4 billion ha (0.59 ha per capita) (FAO, 2009). Secondary forests
(those regenerating largely through natural processes after significant human and/or natural disturbance of the
original forest vegetation; Chokkalingam and de Jong, 2001) represent 35% of the tropical forests (Emrich et
al., 2000), approximately 850 million hectares (FAO, 2006), but accounts on land area under this type of
forest cover are hard to assess. For example, in Costa Rica, the area of secondary forests under different
succession stages is uncertain and several estimates have been provided during the last years. Joyce (2006)
provided an estimate of 793 811 ha in 2004, according to MINAE-SINAC (2007) there are 586 967 ha and in
the most recent study, up to 900 000 ha were found (Costa Rica, 2010). In any case, it is likely that this
ecosystem is increasing its cover promoted by the instability of prices from agricultural products and the
migration of inhabitants from rural areas to more urban areas (Aide and Grau, 2004; Grau and Aide, 2008;
Rey Benayas, 2005).

Adding to this uncertainty, when accounting for the carbon absorption and storage capacity of forest
ecosystems, many authors agree on the weaknesses from current estimates (Chave et al., 2004; Sarmiento et
al., 2005). Given the lack of site specific data, these estimates have to be performed using generic values on
the amounts of biomass, carbon in the biomass or generic allometric equations to determine biomass and
carbon for a given forest ecosystem. This procedure will hardly reflect in these accounts the interactions
between environmental and anthropogenic factors that cause variations in the carbon concentrations within
the biomass (with global variations ranging from 1 to 35 t CO2 ha-1 yr-1; IPCC, 2007) (Sarmiento et al.,
2005; Keith et al., 2009) and a range of estimated emissions from the land-use change as wide as 0.5–2.7 GtC for the 1990s (Ravindranath et al., 2007).

In the Latin American context, the majority of studies document growth in biomass and carbon storage in primary forests, mainly in the woody material (Acosta et al., 2002; Schlegel et al., 2001; Segura et al., 2000). Studies on secondary forests are scarcer (Feldpausch et al., 2007; Fonseca et al., 2008; Herrera et al., 2001) and even more, the quantification of total plant biomass and carbon, including roots, has not been a common practice, and is even rarer for secondary forests.

Under this context, we conducted a research in the Costa Rican Caribbean region, with the aim of estimating the amount of biomass and carbon accumulated and stored in young secondary forests, as well as its distribution among the different pools (tree, herbaceous vegetation, necromass, and soil). Since precise estimations of all biomass and carbon pools are expensive and time consuming, we developed models to estimate biomass and carbon stored by area unit, so simple field measurements allow for these estimations at these ecosystems in the future. In addition, the carbon fraction in the biomass was determined for the different components of the biomass.

2. Materials and Methods

2.1 Study Area

This research was developed in the Costa Rican Caribbean region, which corresponds to a very humid tropical forest life zone, according to Holdridge’s Life Zone classification system (1967). The altitude ranges between 50 and 350m asl. Predominating climate is humid to very humid, hot to very hot, with or without a dry season of < 25 intermittent days with water deficit per year (Herrera, 1985; Mena, 2007). The mean annual precipitation varies between 3420 and 6840 mm and mean annual temperature between 25 and 27°C. Forests are found on soils that are Ultisols and Inceptisols, with < 35% base saturation, these are deep, well drained, red or yellow in color and with relatively low fertility. Both of these soil types are located on land with slopes that range between 2% and 15% (ITCR, 2004).
2.2 Establishment of sampling plots

Seven sites were selected within the study area with secondary forests that range between 4 to 20 years of age. Selection criteria was based on access to the forests (landowners willingness to support research), landowners knowledge of the forest age and an appropriate distribution and representativeness of ages. These forests were therefore found in private lands which were mostly abandoned pasture lands and for which age was determined based on the landowner’s knowledge of land abandonment. In each site, two to six 500-m² rectangular sampling plots were established to estimate forest biomass. The number of plots at each site depended on the variation of the secondary forest regeneration age (at least one plot per identified age) and the heterogeneity of the secondary forest (i.e., if one coetaneous secondary forest showed a heterogeneous vegetation structure, this was measured through the establishment of two or more plots). A total of 38 plots were established, out of which 10 plots were re-measured two years after the first measurement in order to complete an appropriate age distribution for a total of 48 plots sampled. Some forests with similar ages were grouped to simplify analysis. These correspond to ages 4.5 and 6.5 (Table 2), which compile data averaged for ages 4 - 5 and 6 - 7 accordingly.

Each 500-m² plots included four 1-m² and one 5-m² subplots to sample particular biomass compartments (see below). In addition, 11 plots that represented a baseline from which secondary succession started were also sampled. These sites were within the farms, adjacent to secondary forests sampled and where the current land use is still pasture land. Baseline vegetation consisted mostly of grasses from the Poaceae family.

2.3 Biomass Estimation

2.3.1 Aboveground tree biomass

Aboveground tree biomass is usually determined through the selection of a single tree based on the dbh. MacDicken (1997) recommends the selection of a tree with mean basal area, Schlegel et al. (2001) recommends the random selection of one tree per diametric class of the most abundant species in each class. For this study, the selection of trees to be harvested was based on the Importance Value Index (IVI), the IVI being the sum of abundance, frequency and dominance or basal area expressed in relative values (Krebs, 1985). In each plot, every individual was classified into 5cm interval diametric classes, and the species with
the highest Importance Values Index (IVI) were determined for each class. In each sampling plot, all woody
plants with a diameter at breast height (dbh) ≥ 2.5 cm were measured. These accounted for a total of 6984
individuals, which were identified to the species (66.6%), genera (30.3%) and family level (0.38%) or
remained unknown (2.7%). In each plot, every individual was classified into 5 cm interval diametric classes,
and selected a mean tree for each class as a sample. A total number of 193 trees corresponding to 35 different
species whose diameter varied between 2.8 and 28.2 cm were sampled. The biomass was determined through
field measurements for weight for each tree component (leaves, branches and stem).

2.3.2 Belowground tree biomass
Belowground tree biomass in this study mainly refers to the structural or "anchor" roots and all of the fine
roots attached to the main root after harvesting. Roots with a diameter > 5 mm (according to the classification
proposed by Sierra et al. (2001)) were estimated through the excavation and extraction of the root system for
the average selected trees. Excavation and extraction was carried out with a retro-excavator or trencher,
agricultural tractor and/or manually with a chain hoist. These roots were then washed in the field and weighed
once they were air dry for one – two hrs.

2.3.3 Biomass in herbaceous vegetation, small woody material and seedlings
Grasses, lianas, ferns, shrubs and some tree seedlings with a dbh < 2.5 cm, were measured in 1 x 1 m subplots
located in every corner of the main 500 m² plot. In each 1 m² subplot all plant material was harvested to
ground level, all four subplots were grouped into one sample and weighed in the field.

2.3.4 Necromass
Necromass or dead woody material found at ground level was divided into fine necromass (litter and woody
material < 2 cm in diameter) and large necromass (dead woody material ≥ 2 cm in diameter). Fine necromass
was estimated at four 0.5 x 0.5 m subplots that were randomly distributed throughout the 500 m² plot; these
four samples were grouped into one sample for analysis. Large necromass was estimated at one 5 x 5 m
subplot that was randomly placed within the 500 m² plot. The collected material was weighed in the field.
2.4 Soil organic carbon and carbon fraction in the biomass

The total amount of carbon stored in the soil was quantified based on the soil’s carbon content, bulk density and sampling depth. A total of four 30-cm depth soil samples were randomly selected within each main plot, extracted and mixed together in order to obtain a sample of approximately 1 kg. Bulk density was determined through the cylinder method (MacDicken, 1997), collecting one cylinder per plot.

2.5 Carbon fraction analysis in plant material and soil

For every sample weighed in the field, an approximately 1 kg sub-sample was collected and taken to the laboratory in order to determine the carbon fraction. Each sub-sample of the different components of the biomass was taken to the lab and dried in an oven at 60°C for 72 hours to estimate its dry matter content (DMC). Soil samples were dried at 55°C for three days and subsequently ground and run through a 240-µm sieve. Carbon content in the plant biomass and soil was determined following the methods by Pregl and Dumas (Bremner and Mulvaney, 1982) in an auto-analyzer (Perkin-Elmer series II, CHN/S 2400, Norway Co.).

2.6 Increases in the carbon content in plant biomass and soils

The Mean Annual Increment (MAI) was calculated for the biomass and for the carbon in the biomass as MAI = B or C/t, where B is biomass, C is carbon, both expressed in Mg ha⁻¹, and t is the number of years. In order to analyze changes in the carbon content from soils, a current annual increment (CAI) was estimated for each age, being it the difference between two periods and the number of years for that period (ICM= ΔC/t) (Prodan et al., 1997). In this case, an average of the carbon content found in the soil at a certain age minus the average carbon content in the baseline for that age class divided by the number of years.

2.7 Models to estimate biomass and carbon

Models were adjusted using the method of ordinary least squares (Fonseca et al., 2009). Approximately 25 models were tested for total tree biomass (Mg ha⁻¹), total forest biomass (Mg ha⁻¹) and total carbon in the biomass (Mg ha⁻¹). The methodology presented by Salas (2002) and Segura and Andrade (2008) was followed in order to determine the best fit equation. The selected models with logarithmic transformations were later
corrected using a correction factor (CF) as explained by Sprugel (1983). The suggested equation to estimate the correction factor is: \(CF = \exp(\frac{SSE^2}{2}) \), where: SSE = estimated standard error by the regression.

3. Results

3.1 Carbon fraction in the biomass and soil carbon content

The carbon fraction for the more lignified biomass components (stem, branches, roots and large necromass) in secondary succession of 4 to 20 years, varied between 47.3 (± 3.3) and 50.3% (± 2.9). The carbon fraction for leaves, herbaceous vegetation and fine necromass (litter) varied between 37.3 (±3.3) and 43.5% (±1.9). The average across biomass compartments was 46.8% ± 4.0. Soil had a carbon content of 4.1% (±1.9; Table 1).

3.2 Carbon accumulation in plant biomass

Total biomass increased with the age of the secondary succession and had a positive correlation (Figure 1). The increase in biomass was fast during the first 10 years, when total biomass averaged 174.5±16.4 Mg ha\(^{-1}\). It then decreased with lower values found in secondary forests older than that age (Figure 1; Table 2). The average total biomass for all different ages was 82.2 ± 47.9 Mg ha\(^{-1}\). The mean annual increments for total biomass and carbon in the biomass were 8.9 and 5.3 Mg ha\(^{-1}\) year\(^{-1}\), respectively.

Most of the carbon in the forest plant biomass was stored in the trees, with an average of 80.1±15.3% at all different ages, followed by necromass (15.8±13.0%) and herbaceous vegetation (4.2±5.5%) (Figure 1; Table 2). There were no significant differences between the amounts of biomass and carbon in the biomass in compartments other than trees (Table 2). Within the tree compartments, biomass and carbon were highest in the stem (58.4 ± 11.8%), and lower in the branches (18 to belowground ratio was marginal and negatively correlated with forest age (r = -0.27, P = 0.06, n = 48).

3.3 Carbon accumulation in the soil

The amount of carbon in the soil was positively correlated with the age of the secondary forest, but this was a relatively weak relationship (Figure 1). The increase of carbon in the soil was 1.09 Mg ha\(^{-1}\) year\(^{-1}\). At all ages,
the amount of carbon accumulated in the soil was higher than the amount of carbon stored in total biomass
(Figure 1; Table 2).

At the forest level (biomass and soil), the carbon accumulated increased with forest age (Figure 1; Table 2). In
recently established forests, where the biomass mainly corresponded to herbaceous vegetation, 98.8% of the
total carbon was stored in the soil. However, the relative amount of the total forest carbon in the soil
decreased rapidly as the succession progressed on, and 73.77% of total carbon was stored in the soil in 20-
year old forests (Figure 1).

3.4 Biomass and Carbon Models
Three models were selected to estimate biomass and carbon in the biomass that were highly predictive (Table
4). These models had R^2 adjustments above 95% and the significance levels was $p<0.01$; the models’ standard
effects were low and showed a normal distribution. The use of a correction factor (CF) increases the amount of
estimated biomass and carbon by < 5%. The models that used age and diameter at breast height as predictive
variables of total biomass and carbon did not show good adjustments (results not shown).

4. Discussion

4.1 Carbon content in the biomass of secondary forests
In this study we estimated the amount of accumulated carbon in the biomass for the different components of
young secondary forests of the Costa Rica Caribbean Region. Few previous studies have estimated the precise
values of the amount of carbon found in the biomass of secondary forest species, and thus to transform the
amount of dry biomass into carbon a 0.5 conversion factor (Hoen and Solberg, 1994; Husch, 2001; Sarmiento
et al., 2005) is generally used. For the studied forests, the lowest carbon fractions of plant biomass
corresponded to those components with less lignin, such as fine necromass, leaves and herbaceous vegetation,
while large necromass, stem, roots and branches had higher carbon concentrations (Gayoso and Guerra, 2005;
Gifford, 2000). Other studies have not found differences in the carbon content of the different tree
components (Segura et al., 2000). Furthermore, higher carbon concentrations in components such as leaves
have been reported (Gifford, 2000). The results obtained in this study are found within the limits reported for forest plantations in the same region (Cubero and Rojas, 1999; Fonseca et al., 2009).

4.2 Carbon accumulation in secondary forests

The maximum biomass accumulation in this study and the mean annual increment (174.5 Mg ha\(^{-1}\) and 8.9 Mg ha\(^{-1}\) yr\(^{-1}\), respectively) are found within the range reported for secondary tropical forests by other studies (Chacón et al., 2007; Marín et al., 2007; Yan et al., 2007). The average MAI for biomass, excluding roots, from all these studies was 7.83 Mg ha\(^{-1}\) yr\(^{-1}\).

We found that the amount of carbon stored in the soil represented 74.3% of the total carbon in the forest, 51.5% higher than the biomass. Other studies in tropical areas have found that the amount of soil carbon was between 50 and 75% of the total forest carbon (Fonseca et al., 2008; Jandl, 2006; Lagos and Vanegas, 2003).

The average increase and the percentage of organic carbon in the soil reported by other studies, for primary and secondary tropical forests, are 0.5-2.0 MgC ha\(^{-1}\) yr\(^{-1}\) and 3.34%, respectively (Feldpausch et al., 2007; Fonseca et al., 2008; Liu et al., 2006), are similar to the values of 1.09 Mg ha\(^{-1}\) yr\(^{-1}\) and 4.2% found in this study. In spite of the contribution that soil plays in the ecosystem’s total carbon, approximately 75% of the references cited by this study did not evaluate this carbon pool, due to its difficulty and high costs (Brown et al., 1989; de Jong et al., 2000; MacDicken, 1997).

There is some controversy with regards to the role of land use change and the accumulation of carbon in the soil, where previous land use is said to be a determining factor in either soil carbon accumulation or loss (Post and Kwon 2000, Guo and Gifford, 2002; IPCC, 2007). Considering that pasture lands contain a higher amount of fine roots that incorporate more carbon to the soil due to a fast decomposition rate as opposed to a more lignified radical system from trees, Guo and Gifford (2002) have reported for carbon loss from this pool when changing from pastures to secondary forests. Other studies have found an increase in carbon and thus recognize that soil carbon tends to increase as the succession moves forward due to the contribution of organic matter from roots and decomposing detritus (Hughes et al., 1999; Powers and Veldkamp, 2005;
Schedlbauer and Kavanagh, 2008; Sierra et al., 2001; Veldkamp et al., 2003). Still, other studies have failed to find differences among different age groups (Gamboa et al., 2008; Ostertag et al., 2008; Tschakert et al., 2007).

Accordingly, we did find a positive but low correlation between the amount of soil carbon and the age of the forest, in contrast with the high correlation found between biomass and forest age (Figure 1). The low correlation between soil carbon and forest age can be attributed partly to the slow incorporation of carbon into the soil (Gamboa et al., 2008; McGrath et al., 2001; Robert, 2002; Saynes et al., 2005; Singh et al., 2007; Turner et al., 2005) together with the young age of the studied forests. However, as reported by other authors, previous land use, the number of years under the previous land use, the stage of the succession, distance from seed sources and intervention or management, among others (Hughes et al., 1999; Mesquita, 2000) may all be factors, that individually or in a combination, determine the amount of carbon found at the soil. In this particular case, given that these secondary forests have grown in degraded, over pastured and more compacted lands, we believe that asides from the reasons reported by other studies, there might also be an effect by differences on bulk density from these soils and those found under secondary forests. However, this assumption still needs to be proven.

4.3 Comparison with tree plantations

Fonseca et al. (unpublished results) determined the carbon accumulated in the biomass and soil of managed forest plantations of comparable ages (from 0 to 16 years of age), found within the same region and therefore under similar conditions. Furthermore, these also followed the same land use pattern, changing from pasture lands to forest lands. MAI values for these ecosystems were of 7.1 MgC ha\(^{-1}\) yr\(^{-1}\) in the biomass of Vochysia guatemalensis and 5.3 MgC ha\(^{-1}\) yr\(^{-1}\) in Hieronyma alchorneoides plantations. For these same plantations, increases from carbon in the soil were 1.7 and 1.3 Mg ha\(^{-1}\) yr\(^{-1}\) respectively. These results show how forest plantations (without taking into account biomass from thinnings and in spite of these being four years younger) have almost twice the ability to store carbon in the biomass when compared to secondary forests under similar conditions and an approximately 20% more with regards to soil carbon. At an ecosystem level, MAI for total carbon in forest plantations was of 8.7 and 6.5 MgC ha\(^{-1}\) yr\(^{-1}\), higher than the 5.3 MgC ha\(^{-1}\) yr\(^{-1}\)
found in secondary forests from this study. This can be partly explained by the effect of silvicultural activities aimed at increasing the amount and quality of forest productivity (Daniel et al., 1982; Kerr and Morgan, 2006; Wadsworth, 2000), therefore increasing carbon accumulation and organic material incorporated to the soils.

4.4 Models to estimate biomass and carbon

In the tropics, models to estimate biomass and carbon tend to show good R^2 adjustments when relating the biomass to diameter, basal area and/or height of individual trees (Fonseca et al., 2009). Most previously published models have been used to estimate biomass and carbon per tree and/or tree component (Acosta et al., 2002; Brandeis et al., 2006; Gaillard et al., 2002; Litton and Kauffman, 2008; Lagos and Vanegas, 2003; Segura and Kanninen, 2005) but we have not found models to estimate biomass and carbon per area unit. Where in doing so, our results from the tested models show a good adjustment ($R^2 > 95\%$) equal to or above reported by other works, which we mainly attribute to our high number of samples distributed over a wide range of ages. In this work, the tested models using age as the predicting variable for biomass and carbon did not show good R^2 adjustments, a behavior that has been a common trend in other studies (Feldpausch et al., 2004). Overall, the good adjustment of the selected models to estimate biomass and carbon per hectare using simple field variables such as basal area represents an important advance towards the precise and reliable quantification of carbon accumulation in tropical secondary forests.

5. Acknowledgements

The authors would like to express their sincere gratitude to Johan Montero and Henry Toruño, researchers at the Forestry Research and Services Institute from the National University of Costa Rica, for their support during field data collection. This work received finance from the National University of Costa Rica, the Costa Rican Ministry of Science and Technology and from the private sector.

6. References

df

http://cglobal.imn.ac.cr/Pdf/mitigacion/Estudio%20sobre%20Fijacion%20de%20Carbono%20en%20Plantes.pdf

Fonseca, W., Alice, F., Rey Benayas, J.M., (Unpublished results). Site and species specific biomass accumulation and carbon sequestration data for forest plantations of Vochysia guatemalensis and Hieronyma alchorneoides.

Figure 1. Carbon accumulation in secondary forests of different ages and its distribution in the biomass and soil.
Table 1. Carbon fraction (%) in the biomass and soil carbon content (%) in different compartments of young secondary forests in the Humid Tropics of Costa Rica.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Stem</th>
<th>Branches</th>
<th>Leaves</th>
<th>Roots</th>
<th>Herbaceous Vegetation</th>
<th>Large Necromass</th>
<th>Fine Necromass</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>47.9</td>
<td>47.3</td>
<td>37.3</td>
<td>47.5</td>
<td>43.5</td>
<td>50.3</td>
<td>41.1</td>
<td>4.1</td>
</tr>
<tr>
<td>SD</td>
<td>3.9</td>
<td>3.3</td>
<td>3.3</td>
<td>4.4</td>
<td>1.9</td>
<td>2.9</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>n</td>
<td>193</td>
<td>191</td>
<td>193</td>
<td>193</td>
<td>58</td>
<td>48</td>
<td>48</td>
<td>59</td>
</tr>
</tbody>
</table>

X = average, SD = standard deviation, n = number of samples.
Table 2. Accumulated biomass and carbon (numbers in bold correspond to carbon) in secondary forests and their distribution in the different biomass compartments and soil. All expressed in Mg ha$^{-1}$± standard deviation.

<table>
<thead>
<tr>
<th>Age</th>
<th>Number of sampling plots</th>
<th>G (m2/ha)</th>
<th>Total biomass</th>
<th>Tree Biomass</th>
<th>Fine necromass</th>
<th>Herbaceous Vegetation</th>
<th>Large necromass</th>
<th>C total biomass</th>
<th>C soil</th>
<th>ICA soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td></td>
<td>2.5±0.3</td>
<td>0.0±0.0</td>
<td>0.0±0.0</td>
<td>2.53±0.3</td>
<td>0.0±0.0</td>
<td>1.15±0.1</td>
<td>99.1±38.5</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>5</td>
<td></td>
<td>8.6±5.3</td>
<td>44.9±38.1</td>
<td>37.3±36.6</td>
<td>3.6±2.0</td>
<td>2.2±1.4</td>
<td>1.9±1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>12</td>
<td></td>
<td>9.8±5.0</td>
<td>40.5±16.7</td>
<td>32.8±16.9</td>
<td>2.1±1.5</td>
<td>2.8±2.6</td>
<td>2.9±4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td>15.1±8.1</td>
<td>86.9±36.3</td>
<td>79.1±39.4</td>
<td>4.1±0.6</td>
<td>1.9±2.9</td>
<td>1.9±1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
<td>21.4±8.5</td>
<td>174.5±16.4</td>
<td>127.5±47.7</td>
<td>6.7±3.0</td>
<td>1.2±0.8</td>
<td>39.0±45.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td></td>
<td>18.7±4.8</td>
<td>104.0±37.0</td>
<td>88.2±37.3</td>
<td>6.3±3.6(b)</td>
<td>1.4±0.9</td>
<td>8.1±14.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td></td>
<td>16.9±3.9</td>
<td>67.2±7.3</td>
<td>52.9±2.6</td>
<td>5.9±2.2</td>
<td>2.0±0.7</td>
<td>6.4±8.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.9±1.6</td>
<td>2.5±1.2</td>
<td>0.8±0.3</td>
<td>3.5±4.6</td>
<td>31.7±4.9</td>
<td>115.1±32.1</td>
<td>1.4±1.7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.4±1.3</td>
<td>102.3±19.3</td>
<td>92.8±20.8</td>
<td>3.4±1.4</td>
<td>1.3±0.9</td>
<td>4.8±7.4</td>
<td>42.9±6.0</td>
<td>1.4±0.6</td>
<td>0.6±0.4</td>
<td>2.4±3.7</td>
<td>47.3±7.4</td>
</tr>
</tbody>
</table>
Table 3. Biomass and carbon in the different components of total biomass, trees, and ecosystem.

<table>
<thead>
<tr>
<th>Total Biomass Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon in tree biomass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon in the ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>

X= average, SD = standard deviation, n = number of samples.*= Probability 95 percent.
Table 4. Models selected for the estimation of biomass and carbon accumulated in secondary forests.

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2_{aj} (%)</th>
<th>SEE</th>
<th>N</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_t = \exp(1.06839 + 0.80802 \sqrt{G})$</td>
<td>95.7</td>
<td>0.310</td>
<td>48</td>
<td>1.05</td>
</tr>
<tr>
<td>$C_{Ba} = \exp(0.15004 + 0.800996 \sqrt{G})$</td>
<td>97.8</td>
<td>0.216</td>
<td>48</td>
<td>1.02</td>
</tr>
<tr>
<td>$C_{B_t} = \exp(0.272739 + 0.816253 \sqrt{G})$</td>
<td>96.0</td>
<td>0.299</td>
<td>48</td>
<td>1.05</td>
</tr>
</tbody>
</table>

$B_t =$ Total biomass (Mg ha$^{-1}$), $C_{Ba} =$ Carbon in the tree biomass (Mg ha$^{-1}$), $C_{B_t} =$ Carbon in the total biomass (Mg ha$^{-1}$), $G =$ basal area m2ha$^{-1}$, $R^2_{aj} =$ adjusted coefficient of determination; exp (natural log base = 2.718271), n = sample size, SEE = model’s standard error, CF = c
Carbon accumulation in the biomass and soil of different aged secondary forests in the Humid Tropics of Costa Rica

- We accounted for carbon accumulation in different aged secondary forests in the Costa Rican Caribbean region.

- All carbon pools were included in these estimates, where soils resulted in the most important carbon reservoir although not necessarily the most important in terms of carbon accumulation rates, this happened to be the aboveground biomass and most importantly the tree stem. However, other pools not regularly measured, happen to have an important contribution to the overall carbon accumulation rates and thus should be considered in future estimates.

- Biomass models to account for biomass and carbon in the different pools and at the ecosystem level, were created and its use recommended for sites under similar conditions.

Highlights