Universidad de Alcala

Escuela Politécnica Superior

MASTER UNIVERSITARIO EN
INGENIERIA INDUSTRIAL

TRABAJO FIN DE MASTER

Predictive Techniques for Scene Understanding
by using Deep Learning

Autor: Carlos Gomez Huélamo

Tutor /es: Luis Miguel Bergasa Pascual

2019

UNIVERSIDAD DE ALCALA

Escuela Politécnica Superior

MASTER UNIVERSITARIO EN
INGENIERIA INDUSTRIAL

TR Q

7N

A A
(Y AA
AAA AAA
AAAA AAAA
AAAAA AAAAA

Trabajo de Fin de Master

“Predictive Techniques for Scene Understanding
by using Deep Learning”

Carlos Gomez Huélamo

2019

UNIVERSIDAD DE ALCALA

Escuela Politécnica Superior

MASTER UNIVERSITARIO EN
INGENIERIA INDUSTRIAL

A
AA
AAA
AdAA
AAAAA

AA

AAA
AAAA

AAAAA

Trabajo Fin de Master

“Predictive Techniques for Scene Understanding

by using Deep-Learning”

Autor: Carlos Gomez Huélamo

Tutor/es: Luis Miguel Bergasa Pascual

TRIBUNAL:

Presidente: D. Daniel Pizarro Pérez
Vocal 19: D. Rafael Barea Navarro

Vocal 22: Luis Miguel Bergasa Pascual

CalificacCion:coooveeeeeeeeeeeieeeeeeeeeeeanns

Fecha: 30/09/2019

“En este vasto mundo

navegdis en pos de un sueno,
surcando el ancho mar

que se extiende frente a vosotros.

El puerto de destino es el maiiana
cada dia mds incierto.

Encontrad el camino,

cumplid vuestros suerios,
estdis todos en el mismo barco
y vuestra bandera es la libertad”

Espero que te guste, alld donde estés ...

ACKNOWLEDGEMENTS

Este Trabajo de Fin de Madster supone el culmen a dos afos realmente duros, cargado de
emociones, triunfos y tropiezos a partes iguales. Al igual que cuando realicé mi Trabajo de Fin de
Grado, mantengo mi filosofia de aprendizaje continuo, formacion continua, que es lo que mds
me gusta, para asi cada dia entender el mundo un poquito mejor. Si toda la dedicacion y estudio
que he depositado en este trabajo sirven para algo en mi futuro, sé que todo el esfuerzo habrad
merecido la pena.

En primer lugar, me gustaria agradecer a mi tutor Luis Miguel Bergasa Pascual por ofrecerme un
tema desconocido para mi hasta hace apenas unos meses y que, sin embargo, considero ahora
mismo realmente interesante y con mucho futuro como es la aplicacion de técnicas de
aprendizaje profundo (Deep Learning) al seguimiento de objetos. Habrd que seguir esta
tendencia muy de cerca en los préximos afios. A mis compafieros, mejor dicho, amigos, de
laboratorio: Edu, los Javis, Oscar, Alvaro, Miguel y Felipin por todas las risas que tenemos juntos
y por toda la ayuda y consejos que me han prestado durante estos meses en los que ha durado
el TFM. Este trabajo también es vuestro. A mis profesores del grupo RobeSafe, al que con mucho
orgullo pertenezco, Rafa, Elena y Pedro, por tantas lecciones aprendidas de ellos.

A mis amigos de la universidad, especialmente a Antonio, Alejandro, Cristina, Esther, Rocio, Juan
Carlos, Sergio Rodriguez, Sergio Pérez, Adri, Rubén, Pablo, Jesus y Ramdn. Aun me acuerdo de
cuando empezamos con la carrera y como ahora la vida nos va perfilando poco a poco a cada
uno. Os deseo lo mejor en vuestro futuro.

A mi buen amigo Samuel, con quien gran parte de mi vida he compartido. Con especial carifio
guardo las conversaciones después de entrenar, siempre sabiendo lidiar con los problemas que
te comentaba.

A mis amigos del pueblo, Rodri, Jorge, lvdn, Alberto, Diego, Dani, Luis y Rubén porque sin saberlo,
muchas veces me he relajado con ellos cantando un par de canciones en una verbena de pueblo
volviendo a casa mds contento para afrontar mds contento mi dia a dia.

A mi familia, uno de los pilares de mi vida. A mi padre Juan Antonio y a mi madre Petra, que en
paz descanse, les debo todo lo que soy y es por ello por lo que les estaré siempre agradecido. A
mi querida hermanita Silvia, con quien tantas regafinas he tenido, pero el carifio que nos
tenemos las supera a todas. A mi perrita Nuka, que sin saberlo me ha despejado muchisimas
veces sacdndola a dar un paseo, dando rienda suelta a mi cabeza para imaginar nuevas
propuestas mientras miraba el cielo azul. Al resto de la familia, gracias por todo.

Y, por ultimo, la persona mds importante de mi vida ahora mismo. Mi querida Marta, la persona
que en tan poco tiempo me has dado tanto. En los momentos buenos, en los no tan buenos, en

las risas y en los lloros, siempre estds ahi conmigo. Eres maravillosa y deseo pasar mi vida
contigo. Mi corazon siempre estard con el tuyo. Te quiero.

Predictive techniques for Scene Understanding by using Deep Learning

CONTENTS

L0000 I
LIST OF FIGURES ..ot sssss s sssssssassss ssassssssassssasssssasssssnassans \'
LIST OF TABLES.....ccitcismsssssssssssssssssss s sssss s s sssss s ssass s s s ssass s s st s s IX
LIST OF ACRONYMS.....cisisiusmsmmssscssassssssassss s sssssss s s ssassss s sssssssseasssess XI
CODE OF INTEREST ..ot sssssssssssssssssssssassssssssssssssssssassssnns XIII
LD 010 1108 0 o XV
RESUMENciitnisicsmssmnsssssssssssssssss s s asssss s s st s es XVII
5 2 12 O . XIX
EXTENDED ABSTRACToccciimmsssmssmsssmssassssssssssssssssssssssssas XXI
CHAPTER 1. INTRODUCTION.cciismsmsmsesmsmssmsmsssassssssssssssses 1
1.1. IMOTIVATION wueucueureresureressreressssesessssesessssesessssensssssessasssessssssessssssessssssesssssssssssesessssensasssensasssenssnssensasssensans 1
1.2. HISTORICAL CONTEXT tuvvustresssesesssesessssesessssessssssesssssessssssessssssesssssssssssssssssssssssssssssssssssssssessssssenssssssssns 2
1.3. PROBLEM STATEMENT w.ucuttiiiuiesesssesessssesessssesssssessssssessssssessssssessensssssssssns 4
1.4. TRACKING FOUNDATIONS ...uvtreueurerenssreressareressssesssssessasssensasssessssssessasesesssssessssssesssssnsasseensasseensassressssen 6
1.4.1. Detection-based vs Detection-free trackers ... eeeeneernseensesseesssesssessseens 6
1.4.2. Single vs Multiple ODbjJect traCKers......ueemeensesseeserreesesseesseseessessessessesssssssssesssesseees 7
1.4.3. Online Vs OffliNe traCKETS ..ceereeerreeseesseessecssesesessssssesssssssssssessssssssssssssssssssssssssssssssens 7
1.4.4. Online vs OffliNe STrate@Ycooeeerrrernmerreesreesseessessessseesssessesssessssessessssssssssessssssssssseens 7

1.5. OBJECTIVES OF THIS WORK ...esveuurerssesssessssessssssssssssssssssssssessssssssssssssssssanssssnessssssssssssssmsssssssssssssasssses 8
1.6. STRUCTURE OF THIS WORK ..cuetteretrereussrereasssesasssessssssessssssessssssesssssssssssssssssessssssssssssssssssssessssssessssesssans 8
CHAPTER 2. TECHNICAL BACKGROUND AND STATE-OF-THE-ARTcccccesvesessnmmsesnsennnnns 11
2.1. INTRODUCTION w.ucucueucueucuesrererereseesesssssssssssssseseresessssssssssssssssereseesenssesssssnssssssesensssssssassessssssesesenssssesesses 11
2.1.1. Visual Object Tracking (VOT) ..oorncomenrereeseereesseeseessessessesssessesssessssssssssesssssssssssssssseans 11
2.1.2. Only LiDAR based object tracking.......coccuueereemeensemsernsesseesessessesseessesssessesssesssessessesans 12
2.1.3. Sensor fusion based 0bJect traCKingccoeereerreerseeesmerseesseesssessesssessseesssessessessens 14

2.2. CHALLENGES IN VISUAL OBJECT TRACKING: cvcevevsrereesssessses 17
2.3. DEEP LEARNING IN MULTI-OBJECT TRACKING ovuevereeeeeseessssssssssesssesssssssssssessssssssssssssssssssssssens 18
0% 70 B €10 1 N 1) 2\ PP 19
2.3.2. MV-YOLO e sececeeeeeeseessessesssess s ssssssesssssssesssse s sssess e sssssssssssssssessssssssssssesssessssssssesssessaees 20
20 T8 TR 1 03\ PP 21
8 7 S (0) O PP 21
0% 70 T U TP 23
CHAPTER 3. SOFTWARE TECHNOLOGIES USED IN THE THESISccoonmnmsnicsnnssesesenssnans 25
3.1, INTRODUCTION coovsitrirumssssssssssssssssssssssssssssssssssssass s sss s bbb s st s bbb 25
757/ 3 PPN 25
3.2.1. GOALS ot R e 26
3.2.2. MaIN CONCEPLS. .ottt s 27
3.2.2.1. ROS FyleSyStem L@VEL.....coiueereeecereeseseiseeseesesse e s s ss s ssssassssesans 27
3.2.2.2. ROS Computation Graph 1€Vel ... sssssssssesseeans 28
3.2.2.3. ROS COMMUNILY LEVEL.ureuieeeereiererrreeseetseetseeeseeseessees e ssesssessseessesssessssssssssssssssssseens 29

3.2.3. Main ROS tools used in this thesis ... 30

Predictive techniques for Scene Understanding by using Deep Learning

3.3, POINT CLOUD LIBRARY (PCL) wtttttrrrrrnermrmesnssessssssssasans 30

S F0 T N = 01) (PP 31

314, DIOCKER et ieuriueeuseeseeeseessessssssessssssessssase s s ses s ase s sse e E s A AR bbbt 32
3.4. 1. DOCKET BNZINE...citierieeeeeeeceseeset ettt s ss bbb s 32

1 70 307NN D ToTod 23 gl U (od o) L =Tot D) o PP 33

120 307/2% BRI D To Yol 33l 04 1 =) o 1 00 PP 34

ST 77028 0 1o 1ol (=) a5 [0 1] P 34
3.4.2.3. DOCKET ODJECLS coueueeeeueenreereeasereesseesessessesss s ssssse s ssss s sssssssssesssesssssss s sssssssssesans 34
3.4.2.4. DOCKET REGISIIIEScuueeereeeeeereetsseseessessseesss s ssse st sssssssssss s sssssssassssssssesns 35

3.4.3. DOCKETr dVANAZES ...cceeererreesreesseeeeerssessssssesssssssesssess s s sssssssssssssssssssssssssssssssssessnens 35

3.5. CARLA SIMULATOR w.ucutitetstisissesessssssssssssssssesssssssssssssssssssssssssssssssesesssssssssssssasssssssssssssssssssssssasassssasns 36
3.5.1. SimMUulation ENINe... e se s ssss s sssssssssssss s s ssassssssans 37
3.5.2. Environment and SENSOTScimmmssens 38
3.5.3. AULONOMOUS DITVINE ceorrrirrieereesreeeeerseessesssessssessssssesssessssssss s sssssssssssssssssssssssssssasssssessnens 39
CHAPTER 4. SMARTELDERLYCAR PROJECTcccocsmmmmmmmnisssmsssmsssssssssssssssssasssassssssssssssssssasasasas 41
4.1. MOTIVATION AND SCOPE OF THE PROJECT vuvuursruresseesssssmssassssees 41
4.2. AUTONOMOUS NAVIGATION ARCHITECTURE .vevvtrereeeerssssssssssseeessssssssssssssssessssssssssssssssssssssssnsnes 41
4.3. REAL PROTOTYPE .vucusureeuserersassreressssessssssesssssessasssessssssessssssesssssssssssesesssssssssssessssssessssssesasssessasssessssnen 43
4.4. SEINSORS. ..eteueurereaserersassreseasssesassressssssessssssensssssessasssessssssesssnesessssssssssnenessssenssssnesessssessssssensssssensassnessansen 44
4.4.1. Distance Sensor: LIDAR ...t sssssssssesssens 44

4.4.2. ViSion SENSOT: CAIMETA .cvuverrerresseresressssessessssessesssssssessssessesssssssesssssssesssssssssssssssesssssssesssssasens 46

4.4.3. PoSItioning SENSOT: GPS...... s sessesssssse e 47

4.5. SIMULATION ENVIRONMENTScoueumerseesseesseesssesssesssessssssssesssesssesssessssesssesssessssssssssssasssessssssssesassssees 51
4.6. SIMULATING USE CASES FOR THE UAH AUTONOMOUS ELECTRIC CAR ...ccoevvvrerrrererererereesesenens 52
CHAPTER 5. ARCHITECTURE PROPOSAL FOR DEEP LEARNING BASED MULTI-OBJECT
TRACKING ..outuiuimnsmsmssssssssssssssssssssssssssssssasssssssssssssssssasssssssssssssssssssssssess sssssasasssssssssssssasasssssssssssssssssssssans 57
5.1, INTRODUCTION courerueeseesseesseessessseessessssesssesssesssesssessssesssesssesssesssessssesssesssesssessssesssesssessssssssssssesssessssesass 57
IO 00 o) Nl 21 231101 59
5.3, DEEP SORT ettt cs s s s bbb 60
5.3.1. Track handling and State EStimation.......c.oeeeeereeenmereesseesssessessseesseesssesssessessees 61
5.3.2. ASSINMENT PrODIEM ...ttt 62
5.3.3. Matching CaSCaAe ...t ess s sss s st 63
5.3.4. Deep ApPearance DeSCIIPLOT ... ssssssssssessseans 64

5.4, LIDAR CLUSTERING ...stuueeeseeesseenserssessseesssesssesssesssessssesssesssessssssssssssesssesssesssessssssssesssesssssssssssesssassssssass 66
5.4.1. KD =TT E ccuttetrerretrssssssesssssesssesssssessesse st st s sss st s st s sssssssssssssnsssssnssnsans 67
5.4.2. Euclidean cluster eXtraction.......iissessssessssssssssssssssssss 67

5.5. SENSOR FUSION ...coueuueruserseesseesseesssesssesssessseesssesssesssesssessseesssesssesssesssessssesssesssesssessssssssssssasssesssesssesssasssessass 68
CHAPTER 6. EXPERIMENTAL RESULTS......cooiiimmmmmsmssssssssssssssssssssssssssssssssassssssssssssssssssssssasass 73
6.1. INTRODUCTION woucucucucueueressssssesesesesessssssssssssssssessnsnsssssssassessssssssrsssnssssssenens 73
6.2. QUANTITATIVE RESULTS wuuvvturrssuesesamsesassssnessssssssasssssmssssnsssanssssnssssasssssssssassssanssssnsssssssssassssassssansssassses 73
6.2.1. KITTI tracking benchmarkK.......eeeneeeeseessessesssssseesssessesssesssessssssssesssessees 73
6.2.2. LOVAN 2N IVANES) 0o 101 =10) o 75
(ST070 TR o =1 i 21 U6 U3 |74 0F) oo O OO 83

6.3. QUALITATIVE RESULTS ..c.couimeessusessssssesssssnssssssessssssesssssssssssesssssnesssassssssnesssssssssasesssssnesssssesssssnessssnenses 84
6.3.1. LOVAN 2N IVANES) 0o 101 =10) o 84
6.3.2. SMATTEIAEITYCAT ..ottt ess bbb s 86
CHAPTER 7. CONCLUSIONS AND FUTURE WORKS.....cciiiirmmsmsmsmsesmsmsmssssssssssssssssssssssssssasass 89
7. 1. CONCLUSIONS . .ccestreueereresssreresssressssssessssssenssssesssssessssssesssssnsssssssssssssssasssssssnsssssssssssssnsssssssssssesssssssessssssnssns 89
7. 2. FUTURE WORKS...oecsstreustseressrersssssessssssessssssessssssssssssssssssnsssssesssssssssassssssssssssssssssssssnssssessssssesssasssnsssssasans 90

Predictive techniques for Scene Understanding by using Deep Learning

APPENDIX A: KALMAN FILTER.....cimmssns 93
A. 1. INTRODUCTION TO THE KALMAN FILTER ..ocvniruirrmsssans 93
A. 2. EXTERNAL INFLUENGCEcctutetuseeesseesssessssessssessssessssesssssessssessssessssessssesssssessasessssessssesssssssssssssasessssessssesssans 96
A. 3. EXTERNAL INFLUENGCE-....ccuuteuuseeesseesssessssessssessssessssesssssessssessssessssessssessssssssasessssessssesssssssssssssasassssessssesssans 97
A. 4. REFINING THE ESTIMATE WITH MEASUREMENTS.....cvcumurumrusssesssssssnss 98
A. 5. COMBINING GAUSSIANS....couieruserssissssssssssssssssssssssssssssssssssssssessssssssssssssssssassssssessssssssssssssssssssssssssssssssssans 99

APPENDIX B: ARTIFICIAL INTELLIGENCEcoonninmsssmssens 103
B. 1. ARTIFICIAL INTELLIGENCE CONCEPT ...cuueruseessseeessessssessssessssessssessssessssssssssesssssssssessssessssesssssessassssanes 103
B. 2. MACHINE LEARNING CONCEPT ..ccouuiumuisssanas 104
B. 3. DEEP LEARNING CONCEPT .oottttuuisusissanas 104
B. 4. CONVOLUTIONAL NEURAL NETWORKS ([CNNS) w.coriureueereerecureesseseesesserssessssssesssssesssessssssesssssseenns 105

B. 4.1. Convolution Layer - The KerNel. ... ssssssssssssssessssssssnns 106
B. 4.2. POOING JAYET .orruieeeeeeetstieesseetseessessse st sessss s esss s ss s sssssssess bbb sssssssasssesens 110
B. 4.3. Classification - Fully Connected Layer ... eeneenseesesseessssessesssessseesesens 110
B. 5. RECURRENT NEURAL NETWORKS (RINNS) ...coeererreemreesseerseeesesmessseesssesssesssessseessesssessssssssessssssees 111
B. 5.1. Long Short-Term Memory (LSTM) ... eeeneeessessssssseessessssssssssssssssssssesssssssessns 113

APPENDIX C: CODE OF INTERESTccocnmmmnmmmsmmmmmsssmss 115

APPENDIX D: USER’S MANUALcociinmmsmsmsmssmssess 121
D. 1. DOCKER INSTALLATION ..uvvuuseesseessseesssessssessssessssesssssessssessssessssessssessssessssesssssesssssssssessssessssessssssssasessanes 121
D. 2. ROS INSTALLATION wcuuteuuseessseesssessssssssssssssessssessssssssssssssssssssesssssssssesssssssssssssssssssssssssassssesssssssssssssassssanas 122
D. 3. ANACONDA, CUDA AND NVIDIA DRIVER....ccmrrmmrmesssanes 123
D. 4. CENTERNET+DEEPSORT FRAMEWORK INSTALLATION w.ouvvvuseesseessseesssesssseesssessssessssesssssesssssssanes 125
D. 5. INSTALL CARLA 0.9.5 .ot recereeeseeseeseessssssesssesssess s sssess s sssesssessssssmsssssssssssssssssees 126
D. 6. EXECUTION CARLA + SMARTELDERLYCAR (SEC)cniuuicereeenrieseesseeesssesesssesssesssssssesssesssssssssessees 126

APPENDIX E: SPECIFICATIONS.....ccoimmnmmmsmsmsmssasssess 129
E. 1. HARDWARE ...oorvuueeuseessesessessssessssessssessssssssssessssessssessssesssssessssessssessssessssessssesssssessssessssessssessssesssssssssssssanes 129
E. 2. SOFTWAREoutuuueesseesssessssessssessssesssssssssssssssessssessssessssesssssessssessssessssessssessssesssssessssessssessssessssessssssssssessanes 130

APPENDIX F: BUDGET ...oovtsmimsmsmssmsssmssasssssssssssssassasas 131
F. 1. MATERIAL COST wuvvuueersseessseessesssssessssssssssssssessssessssesssssssssssssssessssesssssssssessssssssssssssssssssassssessssssssssssssssssanes 131
F. 2. PROFESSIONAL FEES....outvuueeuuseessseesssssssessssessssessssessssessssssssssessssessssessssessssesssssesssssssssessssessssesssssssssssssanes 131
F. 3. TOTAL COSTS wourvuueruseessenssseesssessssesssssssssssssssessssessssssssssssssssssssessssessssssssses s s s sssessssessssssssssssssssssanas 132

REFERENCES ...ttt ssssssssss s s ssas s s s ssas s s s s s ssassss s anassnsans 133

Predictive techniques for Scene Understanding by using Deep Learning

Predictive Techniques for Scene Understanding by using Deep Learning

List of Figures

Figure 1.2-1 Self-driving SUV from Carnegie Mellon University's Tartan Racing team............................ 3
Figure 1.2-2 Number of test miles and reportable miles per disengagement in California (2018).......... 4
Figure 1.3-1 False positives detection in a real-world SitUGEIONcc.ceercieeriieceecieieisieisieeeee 5
Figure 1.4-1 Multiple Object Tracking example uSing Deep SOTt............coceeeeveeseesersencireeseeseeieiene 7
Figure 2.1-1 Traditional techniques to perform Visual Object Tracking...........c..c.ceceecevevcercercerseesueneens 11
Figure 2.1-2 Visual Tracking DECOMPOSILIONcc.eevueesieecieriiriisieseeseesieee et 12
Figure 2.1-3 Example of voting in online point cloud object detectionccccceceevceescvesceescvesneennne. 13
Figure 2.1-4 Object detection and tracking based on dynamic search and Bayesian segmentation...... 14
Figure 2.1-5 Different sensors in a SElf-AriVINg CAYccccueveeoiiioiisiesieseesteeeeeesee et 14
Figure 2.1-6 Sensor DENCAMATKccocveeeuiniisiiiieiieieteteseese sttt sttt 15
Figure 2.1-7 Sensor fusion based tracking system architecture proposed in [18]cccccceeveevuenueene. 16
Figure 2.1-8 Tracking results of [18] for the qualitative evaluationccecevceeveeneeseeseeseenncne. 16
Figure 2.3-1 GOTURN QUCRIEECEUTEcc.ueeneeeeieieeeeeeeee ettt ettt 19
Figure 2.3-2 MV-YOLO QTCRILECEUTC........c..ceeeeieiiriieiieieeeieseeie ettt st 20
Figure 2.3-3 MDNEE AICRIEECEULIEceueeueeieiisiisiieiieteeeseee sttt sttt sttt 21
Figure 2.3-4 ROLO QIUCRIEECEUTEcoueeueeueeieiieiisiieiieteteesese sttt sttt sttt 22
Figure 2.3-5 (Top) Simplified ROLO overview and tracking procedure (Bottom) ROLO architecture...22
Figure 2.3-6 RE3 ATCRIEECEUTEc.ueeeeeeeieeiieeeeeesee ettt ettt 23
FIiQUIE 3.2-1 ROS IOGOLYPC ..ot eetee ettt e ettt e e ettt e e ettt e e e et e e e etsaa e e aassaaeaatsaaasasssseesssssaeatseaennes 25
Figure 3.2-2 Peer-to-Peer vs Client/Server QreRiteCture.uuweveereereeiieiieieeesieesieeee e 27
Figure 3.2-3 Example of publisher/subscriber and its relationship with the Master.............c.cccccccuc..... 29
Figure 3.3-1 Point Cloud Library I0GOUYPEc.coeeeeeeueriieiisiieiieteiesiesieee sttt 30
Figure 3.3-2 Bird Eye VIeW Of PCL-ROS..........cccooovieirieieiesiise sttt sttt sttt 32
Figure 3.4-1 DOCKEI [OGOLYPEc..oouieueeieeeeieieiesteteee ettt sttt sttt 32
Figure 3.4-2 DOCKEY @NGINEccuereeeeieiieieeeeeeee ettt ettt ettt ettt 33
Figure 3.4-3 DOCKEY QICRIEECEUTccueeeeeiieiieeeee ettt ettt et 33
Figure 3.4-4 Docker containers vs Virtual MACRINES............c.coceeveerveeneeneeieeiieieeesiesee e 36
Figure 3.5-1 CARLA LIOGOLYPC.........coeeeeeeeeieeeeeee ettt ettt ettt et 37
FIgure 3.5-2 CARLA WOTIc..oooeeeeeeesee ettt ettt sat ettt en e satasseesseeteetesatesneennes 37
Figure 3.5-3 Different sensing modalities provided by CARLA: Normal vision, ground-truth depth and
ground-truth SEMANtiC SEGMENEALIONcccueecveeeieeiiesiiesiiesteesieesteeteste st e st e steesteete s e s teesseeteesessesasenaes 38
Figure 4.1-1 Real autonomous electric car of Robesafe Research Group (UAH)ccoccovevvevvecuvnnnne. 41
Figure 4.2-1 Proposed autonomous navigation QrcRiteCtUTEcceeveerueeceeeienieniieniieieeieee e 42
Figure 4.3-1 (a) Open-source chassis, (b) Electrical power steering Wheel................cccccoveevveevvevenncnne. 44
Figure 4.4-1 (a) LiDAR system overview in horizontal (b) 3D reconstruction of the environment........ 45
Figure 4.4-2 VLP-16 diMENSIONS OVEIVIEW..........cecuereesiiesieesieesieesiestasieesseesseesseesesssesssessesssesssesssesssessesses 45
Figure 4.4-3 TRE ZED CAMEI U.......ocueeeeeeseeesieesieeieeiiestiesteesteesteetestesstasseesseassesseensasssasssasssenseessesnsessesnsenaes 46
Figure 4.4-4 GPS TrianGuIAtion PIOCESSccoecuereesiiesieesieesiesiesteseesseesseesseesesssasssesseessessseessesssessennes 48
Figure 4.4-5 (a) Differential Topcon Hiper Pro GPS configured as rover and base (b) Choke-Ring
Antenna as 10CAl DASE SEALION............coeeeeveriesiiriiitieieieieeest ettt st 48
Figure 4.4-6 Handcrafted rack with the main sensors of the SmartElderlyCarccccoceevvvvuenunen.. 50
Figure 4.4-7 Frames Orientation and position of the main sensors in the vehicle.................ccccccccou...... 50
FIGUIe 4.5-1 V-REP IOOLYPE ..ottt sttt enenens 51
Figure 4.5-2 Map composition based 0N [ANEIELSc.coeeereeieeeieiesiseseeeeeeee sttt 52
Figure 4.6-1 Precision-Tracking approach in the SmartElderlyCar (Real world)ccccoeceveeuens. 53
Figure 4.6-2 From Left to right, V-REP car and pedestrian models................c.ccoceeceeceevenenierienenceneennns 53
Figure 4.6-3 Algorithm used to project the semantic segmentation into the 3D Point Cloud 54
Figure 4.6-4 Pedestrian crossing SImulation eXampleccccocerveeroeeneesieeiiinieniesieseee e 55
Figure 5.1-1 Architecture proposal for Multi-Object Trackingc.ccceeceeveevueeieneesieneeeeseeie e 58
Figure 5.2-1 CenterNet QrCRILECEUTcoueeeieieeeeeeeee ettt ettt ettt 59
Figure 5.3-1 Flowchart of the CenterNet+Deep SORT framewWork..............ccccoceeceeeeeceesenenieninineeeenns 61

Predictive Techniques for Scene Understanding by using Deep Learning

Figure 5.3-2 Matching Cascade algorithm to evaluate the age of the tracked objects........................... 64
Figure 5.3-3 Intersection over Union repreSENtAtiONcccocueereeeeuerieseriniineeieciesiesiesieeiesieenenens 64
Figure 5.3-4 Overview of the Deep Appearance descriptor CNN architecturec.cccccevveverceeuenes 65
Figure 5.3-5 Algorithm used to perform VOT using CenterNet and Deep SORT.............ccccocevvercerceeuenee. 66
Figure 5.4-1 3D KD-T1€€ @XAMPIE...........cocuveeeeeieieiieieieeeee sttt 67
Figure 5.4-2 Algorithm used to compute the 3D LiDAR clustering using Euclidean Cluster Extraction
ANA KD-TTEE LECHNIQUES ...ttt et ettt ettt sate sttt e et e s sste et eenateeateessteensteesasaensses 68
Figure 5.4-3 Algorithm used to project the 2D VOT proposals onto the BEV plane................................ 69
Figure 5.4-4 Main callback using the Approximate Time POliCYccccoeverververceeceeciesisiiriieirieienen, 70
Figure 5.4-5 Algorithm to perform the sensor fusion between BEV VOT and BET LiDAR proposals 71
Figure 6.2-1 Manual control of dynamic obstacles in CARLAc.couvevcevveeenceeieesese s, 76
Figure 6.2-2 CARLA 5eNnSOrs CONfiQUIALIONcc.eeueeueeueeieiesiisie sttt sttt 76
Figure 6.2-3 Euclidean distance vs X local distance with Y displacement = 0 m (including all
L0012 ae e Lol T2 80
Figure 6.2-4 BEV of Groundtruth trajectory vs Estimated trajectory in straight line (including all
APPITOACHES) ...ttt ettt st ettt sa et sttt sttt et e s tesat et st enenens 80
Figure 6.2-5 BEV of Groundtruth trajectory vs Estimated trajectory in straight-line tracking (only
Merged VOT APPIOACH)coeeeueeeeeeiee ettt sttt ettt ettt s 80
Figure 6.2-6 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking (all
APDTOUCHES) ...ttt ettt s s e s at e st sttt et e e asenae et e bt et e e aeeaesanenaes 81
Figure 6.2-7 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking (only
Merged VOT APPIOACR)coeeeeeiirieiieieeeeseee sttt sttt sttt eeenens 81
Figure 6.2-8 3D scatterplot representing the Euclidean distance vs CARLA groundtruth (X)Y)
(Precision-Tracking APPIrOACH)........c.cceecueviieerieiieieieeeest ettt 82
Figure 6.2-9 3D scatterplot representing the Euclidean difference vs CARLA groundtruth (X,Y) (VOT
APDTOUCH) ..ottt ettt ettt st s e s at ettt et et e et e s ae et et e e e aeeaenane e 82
Figure 6.2-10 3D scatterplot representing the Euclidean difference vs CARLA groundtruth (X,Y)
(MErged VOT APPTOACH).........ccueeueeieeieieeesesteetet ettt sttt ettt nate s e eseas 83
Figure 6.2-11 Quantitative results in SmartElderlyCar navigation................cceceeeeeceeceenesicrienienceneennens 84
Figure 6.2-12 Qualitative results in CARLA SIMUIALOLccccooveereeeeiesiisiinieiieeeieeseese e 86
Figure 6.2-13 Qualitative results in a real-world situation with the SmartElderlyCar 88
Figure A.1-1 Mean u and variance o2 of the velocity and POSItiONcccceeveeeceerceeneeseeseeieeieneene 94
Figure A.1-2 (a) Velocity and position are uncorrelated (b) Both variables are correlated 94
Figure A.1-3 Covariance MatriX @XAMPIEc.coeevueesieeiieesiieieeieseese ettt 95
Figure A.1-4 (a) New distribution after prediction (b) Transformation matrix between original
estimate and New PrediCtion POSTEIONc.ecuveeereesiiesieesieesieestesteste st e st ste e te s te st e sseesseesseessestesnnesaes 96
Figure A.3-1 (a) New uncertainty after the prediction step (b) New Gaussian distribution with a
AIffErENE COVATIANCE.eeeeeeeeieeeeseeeseest ettt s ettt et e te s te st e s atesseeseeseensesstasseasseeseesessesatesneenaes 97
Figure A.4-1 Sensors modelling using matrix tranSformation.............c.ceeceeveeceeeeeneeseeneeseeseeeeseeae 98
Figure A.4-2 (a) Random noise between the current read and the possible real one

(b) Transformed prediction distribution and sensor measurement disStribution..................c.cccecceeueen.... 99
Figure A.5-1 Kalman Filter INfOrmation FIOWccocooveimeeniesieiieiieeseeseeie ettt 101
Figure B.1-B-1 Development of artificial intelligence and its subsequent fields in the last six decades
.. 103
Figure B.4-1 Comparison between stages required by ML and DL for classification............c............... 105
Figure B.4-2 RGB image channels and pixel cOrreSPONAENCEcocueecuemeeseeseeseeieiiesieseeieeiene 106
Figure B.4-3 Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature......... 107
Figure B.4-4 Example of padding and stride in the input iMageccceceeveesoeeserveesceesieneeseeene 108
Figure B.4-5 Movement of a 3D kernel over the iIMaQGecccovuevueeoieeiinieieseeese et 108
Figure B.4-6 Convolution operation of a MxNx3 image matrix with a 3x3x3 kernel............................. 109
Figure B.4-7 Low, Middle and High-Level feature eXtractionccocceceeveeceeeeeeeseneneneeeneeeenns 109
Figure B.4-8 TYPeS Of POOLING.......c.cocueeeeeieieieesteeeeesee sttt 110
Figure B.4-9 Example of Fully Connected Layer (FC LAYEr).........ccocevuereririerierieeeieieniese s 111
Figure B.5-1 (Left) A standard RNN (Right) Unrolled RNN in time..........cccceceeveeveesenceieesieseeieeene 112
Figure B.5-2 A DASIC LSTM CelL........couooeeeiieiiieeeeee ettt sttt 113
Figure D.1-1 Bash launch file to run the CenterNet_DeepSORT docker image..............ccccoceevevevvennen. 122
Figure D.3-1 Check NVIDIA driver in the case 0f 390.97ccocueueveeveeverininieieeeieesese st 125

VI

Predictive Techniques for Scene Understanding by using Deep Learning

Figure D.4-1 Bashrc configuration (Docker image of tracking module)cccccooevvericvenceenvanacn. 125

VI

Predictive Techniques for Scene Understanding by using Deep Learning

VIII

Predictive Techniques for Scene Understanding by using Deep Learning

List of Tables

Table 2.3-1 Comparison of some interesting state-of-the-art Deep Learning based MOT approaches..19

Table 4.4-1 Main specifications Of VLP-16 SENSOTccccccueeriiriercereeieniinenieiisteeeiessesie st 46
Table 4.4-2 ZED camera Main SPECIfICALIONS............ceceevueeiesieseesitesie ettt eie et saeesaeeae e 47
Table 4.4-3 Topcon Hiper Pro GPS main SPECIfiCAtionsccecevceeeeveeeesiesineneeeeieee s 49
Table 4.6-1 Table Main features of the SmartElderlyCar Petri NEtscccuceeveeceeeeesenenenereeeeeene 56
Table 6.2-1 Results in KITTI tracking validation/test of different state-of-the-art approaches............ 75
Table 6.2-2 Structure of each element of the comparison file...............cccueveeveeseesieesieesieiieseeseeseeiens 77
Table 6.2-3 RMS error and Number of samples in function of the distance (Precision-Tracking)......... 78
Table 6.2-4 RMS error and Number of samples in function of the distance (VOT)ccccccevveevcvevvencn. 78
Table 6.2-5 RMS error and Number of samples in function of the distance (Merged VOT).................... 79
Table F.1-1 MATEITAL COSESc.ovuuruiiiiiiiiiiiiiiiciie ettt 131
TADle F.2-1 PrOfeSSIONQAL fEESc..ccoeenueeiieiieiiieiieeieetee ettt ettt 132
TADIE F.3-1 TOLAL COSES.....ooviiiiiriiiieiieiieietisit ettt sttt sttt 132

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive Techniques for Scene Understanding by using Deep Learning

List of Acronyms

10.

11.

12.

13.

14.

15.

16.

17.

18.

CNN: Convolutional Neural Network
RNN: Recurrent Neural Network

MOT: Multi-Object Tracking

SOT: Single Object Tracking

VOT: Visual Object Tracking

Al: Artificial Intelligence

ML: Machine Learning

DL: Deep Learning

LiDAR: Light Detection and Ranging
BEV: Bird Eye View

IoU: Intersection over Union

GPS: Global Positioning System

SORT: Simple Online and Real Tracking
CARLA: Car Learning to Act

ROS: Robot Operating System

PCL: Point Cloud Library

MOTA: Multi-Object Tracking Accuracy

MOTP: Multi-Object Tracking Precision

Xl

Predictive Techniques for Scene Understanding by using Deep Learning

Xl

Predictive Techniques for Scene Understanding by using Deep Learning

Code of Interest

Code of Interest C-1 Code to obtain the 3D coloured point cloudccocceeveeeceeneeseaseeieeieeee, 115
Code of Interest C-2 Code to concatenate non-discarded CenterNet bounding boxes........................... 116
Code of Interest C-3 Code to update the tracked objects based on Deep SORTccccccovvvvercveeenneee. 116
Code of Interest C-4 Code to perform the 3D LiDAR Point Cloud cluster extraction 117
Code of Interest C-5 Code to project the bottom position of the CenterNet+DeepSORT bounding box

ONEO TNE 3D SPUCE ..ottt s et s e st e st e et e st esbee s bt e s stasbsesseesbseenseesabsesnseesass 118
Code of Interest C-6 Code to perform the sensor fusion between BEV VOT proposals and BEV LiDAR

PIODOSAIS ...ttt ettt sttt sttt sttt sttt sttt sttt sttt 119

Xl

Predictive Techniques for Scene Understanding by using Deep Learning

XIV

Predictive Techniques for Scene Understanding by using Deep Learning

Key Concepts

10.

11.

12.

Object tracking: Process of locking on to a moving object, being able to determine
if the object is the same as the one present in the previous frame.

Sensor fusion: Sensor data combination or data derived from different sources
such that the resulting information has less uncertainty than would be possible
when the sources are used individually.

CNN (Convolutional Neural Network): Kind of Artificial Neural Network
specialized in image classification or segmentation.

Groundtruth: In the context of detection and tracking, it refers to the exact position,
velocity or any required variable of a determined object.

BEV (Bird Eye View): Elevated view of an object from above, with a perspective as
the observer were a bird, very used in the context of self-driving applications
(filtering the Z-axis for the objects).

Kalman filter: Algorithm that uses a series of measurements observed over time,
containing statistical noise and other inaccuracies, producing the estimation of
unknown variables that are expected to be more accurate than those based on a
single measurement.

SmartElderlyCar: Autonomous electric vehicle able to drive in the campus of the
University of Alcala.

ROS (Robot Operating System): Software framework for robot software
development.

PCL (Point Cloud Library): Standalone, large scale, open project for 2D/3D image
and point cloud processing.

Docker: Open source project that offers a software development solution known
as containers

CARLA (Car Learning to act): Open source simulator for urban driving based on
the simulation engine Unreal Engine 4.

MOTA (Multiple Object Tracking Accuracy): MOT metric that combines three
error types: missed targets (M,), false positive (fp,), and the identity switches or
mismatches mm,, respectively at frame t.

XV

Predictive Techniques for Scene Understanding by using Deep Learning

13. MOTP (Multiple Object Tracking Precision): Total position error for matched
object-hypothesis pairs over all frames, averaged by the total number of matches
mode.

XVI

Predictive Techniques for Scene Understanding by using Deep Learning

Resumen

El presente trabajo propone una arquitectura software precisa y en tiempo real para el
seguimiento de multiples objetos basada en aprendizaje profundo (Deep Learning) en el
contexto de la navegacién auténoma. Se ha llevado a cabo una fusién sensorial entre el
seguimiento visual 2D basado en los algoritmos CenterNet y Deep SORT [2] [49] usando una
camara y el clusterizado de la nube de puntos 3D procedent del LiDAR [11] sobre la
plataforma de desarrollo robético ROS y contenedores Docker.

Se ha llevado a cabo una comparacién entre el enfoque tradicional Precision-Tracking [46],
tracking visual basado en Deep Learning y fusién sensorial con LiDAR comparando las
posiciones estimadas para cada uno de ellos.

Las propuestas han sido validadas en el benchmark de KITTI para seguimiento de vehiculos
[69], en el simulador de CARLA [31] para el seguimiento de peatones y en el campus de la
Universidad de Alcala sobre nuestro vehiculo auténomo desarrollado en el proyecto
SmartElderlyCar.

Palabras clave: Seguimiento de multiples objetos, Deep Learning, ROS, CARLA,
SmartElderlyCar.

XVII

Predictive Techniques for Scene Understanding by using Deep Learning

XVIII

Predictive Techniques for Scene Understanding by using Deep Learning

Abstract

The present work proposes an accurate and real-time Deep Learning based Multi-Object
Tracking architecture in the context of self-driving applications. A sensor fusion is
performed merging 2D visual tracking based on CenterNet and Deep SORT algorithms [2]
[49] using a camera, and 3D proposals using LiDAR point cloud [11] over the ROS
framework and Docker containers.

A comparison between the traditional Precision-Tracking [46] strategy, Visual Object
Tracking based on deep learning and sensor fusion approach with LiDAR is carried out
comparing the obtained pose estimations for each of them.

The proposals have been validated on KITTI benchmark dataset for vehicle tracking [69],
on CARLA simulator [31] for pedestrian tracking and on the Campus of the University of

Alcala using our autonomous vehicle developed for the SmartElderlyCar project.

Keywords: Multi-Object Tracking, Deep Learning, ROS, CARLA, SmartElderlyCar.

XIX

XX

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive Techniques for Scene Understanding by using Deep Learning

Extended Abstract

One of the most critical aspects when developing an autonomous vehicle is to perceive and
understand the dynamic scene as accurately as possible, so that the actions taken by the
vehicle guarantee the safety of both the vehicle itself and the surrounding obstacles, such as
people, other vehicles or road infrastructure.

In that sense, the object detection and tracking strategies play a fundamental role, allowing
the vehicle to predict future positions, as well as plan its possible trajectories dynamically,
based on previous frames in the scene.

Although there has been great progress in the object detection and tracking methods, object
tracking remains a problem of interest due to the challenges present in real-world
applications, such as occlusions, changes in the point-of-view or lighting. In that sense, the
scientific community is continually developing robust object detection and tracking
approaches.

Moreover, the Deep Learning paradigm has supposed a breakthrough for the research
community, giving rise to rapid advances overall in terms of object detection. Recently,
more and more tracking algorithms, both single and multiple, have started exploiting the
representational power of deep learning. The strength of Deep Neural Networks (DNNs)
resides in their ability to learn rich representations and extract complex and abstract
features from their input, generally an image. Convolutional Neural Networks (CNNs)
currently constitute the state-of-the-art in spatial pattern extraction, employed in tasks
such as image classification or object detection. Then, since Deep Learning (DL) methods
have been able to reach top performance in many of those tasks, the research community is
now progressively introducing DL in most of the top performing tracking algorithms.

In this work, a Deep Learning based Multi-Object Tracking is presented in the context of
self-driving applications. This architecture is divided in two branches: The first branch
performs the object tracking using camera data, so tracking is performed in 2D, using a
state-of-the-art object detector (CenterNet [49]) and a efficient tracking algorithm with
deep appearance descriptor (Deep SORT [2]) in order to avoid above mentioned tracking
challenges as occlusions or changes in the point-of-view. Then, these 2D proposals are
projected onto the Bird Eye View (BEV) space using projection matrices. The second branch
focuses on performing the clustering of the 3D point cloud (LiDAR data) in order to obtain
the most relevant objects in the environment and project them in the BEV. Both proposals
are fused to get the best positions of the detected object bounding boxes over time.

Finally, in order to evaluate the architecture proposal performance, some tests are carried
out in KITTI benchmark [69], CARLA simulator [31] and our Campus using our real
autonomous vehicle, comparing the BEV pose using the Precision-Tracking [46], Visual
Object Tracking (VOT) based on deep learning and sensor fusion (Merged VOT) approaches.

XXI

Predictive Techniques for Scene Understanding by using Deep Learning

XXII

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 1. Introduction

1.1. Motivation

Autonomous Vehicles (AVs) have held the attention of technology enthusiasts and futurists
for some time as evidenced by the continuous development and research in Autonomous
Vehicle Technologies (AVT) over the past two decades, being one of the emerging
technologies of the Fourth Industrial Revolution, and particularly of the Industry 4.0.

The phrase Fourth Industrial Revolution was first introduced by Klaus Schwab, CEO (Chief
Executive Officer) of the World Economic Forum, in a 2015 article in Foreign Affairs
(American magazine of international relations and United States foreign policy). A
technological revolution is defined as a period in which one or more technologies are
replaced by other kinds of technologies in a short amount of time. Hence, it is an era of
accelerate technological progress featured by Researching, Development and Innovation
whose rapid application and diffusion cause an abrupt change in society. In particular, the
Fourth Industrial Revolution is expected to be marked by breakthroughs in emerging
technologies in fields such as Artificial Intelligence (Al), Computer Vision, Internet of Things
(IoT), fifth-generation wireless technologies (5G), Robotics, 3D printing and the scope of
this master thesis, fully autonomous vehicles. The sum of all these advances are resulting in
machines that can potentially see, hear and what is more important, think, moving more
deftly than humans.

Moreover, Industry 4.0 is the subset of the Fourth Industrial Revolution that concerns
industry, that is, this concept focuses the existence of factories in which machines are
enhanced with sensors and wireless connectivity, connected to a system that can visualize
the whole production line and make decision on its own. In fact, if it is substituted “the whole
production” by the environment, the concept refers to a self-driving car.

A self-driving car (also known as driverless car or autonomous car) is a vehicle that can
sense its environment and moving safely with little or even no human input. They combine
a variety of sensors to recognize their environments, such as GPS, camera, Inertial
Measurements Units (IMUs), radar, sonar or LiDAR (Light Detection and Ranging). Then,
advanced control systems process this sensory information in order to calculate in a proper
way navigation paths, traffic signs or detect and track the road obstacles (which is the main
purpose of this thesis) to ensure a safe driving.

Furthermore, statistics show that 69 % of the population in the European Union (EU),
including associated states, lives in urban areas. According to the World Health
Organization, nearly one third of the will live in cities by 2030. Aware of this problem, the
Transport White Paper published by the European Commission in 2011 indicated that new
forms of mobility ought to be proposed so as to provide sustainable solutions for people and

1

Predictive Techniques for Scene Understanding by using Deep Learning

goods safely. For example, regarding safety, it sets the ambitious goal of halving the overall
number of read deaths in the EU between 2010 and 2020. Nevertheless, this goal does not
seem to be easy since only in 2014 more than 25,700 people died on the roads in the EU,
many of them caused by an improper behaviour of the driver on the road.

Autonomous driving is considered as one of the solutions to the before mentioned problems
and one of the greatest challenges of the automotive industry today. The existence of
reliable and economically affordable autonomous vehicles will create a huge impact on
society affecting social, demographic, environmental and economic aspects. Besides this, it
is estimated to cause a reduction in road deaths, reduce fuel consumption and harmful
emission associated and improve traffic flow, as well as an improvement in the overall
driver comfort and mobility in groups with impaired faculties, such as disable or elderly
people. Other industrial applications of autonomous vehicles are agriculture, retail,
manufacturing, commercial and freight transport or mining.

1.2. Historical context

Autonomous Vehicles in the form of self-driving cars have become a challenge for auto
competitions and technology companies, which has derived in an intense competition.
Nevertheless, the AVs are not new.

The study of Automated Driving Systems (ADS) was started in the 1920s, though trials
began in the 1950s. The first semi-automated car was developed in 1977 by Japan’s Tsukuba
Mechanical Engineering Laboratory. The vehicle reached speeds up to 30 km/h with the
support of an elevated rail.

Nevertheless, the first truly autonomous cars appeared in the 1980s with Carnegie Mellon
University’s Navlab and ALV projects funded by the American company DARPA (Defense
Advanced Research Projects Agency) in 1984 and EUREKA Prometheus project (1987)
developed by Mercedes-Benz and Bundeswehr University Munich’s. By 1985, the ALV
project had shown self-driving speeds on two-lane roads with obstacle avoidance added in
1986 and off-road driving in day and night conditions by 1987. Furthermore, from the
1960s through the second DARPA Gran Challenge in 2005 (212 km off-road course near the
California-Nevada state line, surpassed by all but one of the 23 finalists), automated vehicle
research in the United States was primarily funded by DARPA, the US Army and US Navy,
yielding rapid advances in terms of speed, car control, sensor systems and driving
competence in more complex conditions. This caused a boost in the development of
autonomous prototypes by companies and research organizations, most of them Americans.

Predictive techniques for Scene Understanding by using Deep Learning

Figure 1.2-1 Self-driving SUV from Carnegie Mellon University's Tartan Racing team

Figure 1.2-1 shows the Self-driving SUB from Carnegie Mellon University’s Tartan Racing
team during the 10th anniversary celebrations of Tartan Racing’s victory in the 2007 DARPA
Urban Challenge.

Even though self-driving cars have not yet displaced conventional cars, there can be found
several examples of how it has become a hot topic for powerful companies such as Delphi
Automotive Systems, Audi, BMW, Tesla, Mercedes-Benz or Waymo.

In 2005 Delphi broke the Navlab’s record achievement (driving 4,584 km while remaining
98 % of the time autonomously) by piloting an Audi, improved with Delphi technology, over
5,472 km through 15 states while remaining in self-driving mode 99 % of the time.
Moreover, this year the US states of Michigan, Virginia, California, Florida, Nevada and the
capital of the United States, Washington D.C,, allowed the testing of automated cars on public
roads.

In 2017, Audi stated that its A8 car prototype would be automated at speeds up to 60 km/h
by using its perception system named “Audi Al”. Also, in 2017 Waymo (self-driving
technology development company subsidiary of Alphabet Inc) started a limited trial of a
self-driving taxi service in Phoenix, Arizona.

Figure 1.2-2 shows the distance between disengagements and total distance travelled in
California (2018) by the most important self-driving technology development companies in
the world. A disengagement may be defined as the deactivation of the autonomous mode
when a failure of the autonomous technology is detected or when a safe operation requires
than the autonomous vehicle test driver disengages the autonomous mode and takes
immediate manual control of the vehicle.

Predictive Techniques for Scene Understanding by using Deep Learning

The Self-Driving Car Companies Going The Distance
Number of test miles and reportable miles per disengagement in California in 2018

Miles Miles per Disengagement’
wamo W EE |IE I 11,154.3
GMCruise GUISE S D 5.204.9
Zoox zDaAx HEE B 1.922.8
nwro uro EE Bl 10283
ponyal PONY B 1.0223
Nissan 6 [] I 210.5
Baidu paitmm HH I 205.6
Aurora . L | 99.9
Drive.ai drive.ar EE | 83.9
Nvidia ©mion B 20.1
Mercedes-Benz «..f?m - 1.5
Apple ‘ m 1.1
uer Uber BEE 0.4

Figure 1.2-2 Number of test miles and reportable miles per disengagement in California

(2018)

1.3. Problem statement

To sum up what commented above, increasing the level of autonomous navigation in mobile
robots (from agriculture to public and private transport) creates tangible business benefits
to those users and companies employing them. However, designing an autonomous
navigation system does not seem to be an easy task. In that sense, it can be found mainly
five challenges when designing an autonomous navigation system:

1. Gathering enough Real-World data: Functional autonomous navigation systems cannot be
developed exclusively in a lab (unless they are designed for that purpose). The reason is
simple: A prototype will not work in a proper way until it has been in a certain number of
different scenarios since the problems that it is going to experience in the wild cannot be
replicated in a lab, such as a pedestrian crossing the road through a non-allowed space or
maintenance works on the road. Essentially, this challenge deals with huge amounts of
different data; The more edge cases the prototype can solve, the better the navigation
solution.

2. Installation must be simple: If a company aims a genuinely scalable product, the
installation process must not be technical but simple. Despite the fact that nowadays many
robots require an engineer for installation and validation into a new environment, if the
autonomous machines aim to replace conventional cars, they should show a user interface
intuitive and lean, dealing with non-technical employees who want to use these machines,
i.e. designing a system that is easy to use.

3. Reducing False Positives: This challenge is mostly related with detection. In the same way
a human being can identify if a certain object is a pedestrian, a cyclist or a car on the road, if
the robot cannot tell a person from a chair on the floor, the decision-making layer of the

4

Predictive techniques for Scene Understanding by using Deep Learning

floor will be affected by these false positives. In that sense, it is critical that the prototype is
trained to detect and track using sensor data from both virtual environments and real-world
scenarios to reduce these false positives. Figure 1.3-1 shows an example of false positives
detection in a real-world situation.

Figure 1.3-1 False positives detection in a real-world situation

4. Getting the right Software (SW) and Hardware (HW): Getting the right HW and SW is
specially challenging for robots that will be autonomously navigating in dynamic
environments like high-traffic workspaces, malls or airports. Since these areas present tight
spaces and continuously changing obstacles, the use of suitable HW (odometry with a great
accuracy for positioning and navigating the complex routes, cameras to identify and classify
the objects or LiDAR to create a 3D scene of the environment) and SW (writing software
that handles these challenging situations with and end-user mind, also known as decision-
making layer in the prototypes) seems to be a mandatory task.

5. Creating precision Motion-Control: The last challenge illustrates the design an
autonomous navigation for the mobile robot creating a system that has accurate and precise
motion control. In that sense, this task must deal with situations as the need of driving as
close as possible to an edge, wall or an obstacle. In that sense, designing a system that is as
accurate and tight as possible gives rise to much better capabilities to navigate in complex
spaces.

As shown, the design of a reliable architecture for an autonomous robot seems to be a really
hard task. In that sense, this master thesis is mainly related with the challenge 1. Gathering
enough Real-World data, 3. Reducing False Positives and 4. Getting the right Software (SW)
and Hardware (HW) in order to perform an accurate perception of the environment and
consider the odometry, velocity and predict future actions associated the obstacles
identified in the scene, also known as object tracking.

While detecting objects in a scene has been getting a lot of attention from the computer
vision and robotics community, a lesser known and yet an area with widespread

5

Predictive Techniques for Scene Understanding by using Deep Learning

applications is object tracking in a real (or virtual) scene, both in an off-line video or in real-
time situations, as can occur with autonomous vehicles.

Object tracking is the process of locating a single or multiple moving object over time using
a given device (generally a camera or LiDAR) that detects the environment. It is an
important part of a human-computer collaboration in a moving environment in terms of
allowing the computer to obtain a better model of the simulation or real-world. Object
tracking requires to merge the detection of the objects in the scene (frame by frame, i.e., in
static images) analysing temporal information in order to get the best predicted trajectories.
It is important to consider the difference between Object Detection and Object Tracking. In
object detection, the purpose is to detect an object in a single frame and tie this one with a
mask around or a bounding box, in addition to classify the object (i.e., obtain the position of
the object and its semantic information in the scene). However, detection process ends at
this point since it processes each frame independently and identifies several objects in that
frame. On the other hand, an object tracker must track a particular object across the entire
scene. For example, if the detector detects two cyclists and three cars. In that sense, the
object tracking must identify the five separate detections and needs to track them across
the subsequent frames associating a unique ID to each object.

Object tracking presents a wide range of applications [5] in computer vision and associated
disciplines such as human computer interaction, traffic flow monitoring, surveillance or
human activity recognition.

1.4. Tracking foundations

Today, most tracking approaches are based on traditional techniques. However, deep
learning is gaining weight and new approaches are emerging using this discipline. Although
each object tracking method (both traditional or Deep-Learning based) is characterized by
its particular features, most of them can be classified according to four criteria:

1.4.1. Detection-based vs Detection-free trackers

Detection-free tracking: It requires a manual initialization of fixed number of objects in the
first frame of the scene. Then, it localizes these objects (but not others) in the subsequent
frames, so it cannot deal with the case where new objects appear in the middle frames.

Detection-based tracking: The consecutive video frames are given to a pretrained object
detector that gives rise to a detection hypothesis which in turn is used to elaborate tracking
trajectories. It is more popular than detection free tracking because new objects are
detected and tracked whilst disappearing objects are terminated automatically. In this
approach the tracker is used in those cases when object detection algorithm fails. Other
alternatives of detection-based tracking are to run the object detector for every n frame and
the remaining predictions are done using the tracker. For that reason, this approach is very
suitable for tracking for a long time.

Predictive techniques for Scene Understanding by using Deep Learning

1.4.2. Single vs Multiple Object trackers

Single Object Tracking (SOT): In this approach a single object is tracked even if the scene
presents multiple objects in it. The target object to be tracked is determined by the
initialization in the first frame.

Multiple Object Tracking (MOT): All the relevant objects present in the scene are tracked
across the frames. If a detection-based tracker is used for MOT it can even track new objects
that appear in the middle frames of the process. Note how Figure 1.4-1 shows two
subsequent frames with multiple objects. As explained, their identification must be kept
until they come from the scene.

Figure 1.4-1 Multiple Object Tracking example using Deep Sort

1.4.3. Online vs Offline trackers

Offline trackers: This kind of trackers is used when the process require to track an object in
arecorded stream. For that reason, it can be used both the past and future frames (because
the sequence is already recorded) to elaborate more accurate tracking predictions (no
causal systems). For example, in the case of basketball teams that have recorded videos of
a match of an opponent team which needs to be analysed for strategic analysis or if it is
required to analyse rosbags (file format in ROS for storing ROS message data) recorded for
a robot to check HW/SW implementation.

Online trackers: This kind of trackers cannot use future frames to improve the tracking
predictions results (causal systems). Hence, they are used where predictions must be
available immediately.

1.4.4. Online vs Offline strategy

Only learning trackers: These trackers usually learn about the object to be tracked by using
the initialization frame and few subsequent frames. These trackers are more general since
the algorithm just draws a bounding box around the object and track it. The tracker would
learn about that target object using these consecutive frames and would continue to track
it.

Predictive Techniques for Scene Understanding by using Deep Learning

Offline learning trackers: Whilst online learning trackers learnt about the objects across the
frames, offline learning trackers do not learn anything during run time. In other words, they
must be trained and improve offline, but they will not improve themselves while they are
tracking the objects in the scene.

1.5. Objectives of this work

Most of the current tracking systems are based on traditional techniques. However, the
main scope of this work is to study the state-of-the-art of Deep Learning based Multi-Object
Tracking and implement and validate an optimal architecture both in simulation and real
world. It is a hard issue due to the lack of literature in this specific branch of deep-learning
based object tracking applications, as shown in [2] [3] [4]. Moreover, in order to achieve the
main scope, the following objectives will be met:

1. Researching of current Deep-Learning based Multi-Object Tracking approaches.

2. Study of state-of-the-art software technologies and sensors to perform the MOT
problem both in simulation and real-world.

3. Explanation of a real-world project named SmartElderlyCar, including its devices and
hardware and software architecture.

4. Propose an architecture for Deep-Learning based Multi-Object Tracking.

5. Validate the proposed architecture for MOT both in CARLA simulator and real world.

1.6. Structure of this work

The organization of this document has been done as follows:

e Chapter 2 presents a technical background about current object tracking
approaches, including Visual Object Tracking, LiDAR based and sensor fusion. Then,
as this master thesis focuses of 2D tracking, challenges in Visual Object Tracking are
shown. Then, Deep Learning in MOT is studied in addition to some state-of-the-art
approaches.

e Chapter 3 focuses on the software technologies used in this master thesis, that is,
ROS for sensor communication, PCL as point cloud processing, Docker as a tool to
increase the portability and testability of the project and CARLA as simulator
environment.

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 4 presents the SmartElderlyCar project, an autonomous electric car able to
drive in the University of Alcala campus, as the reference to develop the architecture
proposal of this work.

Chapter 5 shows the Deep Learning based Multi-Object Tracking architecture
proposal. This is the main chapter of this master thesis.

Chapter 6 shows the validation of the architecture proposal in the KITTI benchmark
as well as quantitative and qualitative results both in CARLA simulator, KITTI
benchmark and in the real prototype of the SmartElderlyCar.

Chapter 7 illustrates the conclusions and future works of this project.
Appendix A details how Kalman filter works in the object tracking context.

Appendix B shows the Artificial Intelligence paradigm, including Machine Learning
and Deep Learning concepts. In addition, a brief explanation of how CNNs and RNNs
work due to its tight relation with object detection and tracking.

Appendix C shows some interesting parts of the code created and developed in order
to perform most of exposed tasks throughout this master thesis.

Appendix D illustrates the user’s manual so as to install the system requirements and
reproduce the obtained results.

Appendix E represents the main hardware and software specifications used in this
project.

Appendix F illustrated an estimation of the required budget to develop this thesis.

10

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 2. Technical background
and State-of-the-Art

2.1. Introduction

As commented in Chapter 1, even though object tracking is a well-studied problem within
the area of traditional image processing, it is still considered a complex problem to solve
even more considering current applications such as robot navigation, intelligent video
surveillance or self-driving. The broad area of application shows how importance of
reliable, exact and effective object tracking must be nowadays.

An object tracking system presents three stages, like object modelling and segmentation,
object location in each frame and object prediction. In order to solve the initial detection and
so the following stages three different approaches can be used.

2.1.1. Visual Object Tracking (VOT)

Visual Object Tracking is the process of determining the target object location in a sequence
(i.e., in a video sequence or a real-world situation). It is one of the many remarkable topics
in computer vision that has gained considerable weight over the past decade. In VOT
approach the information of the scene is only captured by cameras, taking advantage of
video technologies, such as low cost, great portability and considerable speed. There are
mainly three traditional types [7] to perform VOT:

[Visual Object Tracking]
I
r
Point Tracking Kernel Tracking Silhouette Tracking
Kalman Filter Simple Template Contour Matching
—T Matching
Particle Filter _ Shape Matching
Mean Shift Method
Multiple
— Hypothesis
Tracking Support Vector
— Machine
Layering Based
— Tracking

Figure 2.1-1 Traditional techniques to perform Visual Object Tracking

11

Predictive Techniques for Scene Understanding by using Deep Learning

Point tracking approach: In an image structure, moving objects are represented by their
feature points during tracking. In that sense, point tracking is a complex problem
specially in those cases that present occlusions, false detection or background
cluttering. It this technique the recognition is carried out relatively simple, by
thresholding and then identifying these points of interest.

Kernel Based tracking approach [8]: This approach of VOT is usually performed by
computing the moving object that is represented by an envelope object region, from one
frame to the next. Then, the object motion is usually in the form of parametric motion
such as rotation, affine or translation. Different algorithms of kernel-based tracking
diverge in terms of the presence representation used, the number of objects to be track
and the method used for approximation to object motion.

Silhouette based tracking approach: This approach focuses on problems of VOT related
with the geometry of the target objects. Some object will have complex shape such as
fingers, shoulders or hands which cannot be well defined by simple geometric shapes.
Silhouette based methods [8] address this problem with an accurate shape description
for the objects. In that sense, the aim of a silhouette-based object tracking is to find the
object region in every frame by means of an object model generated by the previous
frame. Then, these algorithms are able of handling with object occlusion, variety of
object shapes or even object split.

Moreover, some VTO based works focus on obtaining the shape and appearance of the
target object not considering the background [9] or even a performing a visual
decomposition model [10]. Figure 2.1-2 shows an example of visual tracking decomposition,
successfully tracking a target even though there are severe pose variations, occlusion,
abrupt motions and illumination changes at the same time.

Figure 2.1-2 Visual Tracking Decomposition

2.1.2. Only LiDAR based object tracking

Another approach for object tracking is LiDAR based [11]. Real-world driving scenarios are
very dynamic and complex on their own. In this sense, a sensor that directly provide 3D

12

Predictive techniques for Scene Understanding by using Deep Learning

information is more interesting than those that obtain depth in a recovery process based on
a priori calibration. In addition, the appearance of those scenarios can be greatly affected by
some issues such as context factors (urban, highway, road, etc.), meteorological conditions
(rain, fog, snow, etc.) or day-time (sunrise, night, sunset, etc.). In that sense, optical cameras
are likely to fail perceiving correctly the environment in certain conditions, other robust
sensors are required.

LiDAR technology is described in Chapter 4. This technology provides the desired
robustness and precision under harsh conditions [12], that make LiDAR technology suit for
self-driving applications. LiDAR point clouds have been traditionally processed following
geometrical approaches like in [13], where clustering algorithms are used to segment the
data and then assigning the resulting groups to different classes. Other strategies benefit
from prior knowledge of the environment structure to ease the object segmentation and
clustering [14]. 3D voxels (volumetric pixels) can be also created in order to reduce
computational costs by grouping sets of neighbour points. Furthermore, more recent
methods are able to process the point cloud space (raw or reduced in voxels) so as to extract
hand-crafted features such as shape models or geometric statistics. For example, [15] uses
this second approach (extracting hand-crafted features) and then encodes the sparse LiDAR
point cloud with different features. The resulting representation is scanned by using a 3D
sliding window of different sizes and an SVM (Support Vector Machine) followed by a voting
scheme is used to classify the final candidate windows, as shown in Figure 2.1-3.

Figure 2.1-3 Example of voting in online point cloud object detection

Other solutions are not based on models but they detect and search for dynamic objects
using LiDAR which are then segmented using a Bayesian approach (sequence of
alternations between prediction and update or correction) [16], as illustrated in Figure
2.1-4:

13

Predictive Techniques for Scene Understanding by using Deep Learning

.

27 /
AHAN

anaktes,

N RIS
R

Figure 2.1-4 Object detection and tracking based on dynamic search and Bayesian

segmentation

2.1.3. Sensor fusion based object tracking

The third main approach in order to track objects, in particular for self-driving applications,
is the fusion of different sensors such as camera, LiDAR, radar, IMU or GPS, as shown in

Figure 2.1-5.

2
//////////
_—

., o>
—

Figure 2.1-5 Different sensors in a self-driving car

Chapter 4 offers a more detailed explanation for the sensors used in this master thesis, both
in real world and simulation. As shown in Figure 2.1-6, each of these sensors has advantages
and disadvantages. The aim of sensor fusion is to use the advantages of each sensor so as to

14

Predictive techniques for Scene Understanding by using Deep Learning

understand its environment in an accurate way. For example, one of the challenges when
using LiDAR is the relatively small vertical field of view and angular resolution (30 to 41.3
2 and 1.33 to 2 2 for Velodyne LiDAR), giving rise to a small number of points of the object
to be tracked. While camera is a very good sensor for detecting roads, recognizing the
semantic information of a target object (car, pedestrian or cyclist, for example) or reading
signs, the LiDAR technology is better at accurately estimating the position of the object and
radar is better at accurately estimating its speed.

SPATIALRESOLUTION Yk *k
NOISE k& * *

VELOCITY *) ¢). 0.0, ¢
ALL WEATHER * & ' O ¢
SIZE). 0.0.¢ * Yok K

Figure 2.1-6 Sensor benchmark

[17] presents an approach for fusing distance data gathered by a LiDAR (in the form of a 3D
point cloud) with the luminance data from a wide-angle imaging sensor. [18] presents its
tracking system (Figure 2.1-7) as a combination between a fusion layer and sensor layer,
showing results as illustrated in Figure 2.1-8. As demonstrated in this work, the newly
introduced vision targets are really useful to improve the performance of data association
and movement classification for measurements from active sensors.

15

Predictive Techniques for Scene Understanding by using Deep Learning

Fusion Layer

Multi Sensor Fusion Model Movement Object H

with Kalman filter Selection | Classification Management
Measurements Y E

(Observation, Proposals, Yalidated Features i

Movement Observations) i

Sensor Layer
Local Classification & Proposal Generation
Local Feature Validation & Associati i
RADAR LIDAR Camera _

Y R UURUTTIN F -

point | edge target I |vision target I
target

l, 1 | feature | I feature |
) 1
raw raw scan images
RADAR Reader LIDAR Reader Camera Reader

Figure 2.1-7 Sensor fusion based tracking system architecture proposed in [18]

Figure 2.1-8 Tracking results of [18] for the qualitative evaluation

To finish the introduction of this chapter, it can be concluded that the object tracking is a
complex problem even more when speaking about self-driving applications. As commented
in previous sections, this master thesis focuses on deep learning based multi-object tracking
by using image data, due to data and code for the learning process are mainly available for
images, our approach carries out 2D tracking over images and then recovering 3D poses of
the surrounding objects for our real autonomous driving application. For that reason, the
next section covers the main challenges associated with Visual Object Tracking to take into
account how the incorporation of deep learning approaches has leveraged this technique.

16

Predictive techniques for Scene Understanding by using Deep Learning

2.2. Challenges in Visual Object Tracking:

Some of the fundamental problems in VOT are abrupt object motion, noise in the image
sequences, changes in scene illumination, object-to-object and object-to-scene occlusions,
changing appearance patterns of the object and the scene, non-rigid object structures and
real time processing requirements, which is getting more importance with the presence of
self-driving applications. [19] In that sense, there are several important challenges that
must be considered in the design of a robust multi-object tracking system:

Object modelling: One of the major tasks in VOT is to find an appropriate visual
description which makes the object distinguished from other objects and background.
The development of Deep-Learning and CNNs (Convolutional Neural Networks) has
meant a revolution in the task of object modelling and detection.

Changes in shape and appearance: Both changes are really important to be considered
during VOT. The appearance of an object may vary as camera angle changes. Deformable
objects such as pedestrians can change their shape and appearance (different when
walking, running or being static) along different video frame sequences or in a real
situation. On the other hand, the shape and appearance can also change due to a
different point-of-view (objects close to the camera appear bigger than those farther
from the camera).

lllumination changes: Handling with illumination changes is one of the hardest
challenges for visual object tracking. The appearance of an object and in general the
background of the scene can largely be affected by illumination changes, not to mention
that an object may look different in outdoor environment (sun light) than indoor
environment (artificial light). Even the weather conditions (cloudy, sunny, etc.) and
specially time of day (morning, afternoon, evening) can be the causes of illumination
changes. Even though current deep networks are both reliable and efficient (at least in
standard conditions), there is a large accuracy downgrade when these methods are
taken to adverse conditions such as night-time.

Shadows and reflections: Some of the features such as shape, motion and background are
more sensitive for a shadow on the ground which appears and behaves like the object
that casts it. In the same way, reflections of moving objects on smooth surfaces can cause
problems when dealing with MOT.

Occlusion: This phenomenon occurs either due to one object is occluded by some
component of the background or it is occluded by another object. A robust tracking
system must be capable to check the individuality of the objects involved in the
occlusion, before and after occlusion takes place.

[t is important to mention that these previous challenges are significant to both multi-object
tracking and single-object tracking. Nevertheless, multi-object tracking also requires

solving the issue of modelling the multiple objects so the tracking method must be able to
distinguish different objects so as to keep them consistently labelled.

17

Predictive Techniques for Scene Understanding by using Deep Learning

2.3. Deep Learning in Multi-Object Tracking

Recently, more and more tracking algorithms (both SOT and MOT) have started exploiting
the representational power of deep learning [3]. The strength of Deep Neural Networks
(DNN), resides in their ability to learn rich representations and extract complex and
abstract features from their input (generally an image). The reader is referred to the
Appendix B in order to review Artificial Intelligence concepts behind this section. CNNs
currently constitute the state-of-the-art in spatial pattern extraction, employed in tasks
such as image classification, object detection or for object tracking in those cases in which
the CNN is responsible of the first stage of the tracking algorithm (object detection). On the
other hand, RNNs (like the LSTMs) are used to process sequential data, such as temporal
series, text, audio signals. In this context, they would process a self-driving scene. Since DL
methods have been able to reach top performance in many of those tasks, the community
research is now progressively seeing them used in most of the top performing tracking
algorithms (overall MOT). In that sense, there are different methodologies [71] when
performing Deep Learning based MOT:

= (lassification-based trackers: Trackers for generic object tracking often follows a
tracking-by-classification approach. A tracker will sample foreground patches near the
target object while background patches farther away from the target. These patches are
used to train a foreground-background classifier, and this classifier is used to score
potential patches in subsequent frames in order to estimate the new target location.
This classifier is usually first trained off-line and fine-tuned during online tracking.
Many neural-network trackers follow this approach (such as below studied MDNet [65])
have surpassed traditional trackers [72] and achieved state-of-the-art-performance
[73]. However, these trackers are inefficient in terms of real time applications, such as
self-driving, since neural networks are very slow to train in an online fashion. Another
drawback of such a design is that it does not fully utilize all scene information,
particularly explicit temporal correlation.

= Regression based trackers: Some recent works [61] [74] have attempted to perform
object tracking as a regression instead of classification problem. [61] trains a CNN so as
to regress directly from two images to the location in the second image of the object
shown in the first image. Moreover, [74] proposes a fully-convolutional siamese
network. These DL methods can run at frame-rates beyond real time (> 100 fps) while
maintaining state-of-the-art performance. Unfortunately, they only extract features
independently from each video frame and only perform comparison between two
consecutive frames, not allowing the fully feature of their CNNs to use longer-term
contextual and temporal information.

= Recurrent-neural-network trackers: [75] [76] propose the use of recurrent neural
networks for the problem of visual tracking. [76] presents an RNN to predict the
absolute position of the target frame and [75] similarly trains an RNN for tracking using
the attention mechanism. Although these works brought good intuitions from RNN,

18

Predictive techniques for Scene Understanding by using Deep Learning

these methods have not yet demonstrated competitive results on modern benchmark.
On the other hand, [64] proposes a spatially supervised recurrent convolutional neural
network in which a YOLO [77] network is applied on each frame to produce object
detections and an RNN is used to directly regress YOLO detections.

Hereafter, following points review some of the most interesting state-of-the-art approaches.
Table 2.3-1 shows a simple qualitative comparison of the below mentioned approaches.

Table 2.3-1 Comparison of some interesting state-of-the-art Deep Learning based MOT

approaches
GOTURN MV-YOLO MDNet ROLO Re3
Language C++ Python M Python Python
language
Framework Caffe Tensorflow MATLAB Tensorflow Tensorflow
Typical FPS 100 (on 28 (using Yolo 1 35 150
GPU) V3)
RNN No No No Yes Yes
Capable of No Yes No Yes Yes
MOT
Motion No Yes Yes Yes Yes
information
Long-Term No Yes No Yes Yes
variations

2.3.1. GOTURN

GOTURN [61] is a Deep Learning based object tracking algorithm, originally implemented in
Caffe [62]. GOTURN changed the way to apply DL to the tracking problem by learning the
motion of an object in an offline way. While previously most tracking algorithms are trained
in an online way (the tracking algorithm learns the appearance of the object in the runtime),
GOTURN is trained on thousands of video sequences and does not need to perform any
learning runtime.

Current frame Conv Layers
Search Region 0w .

Cro
Rriid

Crop

Bpint s Predicted location

of target
within search region

What to track
Previous frame Conv Layers

Figure 2.3-1 GOTURN architecture

19

Predictive Techniques for Scene Understanding by using Deep Learning

As shown in Figure 2.3-1, it is trained using a pair of cropped frames from thousands of
videos. In the first frame (the previous frame), the location of the object is known, and the
frame is cropped to two times the size of the bounding box (BB) around the object. The
object in the first frame is always centered.

On the other hand, the location of the object in the second frame (current frame) must be
predicted. The BB used to crop the first frame is also used to crop the second frame. Since
the object might have moved, the object is not centered in the second frame. To do that, a
CNN is trained to predict the location of the BB in the second frame. The layers of this CNN
are simply the first five conv-layers of the CaffeNet [62] architecture. The outputs of these
conv-layers are concatenated into a single vector of length 4096. Then, this vector is the
input to 3 FC-layers. Finally, the last FC layer is connected to the output layer containing
four nodes, representing the top and bottom points of the BB.

2.3.2. MV-YOLO

MV-YOLO (Motion Vector-YOLO) [63] is a Deep Learning based tracking algorithm that
combines decoded Motion Vectors (MVs) with semantic object detection (performed by
YOLO [51]) operating on fully decoded frames. Basically, MVs (which already exist in the
compressed video bitstream) are good enough to indicate the approximate location of the
target object. Then, semantic object detection refines the target object location by providing
pixel-precision BB on the decoded frame. The idea of two-stage tracking has been covered
in other works, like ROLO [64]. ROLO approach is pixel-domain tracker, while MV-YOLO is
the first hybrid one. Figure 2.3-2 shows the MV-YOLO architecture.

ROI creator

HEVC
Decoder

...11010...
HEVC Bitstream

|
Ret:ons'.tru::tlon}->]

Figure 2.3-2 MV-YOLO architecture

This proposal incorporates data reuse from the compressed video bit stream and semantic
object detection. Based on the MVs extracting during the video decoding process (note that
this video may also be a real-time situation), a Region of Interest (ROI) for the target object
is created in the current frame. Then, the output of the semantic object detector (YOLO) is
used to more precisely localize the target object with the help of the ROL

[63] shows that MV-YOLO is fast and robust, though depending on the particular object

detector used (YOLOvVZ2, v3, etc.). Even the slowest version is reasonably fast (28 fps), with
an accuracy comparable to the recent trackers based on deep models.

20

Predictive techniques for Scene Understanding by using Deep Learning

2.3.3. MDNet

MDNet (Multi-Domain Network) [65] is a CNN architecture to learn the shared
representation of targets from multiple annotated video sequences for tracking, where each
video is regarded as a separate domain. Figure 2.3-3 shows the architecture of the network.
It has separate branches of domain-specific layers for binary classification at the end of the
network, sharing the common information captured from all sequences in previous layers
for generic representation learning.

MDNet (Multi-Domain Network)

Shared Domain-specific
Layers Layers

input convi conv2 conv3 fc4 fc5
3@107x107 96@51x51 256@11x11 512@3x3 512 512

Figure 2.3-3 MDNet architecture

Each domain in MDNet is trained iteratively and separately while the shared layers are
updated in every iteration. Using this strategy, domain-independent and domain-specific
information is separated in order to learn generic feature representation. Besides this, [65]
proposes an effective online tracking framework based on MDNet strategy. When a test
sequence is given, all the existing branches of binary classification layers (used in the
training phase) are removed and a new single branch is built to compute target scores in
the test sequence. The new classification layer the FC layer within the shared layer are
online fine-tuned during tracking so as to adapt to new domain. Finally, the online update
is used to model both long-term and short-term appearance variations of a target for
robustness and adaptiveness, respectively.

2.3.4. ROLO

ROLO (Recurrent YOLO) [64] is a visual tracking approach based on RNNs, which extends
the neural network learning and analysis into the spatial and temporal domain. The key
motivation of ROLO is that tracking failures can often be effectively recovered by learning
from historical visual semantics and tracking proposals. Traditional Kalman or related
temporal predictions methods usually only consider the location history. In contrast, ROLO

21

Predictive Techniques for Scene Understanding by using Deep Learning

examines both the location history as well as the robust visual features of past frames for
each target object. Figure 2.3-5 shows the ROLO architecture. It uses the YOLO object
detector to collect robust and rich visual features. Then, LSTM are used in the next stage as
it is spatially deep and appropriate for sequence processing. Then, as ROLO proposal, this
architecture uses the regression capability of LSTM and proposes to concatenate high-level
visual features produced by conv-nets with region information.

bbb bbbt bbbt et r~ Heatmap A
. o I I
Onv. layers

i Image p 4 | |

T T

: Sequence Maxpool layers | 32|
1

Traditional CNN | 32 |

Alternative Tracking
L — = &l

Figure 2.3-4 ROLO architecture

On the other hand, Figure 2.3-5 shows a simplified but very illustrative overview of the
tracking process using ROLO. The YOLO input is raw input frames, and its output is a feature
vector of input frames and bounding box coordinates. Then, the LSTM input is a
concatenation of image features and bounding box coordinates whilst the LSTM output is
the bounding box coordinates of the object to be tracked.

Spatial Temporal

|| |
—

Il . | I 5
j- —{detection| LSTM I_n_, location
I

Input Sequnce Visual Features consraint Constraint _ Frediction
e e — = R e oS | e i) || T e oo | (e A |
Il 11 I
voLo |_l!_ldetection] | | LSTh LI location
I (! I
Regl‘&sion |1 Reng-Lsion
|
|

I
- detection] LSTM -H-— location
(! I

Figure 2.3-5 (Top) Simplified ROLO overview and tracking procedure (Bottom) ROLO

architecture

22

Predictive techniques for Scene Understanding by using Deep Learning

2.3.5. Re3

Re3 (Real-time, Recurrent, Regression) [66] is fast but accurate RNN for generic object
tracking. Re3 learns to store and modify relevant object information in the recurrent
information.

[
XN %Y,

Image , Prediction

Figure 2.3-6 Re3 architecture

By incorporating information from large collections of videos and images, this RNN learns
to produce representations that capture the main features of the tracked object. The goal of
this process is to teach the network how any given object is likely to change over time. This
strategy makes Re3 computationally cheap and extremely fast during inference, an
important quality for algorithms operating on mobile robots, such as autonomous vehicles.
Figure 2.3-6 shows the Re3 architecture. It consists of conv-layers to extract the object
appearance, recurrent layers to remember this appearance and motion information of
previous frames and a regression layer to output the predicted location of the object.

23

24

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 3. Software technologies
used in the thesis

3.1. Introduction

This chapter aims to explain the software tools used in this thesis in terms of perception
systems. Hardware technologies, sensors and the autonomous car involved in the
development of this work are detailed in Chapter 4. As mentioned in previous chapters, self-
driving applications require robust tracking system in order to perform a safe navigation.
Then, there are four main requirements in order to meet this robust tracking system:

e Sensorredundancy (if a sensor fails, the vehicle should be able to continue the trajectory)

e Perception of the environment as accurate as possible

e (Great accuracy in the on-road obstacle position and velocity estimation

e Real-time operation in data communication among sensors and decision-making
process

To meet these conditions, the software tools used in this master thesis have been: ROS (for
multi-sensor communication), PCL (for 3D reconstruction of the environment), Docker (for
the automation and portability of the proposed architecture and code between among
different computers or microcontrollers) and CARLA (for self-driving simulation, as a
preliminary stage to implement the architecture in the real-world). The following sections
explain the main features of these tools.

3.2. ROS

The Robot Operating System (ROS) [32] is a flexible framework (meta-operating system) for
writing robot software. It is considered an open-source collection of libraries, tools and
conventions whose aim is to simplify the task of obtaining, building, writing and running
code across multiple computer to perform robust and complex behaviours over a wide

variety of robotic platforms.
000
[N N J R
o000

Figure 3.2-1 ROS logotype

25

Predictive Techniques for Scene Understanding by using Deep Learning

It provides the expected services from an operating system, including low-level device
control, implementation of commonly-used functionality, hardware abstraction, message-
passing between processes and package management. The ROS runtime “graph” is a P2P
(Peer-to-Peer) network of processes (potentially distributed across machines) which are
loosely coupled using the ROS communication infrastructure. ROS presents several
different styles of communication, including asynchronous streaming of data over topics,
synchronous RPS-style communication over services and storage of data on a parameter
server. Moreover, in spite of the fact that ROS is not a real-time framework, it is possible to
integrate ROS with real-time code.

ROS currently only runs on Unix-based platforms and in particular it has primarily tested
on Ubuntu and Mac OS X systems. The core ROS system, along with useful tools and libraries
are regularly released as a ROS distribution. A ROS distribution is a versioned set of ROS
packages. This master thesis is based on two LTS (Long Term Support) distributions: ROS
Melodic Morenia, for the docker image related with Deep-Learning based Multi-Object
Tracking, and ROS Indigo Igloo in which the docker image of the SmartElderlyCar project is
based on. Chapter 5 offers a deeper explanation of the architecture proposal and how ROS
has been employed in the project.

3.2.1. Goals

The primary goal of ROS is to support code reuse in robotics research and development.
ROS is a distributed framework of processes (also known as nodes) that enables executables
to be individually designed and loosely coupled at runtime. These nodes can be grouped
into Stacks and Packages, which can be easily shared and distributed. It also supports a
federated system of code Repositories that enable collaboration to be distributed as well.
This design, from the filesystem level to the community level, gives rise to independent
decisions about development and implementation. In order to meet this primary goal of
collaboration and sharing, there are other goals:

1. Thin: ROS developers intend for drivers and other algorithms to be contained in
standalone executables in order to allow that code written for ROS can be used with
other robot software frameworks. This ensures maximum reusability, making ROS easy
to use (being the complexity in the libraries). This arrangement also facilitates unit
testing and the developed systems can be completely independent of another system.

2. Peer-to-Peer communication: Complex robotic systems with multiple links usually have
multiple on-board computers in order to perform parallel tasks connected via a
network. Peer-to-Peer (P2P) communication avoids the problem of running a central
master which would result in severe congestion in one particular link. Figure 3.2-2
shows the difference between centralized and P2P network architecture. While P2P
does not require a central server but node to node connections, is resilient and support
large messages (essential for sensor communication), centralized architecture is feature
by clients that send requests to/via a central server, supports only small messages and
the main failure point is the master.

26

Predictive techniques for Scene Understanding by using Deep Learning

Peer-to-Peer Client/Server

Figure 3.2-2 Peer-to-Peer vs Client/Server architecture

In ROS, a P2P architecture coupled to a buffering system and a lookup system (a name
service called master) enables each component to communicate directly with any other,
asynchronously or synchronously as required.

3. Multi-Language: The ROS framework is featured by a language independence what
makes easier to implement in any modern programming language. The ROS
specification works at the messaging layer. P2P connections are negotiated in XML-RPS,
which exists in a great number of languages. To support a new language, either C++
classes are re-wrapped (as happened for the Octave client) or classes are written
enabling messages to be generated. These messages are described in IDL (Interface
Definition Language). Currently ROS can be implemented is Python (whose main ROS
library is rospy), C++ (roscpp) and Lisp (roslisp).

4. Easy testing: ROS has a builtin unit-integration test framework (rostest) that makes it
easy to bring up and tear down test fixtures.

5. Scaling: ROS framework is suitable for large runtime systems and large development
processes thanks to the help of the P2P architecture and buffering system.

3.2.2. Main concepts

ROS has three levels of concepts: The Filesystem level, the Computation Graph level and the
Community level, that comprise all the relevant information in order to carry out the
communication between the sensors, actuators and other mechanisms of the robot.

3.2.2.1. ROS Fylesystem level

The filesystem level concepts cover ROS resource found on disk, such as:

1. Packages: Main unit for organizing software in ROS. They are considered the most
atomic build item and release item in ROS, so the most granular thing it can be builtis a
package. A package may contain ROS runtime processes (nodes), a ROS-dependent
library, configuration files, datasets, or anything else which is usefully organized
together.

27

Predictive Techniques for Scene Understanding by using Deep Learning

Metapackages: Specialized packages which only serve to represent a group of related
packages.

Package manifests: Manifests (package.xml) provide metadata about a package (such as
name, version or description and other metadata information).

Repositories: Packages which share a VCS (Version Control System) share the same
version and can be released together using the catkin release automation tool bloom.

Message (msg) types: Message descriptions define the data structures for messages sent
in ROS.

Service (srv) types: Service descriptions define the request and response data structures
for services in ROS.

3.2.2.2. ROS Computation Graph level

The Computation Graph is the P2P network is ROS processes that are processing data
together. The basic Computation Graph concepts are:

28

Nodes: Processes that perform computation. ROS is designed to be modular at a fine-
grained scale, so a robot control system usually comprises many nodes (one node
controls the wheel motors, another performs localization, etc.) A ROS node is written
with the use of a ROS client library, such as roscpp (C++) or rospy (Python).

Master: The ROS Master provides name registration and lookup to the rest of the
Computation Graph. Nodes would not be able to find each other, exchange messages or
invoke services without the presence of the Master.

Parameter Server: Server that allows data to be stored by key in a central location
(currently part of the Master).

Messages: Data structure comprising typed fields. Standard primitive types (like integer
or Boolean) are supported, as are arrays of primitive types. Nodes communicate with
each other by passing messages.

Topics: Messages are routed via a transport system with publish/subscribe semantics.
A node sends out a message by publishing it to a given topic, that is, bus over which
nodes exchange messages. A node that is interested in a certain message will subscribe
to the appropriate topic. There may be multiple concurrent publishers and subscribers
for a single topic, and a single node may subscribe and/or subscribe to multiple topics.
Each bus (topic) has a name, and anyone can connect to the bus to send or receive
messages as long as they are right type.

Services: The publish/subscribe ROS model y a very flexible communication paradigm,
but its many-to-many one-way transport is not appropriate for RPC (Remote Procedure

Predictive techniques for Scene Understanding by using Deep Learning

Call) request, which are often required in a distributed system like a multi-sensor robot.
Then, Request/Reply is performed via a service (srv file) under a string name, and a
client calls the service by sending the request message and awaiting the reply.

7. Bags: ROS format for saving and playing back ROS message data. They are an important
mechanism for storing sensor data, essential to be collected for later development and
testing algorithms.

s %
R
)
2 v xMURPC 4 %,
&
(\)"

\
0
£

/\ v ‘/‘\

/ . < connecl(’scan”. TCP) $0DG version
hokuyo TCP server: fo0:2345
3
XMURPC: foo:1234 viewer
TCP data: f00:2345 | connect(fo0:2345)

-

LaserScan data messages

\ \\\v/ A

TCP

Figure 3.2-3 Example of publisher/subscriber and its relationship with the Master

The ROS master acts as a nameservice in the ROS Computation Graph, storing topics and
services registration information for ROS nodes. Nodes connect to other nodes directly, and
the Master only provides lookup information (like a DNS (Domain Name Server)). It is
important to note that names have a very important role in ROS. Nodes, topics, services and
parameters all have names.

3.2.2.3. ROS Community Level

The ROS Community Level concepts are ROS resources that enable separate communities
to exchange knowledge and software. These resources include:

1. Repositories: ROS relies on a federated network of code repositories, where different
institutions can develop and release their own SW components.

2. Distributions: Like Linux distributions, ROS Distributions are collections of packages and
code that make easier to install this collect of SW in the computer.

3. ROS Wiki: Main forum for documenting information about ROS.

4. Mailing lists: Primary communication channel about new updates to ROS, as well as a
forum to ask questions about ROS software.

5. ROS anwwers: A Q&A (Questions and Answers) site for dealing with ROS-related
questions.

29

Predictive Techniques for Scene Understanding by using Deep Learning

3.2.3. Main ROS tools used in this thesis

All the code (both in C++ and Python) developed for this master thesis is directly or
indirectly related with ROS. Apart from the required ROS packages to develop this code,
there have been used four main tools:

1. roslaunch: Tool for easily launching multiple ROS nodes locally and remotely via SSH, as
well as setting parameters on the Parameter Server. It includes options to automatically
respawn processes that have already died. roslaunch takes in one or more XML files
(configuration files with the .launch extension) that specify the parameters to set and
nodes to launch, as well as the machines that they should be run on.

2. rqt: Software framework of ROS that implements the various GUI tools in the form of
plugins (such us the TF tree). The tools can still run in a traditional standalone method,
but rqt makes it easier to manage all the various windows on the screen at one moment.

3. Rviz (ROS visualization): 3D visualizer for displaying sensor for displaying sensor data
and state information from ROS, such as camera data, infrared or LiDAR measurements,
sonar data and more.

4. RoboGraph: ROS tool that allows to define algorithms as computational graphs. Once the
graph is defined, it can be executed as if it was a software program and get the expected
outputs. Each graph, made up by nodes and transitions, can accept any number of inputs
and give at maximum one output. Hierarchical Petri Nets [41], in which the
SmartElderlyCar project (Chapter 4) is currently based, have been built on RoboGraph.

3.3. Point Cloud Library (PCL)

The Point Cloud Library (PCL) (Figure 3.3-1) [47] is a standalone, large-scale, open project
for 2D/3D image and point cloud processing. A point cloud is a data structure that
represents a set of points in several dimensions (XYZ geometric coordinates) of a sampled
surface. In addition, it can add a fourth dimension if colour is available. Point clouds can be
acquired from HW sensors such as 3D scanners, stereo cameras or flight-time cameras, or
even they can be generated from a computer program synthetically.

D

pointcloudlibrary

Figure 3.3-1 Point Cloud Library logotype

30

Predictive techniques for Scene Understanding by using Deep Learning

PCL is a modern C++ library modelled for 3D point cloud processing. It is based on the Eigen
library for mathematical operations and on FLANN (Fast Library for Nearby Neighbours)
for the search of neighbouring points. PCL also uses shared Boost pointers. It incorporates
several 3D processing algorithms, such as filtering, features extraction, surface
reconstruction or segmentation) which integrate all its functionalities in a compact way.
Like ROS, it is an open-source software, being free for commercial and research use. In
addition, it is a multiplatform SW compatible with Windows, MacPS, Android/iOS and Linux.

To simplify the point cloud development, PCL is divided into a series of smaller libraries,
which can be compiled separately, allowing distribution on platforms with computational
limitations. The main modules to be used in this work are as following:

1. Filters (pcl filters): Module that contains noise elimination mechanisms and outliers for
3D point cloud data filtering applications.

2. Kd-tree (pcl_kdtree): Module that provides the kd-tree data structure, which allows
quick searches of neighbouring points closest to the analysis point. Kd-tree (K-
dimensional tree) is a data structure that stores a set of k-dimensional points in a tree
structure to perform range and nearest-neighbour searches.

3. Segmentation (pcl_segmentation): Module that contains algorithms to segment a point
cloud into different clusters (subsets of relevant spatially isolated points within the
point cloud). It is used to process a point cloud made up by spatially isolated regions,
which is divided to be processed independently.

4. Input/output (pclio): Module that contains classes and functions for reading and
writing point cloud data files (PCD).

5. Visualization (pclvisualization): Module that allows prototyping and visualizing the
results of the algorithms that operate in 3D point cloud data. It allows to represent and
set visual properties, draw 3D shapes and their visualization.

3.3.1. PCL-ROS

The PCL design philosophy relies on the fact that most of the applications that deal with
point cloud processing are generated as a set of blocks that are parameterized to achieve
results.

Based on the design of other 3D processing libraries and ROS, each PCL-ROS (Figure 3.3-2)
algorithm is available as an independent block that can be easily connected to other blocks
in the same way that nodes connect to each other in ROS. In addition, since point clouds are
large data structures, in order to ensure that point clouds are not copied in critical ROS
applications nodelets are created, which are dynamically loadable add-ons that look and
work as ROS nodes but in a single process (such as simple/multiple threads).

31

Predictive Techniques for Scene Understanding by using Deep Learning

Figure 3.3-2 Bird Eye View of PCL-ROS

3.4. Docker

Docker [60] (Figure 3.4-1) is an open source project that offers a software development
solution known as containers. It is a tool designed to benefit both developers and system
administrators, making it a part of many DevOps (Develops + Operations) toolchains. For
developers (for example, when developing the code of this master thesis), it means that they
can focus on writing code without worrying about the system that it will ultimately be
running on. Since containers are platform- independent, Docker can run across both
Windows and Linux-based platforms. In that sense, the main purpose of Docker is that it
lets a developer (as the development of this work) run microservice applications in a
distributed (like the SmartElderlyCar architecture). Currently Docker can be run in desktop
(Mac 0S, Windows 10), Server (various Linux distributions and Windows Server 2016) and
Cloud (Amazon Web Services, Microsoft Azure or Google Compute platform).

docker

Figure 3.4-1 Docker logotype

3.4.1. Docker engine

Docker engine (Figure 3.4-2) is the base of Docker. It allows the user to develop,
assemble, ship and run applications using the following components:

32

Predictive techniques for Scene Understanding by using Deep Learning

1. Docker Daemon: Persistent background process that manages Docker
containers, networks, storage volumes and images. It constantly listens for
Docker API requests and processes them.

2. Docker Engine REST API: API used by applications to interact with the Docker
daemon. It can be accessed by an HTTP client.

3. Docker CLI: Command line interface client for interacting with the Docker
daemon. It greatly simplifies the way to manage container instances.

container image

T
manages manages —J

Client
docker CLI
network data volumes

REST API

server
docker daemon

Figure 3.4-2 Docker engine

3.4.2. Docker architecture

The Docker architecture uses a client-server model that comprises of the Docker Client,
Docker Host, Network and Storage Components. As shown in Figure 3.4-3, there are three
types of Docker communication, that is, Build, Pull and Run. For example, pull must be done
when downloading an image from a determined registry (e.g., DockerHub), build when
creating an image from a DockerFile and run in order to create a container from a given
image.

DOCKER
ARCHITECTURE

T

CLIENT REGISTRY

MG

API CONTAINERS IMAGES

REMOTE

Figure 3.4-3 Docker architecture

33

Predictive Techniques for Scene Understanding by using Deep Learning

3.4.2.1. Docker Client

The Docker client enables users to interact with Docker. It can reside on the same host as
the daemon or connect to a daemon on a remote host. In addition, a docker client can
communicate with more than one daemon. It provides a CLI (Command Line Interface) in
order to build, run and stop application commands to a Docker daemon. Its main purpose is
to provide a means to direct the pull of images from a registry and to have it run on a Docker
host. Common commands are docker build, docker pull or docker run (build an image from a
Dockerfile, pull an image from a registry or run a container, respectively).

3.4.2.2. Docker Host

The Docker Host provides a complete environment to run and execute applications. It
comprises of Docker daemon, Containers, Images, Networks and Storage. As commented,
the Docker Daemon is s responsible for all container-related actions, receiving commands
from the REST API and CLI. The Daemon pulls and builds container images as request by
the client. Once the image is pulled, the daemon builds a working model for the container
using a build file (set of instructions).

3.4.2.3. Docker Objects

There are some objects used in the assembling of an applications. The main objects related
with the development of this master thesis have been:

1. Images: Read-only binary templates used to build containers. They contain metadata
that describe the container’s capabilities and needs. Images are used to store and ship
applications. Container images can be shared across teams using a private container
registry or shared with the world using a public registry (Docker Hub). In the case of
this master thesis, Docker Images are stored in Solid-State Disk (SSD), so the image is
portable in an USB or via-Ethernet if it is required to be pulled in another computer.

2. Container: Encapsulated environments in which the user runs applications. The
container is defined by the image and any additional configuration options provided on
starting the container (such as storage options and network connections). A container
only has access to resources that are defined in the image (unless additional access is
defined when building the image into a container). When committing the current state
of the container, the original image is updated or created a new one if it was committed
with a different tag.

3. Storage: It can be stored data within the writable layer of a container of a container. In
terms of persistent storage, Docker offers several options. The option used in this
project has been data volumes. Data volumes provides the ability of creating persistent
storage, with the ability to rename volumes, list volumes and also list the container that
is associated with the volume. They sit of the host file system, outside the container copy
on write mechanism. In other words, if a directory of 59 GB is shared between a docker

34

Predictive techniques for Scene Understanding by using Deep Learning

container and the host machine, when committing that container its size would not
increase in 59 GB, since these data sit on the host file system.

3.4.2.4. Docker Registries

Docker registries are services that provide locations from where it can be stored and
downloaded images. That is, a Docker registry contains Docker repositories that contain
one or more Docker images. Public registries include a Docker Cloud and Docker Hub, in
addition to private registries. Common commands when working with registries are docker
push, docker pull and docker run (push an image to a registry, pull an image from a registry
and run a service).

3.4.3. Docker advantages

Before commented the docker advantages, it must be compared with a Virtual Machine and
why this master thesis has not been developed using a Virtual Machine.

A Virtual Machine (VM) is a virtual server that emulates a hardware server. It relies on the
system physical hardware to emulate the exact same environment on which the user installs
applications. Depending on the case, it can be used a system virtual machine (runs an entire
0S as a process, so the real machine can be substituted for a virtual machine) or process
virtual machines that allow to execute computer applications alone in the virtual
environment. An example of a real-world use case for VMs is the Starling Bank (digital-only
bank built in 2018 on VMs provided by Amazon Web Service. Then, since the VMs efficiency
deliver over traditional HW servers, as this bank bought thousands of traditional servers,
the use of VMs is possible).

However, for this master thesis, the use of a VM is not suitable, due to the needs of
continuous Application Development and Running Microservices Applications in standard
computers, as used in research. While a container runs natively (for example, on Linux) and
shares the kernel of the host machine with other containers (running discrete processes,
taking no more memory that other executable, as a system thread), a VM runs a full-
operating system with virtual access to host resources through a hypervisor (in general,
VMs provide an environment with much more resources than most applications required).
Figure 3.4-4 shows a comparison between the architecture of Docker containers and Virtual
Machines.

35

Predictive Techniques for Scene Understanding by using Deep Learning

CONTAINER VM
App A App B App C App A ‘ App B ‘ App C

Bins/Libs Bins/Libs Bins/Libs Bins/Libs ‘ Bins/Libs ‘ Bins/Libs

Guest OS ‘ Guest OS ‘ Guest OS

Docker

Host OS Hypervisor

Infrastructure Infrastructure

Figure 3.4-4 Docker containers vs Virtual Machines

Finally, the main advantages of using Docker and why it has been chosen to develop this
master thesis have been:

» [solation and lightweight: Docker containers are process-isolated and do not require a
HW hypervisor, what means that containers are much smaller and require far fewer
resources that a VM.

Fast: While a VM can take at least a few minutes to boot and be (development-ready),
container starts from a few milliseconds to (as most) a few seconds to start a container
from an image.

» Portability and interchangeable: Containers can be shared across multiple team
members, bringing much-needed portability across the development pipeline. This is
essential to reduce the errors when transferring the code from a machine to another
one, and in this case, to install the developed code and dependencies in future
microcontrollers, as the Jetson Xavier.

» Flexible: Even the most complex applications can be containerized.

3.5. Carla simulator

CARLA (Car Learning to Act) [31] (Figure 3.5-1) is an open source simulator for urban
driving. It has been developed from scratch to support training, prototyping and validation
of autonomous driving models (including both control and perception). Like CARLA, the
content of provided urban environment is also free, which includes a multitude of vehicle
models, pedestrians, street signs, buildings, etc. CARLA simulator supports flexible setup of
sensor requirements and signals used to train driving strategies, such as speed, acceleration
or GPS coordinates. A wide range of environmental conditions can also be specified, such as
rainy, cloudy or sunset.

36

Predictive techniques for Scene Understanding by using Deep Learning

Figure 3.5-1 CARLA logotype

3.5.1. Simulation Engine

CARLA is implemented as an open-source layer over the Unreal Engine 4 (UE4) [67]. This
simulation engine provides CARLA flexibility and realism in the rendering and physics
simulation. It provides state-of-the-art rendering quality, realistic physics and an ecosystem
of interoperable plugins. In that sense, CARLA simulates a dynamic world (Figure 3.5-2) and
provides a simple interface between an agent that interacts with the world and the world.
In order to support this functionality, CARLA is designed as a server-client system, where
the server runs the simulation and renders the scene. The client API is implemented in
Python, responsible for the interaction between the autonomous agent and the server. The
client sends meta-commands and commands to the server and receives as response sensor
readings. Meta-commands control the behaviour of the server, used for changing the
properties of the environment (such as the weather conditions or illumination. On the other
hand, commands control the vehicle, including steering, braking and accelerating.

Figure 3.5-2 CARLA world

37

Predictive Techniques for Scene Understanding by using Deep Learning

3.5.2. Environment and sensors

CARLA environment is composed of 3D models of static objects like vegetation,
infrastructure, buildings or traffic signs, as well as dynamic objects such as pedestrians or
vehicles. They are designed by using low-weight geometric models and textures but
maintaining visual realism by carefully crafting the materials and making use of variable
level of detail.

To build urban environments, CARLA follows the following steps:
1. Laying out roads and sidewalks.

2. Manually placing vegetation, terrain and traffic infrastructure.
3. Specifying locations where dynamic objects can appear (spawn).

Additionally, CARLA implements a variety of atmospheric and illumination conditions,
differing in the position and colour of the sun, intensity and colour of the diffuse sky
radiation as well as atmospheric fog, ambient occlusion and even precipitation. This gives
rise to a total of 18 illumination-weather combinations.

Figure 3.5-3 Different sensing modalities provided by CARLA: Normal vision, ground-truth

depth and ground-truth semantic segmentation

From the sensors perspective, CARLA allows for flexible configuration of the agent sensor
suite. Most common sensors in CARLA are RGB cameras (and pseudo-sensors that provide
semantic segmentation and groundtruth depth, Figure 3.5-3), LiDAR and GPS (main sensors
required for self-driving applications). Moreover, camera parameters include 3D
orientation and position with respect to the car coordinate system, field-of-view and depth
of field.

In addition to pseudo-sensor and sensor readings, CARLA provides a range of
measurements associated with the state of the agent and compliance with traffic rules,
including vehicle location and orientation with respect to the world coordinate system,
acceleration vector, speed and accumulated impact from collusions. A very important
feature of CARLA used in this master thesis to validate the proposal in Chapter 6 is that
CARLA provides access to exact locations and bounding boxes of all dynamic objects in the
environment, what means a groundtruth to validate a real-time 3D prediction in terms of
Multi-Object Tracking, like (and even better) that using a static benchmark.

38

Predictive techniques for Scene Understanding by using Deep Learning

3.5.3. Autonomous Driving

CARLA is used to study the performance of three approaches to autonomous-driving:

1. Classic modular pipeline that comprises a vision-based perception module, a maneuver
controller and a rule-based planner.

2. Deep network that maps sensory input to driving commands, trained end-to-end using
imitation learning.

3. Deep network maps sensory input to driving commands, trained end-to-end using
reinforcement learning.

All these approaches make use of a common path planning strategy provided by a high-level
topological planner. This planner takes the current position of the agent and the location of
the goals as input, then uses the A* [45] algorithm to provide a high-level plan required by
the agent to follow in order to reach the goal.

In this master thesis, none of these approaches are used since it is used the SmartElderlyCar
autonomous architecture proposal (including the Deep Learning based MOT presented in
this work) in order to navigate with the agent, using CARLA as an excellent simulator to
bridge in an efficient and right way the real-world and simulation to validate the proposal
and then implement it in real situations.

Moreover, this master thesis has used the CARLA 0.9.5 release (4t April 2019). It was not
update to the last release (0.9.6, 12t July 2019) since the ROSbridge, required to
communicate with the SmartElderlyCar Docker container, was deprecated in order to work
with 0.9.6. The ROSbridge is a ROS package that aims at proving a ROS bridge for CARLA
simulator, that is, it allows message passing between simulator and ROS. For example,
vehicles may publish transform information, sensors of different agents publish data stream
or it can be published control messages from ROS. It is important to consider that the Ego
vehicle (main vehicle in which control algorithms and testing are implemented) is separated
from other vehicles.

39

40

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 4. SmartElderlyCar project

4.1. Motivation and scope of the project

This chapter focuses on the project in which this master thesis has been applied on. The
project, named SmartElderlyCar and funded by Ministerio de Economia y Competitividad
(Spain), aims to implement an autonomous electric vehicle able to drive in the campus of
the University of Alcala (Spain). Figure 4.1-1 shows the most recent version of the real
prototype, still in development, whose software, hardware and structure have been
developed by a joint work of the University of Vigo (GROBIS research group) and University
of Alcald (RobeSafe research group). MOT techniques developed in this project are
traditional and based on Precision-Tracking [46]. This approach will be considered as
baseline for the Deep Learning based Multi-Object Tracking architecture proposed in this
work.

To put in context the final application of the proposed tracking, hereafter it is shown the
main characteristics of our autonomous navigation architecture (our vehicle, the sensor
used, the simulator and the different use cases validated in simulation).

Figure 4.1-1 Real autonomous electric car of Robesafe Research Group (UAH)

4.2. Autonomous Navigation Architecture

Figure 4.2-1 represents the car software framework as a modular architecture where
individual modules asynchronously process information. These modules are independent

41

Predictive Techniques for Scene Understanding by using Deep Learning

processes that communicate with each other using the ROS inter-process communication
system (PCS). In particular, the publish/subscribe paradigm is used in order to provide non-
blocking communications.

)

RoboGraph

Layer

(]
8
£
(]
-
=
-

Control Executive
Layer Layer

Hardware
Drivers
Layer

car central DRIVER

HW DRIVER CONTROL |EXECUTIVE
MODULES MODULES . MODULES

Figure 4.2-1 Proposed autonomous navigation architecture

Each module corresponds to an independent Linux process running on different ECUs
(Electronic Control Units). Software modules are organized in four sets:

1. The hardware driver layer: Set of programs that control different hardware devices that
comprise sensors and actuators.

2. The control layer: Set of programs that implements the basic control and navigation
functionality. It also contains the reactive control (local navigator), localization
(localization), path planning (map manager) and a program that processes most of the
exteroceptive sensors to detect relevant events (event monitor).

3. The executive layer: Set of programs that coordinates the sequence of actions that need
to be executed by other modules to carry out the current behaviour.

42

Predictive techniques for Scene Understanding by using Deep Learning

4. The interface layer: Set of processes to interact with the users and to connect to other
processes for multi-robot applications.

The environment perception is based on the sensor fusion of camera and LiDAR
information. The motion control is divided into lower-level reactive control and high-level
planning. First, the high-level planning calculates a path consisting of a sequence of lanelets
[37] (which can be modified depending on the performed behaviours by the executive
layer). The goal of the local navigation system is to safely follow the path, keeping the car
within the driving lane, and following the behaviours constraints established by the high-
level planning. In order to do that, the car obtains the curvature to guide the car from the
current position to a look-at-head position placed in the center of the lane by using the Pure
Pursuit approach [39]. Then, this curvature is used as the reference for an obstacle-
avoidance method based on the Beam Curvature Method (BCM) [40]. This BCM approach
allows to keep the vehicle centered in the lane while is able to avoid unknown obstacles that
can partially block the lane.

Finally, the decision making is implemented through Petri nets that take as inputs the map
manager information, the local perception (provided through the event monitor module)
and the vehicle localization in the map. In concrete, hierarchical interpreted binary Petri
nets [41], where a net can stop or start another net of the already started ones. To
implement them, the RoboGraph tool is employed.

4.3. Real prototype

The SmartElderlyCar is based on the chassis of an open source EV (Electric Vehicle), the
TABBY EVO of the company Open Motors [33] (Figure 4.3-1 (a)). Thanks to the huge effort
of the RobeSafe research group, this chassis has been integrated with a tubular car body, a
pack of batteries, some sensors (mainly LiDAR, GPS and camera) and a drive-by-wire system
enable to prepare it for autonomous navigation. The manual steering wheel has been
removed so as to install a commercial electrical power steering (Opel Corsa model) with an
encoder to control de vehicle direction electronically, as shown in Figure 4.3-1 (b). In order
to do that, an ECU (Electronic Circuit Unit) has been designed based on an olimexino STM32
open-source development board. It receives the angle commands and generates a PWM
signal to a full bridge by using a PID closed loop control.

43

Predictive Techniques for Scene Understanding by using Deep Learning

Figure 4.3-1 (a) Open-source chassis, (b) Electrical power steering wheel

In a setup process the relationship between the desired angle of the steering wheels and the
steering wheels angle is calculated. A sensor is included in the power steering to read the
angle as well as switch from autonomous to manual control if the driver puts his hand in the
wheel. Moreover, the signal generated by the throttle paddle is switched by a signal
generated by the ECU to obtain the desired acceleration. If the driver puts his foot in the
paddle the system automatically switches to the manual mode. The inputs of the ECU are
the angle of the steering wheels and the desired velocity, and these commands are sent
through the CAN bus from the high-level control.

4.4. Sensors

For environment perception, the vehicle is mainly equipped with a Velodyne LiDAR (VLP-
16) placed on the top of the vehicle and looking at the front of the vehicle, a stereo vision 2-
sensor colour camera (ZED), which is mounted on the front windshield of the vehicle at 165
cm height above the ground and oriented to the road and a DGPS-RTK GPS TopCon HiperPro
installed on the top in the central rear part of the vehicle. These devices are connected to an
on-board embedded computer, working under Ubuntu OS, where the SW architecture is
run.

A self-driving car requires more sensors to navigate safely than mentioned above. However,
since this thesis is specifically based on the above-mentioned sensors (LiDAR, camera and
GPS) it is required to check the key concepts of each technology in addition to the specific
features of that models.

4.4.1. Distance sensor: LiIDAR

Actives distance sensors are a key concept in mobile robots in terms of localization and
environment modelling. They are based on obtaining the distance through the propagation
speed of an emitted wave, and the time it takes from the emission until it is received (flight
time):

— o't
d="= (4.1)

Where ¢ is the light speed (when speaking about laser), t is the flight time and d the
distance to the object.

The main advantage of laser sensors is that they can obtain more accurate and reliable
distance measurements than other types of sensor distance, such as ultrasonic.

LiDAR (Light Detection and Ranging) technology uses a type of sensor that measures
distance to a target by illuminating the target with laser light (pulsed laser beam) and
measuring the reflected light with a sensor. Its working principle is relatively simple: A
diode inside emits the laser beam that is directed through a transmitter lens, hits the target

44

Predictive techniques for Scene Understanding by using Deep Learning

and part of the light is reflected in a photodiode after passing through a receiver lens. Then,
differences in laser return times and wavelengths can be used to perform 3D
representations of the target and in general to carry out a 3D reconstruction by using a point
cloud of the environment. Figure 4.4-1 (a) shows an overview of the LiDAR system (in
horizontal) and Figure 4.4-1 (b) a 3D reconstruction of the environment with a colour scale

in such a way that closer objects are painted in green and further objects are painted in dark
blue.

|8
L
Ar
(a) (b)
Figure 4.4-1 (a) LiDAR system overview in horizontal (b) 3D reconstruction of the
environment

The 3D LiDAR consists of stacked rotary lasers that obtain information from the
environment from different angles, which allows to obtain a point cloud. Each layer of lasers
is a channel that emits a signal that creates a contour line, and that, together with the
contour lines of the other channels, generates a 3D reconstruction of the environment.
Therefore, the higher the number of channels, the higher resolution. The SmartElderlyCar
uses a Velodyne LiDAR Puck (VLP-16) [34], which provides 16 channels of 360 ¢ horizontal
FoV (Field of View) and +/- 15 2 vertical FoV. VLP-16 is the smallest and one of the most
advanced in the Velodyne 3D LiDAR range, preserving calibrated reflectivity measurements
and in real-time at 360 . Figure 4.4-2 shows the VLP-16 dimensions.

QPTICAL

CENTER \

37.8mm
1.45in.

18.8mm L 12.7rmirn MAX

0.74in. 0.50in. MAX

71.7mm
2.82in.

ACTIVE AREA
FULL 3607

Figure 4.4-2 VLP-16 dimensions overview

45

Predictive Techniques for Scene Understanding by using Deep Learning

On the other hand, Table 4.4-1 shows some of the main specifications of the VLP-16:

Table 4.4-1 Main specifications of VLP-16 sensor

Sensor specifications Mechanical/Electrical specifications
Channels 16 Typical power consumption [W] 8
Measurement range up to [m] 100 Weight (without cabling) [g] 830
Typical accuracy [cm] 3cm Operating temperature (-10) to (+60)
[° C]
Vertical FoV [?] 302 (+15¢ Environmental protection P67
to -15 9)
Vertical angular resolution [2] 2 Output features
Horizontal FoV [2] 360 2 Simple return mode [points/s] 0.3 million
Horizontal angular resolution 0.1-04 Dual return mode [points/s] 0.6 million
[°]
Rotation rate [Hz] 5-20 Ethernet connection [Mbps] 100

4.4.2. Vision sensor: Camera

Artificial or computer vision is based on capturing visual information from the environment
(both simulation and real-world) to extract relevant visual features. The essential device for
obtaining this kind of information is the camera, and one of its main components is the
vision sensor (part of the image capture sytem), which is responsible for converting the
received light waves into electrical signals, thanks to its photosensitive components. Then,
these signals are processed and converted into the images the human beings see. Figure
4.4-3 shows the camera used in this project.

Figure 4.4-3 The ZED camera

Even though there are different types of cameras, in robotics the stereo camera is widely
used due to it relies on human binocular vision to capture two images that are processed in

46

Predictive techniques for Scene Understanding by using Deep Learning

order to obtain the distance and depth of the elements that make up the scene, and thus be
able to represent a 3D image. One of its critical points is the correct alignment of the pixels
of the image of one camera with the other. In particular, the SmartElderlyCar uses the ZED
stereo camera [35] which has two sensors with a baseline of 12 cm. Using its two “eyes” and
through triangulation, the ZED provides a three-dimensional understanding of the scene,
allowing the target application to become space and motion aware. Table 4.4-2 illustrates
some of its main specifications:

Table 4.4-2 ZED camera main specifications

Camera specifications

Sensors 2 CCD sensors
4M pixels per sensor with large 2-micron pixels

Native 16:9 format for a greater horizontal FoV

Stereo baseline [cm] 12
Depth range [m] 0.5 — 20
Technology Real-time depth-based visual odometry and SLAM
Lens Wide-angle all-glass dual lens with reduced distortion

FoV: 90 @ (Horizontal) x 60 2 (Vertical)
/2.0 aperture

Connectivity USB 3.0 port with 1.5m integrated cable
Power via USB: 5V / 380 mA

Operating temperature [2 C] 0-45
Weight [g] 159
Main Third-party support ROS, Unity, Unreal Engine, OpenCV, MATLAB

4.4.3. Positioning sensor: GPS

One of the most important objectives of a self-driving car is to keep its position and
localization throughout the whole navigation. This outdoor information is obtained thanks
to the GPS (Global Positioning System).

The GPS is a system that allows to obtain the position in any point of the Earth with high
precision. Its operation is based on triangulation (Figure 4.4-4) thanks to the network of

24 satellites that orbit the Earth at a height of 20,180 km covering its entire surface. The
GPS receiver takes the signal from the satellites indicating its position and time and obtains
the time it takes for the signal to arrive to calculate by using triangulation the distance of
each satellite to the measurement point.

47

Predictive Techniques for Scene Understanding by using Deep Learning

Triangulation

Satellite »

Satellite

Figure 4.4-4 GPS Triangulation process

Mathematically, 4 satellites would be enough to determine the exact position of Earth, since
the geometric place of the space points that are equidistant from each satellite is a sphere,
and, therefore, it is the intersection of 4 spheres that allows to obtain a point. However, in a
self-driving application, positioning is critical, so high accuracies are required and the
detection of a greater number of satellites is required to achieve this high accuracy.

In order to obtain the global positioning, the SmartElderlyCar uses a multi-constellation
system (multi-GNSS) with Real-Time Kinematic (RTK) positioning solution. This module is

directly integrated in the back of the car and is made up by two elements (Figure 4.4-5 (a)):

Differential Topcon Hiper Pro GPS [36] + Receiver configured as rover and a local base

station with the purpose of generating differential corrections for the rover. The rover can
obtain data from both GLONASS (Russian global system positioning, homologous to the GPS
system managed by USA) and GPS to provide a more robust solution than standard GPS by
increasing the number of visible satellites.

Figure 4.4-5 (a) Differential Topcon Hiper Pro GPS configured as rover and base (b)
Choke-Ring Antenna as local base station

Due to the fact that autonomous vehicles demand real-time positioning, the use of
differential corrections allows to provide information at a frequency of 10 Hz in order to
improve the required accuracy. Furthermore, the local base station (located on the roof of

48

Predictive techniques for Scene Understanding by using Deep Learning

the Escuela Politécnica Superior - UAH) is based on Choke-Ring Antenna (Figure 4.4-5 (b)),

specifically chosen to deal with multipath, connected to a second Topcon Hiper Pro GPS +
receiver that provides these differential corrections. Finally, these differential corrections
are published over Internet by using standard open source software in the vehicle using a

GPRS link via radio. Table 4.4-3 illustrates some of its main features:

Table 4.4-3 Topcon Hiper Pro GPS main specifications

GPS specifications

Receiver type Euro-112T (HGGDT)
Standard channels 20 (GPS, Differential and GLONASS)
Operation Time [h] +14

Power consumption [W] <4.2

Antenna type Central mount UHF

Wireless communication Bluetooth
Communication ports x2 (RS2R2)
Output frequency [Hz] 20

Figure 4.4-6 depicts a handcrafted rack placed on the roof of the car with all mentioned

sensors integrated and aligned. It can be appreciated that apart from above mentioned
sensors, there is a router (in order to provide Internet to the vehicle), a switch (to enable
sensor communication), the Velodyne interface that connects the LiDAR with the on-board
computer and the Jetson AGX Xavier. A future work of this thesis will be to implement and
test the tracking layer into this powerful computer so as to distribute the computational
load currently most performed by the on-board computer (an MSI GT62VR-7RE i7-
7700HQ), and compare the MOT obtain results with respect to the current HW approach.

49

Predictive Techniques for Scene Understanding by using Deep Learning

Figure 4.4-6 Handcrafted rack with the main sensors of the SmartElderlyCar

To finish this Sensors section, Figure 4.4-7 illustrates the sensor frames orientation and
position which is essential to understand the subsequent sensor fusion dealt in Chapter 5.
It must be regarded that this sensor configuration is maintained both in simulation and real-
world in order to develop and test SW approaches in simulation and then plug-and-play in
the real prototype so as to check new techniques, not requiring additional transformations.

z Velodyne VLP-16

ED-Stereolabs

Figure 4.4-7 Frames Orientation and position of the main sensors in the vehicle

50

Predictive techniques for Scene Understanding by using Deep Learning

4.5. Simulation environments

Most used 3D simulators in the field of robotics are V-REP [38] and Gazebo [43], because of
their ease integration in ROS. Other simulation environments are Microsoft Airsim [44]
(initially designed for drones but recently update so as to include autonomous vehicles),
ROS development studio [43] (based 100 % on Cloud, so a system of gym computers allows
the parallel training of as many as required) and CARLA [31], which is expected to be the
reference open-source simulator for autonomous vehicles based on Unreal engine, with a
recent release of its ROSbridge.

The SmartElderlyCar project has been under simulation development for three years (2016-
2018) using the V-REP simulator but currently CARLA simulator is used in order to get more
challenging situations to improve the robustness and reliability of the prototype (both in
simulation and real-world), especially in terms of perception of the environment (which is
one of the most attractive features of CARLA). Despite the fact that results of this master
thesis are based on [42] and , it is required to show a brief background of the project
integration in V-REP (Figure 4.5-1) to understand the validation results carried out with the
traditional tracking techniques and the modifications performed in CARLA regarding V-
REP.

V-rep

Figure 4.5-1 V-REP logotype

V-REP is a multiplatform simulation software developed by Coppelia Robotics GmbH. With
integrated development, is based on a distributed control architecture: each model/object
can be individually controlled via embedded script, a plugin, ROS nodes, BlueZero nodes,
remote API clients or a custom solution. This makes V-REP very versatile and suitable for
multi-robot applications. A fully functional free version is available for researchers.

The drivable area is modelled both geographic and topologically by using the lanelet
approach (Figure 4.5-2) presented in [37] and OpenStreetMap service. Lanes and
connections among them are manually delimited, including regulatory traffic information,
to generate an enriched map useful for navigation. While in V-REP the simulation was
limited to the UAH campus, due to the complexity of mapping other places and manually
creating the environment, this master thesis has developed a code in order to transform
from OpenDrive syntax (in which CARLA is based on) to the JOSM format (in which lanelets
approach is based on) so that CARLA mabps fit the needs of the SmartElderlyCar architecture.
This code is exposed and commented in Chapter 5. In both cases, to create the JOSM map,

51

Predictive Techniques for Scene Understanding by using Deep Learning

WGS84 are used (made up by latitude, longitude and height) whilst the SmartElderlyCar
works in Cartesian coordinates (UTM) relative to an origin (in the UAH campus, it
corresponds roughly to the center of the campus, but in CARLA maps sometimes the origin
is referred to a corner and other times is referred to the center).

l *
eﬁ?ound) f

VS S
= T ;/t/t -

{

/
right bound .

Figure 4.5-2 Map composition based on lanelets

Once the lanelets map is available, the map manager module loads the map and is in charge
of planning a new path as a sequence of lanelets. Each lanelet is defined by the borders
named ways. Besides the path, the map manager module serves other queries from other
modules related to the map, such as providing the contiguous lanes for the overtake
maneuver, the lanes of an intersection to the event monitor for the cross intersection
maneuver and it should also provide the position of regulatory elements. For the navigation,
three different planners are applied. First, a lanelet path is obtained using an A* algorithm
[45] from the lanelet maps. Then, as commented above, a global path planner calculates an
executable route by the car that tries to go in the middle of the lanes using the Pure Pursuit
approach, and finally a local navigation algorithm based on BCM is executed to perform
different behaviours following this path and avoiding unexpected obstacles.

4.6. Simulating use cases for the UAH Autonomous

Electric Car

To finish this chapter, this section deals with the a paper associated to this master thesis
titled “Simulating use cases for the UAH Autonomous Electric Car”, for publication in the
ITSC (International Transportation Systems Conference) 2019 and the tracking approach
used to perform the different use cases, known as Precision-Tracking [46]. [42] shows a
deeper explanation of this paper.

Precision-Tracking [46] is a 3D tracking method used in real spaces that combines 3D shape
using a probabilistic framework in which it makes use of the shape information, colour (if
available) and motion cues so as to accurately track moving objects in real-time. It allocates
computational effort based on the shape of the posterior distribution. Starting with a course
approximation to the posterior, precision-tracking approach successively refines this
distribution, increasing in tracking accuracy over time. It is able to robustly handle changes

52

Predictive techniques for Scene Understanding by using Deep Learning

in viewpoint, occlusions and lighting variations for moving objects of a variety of shapes,
sizes and distances.

[t uses a grid-based method to sample velocities from the state space. While traditional grid-
based methods are often used in SLAM (Simultaneous Localization and Mapping)
techniques, they are slow for Multi-Object Tracking and so not suitable for self-driving
purposes, this approach allows fine-sampling on a large grid thanks to use of the ADH
(Annealed Dynamic Histograms) method, based on histograms. It starts by sampling from
the state space at a coarse resolution using a posterior distribution over velocities. In this
way, over time the sampling resolution increases and the probability distribution is
strengthened (annealed), so the approximate distribution approaches the true posterior.
Hence, the current approximation to the posterior may be return, with tracking resolution
based on the needs of the application.

In the context of the SmartElderlyCar project, the precision-tracking approach takes as
input the 3D clusters proposals after merging the information of a LiDAR point cloud and
the semantic segmentation of the scene by using the ERFNet (Efficient Residual Factorized
ConvNet) [68], as shown in Figure 4.6-1.

ERFNet Semantic segmentation

=" :* _,_ [Precision-TraCkingJ

LIDAR point cloud Coloured point cloud 3D Box proposals

Figure 4.6-1 Precision-Tracking approach in the SmartElderlyCar (Real world)

On the other hand, in simulation, we take advantage of the V-REP characteristics, objects
are mainly monocolor (Figure 4.6-2), to implement semantic segmentation.

Figure 4.6-2 From Left to right, V-REP car and pedestrian models

53

Predictive Techniques for Scene Understanding by using Deep Learning

In both cases (simulation and real-world), there must be a projection of the colour
information (provided by the image) onto the 3D Point Cloud. It can be performed by using
the algorithm shown in Figure 4.6-3. A more detailed overview of the code can be found in
Code of Interest C-1.

Algorithm 1 Projecting the semantic segmentation into the 3D Point Cloud

Input: 3D Point Cloud, ROS Semantic Segmentation Image, Camera Info
Output: 3D Coloured Point Cloud
: tmage_msg (ROS input image) — image ptr (OpenCV image pointer)
: tmage_ptr — img (OpenCV matrix)
: ROS input point cloud — pcl::Point XYZRGB pcl_cloud
Lookup for target (/stereo_cam_L R) to source frame (/lidar_pts) transtorm
pel_ros::transformPointCloud (*pcl_cloud, xtrans_cloud, trans form)
for pt = trans_cloud — points.begin() — pt < trans_cloud — points.end()
#pt — pt_cv (OpenCV 3D point)
: uv (OpenCV 2D point) = cam_model - project3dToPixel (pt_cv)
: if (uv.x > 0 A uv.x < img.cols A uv.y > 0 A uv.y < img.rows A *pt.z > 0)
(xpt).r = img.at < ev :: Vecdb > (uv)[0];
(xpt).g = img.at < cv :: Vec3b > (wv)[1];
(#pt).b = img.at < cv : Vec3b > (uv)[2];

10: else
(*pt).r = 40.0;
(xpt).g = 40.0;
(xpt).b = 40.0;

Figure 4.6-3 Algorithm used to project the semantic segmentation into the 3D Point Cloud

[t must be considered that the precision-tracking approach depends crucially on the results
obtained during the detection process since they are used as input, as shown in Figure 4.6-1.
During the detection process, both the measurement uncertainties of the sensors and the
occlusions caused by changes in point-of-view must be dealt with, which causes the laser to
not reflect some points correctly. Moreover, sensory is not perfect. One of the key points
related with detection problems is that a 16-channels 3D LiDAR is used in the real
prototype, which in comparison with other 32 or 64-channels 3D LiDAR, has less FoV and
angular resolution although its has a lower a price and requires less computational effort,
which makes it attractive to develop algorithm in order to improve detection. On the other
hand, CARLA and V-REP they are able of simulating several types of LiDAR, with a greater
resolution than offered by 16-channels LiDAR.

In terms of precision-tracking, there is a trade-off in order to choose the minimum number
of points that should be considered for an object cluster. Limiting the minimum size to a
small number of points (to consider a cluster as a relevant object) has the advantage of being
able to determine the presence of an object that is relatively at a great distance. However, if
assuming small number of points, it is more likely to fall into a detection error which would
cause. In that sense, [42] assumes a minimum cluster size which guarantees a more accurate
detection when the object is relatively close.

54

Predictive techniques for Scene Understanding by using Deep Learning

Figure 4.6-4 Pedestrian crossing simulation example

According to [42], several tests were carried out in the simulated Campus of the UAH. In
order to perform each use case (Pedestrian Crossing, STOP, Give Way, Traffic Light,
Adaptive Cruise Control (ACC) and Overtaking), the control layer takes the information of
the lanelets and nearest regulatory elements, provided by the map manager module, so as
to generate some velocity command for the low-level control, following the use case
commanded by the executive layer through the respective Petri net. Figure 4.6-4 illustrates
a simulation example where left image shows the R-VIZ simulator illustrating the point
cloud detection and right image shows the V-REP simulator faced by the ego-vehicle
Sensors.

Table 4.6-1 shows a summary of the main features, including inputs, outputs and number
of elements for the main Petri Nets. As observed, the first Petri Net (Background) is a net
running always in background. This net is waiting for a message from the user requesting
to execute some of the car tasks the car can carry out. Selector PN decides which behaviour
to run, according to the traffic situation, and monitors the execution of the behaviours. Each
one of the other Petri nets implements the behaviour that corresponds to a particular traffic
situation use case.

55

56

Predictive Techniques for Scene Understanding by using Deep Learning

Petri Net Inputs Input modules Oufputs Output module [N% nodes || N® fr
Background Man/auto GUI User Run Selector RG Dispatch g 9
goToPoint GUI User Stop selector RG Dispatch
Selector PN Reg. Element (STOP ..) Map manager Run PedestrianCrossing RG Dispaich 21 29
Dist. Reg Element Map manager Stop PedestrianCrossing RG Dispatch
End Reg. Element Map manager Run GiveWay RG Dispatch
Reg. Element (STOP ..) Event monitor Stop GiveWay RG Dispatch
End Reg. Element Event monitor Run STOP RG Dispatch
FrontCarVel Event monitor
‘Odom Base
FollowLane Traffic sign (max speed, ...) Event monitor SetMaxVel Local Navigator 6 8
Force End RG Dispatch STOP Local Navigator
Pedestrian NoPedestrian Event monitor ‘WatchforPedetrians Event Monitor 10 13
Crossing Pedestrian Event monitor SetMaxVel Local Navigator
DistToPedestrianCrossing Map manager StopAtPoint Local Navigator
PedestrianCrossingOver Map manafer
Force End RG Dispatch
s Local Navigator
STOP SafetoMerge Event monitor CheckSafeMerge Event Monitor 9 1z
NotSafetoMerge Event monitor SetMaxVel Local Navigator
DistToStop Map manager StopAtPoint Local Navigator
StopOver Map manager
Force End RG Dispatch
stopped Local Navigator
GiveWay SafetoMerge Event monitor CheckSafe M Event Monitor 9 12
NotSafetoMerge Event monitor SetMaxVel Local Navigator
DistToStop Map manager StopAtPoint Local Navigator
StopOver Map manager
Force End RG Dispatch
s Local Navigator
Traffic Light CheckForTrafficLight Event monitor CheckForTrafficLight Event Monitor 10 1Z
SafetoMerge Event monitor CheckSafeMerge Event Monitor
NotSafetoMerge Event monitor SetMaxVel Local Navigator
DistToStop Map manager StopAtPoint Local Navigator
StopOver Map Manager
Force End RG Dispatch
stopped Local Navigator
Adaptive Cruise Current Velocity Map manager SetMaxVel Local Navigator 4 6
Control (ACC) FrontCarVel Event monitor
DistToFrontCar Map
Overtake FrontCarVel Event monitor CheckleftLane Event Monitor 14 21
SafeChangeLeftlLane Event monitor CheckRightLane Event Monitor
NotSafeChangel eftlane Event monitor SwichtLeftLane Local Navigator
SafeChangeRightLane Event monitor SwitchRightLane Local Navigator
NotSafeChangeRightLane Event monitor CheckRightLane Event Monitor
Odom Base
OnLefiLane Local Navigator
OnRightLane Local Navigator

Table 4.6-1 Table Main features of the SmartElderlyCar Petri Nets

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 5. Architecture proposal
for Deep Learning based Multi-
Object Tracking

5.1. Introduction

This chapter aims to show the architecture proposal for Deep-Learning based Multi-Object
Tracking. Due to system requirements, the architecture proposal must offer overall two key
features: real-time operation and robustness to a number of ambient conditions which
typically degrade performance. As mentioned in previous chapters, these object tracking
challenges, mainly in Visual Object Tracking (VOT) include partial occlusion, camera
modelling errors, photometric changes (lightning, shadows, etc.) or incorrect edge
matching.

After trying to run several times deep-learning approaches for object tracking, several

limitations were found about previously mentioned deep-learning state-of-the-art
approaches for object tracking:

GOTURN: This deep-learning based tracker presents lack of motion information.
Since motion information is not integrated in the two-frame model, if the system
(for example, the autonomous vehicle) is tracking an object (another car or
pedestrians) moving in one direction and gets partially occluded by a similar object
moving in the other direction, there is a great change and the tracker will latch onto
the wrong object.

MV-YOLO: The code is still not published. In addition, [63] mentions that MV-YOLO
does not support currently Multi-Object Tracking but only Single-Object Tracking,
what is not appropriate for self-driving applications (the main purpose of this
master thesis).

MDNet: The network is not thought for real-time purposes, at least for the moment.
It was evaluated on two datasets, Object Tracking Benchmark (OTB) and Visual
Object Tracking 2014. As mentioned above, the algorithm is implemented in
MATLAB using MatConvNet toolbox, running at around 1 fps with eight cores of 2.20
GHz Intel Xeon E5-2660 and an NVIDIA Tesla K20m GPU. This framerate of 1 fps is
not enough for self-driving applications, since what it means is that the network is
estimating the position of the object every second, but at certain velocities, one
second gives rise to great distances and the vehicle could crash an obstacle.

57

Predictive Techniques for Scene Understanding by using Deep Learning

e ROLO: The code is totally deprecated in terms of Python and Tensorflow.

e Re3:This approach models both appearance and motion variations using RNNs and
achieves comparable results on several object tracking benchmarks. However, Re3
only considers short-term variations [48], is notably affected by partial occlusion
and requires manual resetting of RNN states every 32 frames.

Due to limitations of the current deep learning proposals for object tracking (moreover
Multi-Object Tracking) unable to be used in an AV application, this master thesis proposes
a fusion between VOT performed in 2D images and 3D boxes detected by the LiDAR,
following the architecture shown in Figure 5.1-1. VOT is carried out by using CenterNet [49]
(one of the most efficient and fastest CNNs right now to detect objects in images, published
in 2019, even faster than YoloV3 [51]) and Deep SORT [2] (based on the real-time tracker
SORT [27] with a deep association metric). Image bounding boxes are projected into the
Bird Eye View (BEV) plane using the calibration matrix and taken a fix depth for each
bounding box. However, this 3D recovery process is not so accurate. To improve precision,
LiDAR 3D boxes proposals obtained from the LiDAR point cloud, after a clustering and KD-
Tree process, are projected to the BEV plane. Proposals coming from VOT and LiDAR are
fused using a simple algorithm consisting in evaluating the overlapping in the two domains.
If the overlapping is higher than a certain threshold, the LiDAR proposal pass to the output.
Otherwise, the proposal is discarded. Future works will include BEV VOT proposals if the
object detection is performed far away from the vehicle and there are not enough points to
cluster the point cloud at that distances.

PCL-ROS based Framework Box detection on BEV
from LIDAR

Inputs

3D Box detection

\

/- LiDAR point cloud

Output

7

(g —

-

| Box detection + tracking
Bt 3 = N\ on BEV fine-tuned

2

‘-\\ Image (RGBA) /| CenterNet + Deep SORT 2D Box detection + tracking
§ _

Box detection + tracking
on BEV from image

Figure 5.1-1 Architecture proposal for Multi-Object Tracking

The following sections deal with the main modules of this architecture, both those related
with the CenterNet+DeepSORT based framework and the PCL-ROS based framework.

58

Predictive techniques for Scene Understanding by using Deep Learning

5.2. Centernet

The first step to carry out object tracking, as mentioned throughout this work, is the
detection. The CenterNet approach [49] is a CNN that detects each object as a triplet (top-
left corner, center estimation and bottom-right corner), rather than a pair (only the corners)
of keypoints, which improves both precision and recall.

This technique is based on CornerNet approach [50]. CornerNet represents each object by a
pair of corner keypoints, which bypassed the need of anchor boxes and achieves the state-
of-the-art-one-stage object detection accuracy. Nevertheless, the CornerNet performance is
restricted by its relatively weak ability of referring to the global information of an object.
That is to say, since each object bounding box is constructed by a pair of corners, the
algorithm is sensitive to detect the boundary of objects so not being aware of which pairs of
keypoints should be grouped into objects. This weakness gives rise to some incorrect
bounding boxes, most of which could be easily filtered out with complementary
information, such as the aspect ratio.

Backbone
/5 \ Embeddings
F N o A\ \ -
N Lfv - ‘: {‘ s /".
. P | . | |
A 1 ‘/\"_
/N AN
v < v “

Figure 5.2-1 CenterNet architecture

To address this weakness, CornerNet is equipped with the ability of perceiving the visual
patterns within each proposed region in order to identify the correctness of each bounding
box by itself. In that sense, CenterNet is a variation of CornerNet that explores the central
part of a proposal (region that is close to the geometric center) with one extra keypoint. The
statement is very simple: If a predicted bounding box has a high IoU (Intersection over
Union) with the groundtruth box, then, the probability that the center keypoint in its central
region is predicted as the same class id is high, and vice versa. In other words, if is
determined if the proposal is indeed an object by checking if there is a center keypoint of
the same class falling within its central region. Since the approach only pays attention to the
center information, the cost in minimal.

The overall network architecture is shown in Figure 5.2-1. A convolutional backbone
network applies center pooling and cascade corner pooling to output a center keypoints
heatmap and two corner heatmaps, respectively. Each object is represented by a center
keypoint and a pair of keypoints. CenterNet uses the method proposed in CornerNet in
order to generate top-k bounding boxes. Nevertheless, to filter the incorrect bounding
boxes, CenterNet leverages the detected center keypoint and follows this procedure:

59

Predictive Techniques for Scene Understanding by using Deep Learning

1. Select top-k center keypoints according to their scores.
2. Use the corresponding offsets to remap these center keypoints to the input image.

3. Define a central region for each bounding box and check if the central region contains
center keypoints.

4. Ifa center keypoint is detected in the central region, the bounding box is preserved and
the score of the bounding boxes will be replaced by the average scores of the keypoint
triplet. If there are no center keypoints detected in its central region, the bounding box
is removed.

However, in order to incorporate this object detector, since to define the bounding box and
detect the object largely depends on the size of the central region in the bounding box. For
example, smaller central regions lead to a low recall rate for small bounding boxes, while
larger central regions lead to a low precision for large bounding boxes. Both in simulation
and of course in the real-world, an object must be tracked (and so previously detected) until
it disappears from scene. Even if it is at a certain distance (small size in the scene) but still
on-road, it must be detected since is relevant. In that sense, CenterNet is excellent because
it proposes a scale-aware central region to adaptively fit the size of bounding boxes. The
scale-aware central region tends to generate a relatively central region for a small bounding
box, while a relatively small central region for a large bounding box.

In conclusion, the main highlights of CenterNet are:

Simple: Use keypoint detection technique to detect the bounding box center point and
regress to all other object properties such as bounding box, pose or 3D information.

= Versatile: The same framework can work for object detection, multi-person pose
estimation with minor modification and 3D bounding box estimation.

= Fast: The whole process is included in a single network feedforward.

= Strong: The best single model achieves 45.1 AP (Average Precision) on COCO test-dev.

5.3. Deep SORT

Simple Online and Real Time (SORT) [27] tracking is a pragmatic approach to MOT (Multi-
Object Tracking) where the main focus is to associate objects efficiently for online and real-
time applications. This method represents a lean implementation of a tracking-by-detection
framework for the problem of MOT where objects are detected each frame and represented
as bounding boxes. SORT performs Kalman filtering (detailed Appendix A) in image space
and frame-by-frame data association using the Hungarian method [52] with an association
metric that measures bounding box overlap. Due to this simple combination, it achieves

60

Predictive techniques for Scene Understanding by using Deep Learning

favourable performance at high frame rates. For example, on the MOT challenge dataset,
SORT with a state-of-the-art detector (Faster R-CNN, [53]) ranks on average higher than
Multiple Hypothesis Tracking (MHT) [54]. This method is primarily targeted towards online
tracking where only detections from the previous and the current frame are presented to
the tracker, in contrast to many batch based (i.e., offline) tracking approaches ([28] [29]).

However, while achieving overall good performance in terms of accuracy and tracking
precision, SORT algorithm returns a high number of identity switches since the employed
association metric is only accurate when state estimation uncertainty is low (that is,
uncertainty in Kalman filter). Therefore, SORT presents a deficiency in tracking through
occlusions which they typically appear in frontal-view camera scenes. In order to overcome
this drawback, [2] replaces the association metric with a more informed metric that
combines appearance information and motion using a deep learning net. Through the
integration of this network, the robustness is increased against misses and occlusions while
keeping the system efficient, applicable to real-time scenarios and easy to implement.

Deep SORT [2] is one of the most widely used and elegant object tracking framework as an
extension to SORT. Now, itis described briefly each of the four core components of this Deep
SORT system. Figure 5.3-1 depicts a flowchart for this framework.

Motion
metrics

CenterNet Object detector

KF
Estimation

Pretrained CNN

Figure 5.3-1 Flowchart of the CenterNet+Deep SORT framework

5.3.1. Track handling and State Estimation

This component is very similar to the SORT proposal. It is assumed a general tracking
scenario where the camera is uncalibrated and there is no ego-motion information
available. Therefore, the tracking scenario is defined on the eight-dimensional state space
(u, vy, hx 9,7, /1) that contains the bounding box center position (u,v), aspect ratio y,
height h and their respective velocities in image coordinates. Then, a standard Kalman filter
with constant velocity motion and linear observation model is used, where the bounding
box coordinates (u, v,y, h) are taken as direct observations of the object state. For each
track kitis counted the number of frames since the last successful measurement association

61

Predictive Techniques for Scene Understanding by using Deep Learning

ay. During Kalman filter prediction the counter is increased and reset to 0 if the track has
been associated with a measurement. Otherwise, tracked objects whose associated counter
exceed a predefined maximum age A,,,, are considered to have left the scene and are
deleted from the track set. On the other hand, new track hypotheses are initiated for each
detection that cannot be associated to an existing tracked object. Furthermore, these new
tracks are classified as tentative during their first three frames. If these new tracks
hypotheses are not associated to an existing tracked object within their first three frames,
they are deleted.

5.3.2. Assignment Problem

The second component deals with the association of predicted Kalman states and newly
arrived measurements. It can be solved using the Hungarian algorithm, which is a
combinatorial optimization algorithm that solves the assignment problem in time. In order
to solve this assignment problem, motion and appearance information are integrated
through combination of two appropriate metrics.

To incorporate motion information, the (squared) Mahalanobis distance between newly
arrived measurements and predicted Kalman states is used:

(i,) = (d; — 1) ST (dj — 1) (5.1)

Where the y; denote the projection of the i-th track distribution and d; the j-th bounding
box detection. The Mahalanobis distance takes the estimation uncertainty for the
association of the detections with the tracker estimations. In addition, using this motion
information is possible to exclude unlikely associations thresholding the Mahalanobis
distance at 95 % confidence interval, computed from the inverse X? distribution:

by = 1[d, (i,) < t@] (5.2)

In this case, the decision to associate the i-th track with the j-th detection is admissible if
the Mahalanobis distance is lower or equal than its threshold t(") = 9.4877.

However, the rougher the estimation of the object location (obtained from the Kalman filter)
is, the worse works the Mahalanobis distance, since the motion uncertainty is high (for
example, in unaccounted camera motion that introduces rapid displacements). Then, a
second metric is introduced into the assignment problem. For each bounding box detection
d;, the appearance descriptor 7; is computed. Furthermore, Deep SORT computes a gallery

Ry = {rk(i)} from k = 1 to the last 100 associated appearance descriptors for each track k,
named Ly.

Then, this second metric measures the smallest cosine distance between the i-th and the j-
th detection in appearance space:

d,(i,j) = min{1 — rkTrk(i) |rk(i) € R;} (5.3)
62

Predictive techniques for Scene Understanding by using Deep Learning

Again, a binary variable is introduced so as to indicate if the association is admissible
comparing this result with a suitable threshold:

bi;® = 1[dy (i,)) < t@)] (5.4)

In combination, both metrics (motion and appearance) complement each other by serving
different aspects of the assignment problem. On the one hand, the Mahalanobis distance
provides information about possible object locations based on motion (very useful for
short-term predictions). On the other hand, the cosine distance considers appearance
information that are particularly useful to recover identities after long-term occlusions,
where motion is less discriminative. This is an excellent solution for real application, like
self-driving, where a car may be partially occluded by another object for a relative long-term
for example if they have the same velocity. To build the association problem, both metrics
are combined using a weighted sum, where the influence of each metric on the combined
association cost can be controlled through hyperparameter A:

¢ij = Adi(i,)) + (1 = Ddz (0,) (5:5)

Where finally an association is considered admissible if it is within the gating region of both

metrics (that is, both decisions b;]-(1) and b;]-(2) are equal to 1):

2
— (m)
by =] |5
m=1

5.3.3. Matching Cascade

When an object is occluded for a longer period of time, subsequent Kalman filter predictions
increase the uncertainty associated with the object location. For that reason, probability
mass spreads out in state space and the observation likelihood decreases. The association
metric should consider this spread of probability mass by increasing the measurement-to-
track distance. On the other hand, counterintuitively when two tracked objects compete for
the same detection, the Mahalanobis distance favors large uncertainty since it effectively
reduces the distance in standard deviations of any detection towards the projected track
mean. This is a problem: It can lead to increased track fragmentations and unstable tracks.
In that sense, Deep SORT introduces a matching cascade algorithm that gives priority to
more frequently seen objects to consider in a proper way the probability spread in the
association likelihood. Figure 5.3-2 shows the matching cascade pseudo-algorithm.

63

Predictive Techniques for Scene Understanding by using Deep Learning

Input: Track indices 7 = {1,..., N}, Detection indices D =
{1,..., M}, Maximum age Amax

I: Compute cost matrix C' = [c; 4]

2: Compute gate matrix B = [b; ;]

3: Initialize set of matches M + ()

4: Initialize set of unmatched detections i <— D

5: forn € {1,..., Amax} do

6: Select tracks by age T, «— {i € T | a; = n}

7. [z:,;] 4 min_cost_matching(C, Tn,U)

8 M~ MU{(i,7) | bij-xij >0}

9: H(—U\{j|zibi,j-m,j>0}

0: end for

1

: return M, U

Figure 5.3-2 Matching Cascade algorithm to evaluate the age of the tracked objects

[ts inputs are the set of track T and detection D indices in addition to the maximum age A4
(maximum time considered for a tracked object to have left the scene and delete from the
track set). Lines 1 and 2 compute the association cost matrix and admissible associations
matrix. Then, using the Hungarian algorithm, it is iterated over track age n (from 1 to A, 4,)
to solve the linear assignment problem for tracked objects of increasing age. In line 6 a
subset of n tracks, named T;, is selected since it has not been associated with a detection in
the last n frames. In line 7 the linear assignment problem between unmatched detections U
and not-associated tracks T,,. In lines 8 and 9 the set of matches and unmatched detections
is updated, which is returned in line 11. It is important to consider that the matching cascade
gives priority to tracked objects of smaller age, that is, those that have been seen more
recently.

Intersection Union Intersection over Union

M

B,
Bl B 1

Figure 5.3-3 Intersection over Union representation
Finally, the Intersection over Union (IoU) (Figure 5.3-3) is performed, as proposed in SORT,
on the set of unconfirmed and unmatched tracks of age n = 1. This helps to increase

robustness against erroneous initialization of the Kalman filter and take into account for
sudden appearance changes, such as partial occlusion with static scene geometry.

5.3.4. Deep Appearance Descriptor

At this moment, the above steps represent the SORT algorithm, that is, an object detector
providing detections (CenterNet in the present work), Kalman filter tracking them and

64

Predictive techniques for Scene Understanding by using Deep Learning

providing missing tracks and the Hungarian algorithm solving the association problem.
However, despite the effectiveness of Kalman filter, it fails in many of the real-world
scenarios where associated VOT problems take place, such as occlusions, lighting or
different point-of-view, in other words, one fundamental thing that SORT algorithm misses,
which human beings use all the time in tracking, is a visual understanding of the detected
bounding boxes. In order to overcome this drawback, [2] introduces another distance
metric based on the appearance of the object. Using deep features allows Deep SORT
technique to track much better in cases where people are occluding or are very close in the
image. The idea is to obtain a vector that can describe all the features of a given image.

Original version of [2] employed a CNN trained on a large-scale person re-identification
dataset (Mars dataset [57]) that contains over 1,150,000 images of 1,261 pedestrians, so it
is well suited for deep metric learning in a people tracking context. A classifier over this
mentioned dataset was trained till it achieves a reasonably good accuracy and then strip the
final classification layer. That feature vector becomes the appearance descriptor of the
object. Moreover, currently not only supports people re-identification but also the COCO-
dataset labels (cars, bicycles, etc.) which provides a more robust tracking in terms of MOT
for self-driving applications.

Name Patch Size/Stride Output Size
Conv 1 I x 3 32 x 128 x 64
Conv 2 Ix I 32 x 128 x 64
Max Pool 3 3 x 32 32 x 64 x 32
Residual 4 Ix I 32 x 64 x 32
Residual 5 Ix 31 32 x 64 x 32
Residual 6 3 x 32 64 x 32 x 16
Residual 7 I x 31 64 x 32 x 16
Residual 8 3 x 32 128 x 16 x 8
Residual 9 I x 31 128 x 16 x 8
Dense 10 128
Batch and 5 normalization 128

Figure 5.3-4 Overview of the Deep Appearance descriptor CNN architecture

This CNN architecture is shown in Figure 5.3-4. The input constitutes a 32 x 128 x 3 image
corresponding to each of the bounding boxes (crop) detected in the image. It is actually a
wide residual network [58] with two convolutional layers followed by six residual blocks.
The Dense 10 layer will be the appearance feature vector for the given crop. The network
has 2,800,864 parameters and one forward pass of 32 bounding boxes which takes 30 ms
on a Nvidia GeForce GTX 1050 mobile GPU. Considering that the available GPU of the
SmartElderlyCar is better (1070 GTX), this network is well suited for the vehicle online
tracking purposes. A final batch and l, normalization projects features onto the unit
hypersphere to be compatible with the cosine appearance metric. Once trained, it is just
required to pass all the crops of the detected bounding box (in this case performed by
CenterNet) from the image to this network and obtain a 128 x 1 dimensional feature vector
(for each detected bounding box).

65

Predictive Techniques for Scene Understanding by using Deep Learning

In conclusion, a simple distance metric, combined with a powerful DL technique is all it took
for Deep SORT to be an elegant and one of the most widespread object trackers. In summary,
given an input image, CenterNet detects the relevant objects in the image according to
COCO-dataset. By using this bounding box information between the projection of the track
distribution (Kalman Filter) and bounding boxes detection, Mahalanobis distance is
computed (Motion metrics); on the other hand, using a deep appearance descriptor based
on a pretrained CNN, appearance metric is computed as well. By using a weighted sum of
these motion metrics and appearance metrics, Deep SORT is able to predict in a very
accurate way feature pose of the tracked objects.

Moreover, Figure 5.3-5 shows the algorithm used to perform VOT using CenterNet and Deep
SORT approaches. A more detailed overview of the code can be found in Code of Interest
C-2 and Code of Interest C-3.

Algorithm 2 Performing Visual Object Tracking using CenterNet and Deep
SORT

Input: ROS RGBA image (img_msg)

Output: Predicted pose of tracked objects

1: img_-msg —+ image (OpenCV RGB image)
2: Use CenterNet to obtain preliminary bounding boxes proposal
3: Diseard bounding box proposal if score lower than visualization theshold:
if any(bbox[:,4] > opt.vis_thresh):
bbox = bbox[bbox[:,4] > opt.vis_thresh,]
bbox[:,2] = bbox[:,2] - bbox[:,0]
bbox[:,3] = bbox[:,3] - bbox[:,1]
return bbox][:,:4], bbox[: 4], bbox][:,5]
4: Predict the pose of tracked objects using Deep SORT algorithm:
max_cos_distance = 0.2 ; nn_budget = 100
metric = NNDistanceMetric(’cosine’, max_cos_distance, nn_budget)
Initialize a tracker with the proposed metric
Generate the deep appearance vector of the bounding box
Run no Non-Maximum Suppresion
Update the tracker
Output bbox identities

Figure 5.3-5 Algorithm used to perform VOT using CenterNet and Deep SORT

5.4. LiDAR clustering

As commented in Chapter 3, working with the whole point cloud can be hard
computationally to perform detection and tracking on individual objects. For that reason,
the whole point cloud is usually divided into smaller clouds of points (also known as
clusters) in which each one contains nearby space points that belong to the same object.

In this master thesis, a clustering based on the 3D point cloud data is performed. Despite
the fact that it requires a great computational effort than if it was done with 2D data, the
results (overall the 3D centroid of the object) are more accurate when incorporating the

66

Predictive techniques for Scene Understanding by using Deep Learning

vertical component. The implemented method is based on grouping 3D points by using the
searching algorithm KD-Tree combined with the cluster extraction based on the Euclidean
distance (Euclidean Cluster Extraction).

5.4.1. KD-Tree

KD-Tree (K-dimension tree) is a data structure used to organize points in a k-dimensional
Euclidean space. It is a binary search tree that only employs perpendicular planes to each
dimension, where each node contains a point, leaving all the points crossed by planes. It is
usually used for point searches, such as the Nearest Neighbour [59]. As this master thesis
works with 3D point cloud data, 3D trees are used (K = 3).

The tree-shaped organization is equivalent to a hierarchical structure divided into levels
formed by parent nodes and child nodes, where at each level, the nodes are divided by a
plane perpendicular to an axis. The most efficient way to build it is by using the QuickSort
algorithm, based on taking the median in one dimension and then ordering the rest of the
elements (on the right and on the left with respect to a given node) depending on whether
they have a greater or lesser value. Figure 5.4-1 shows an example of 3D tree structure:

Figure 5.4-1 3D KD-Tree example

In this example, the primitive cell is limited by the white cube. The first division is
performed by the red plane (first dimension), dividing the original cell into two subcells.
Each of these subcells is divided by the green plane (second dimension), resulting in 4
subcells which are dividing again by the blue plane (third dimension). In this case, with 8
subcells, the leaves of the tree are defined, since all the points, which represent the nodes of
the tree, have been covered.

5.4.2. Euclidean cluster extraction

As commented, the clustering method is based on dividing the whole point cloud into
smaller clouds according to the Euclidean distance based on the nearest neighbours as a
result of the 3D division performed by the KD-Tree algorithm. The Euclidean Cluster
Extraction works as follow:

67

Predictive Techniques for Scene Understanding by using Deep Learning

1. AKD-Tree is created to process the point cloud data.
2. Alist of indices is created.

3. For each point in the cloud:
a. The set of neighbouring points belonging to a sphere of radius lower than
the defined threshold is searched.
b. For each neighbouring point it is checked whether it has already been
evaluated. If not, it is added.

4. The algorithm ends when all points are part of the cluster list.

In order to implement this algorithm, a EuclideanClusterExtraction object with the
PointXYZRGB point type from the PCL library is used. The threshold will be set using the
setClusterTolerance parameter, which varies depending on the object model detected, in the
same way that the minimum and maximum size of each of the clusters (setMinClusterSize
and setMaxClusterSize parameters, respectively). Naturally, the number of detected points
for a car will be higher than for a cyclist or pedestrian.

Algorithm 3 Computing the LiDAR. clustering using Euclidean Cluster Ex-
traction and KD-Tree
Input: 3D ROS LiDAR Point Cloud (lidar_msg)
Output: Relevant clusters
: lidar_msg — pel_ptr (PointCloud<pel::PointXYZRGB> pointer)
cloud_filtered (PointCloud <pecl::PointXYZRGB>) = xyz filter(pcl_ptr)
3: Create the KD-Tree object to process the XY7Z filtered cloud:
tree — setInputCloud (*cloud._filtered)
4: Create Euclidean Cluster Extraction object for cluster extraction:
ec.setClusterTolerance(1);
ec.setMinClusterSize(2);
ec.setMaxClusterSize(25000);
ec.setSearchMethod(tree);
ec.setInputCloud(cloud_filtered)

ec.extract(cluster_indices)

E_:II—"

Figure 5.4-2 Algorithm used to compute the 3D LiDAR clustering using Euclidean Cluster
Extraction and KD-Tree techniques

Figure 5.4-2 shows the algorithm developed to obtain the relevant clusters from the
detected 3D LiDAR Point Cloud. A more detailed overview of the code can be found in Code
of Interest C-4.

5.5. Sensor fusion

Although VOT performs a very accurate 2D tracking, it presents a strong inaccuracy when
projecting the bottom position of the proposed bounding box onto the 3D space. To solve

68

Predictive techniques for Scene Understanding by using Deep Learning

this problem, a sensor fusion is performed. As commented in Chapter 2, Sensor fusion is an
approach that combines sensory data derived from different sources such the resulting
information has less uncertainty that would be possible when these sources were used
individually. In terms of AVs, main sensors to perform sensor fusion are camera and LiDAR.

In that sense, this work presents a sensor fusion on BEV between VOT performed in 2D
image and projected to the BEV plane and the LiDAR 3D boxes proposals and then projected
to the BEV, as shown in Figure 5.1-1. First of all, in order to perform the sensor fusion, BEV
projection from 2D tracked objects is carried out.

Algorithm 4 Computing the Image to BEV projection

Input: Bounding Box coordinates of the detected obstacle
Output: BEV pose of the obstacle in LIDAR frame

1: Set the inverse of the camera projection matrix (4x4)

2: Set camera height in the vehicle

3: Store Bounding Box coordinates in camera frame:
tracked_obstacle.x; = bb_coordinates|0]
tracked_obstacle.y; = bb_coordinates[1]
tracked_obstacle.xo = bb_coordinates|2]
tracked_obstacle.y2 = bb_coordinates|3]

4: Compute BEV pose of the obstacle:

centroid x = trﬂcked_obstacle.zl—gtrﬂcked_obstacle.z2
pixels =
centroid_x
tracked_obstacle.y_2
1
1

p_camera = inv_proj_matrix - pixels
K= camera_height
~ p_camerall]

p_camera_meters = p_camera - K
tracked_obstacle.pose = tf_Cam_to_LiDAR - p_camera_meters

Figure 5.4-3 Algorithm used to project the 2D VOT proposals onto the BEV plane

Figure 5.4-3 shows the algorithm used to obtain the BEV pose of the 2D VOT proposals. A
more detailed overview of the code can be found in Code of Interest C-5. Basically, based on
the inverse of the camera projection matrix, the position of the camera in the vehicle (mainly
its height) and the top-left and bottom-right corners of the 2D VOT proposals; the pose of
the 2D proposals are recovered in the BEV plane. It is important to take into account that
there is a transformation matrix, both in orientation and position, between the LiDAR and
camera frame, as shown in Figure 4.4-7. After a proper calibration process, through the
tf_Cam_to_LiDAR parameter, camera information is referred to the BEV LiDAR coordinates
system.

69

Predictive Techniques for Scene Understanding by using Deep Learning

Furthermore, in order to perform the sensor fusion of BEV VOT and LiDAR proposals, both
ROS topics must be reasonably synchronized when being processed by the fusion callback.
In that sense, ROS message filters package are used, which contain some message filters
algorithm out of which the time synchronization messages are the most interesting for this
purpose.

This synchronization filter is based on a policy that determines how to synchronize the
different channels. There exist two main policies: ExacTime and ApproximateTime. In the
case of sensor fusion. In this case, as in Figure 5.4-4, the ApproximateTime policy with a
interval of time of 200 ms in which both messages may be synchronized is used since it
performs better results than other configurations.

typedef message filters::sync policies::ApproximateTime<sensor_msgs::PointCloud2, centernet::centernet_list> MySyncPolicy2:
message filters::Synchronizer<MySyncPolicy2> sync2 (MySyncPolicy2(200), welodyne cloud sub , centernet_sub);
sync2_.registerCallback(boost: :bind(&tracking lidar_camera, _1, _2));

Figure 5.4-4 Main callback using the Approximate Time policy

At this point, both BEV proposals are synchronized in the same callback. Then, sensor fusion
is performed. Figure 5.4-5 shows the algorithm used to carry out the sensor fusion between
both proposals. A more detailed overview of the code can be found in Code of Interest C-6.
Since the BEV VOT approach is generally much more restrictive, that is, the
CenterNet+DeepSORT framework only identifies and track (if relevant) COCO-objects while
LiDAR considers an object any relevant group of 3D points, giving rise to a lot of irrelevant
3D small point clouds. For that reason, the first for loop focuses on the BEV VOT proposals
and the inner loop in the BEV LiDAR proposals, in order to reduce the computation time. In
the contrary case, many of irrelevant LiDAR objects would try to be associated with relevant
BEV VOT objects. Then, a maximum difference is initialized to 4 m in such a way that the
first preliminary merged object would be represented by the fusion of the BEV VOT
proposal and a BEV LiDAR proposal if the Euclidean distance between the BEV LiDAR
centroid and the BEV VOT pose (obtained from the bottom position of the 2D bounding box)
is lower than this initial 4 m. Moreover, this new max Euclidean distance is updated, and the
next BEV LiDAR proposal should be closer to the BEV VOT proposal in order to update the
preliminary merged object. When the BEV VOT proposal is compared with all BEV LiDAR
proposals, there is a LiIDAR candidate with its respective distance to the BEV VOT proposal.
If this distance is lower than 3 m, the merged object (also known as Merged VOT object)
stores the LiDAR pose and orientation while keeping the VOT identification (object ID and
type). Future works will include the BEV VOT pose not exclusively based on the BEV bottom
position of the bounding box but as a sum of the projected bottom position and its intrinsic
centroid based on the object type and orientation.

70

Predictive techniques for Scene Understanding by using Deep Learning

Algorithm 5 Sensor fusion between BEV LiDAR and BEV VOT proposals
Input: BEV LiDAR proposals, BEV VOT proposals
Output: Merged proposal
1: fori=0— BEV_VOT.size - 1
2: Initialize maximum difference to 4 m
3: Store current BEV obstacle values:
yex = BEV_VOT]i].t,
ycy = BEV_VOTi].t,
4: if (BEV_LiDAR.size > 0 A (BEV_VOT]i].type = (car V pedestrian)))
Compute BEV_VOTi] global coordinates
for j = 0 — BEV_LiDAR.size - 1
Find closest BEV_LiDARJj] w.r.t BEV_VOT]i] using Euclidean Distance

if (smallest Euclidean Distance < 3 m):
Merge BEV_LiDAR][j] pose and dimensions with BEV_VOT[i] identification

Figure 5.4-5 Algorithm to perform the sensor fusion between BEV VOT and BET LiDAR
proposals

71

72

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 6. Experimental results

6.1. Introduction

This chapter aims to present the obtained results in order to validate the architecture
proposal for Deep Learning based MOT. It is divided in the following sections:

% Quantitative results: First, the architecture is validated using the KITTI tracking
benchmark. Second, a comparison of BEV pose estimation is performed among the
Precision-Tracking, VOT and Merged VOT strategies in CARLA simulator. Finally, some
results are shown in the context of our Campus using our real autonomous vehicle.

«» Qualitative results: Some visual results are shown to illustrate the effectiveness of the
MOT approach.

The proposed VOT framework is implemented in a Docker image Ubuntu 18.04 using
Python and ROS Melodic Morenia. KITTI and CARLA test cases are done in a desktop
computer with i7-8700, 3.2 GHz CPU, 32 GB DDR4 2400 MHz RAM, 500 GB SSD NVME and
NVIDIA 2070 RTX. Moreover, in the real prototype test cases, they are performed on an on-
board laptop MSI i7-8700, 2.8 GHz CPU, 16 GB DDR4 2400 MHz RAM, 500 GB SSD and
NVIDIA 1070 GTX.

In terms of CenterNet, the model was by the CNN was modified from the original
ctdet_coco_dla_2x.pth model (dla_34 architecture) to ctdet coco_resdcn18.pth (resdcn_18
architecture) with ctdet task (general object detection task) and a visualization threshold of
0.6. With this configuration, CenterNet+DeepSORT framework runs at 38-45 fps in the
above mentioned MSI laptop. For a deeper info about CenterNet models and parameters
configuration, the author is referred to the Model ZOO found in CenterNet GitHub.

In addition, sensor fusion has been encapsulated in a Docker image Ubuntu 14.04 using C++
and Ros Indigo Igloo.

6.2. Quantitative results

This section shows the quantitative results for each validation tool used, that is, KITTI
tracking benchmark, CARLA simulator and the SmartElderlyCar real prototype.

6.2.1. KITTI tracking benchmark

The KITTI object tracking benchmark [69] consists of 21 training sequences and 29 test
sequences, where 31 sequences contains images of size 1242 x 375 while other sequences
contain images of similar resolution (i.e. 12xx x 37x). Moreover, a 64-channels LiDAR

73

Predictive Techniques for Scene Understanding by using Deep Learning

information is provided for each frame. Despite the fact thatitlabels 8 different classes, only
the classes Car and Pedestrian are evaluated in the benchmark, as only for those classes
enough instances for a comprehensive evaluation have been labelled.

KITTI has been performed the labelling process in two steps: First, a set of annotators is
hired, in order to label 3D bounding boxes as tracklets in point clouds. Since for a pedestrian
tracklet a single 3D bounding box tracklet (dimensions have been fixes) often fits badly, it
additionally labels the left/right boundaries of each object by making use of Mechanical
Turk. It also collects labels of the object occlusion state and computes the object truncation
via backprojecting a car/pedestrian model into the image plane.

The goal the object tracking task in terms of KITTI benchmark is to estimate object tracklets
for the classes car and pedestrian. It evaluates 2D 0-based bounding boxes in each image.
For evaluation, it only considers detections/objects larger than 25 pixel (height) in the
image and do not count Vans as false positives for cars or Sitting persons as wrong positives
for Pedestrians due to their similarity in appearance.

The main performance metrics used have been MOTP and MOTA [70]:

e MOTP: Total position error for matched object-hypothesis pairs over all frames,
averaged by the total number of matches made. It shows the ability of the tracker to
estimate precise object positions, independent of its skill at recognizing object
configurations, keeping consistent trajectories, etc. In other words, it is represented by
the summary of overall tracking precisions in terms of bounding box overlap between
ground-truth and reported location:

itdit
MOTP = =~— 1
0 Xece (6-1)
Where c; is the number of correct matches found at frame t and d;, is the distance

between predicted detection and groundtruth detection for each correct match which is
taken as the IoU between the two bounding boxes.

e MOTA: Summary of overall tracking accuracy in terms of false positives, false negatives
and identity switches:

MOTA = 1 — Zi(me+fp+mmer) (6.2)
Xt gt

Where m;, fp, and mme, are the number of misses, of false positives and of mismatches
respectively for time t. In that sense, the MOTA can be seen as composed of 3 error
ratios, as shown in (6.3): m represents the ratio of misses in the sequence, computed
over the total number of objects present in all frames, fp represents the ratio of false
positives and mme represents the ratio of mismatches.

eme i o — Yt foe .
Yt 9t fp Xt gt ; mmme Yt 9t

__ Xgmme;

m = (6.3)

74

Predictive techniques for Scene Understanding by using Deep Learning

Summing up over these different error ratios gives rise to the total error rate E;,;, where
MOTA =1 — E;,, thatis, 1 — E;,; represents the resulting tracking accuracy.

In that sense, the results obtained, both applying the traditional Precision-Tracking
technique and the CenterNet+DeepSORT proposal, in the KITTI tracking dataset

compared to other state-of-the-art approaches have been:

Table 6.2-1 Results in KITTI tracking validation/test of different state-of-the-art

approaches
MOTA MOTP
MOTBeyondPixels [78] 84.24% 8573 %
IMMDP [79] 83.04 % 82.74%
3D-CNN/PMBM][80] 80.39 % 81.26 %
extraCK [81] 79.99% 82.46%
MASS [82] 85.04 % 85.53 %

Precision-Tracking (ours) 40.93% 79.13%
CenterNet+DeepSORT (ours) 82.57% 81.53%

All the approaches except ours have been validated on the test datasets for the car class as
displayed in the benchmark online (April 2019). In our case we have used the validation
dataset (20 % of the training dataset) because our implementation has not been loaded yet
into the KITTI public online benchmark. It can be appreciated that the precision-tracking
technique, even though it performs in terms of precision (MOTP) in a similar way than other
state-of-the-art approaches (it is able to estimate in a very accurate way the object pose),
this precision is limited to a good detection, task in which precision-tracking technique fails
considerably as mentioned throughout this work, due to the presence of small number of
coloured points at further distances. On the other hand, the architecture proposed in this
work based on Deep Learning shows some very promising results which are on pair with
other current state-of-the-art approaches keeping a good processing time. It presents both
good accuracy, since thanks to the scale-aware paradigm CenterNet is able to detect objects
at pretty far distance, and precision due to the Deep SORT tracking as a preliminary stage
to carry out the sensor fusion. Furthermore, in order to improve the MOTP metric, future
works will deal with other state-of-the-art BEV VOT projection approaches, also considering
the tracked object type in order to adapt the currently predefined BEV VOT bounding boxes
to the object orientation so as to improve the posterior sensor fusion.

6.2.2. CARLA simulator

In spite of the fact that KITTI tracking benchmark is a correct way to validate a tracking
architecture proposal, all features are fixed and cannot be modified in order to perceive how
the tracking architecture faces different situations, such as sudden rain, pedestrians
crossing the road on not-allowed zones or other vehicles performing anomalous
behaviours. On the other hand, validation is carried out on the images (2D) using the
projection of the ground truth poses but not directly on the 3D space.

75

Predictive Techniques for Scene Understanding by using Deep Learning

Figure 6.2-1 Manual control of dynamic obstacles in CARLA

In that sense, CARLA represents a very powerful simulator in order to validate the tracking
system by using its modifiable perception environment, manual control of dynamic
obstacles, like cars, pedestrians or bicycles (Figure 6.2-1), and a fast configuration of the
vehicle sensors in order to check the best combination to perform the VOT as a preliminary
stage to carry out the sensor fusion. As shown in Figure 6.2-2, CARLA test were performed
using an RGB camera 1280 x 720, 32-channels LiDAR and semantic segmentation
information so as to get a coloured point cloud and carry out the Precision-Tracking
approach.

"type": "sensor.camera.rgb”,

"id": "front",

“x": 0.32, "y": 0.8, "z": 1.65, "roll": 0.0, "pitch”: 0.8, "yaw": 0.0,
"width": 1280,

"height": 720,

"fov": 100

"type": "sensor.other.gnss",

"id": "gnss1",

"x": -8.28, "y": 8.0, "z": 1.65

"type": "sensor.lidar.ray_cast",

"id": "lidar1",

"x": 0.0, "y": 0.0, "z": 1.95, "roll": 0.0, "pitch": 0.0, "vaw": 0.0,
"range": 5000,

"channels": 32,

"points_per_second": 320000,

"upper_fov": 2.0,

"lower_fov": -26,

"rotation_frequency": 20

"type": "sensor.camera.semantic_segmentation”,

"id": "semantic",

"x": 0.0, "y": 0.0, "z": 1.65, "roll": 0.0, "pitch": 0.0, "yaw": 0.0,
"width": 1280,

"height": 720,

"fov": 100

Figure 6.2-2 CARLA sensors configuration

In order to compare CARLA object location, which represents the groundtruth, with the BEV
pose estimation of Precision-Tracking, VOT and Merged VOT approaches, some code is
implemented to return in a topic named /carla/hero/location_list the pose of all manually
introduced CARLA objects, transforming the GNSS coordinates provided by CARLA to UTM-

76

Predictive techniques for Scene Understanding by using Deep Learning

global coordinates with respect to the map origin. For example, if there are five pedestrians,
this topic must return the pose and orientation of those pedestrian at the same timestamp.

To perform the comparison, it is calculated the Euclidean distance between the CARLA
object BEV pose and the BEV pose estimation for each of the above-mentioned techniques
if both BEV bounding boxes are associated. This association is carried out in similar way
than exposed in Figure 5.4-5: For each technique, a given CARLA object is associated to the
closest BEV proposal if the Euclidean distance between its BEV pose is lower than a certain
threshold (2 m in this work). Finally, if they are associated, it is stored in a text file in order
to perform posterior analysis and comparison, in a similar way that results are compared
in the KITTI tracking benchmark. Each row is divided into 11 rows, whose associated fields
are shown in Table 6.2-2. It is remarkable that in this case errors will be directly calculated
in the BEV plane instead of in images, as happen in the KITTI evaluation.

Table 6.2-2 Structure of each element of the comparison file

Column Meaning
1 Approach ID (-1 =VOT, -2 = Merged VOT, -3 =
Precision-Tracking)
2 CenterNet detector size (how many objects are
detected in the scene)

3 CARLA size (how many objects have been
introduced in the CARLA world)

4 Tracked object ID (associated ID to an object,
used to identify ID mismatching)

5 Tracked object CARLA ID (associated CARLA

object to that tracked object)
x-groundtruth (CARLA object x position)
y-groundtruth (CARLA object y position)
Estimated BEV x object position

O© 0 3 O

Estimated BEV yobject position

10 Euclidean distance (between CARLA
groundtruth and estimated BEV pose)

11 Timestamp

Following tables and graphics are calculated in terms of Single Object Tracking (SOT) to
validate the BEV proposals in a more flexible way. Figure 6.2-3 shows the Euclidean distance
between the CARLA groundtruth and the estimated position using BEV VOT, Merged VOT
and Precision-Tracking estimated pose versus the X-local distance (road axis).

An interesting metric to compare the performance in the BEV pose estimation is to calculate

the global Root Mean Square (RMS) error in the whole trajectory and the RMS for each
interval:

1
RMSerror = |-+ ?:1 €; (6-4)

n

77

Predictive Techniques for Scene Understanding by using Deep Learning

Where n is the number of associations that were produced with the CARLA object for each
technique and ed; the Euclidean distance between the CARLA object pose and the BEV
proposal for the i-th association. Table 6.2-3, Table 6.2-4 and Table 6.2-5 show the RMS
error and number of samples (correctly associated BEV proposals) for each technique. It
can be appreciated that the maximum registered distance to track an object is 37.34 m.
Moreover, until distances of 12-13 m all approaches perform a similar behaviour, with a
Euclidean distance under 0.2436 m. However, for further distances, VOT starts increasing
its error. Moreover, for distances further than 24 m, due to the point cloud scarcity,
Precision-Tracking, based on semantic segmentation, is not able to track the object since
there are very few coloured points, what is represented by 0 samples and a Not Applicable
(N/A) RMS. Finally, the blue line, representing the Merged VOT proposal, works in a pretty
accurate way, maintaining an RMS (Root Mean Square) error in the whole trajectory below
0.2278 m even for distances further than 32 m. Additionally, global RMS

Table 6.2-3 RMS error and Number of samples in function of the distance (Precision-

Tracking)
Interval Number of samples | RMS
Om-4m 1 0.2164
4m-8m 0 N/A
8m-12m 2 0.2436
12m-16 m 1 0.1212
16 m-20 m 10 0.2268
20m-24m 1 0.2668
24m-28m 0 N/A
28m-32m 0 N/A
32m-36m 0 N/A
36 m-40m 0 N/A
Whole trajectory 15 0.2259

Table 6.2-4 RMS error and Number of samples in function of the distance (VOT)

Interval Number of samples | RMS
Om-4m 9 0.0472
4m-8m 21 0.2177

8m-12m 21 0.1784
12m-16m 22 1.1189
16 m-20 m 23 1.5045
20m-24m 20 0.9613
24 m-28m 18 2.2384
28m-32m 7 2.6679
32m-36m 5 1.8596
36 m-40m 7 1.9294
Whole trajectory 149 1.2811

78

Predictive techniques for Scene Understanding by using Deep Learning

Table 6.2-5 RMS error and Number of samples in function of the distance (Merged VOT)

Interval Number of samples | RMS
Om-4m 9 0.2156
4m-8m 21 0.1911

8m-12m 21 0.1856
12m-16m 22 0.1884
16 m-20 m 23 0.1546
20m-24m 20 0.2278
24m-28m 15 0.2201
28m-32m 3 0.1963
32m-36m 3 0.1408
36 m-40m 5 0.2295
Whole trajectory 146 0.1963

As expected, precision-tracking technique performs a good BEV estimation if a precision
tracker is associated to the CARLA object, although it is able to perform that identification
very few times (15) in comparison with VOT (149) and Merged VOT (149). The number of
samples of VOT is always greater than Merged VOT since at further distances (over 31 m)
BEV VOT pose and BEV LiDAR pose distance is greater than the required threshold, so
sensor fusion is not performed.

Figure 6.2-4 and 6.2-5 show a visual comparison of the BEV pose estimations for the
different techniques (CARLA groundtruth trajectory versus BEV estimated trajectory) in
straight and curved trajectory respectively. Figure 6.2-5 and Figure 6.2-7 focus on the
Merged VOT proposal, illustrating the effectiveness of this method.

Figure 6.2-8, Figure 6.2-9 and Figure 6.2-10 show 3D scatter plots to represent the
Euclidean distance in terms of CARLA (X,Y) groundtruth. It can be appreciated that the
Precision-Tracking approach presents very few points as a result of not semantic
segmenting properly the object at further distances due to the points scarcity in that
particular part of the point cloud. VOT points show how Y-lateral displacements increases
the error in a parabolic way (it can be appreciated better for low values of X local distances).
Furthermore, Merged VOT points show a proper behaviour, since despite the presence of
very few outliers, most of points present a Z-value (that is, the Euclidean distance) under
0.2764 m even including Y-lateral displacements. All graphics show the position of the ego
vehicle in order to appreciate properly the pose and orientation of the trajectories.

79

Predictive Techniques for Scene Understanding by using Deep Learning

vs position with 3D projected VOT, merged 3D projected VOT and Precision Tracking) vs X local distance
(Y displacement = 0 m)
— vor
0 —— Merged vOT 1

— precision Tracking

) \,MV

: //) f/ /
e R 1 T

5 10 15 20 25 EY ES
X local distance (m)

Euclidean distance

Figure 6.2-3 Euclidean distance vs X local distance with Y displacement = 0 m (including
all approaches)

. y vs Esti d trajectory with 3D projected VOT, merged 3D projected VOT and Precision Tracking
& Vot
& Merged VOT o o
12 @ Precision Tracking 4 M
< CARLA groundtruth . ® }i’

¥ local distance (m) to car

0 5 10 15 20 25 30 35 40
X Iocal distance (m) ta car

Figure 6.2-4 BEV of Groundtruth trajectory vs Estimated trajectory in straight line

(including all approaches)

Grountruth trajectory vs Estimated trajectory with 3D projected VOT, merged 3D projected VOT and Precision Tracking

® Merged voT
125 + caARLA h & o

et
Findl

»
v
-+

Y local distance (m) to car
©
]
3

000 & o™

-0.25+4—

5 10 15 20 25 30 35 40
X local distance (m) to car

Figure 6.2-5 BEV of Groundtruth trajectory vs Estimated trajectory in straight-line
tracking (only Merged VOT approach)

80

Predictive techniques for Scene Understanding by using Deep Learning

Grountruth trajectory vs Estimated trajectory with 3D projected VOT, merged 3D projected VOT and Precision Tracking

voT

Merged VOT
Precision Tracking
CARLA groundtruth

+o.ln

/@%@'ﬂt‘

¥ local distance (m) to car

10

15 20 25 30
X local distance (m) to car

Figure 6.2-6 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking

(all approaches)

Grountruth trajectory vs Estimated trajectory with 3D projected VOT, merged 3D projected VOT and Precision Tracking

® Merged VOT

<+ CARLA groundtruth

Y local distance (m) to car

10

15 20 25 30
X local distance (m) to car

Figure 6.2-7 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking
(only Merged VOT approach)

81

Predictive Techniques for Scene Understanding by using Deep Learning

Euclidean difference (Gr dtruth vs Estimated position with Precision Tr

king) vs CARLA groundtruth (X,Y)

(w) 3URISIP ueapiznd

Figure 6.2-8 3D scatterplot representing the Euclidean distance vs CARLA groundtruth
(X,Y) (Precision-Tracking approach)

Euclidean difference (Groundtrutl}_ys Estimated position with VOT) vs CARLA groundtruth (X,Y)

SR ol R e Pl PP c
T L 1 A e [T
2.5 | " | — « P ad | [
| | | -t (X e o | F — |
o T T L ede |
5 20 | b | T * e i "o' ‘ f
-g: T |
5
a 15
® 10
3

e
n

Al
15.0 i

- O
- 125 g

> o 10.0 *\u@
ance (m) 2 = <

Figure 6.2-9 3D scatterplot representing the Euclidean difference vs CARLA groundtruth
(X,Y) (VOT approach)

82

Predictive techniques for Scene Understanding by using Deep Learning

Euclidean difference (Groundtruth vs Estimated position with Merged VOT) vs CARLA groundtruth (X,Y)

2.00

(w) 2oueISIP weapn3d

Figure 6.2-10 3D scatterplot representing the Euclidean difference vs CARLA groundtruth
(X,Y) (Merged VOT approach)

6.2.3. SmartElderlyCar

In spite of the fact that in the Campus there is not a groundtruth, several tests were carried
outin order to appreciate a preliminary performance of the architecture proposal, obtaining
successful results. Following figures represent four subsequent frames for the same scene
where SOT is performed. It can be appreciated that the ID is kept throughout all frames (ID
= 2) and the projection matrix, though is not the best solution, offers coherent numbers (the
lateral displacement spans from -0.75 m in the #1st frame, since the car is on the left with
respect to the ahead vehicle, to -0.028 m in the #4th since both vehicles are almost aligned).

83

Predictive Techniques for Scene Understanding by using Deep Learning

100t @robesafe GT62VRTRE: —/r... *

7

Foot@robesafe GTGVR-7TRE: -/r... *

Figure 6.2-11 Quantitative results in SmartElderlyCar navigation

6.3. Qualitative results

This section shows the qualitative results of the architecture proposal, illustrating how MOT
is performed both in CARLA simulator and in the Campus with our real autonomous vehicle.

6.3.1. CARLA simulator

All frames show different pedestrians which are included in the CARLA simulator. The top-
left small window shows the semantic segmentation provided by CARLA. On the other hand,
the bottom-left small window shows the output image as a result of the object detection and
tracking in the scene performed by the CenterNet+DeepSORT framework. The general
background shows the coloured point cloud (in R-VIZ simulator) obtained by projecting the

84

Predictive techniques for Scene Understanding by using Deep Learning

semantic segmentation information onto the velodyne point cloud (as shown in Figure
4.6-3). Each pedestrian (red cluster) has a green arrow, illustrating the predicted position
using the Merged VOT approach and an arrow with the colour obtained from the 2D tracking
(VOT). It can be appreciated that Merged VOT approach estimates better the centroid of the

objects than the other approaches.

-
-
=
"
-
-

85

Predictive Techniques for Scene Understanding by using Deep Learning

-
-
g
=
3
=

Figure 6.2-12 Qualitative results in CARLA simulator

6.3.2. SmartElderlyCar

This section shows the MOT paradigm in a real-world situation. Tests were performed in
the Escuela Politécnica Superior (UAH) surroundings. We show results directly on the
images to understand the robustness of our architecture. Even though most of objects
(mainly cars) are partially occluded, Deep SORT proposal deals with that issue in an
accurate way.

86

Predictive techniques for Scene Understanding by using Deep Learning

| ' WRERLIT L et
. -Ica'C‘C,a’ 0.44 3car car_0.41 448
- N T

(

56

e

- - -

87

88

Predictive Techniques for Scene Understanding by using Deep Learning

I

h 0.55 32car,_0.42 41

e l

[

212 e m0.73 3ccar 0
= —r

Figure 6.2-13 Qualitative results in a real-world situation with the SmartElderlyCar

Predictive techniques for Scene Understanding by using Deep Learning

Chapter 7. Conclusions and future
works

7.1. Conclusions

This master thesis shows the development of a Deep Learning based Multi-Object Tracking
approach based on CenterNet as object detector and Deep SORT as object tracking
algorithm and its implementation on KITTI benchmark and on the SmartElderlyCar project
both in CARLA simulator and real-world. In addition, sensor fusion was performed between
the deep learning approach and a 64/32 channels LiDAR 3D, obtaining better results than
other state-of-the-art approaches for object tracking in autonomous driving applications.

[t must be considered the architecture proposal depends crucially on the results obtained
during image detection, since although the sensor fusion performs a very accurate
estimated pose of the objects, the tracking is performed in 2D. So, if the object detector does
not work in a proper way, there could be identification mismatching or even loss of
information, leading to a dangerous situation for the vehicle. In that sense, implemented
object detector (CenterNet) works in a very accurate way. Even it has been trained using
real world images (COCO dataset), it performs a good detection with synthetic data (CARLA
simulator). On the other hand, Deep SORT approach works in a very appropriate way,
handling the occlusion, lighting, and point-of-view problems as shown in the qualitative
results illustrating the effectiveness in the use of deep learning approaches in terms of
object tracking (Deep appearance descriptor). The combination of this object detector and
the deep learning-based tracking algorithm gives rise to a correct performance in terms of
2D tracking.

Validation results have been obtained in KITTI dataset showing better results than using
the traditional Precision-Tracking strategy and being on pair with other state-of-the-art
proposals. Validation has been performed as well in CARLA simulator since it is able to get
the groundtruth of the objects in an easy way in order to stablish a proper comparison. As
expected, the tracking results obtained by the sensor fusion proposal significantly improve
the tracking performed by Precision-Tracking algorithm and Visual Object Tracking.

The validation has been performed in CARLA since it is able (after few modifications) of
obtaining the groundtruth of the objects in order to stablish a proper comparison. As
expected, the tracking results obtained by the sensor fusion proposal significantly improve
the tracking performed by precision-tracking algorithm and only Visual Object Tracking.
Despite the fact the estimation of precision-tracking is relatively accurate, it is not able to
track at further distances than 23 m since it most depends on the projection of the semantic
segmentation into the point cloud. Since at that distance, even with a 32-channels LiDAR,
the number of points considerably is decreased, the number of coloured points is not
enough in order to identify that coloured cluster as a determined object. On the other hand,

89

Predictive Techniques for Scene Understanding by using Deep Learning

CenterNet+DeepSORT framework is able to detect and track the object in an accurate way
until distances of 34 m, when the object size in the image is not big enough to be detected
by CenterNet object detector, even with its scale-aware paradigm. As expected, the further
an object is, the greater the Euclidean distance between the groundtruth of CARLA position
and the estimated position is. However, merging this BEV proposal of the
CenterNet+DeepSORT framework with the closest BEV LiDAR cluster gives rise to Euclidean
distances lower than 0.37 m throughout the whole trajectory.

Therefore, it can be concluded that the proposed objectives at the beginning of this master

thesis, mainly the study of deep learning-based tracking approaches, implementation of a
Deep Learning based Multi-Object Tracking architecture and validation, have been met.

7.2. Future Works

In order to improve the present work, the following improvements may be performed:

e Improvement of 3D projection in the tracking layer in order to decrease the error in
terms of X-axis and Z-axis.

e Improvement in the architecture validation for the case of multiple objects in
CARLA.

e Update of the CARLA ROSbridge in order to improve the communications between
the CARLA world and the SmartElderlyCar project.

e Update of the CARLA version (0.9.5 to the most recent) to improve the simulation
experience and efficiency.

e Improvement of sensor fusion not only taking into account the Euclidean distance
but also previous behaviours of relevant objects (such as a pedestrian has the
intention to cross the road or a car is going to perform an anomalous behaviour)
based on the orientation of the object and biometric features.

e Validation in KITTI using the test dataset and other classes beyond the cars and in
other tracking datasets.

e Integration of the different SmartElderlyCar software layers in Docker containers in
order to improve the development and testability of the project.

e Update the ROS version of Docker containers to ROS2 so as to investigate new
paradigms of real-time operation and Docker integration.

e [mplementation of a multi-camera system (both in CARLA and in the real prototype)
to carry out a tracking in 360 2.

90

Predictive techniques for Scene Understanding by using Deep Learning

e Development of a groundtruth for real-world objects so that the tracking of multiple
objects in real applications can be validated.

91

92

Predictive Techniques for Scene Understanding by using Deep Learning

Predictive techniques for Scene Understanding by using Deep Learning

Appendix A: Kalman Filter

The Kalman filter [30] (Rudolf E. Kalman, 1960) is an algorithm that uses a set of
measurements observed throughout the time, containing statistical noise and other
inaccuracies, producing an estimation of unknown variables that are likely to be more
accurate than those variables based on a single measurement alone, estimating a joint
probability distribution over the variables for each timeframe.

Kalman filter can be used in any field where there is uncertain information about some
dynamic system, performing a quite well guess about what system is going to do next.
Kalman filter is able to “messy” realities interfering with the clean motion it guessed about,
figuring out what actually is happening.

A. 1. Introduction to the Kalman Filter

Kalman filter is ideal for systems that are continuously changing since it is light on memory
(not requiring to keep any history other than the previous system state), so they are very
fast, making them well-suited for embedded systems and real-time applications. It can be
applied to multiple situations and data, such as the amount of fluid in a tank, the position of
a user’s finger on a touchpad, the temperature of a car engine or any number of things
needed to keep track of.

However, since the purpose of this master thesis is related with tracking, or keep track of
an object in a scene, it is reasonable to explain the Kalman filter from a certain (simple)
dynamic robot perspective. This robot presents a state x; which is just a vector that shows
its position and velocity:

X = @ V) (A1)

In spite of the fact that an external user does not know the actual position and velocity, there
are a whole range of possible combinations of position and velocity which might be true,
but some of them are more likely than others. The Kalman filter assumes that both variables
(in this case velocity and position) are random and Gaussian distributed. Each variable has
a mean value p, which is the center of the random distribution (moreover, the most likely
state), and a variance o2 which is the uncertainty. Figure A.1-1 illustrates how the position
and velocity are uncorrelated, which means that the state of one variable does not affect to
the state of the others.

93

Predictive Techniques for Scene Understanding by using Deep Learning

variance in Jc‘utJ“J/ o,

valocil'y

Figure A.1-1 Mean p and variance o2 of the velocity and position

On the other hand, Figure A.1-2 shows the difference between two uncorrelated (a) and
correlated (b) variables. In this case, the likelihood of observing a particular position
depends on what velocity the robot has.

\ some Sale
which might
be the rcal one

valoc&fy valoci(‘y

(a) (b)

Figure A.1-2 (a) Velocity and position are uncorrelated (b) Both variables are correlated

This kind of situation (correlated position and velocity) might arise if, for example, the
system is estimating a new position based on an old one. If the velocity was high, the robot
probably moved farther, and the position will be more distant. This kind of relationship is
important to keep track of, since it reports more information: The behaviour of a variable
can be determinant about what the others could be. That is one of the main goals of the
Kalman, to squeeze as much information from an uncertain measurement as it is possible.

This correlation is capture by a covariance matrix. In statistics and probability theory,
covariance is a measure of the joint probability of two random variables, so the covariance
matrix is a matrix whose element in the i, j position is the covariance between the i-th and

94

Predictive techniques for Scene Understanding by using Deep Learning

j-th elements of a random vector. Given n random variables (each with finite variance and
expected value) of a column vector:

X= (XliXZ' "'an)T (AZ)

Then the covariance matrix K xx (also Xyx) can be defined as the matrix whose (i, j) entry
is the covariance. It must be noted that the covariance matrix is symmetric, so it does not
matter to swap i and j.

Kxx, = cov[X;, X;| = E[(X; — EIX:D(X; — E[X;])] (A3)

Where the operator E denotes the expected value (the expected value of a random variable
is the long-run average value of repetitions of the same experiment it represents) of its
argument. In matrix form, for n random variables, it can be expressed as shown in Figure
A1-3:

[E[(X: - B[X:))(Xi —E[Xh])] E[(X: - E[Xi])(X; —E[X2])] -+ E[(X: — E[Xi])(X. — E[X.))]]
E[(X: - E[X»])(X, — E[X1])] E[(X: — E[Xa])}{X2 — E[X3])] -+ E[(X: — E[X3])(X, — E[X,])]
Kxx =
| E[(X, — E[X.])(X: - B[X1])] E[(X, - E[Xu])(X: —E[X3])] -+ E[(X, - E[X,])(X, — E[X,])]]

Figure A.1-3 Covariance matrix example

As commented above, Kalman filter assumes that system variables are Gaussian distributed,
so two pieces of information are required at time k: The best estimate X, (i.e., the mean,
elsewhere named), and its covariance matrix Py, (note that here it is written as P and not
as K in order to not to confuse with the instante k:

N [position Xpp va]
Xk = =

velocity| ° P = Yop v (A-4)

Where subscripts p and v mean position and velocity respectively. Then, the main goal is to
consider the current state (at time k — 1) so as to predict the next state at time k. However,
Kalman filter assumes that the system does not know which the real state of its variables is,
but the prediction function does not care. Moreover, the prediction function works on all
possible states giving rise to a new distribution, as shown in Figure A.1-4 (a).

95

Predictive Techniques for Scene Understanding by using Deep Learning

(a) (b)

Figure A.1-4 (a) New distribution after prediction (b) Transformation matrix between

original estimate and new prediction position

If the prediction process is represented as a matrix Fy, it takes every point in the original
estimate and moves it to a new prediction position (which is the point where the system
would move in the plane, in case of two variables, if that original estimate was the right one).
In the case of position and velocity, using basic kinematic formulas, it can be expressed as:

Pk = Pk-1H AL Vg 5 Vg = Vg (A.5)
Rewriting (A.5) in a matrix form:

o 1 4t] . o
X = [0 1]xk—1 = FyXy—4 (A.6)

Nevertheless, despite the fact that (A.6) expresses how the next state can be calculated
based on a prediction matrix Fj and the current frame, the system still does not know how
to update the covariance matrix. In order to calculate the new covariance matrix, every
point in the distribution must be multiplied by a matrix A4, giving rise the identity (matrix
properties):

Cov(x) =2 ; Cov(Ax) = AXAT (A.7)
And combining (I.7) with equation (1.6), it results in:

R =FiXy—q 5 Py =FPe1F (A.8)

A. 2. External influence

Even though (A.8) captures the covariance matrix and state variables in instant k, there
might be some changes that are not related to the state itself, that is, the world could be
affecting the system. For example, in the case of an autonomous vehicle performing an

96

Predictive techniques for Scene Understanding by using Deep Learning

Adaptive Cruise Control (ACC), the vehicle could accelerate. If the system knows what is
going on in the real-world, this additional behaviour can be stacked in a vector i, in order
to incorporate to the prediction as a correction. In the case of the previous robot, the vector
Uy, is in the form of an expected acceleration a due to the control commands or throttle
settings:

Dk = P11+ At - Vp_1+1/2-a-At? ; v =vy_,+a-At (A.9)

Or in the matrix form:
2
2 = Frfp_q + [AtAt/Z] a = FiZ_q + By (A.10)

Where By, is called the control matrix and % the control vector.

A. 3. External influence

While previous point mentioned what happens if and additional component has an
influence on the system, this point deals with what happens if the prediction model is not
100 % accurate, that is, external variables which the system does not know about. In the
case of self-driving, the wheels could slip or bumps on the ground. If it happens, and the
system is not prepared for those extra forces, the prediction could be off. The uncertainty
associated with the “world” (i.e., variables the system is not keeping track of) can be
modelled by adding some new uncertainty after every prediction step (Figure A.3-1 (a)).

valoci(‘y

(a) (b)
Figure A.3-1 (a) New uncertainty after the prediction step (b) New Gaussian distribution
with a different covariance

Every state in the original estimate could have moved to a range of new states. Since
variables are expected to be under Gaussian distributions, each point in X,_; is moved to
somewhere inside a Gaussian distribution with the covariance Qy, that is, the system would
be treating the untracked fluences as noise with covariance Q,, what produces a new

97

Predictive Techniques for Scene Understanding by using Deep Learning

Gaussian distribution with a different covariance but the same mean, as shown in (Figure
A.3-1 (a)). Then, the new covariance is corrected by simply adding Q,, giving rise to a
complete expression for the prediction step:

Ry = FyRy—q1 + Billy ; Px = FPrqFf + Qg (A.11)

In other words, the new best estimate (X)) is a prediction made from the previous best
system estimate (X,_) plus a correction for known external influences (i), and the new
uncertainty (P,) is predicted from the old uncertainty (P_,) with some additional
uncertainty from the environment.

A. 4. Refining the estimate with measurements

As commented throughout this master thesis, autonomous vehicles are full of sensors. One
can read velocity, other position or even calculating the odometry of the vehicle by using
visual information, but in summary all of them report information about the state of the
vehicle. Since the units and scale of the reading might not be the same as the units and scale
of the state the system is keeping track of, these sensors are modelled with a matrix Hj,
(Figure A.4-1).

*
<

3

N

(4
3
<
3

Seasor 1 rudina

Figure A.4-1 Sensors modelling using matrix transformation

So the expected distribution of sensor readings is as following:
ﬁexpected = HyXyx Zexpected = I'IkPkI'IZcw (A.12)

One thing that Kalman filters are great for is dealing with sensor noise, since even the best
sensor is at least somewhat unreliable and every state in the original estimate might result
in a range of sensor readings. From each sensor reading it can be appreciated was in a
particular state. However, since there is uncertainty, some states are more likely than others
(Figure A.4-2 (a)). The covariance of this uncertainty (covariance of the sensor noise) is
called Ry, whose distribution has a mean equal to the reading it was observed by the sensors
(Zy). Then, there are two distributions: One surrounding the mean of the transformed

98

Predictive techniques for Scene Understanding by using Deep Learning

prediction, and one surrounding the actual sensor the system got, as shown in Figure A.4-2
(b). Then, the system must be able to guess about the readings it would see based on the
predicted state with a different guess based on the sensor reading that the system actually
observed. In order to estimate these new possible readings (position and velocity
estimation in this case) there are two associated probabilities: First, the probability that the
sensor mean reading Z, is a (mis-) measurement of (z,, z,) and second, the probability that
the previous estimate (z;, z,) is the reading the system should see.

esimalc 1
Wy estimate 2
e readi
we 3ot’w Hk

noise

Ay

—>
Some readip? re—Z
which might

be the “reel" one

£
<
s
-
[
s
o
w
s
&

Sensor L rudina

(a) (b)
Figure A.4-2 (a) Random noise between the current read and the possible real one
(b) Transformed prediction distribution and sensor measurement distribution

By using basic concepts of statistics, if a system has two probabilities and it is required to
know the change that both are true, they must be multiplied together, which is actually the
overlap of both distributions. It is a lot more precise than either of previous estimates of the
system. The mean of this distribution is the configuration for which both estimates
(transformed prediction and actual sensor reading) are most likely, and therefore the best
guess of the true configuration given all the information the system has collected. Then, this
overlap looks like another Gaussian distribution (furthermore, the multiplication between
two Gaussian distributions with separate means and covariance matrices results in a new
Gaussian distribution with its own mean and covariance matrix).

A. 5. Combining Gaussians
According to the 1D Gaussian bell curve with variance 62 and mean p is defined as:

_-p?

1
N(x,u,0) = P4 202 (A.12)
N(x, Mo, O-O) ' N(x, M1, 0-1) ? N(x' H" OJ) (A13)

99

Predictive Techniques for Scene Understanding by using Deep Learning

If two normal distributions (yg, 0y and p4, 07) are multiplied, the result is the unnormalized
intersection. Substituting (A.12) into (A.13) (then renormalizing, so that the total
probability is 1), it is obtained:

4

2. (g —
ul = + o) (Zlil 50) : g2 = 0'02 __ 09 (A14)

ol+o?
. ol .
Then, it can be observed a common factor k = o (A.14) can be rewritten as:
0 1

W=po+k -(w—n) 0%?=05—k o5 (A.15)

In addition, (A.15) can be expressed as a matrix version. If X' is the covariance matrix of a
Gaussian distribution and | its mean along each axis, then:

K=2,Zo+2Z)™" ;5 H=H+KGH, —H) ; Z'=2Z—K (A.16)

Where K is a matrix called the Kalman gain. Finally, after explaining the effect of uncertainty,
external forces and refining the estimate with sensor measurement, the summary of the
Kalman filter is as following: There are two distributions: The predicted measurement with
(Lo» Zo) = (Hy Xy, He P HY) and the observed measurement (u;,%;) = (Z, Rx). Plugging
these measurements into equation (A.16) is required to find their overlap (i.e., the best
guess of the true configuration given all the information the system has collected, as
mentioned above):

Hy &' = HX + K(Z — HiRy) 3 HePHY = H P HY — KH P HY (A7)
From (A.16), the Kalman gain can be expressed as:
K = H P HE (H PoHE + Ry) ™ (A.18)

Then, simplifying Hj, in (1.16) and (1.17), the final equations of the Kalman filter that include
the update step are as following:

J?k’:??k +K’(Zk_Hk55k) 5 Pk’:Pk—K,HkPk (Alg)
K' = P HT (HPeHE + Ry (A.20)

Where X}, is the new best estimate and P,' the new uncertainty (based on predicted state
and sensor readings). In order to improve this estimation, this best estimation can be feed
it (along with P’ back into another round of predict or update as many times as is required).
In conclusion, the main Kalman filter equations are (A.11), (A.18) and (A.19). This allows to
model any linear system accurately. For non-linear systems, Extended Kalman Filter (EKF)
must be used, which works by simply linearizing the predictions and measurements about
their mean. Figure A.5-1 shows the Kalman Filter Information Flow, which sums up what is
stated in this appendix.

100

Predictive techniques for Scene Understanding by using Deep Learning

By,
T8 Update
fk_ 1 Y prediction fk
F, —
Pey [{2— Py
Qr
Hk fk
Ry —l_é}_ Predict

Figure A.5-1 Kalman Filter Information Flow

101

Predictive Techniques for Scene Understanding by using Deep Learning

102

Predictive techniques for Scene Understanding by using Deep Learning

Appendix B: Artificial Intelligence

This appendix aims to summarize the main artificial intelligence concepts addressed in this
master thesis. Artificial Intelligence has been witnessing an exponential growth in bridging
the gap between the capabilities of machines and humans. Although the terminologies
Artificial Intelligence (Al), Machine Learning (ML) and Deep Learning (DL) are usually used
interchangeably, they do not quite refer to the same issues. Figure B.1-B-1 depicts how DL
is a subset of ML, which is also a subset of Al. Al is the all-encompassing concept that initially
erupted, followed by ML and lastly DL that is promising to escalate the advances of Al to
another level.

B. 1. Artificial Intelligence concept

Artificial Intelligence is intelligence shown by machines, in contrast to the natural
intelligence demonstrated by humans. It represents a broader concept that consists of
everything from GOFAI (Good Old-Fashioned Al, also known as symbolic Al, collection of all
methods in Al based on high-level symbolic representations of problems, that is, logic and
search) to futuristic technologies such as deep learning.

ARTIFICIAL

INTELLIGENCE
MACHINE
LEARNING

o DEEP
— Q& LEARNING

1950's 1960's 1970's 1980°s 1990's 2000's 2010's
Figure B.1-B-1 Development of artificial intelligence and its subsequent fields in the last

six decades
If a machine performs a task based on a certain algorithm (set of stipulated rules that solve
problems), like an intelligent behaviour is what is called artificial intelligence. An example
can be found in robot that can move and manipulate objects in warehouses.

Al powered machines are usually classified into two groups:

e General Al: Also known as “Strong Al”, “Full Al” or “True Al”, machines can
intelligently solve general problems, for example recognizing if someone has raised

103

Predictive Techniques for Scene Understanding by using Deep Learning

the hands or moving a simple box. The machine has the capacity to understand or
learn any intellectual task that a human can.

e Narrow Al: The machine or technology outperforms humans in some very narrowly
defined task, focusing on a single subset of cognitive abilities and advances. For
example, nowadays computers are able to surpass humans in the playing of complex
games like GO or chess, making intelligent business decisions or classifying images
and tracking objects.

B. 2. Machine Learning concept

As mentioned above, Machine Learning (ML) was born in the 80s, whose intention was to
enable machines to learn by themselves using the provided data and make accurate
predictions. Indeed, it can be considered a technique for realizing Al as method of training
algorithms in such a way they can learn how to make decisions.

Then, training in machine learning is based on giving a lot of data to the algorithm and
allowing it to learn more about the processed information.

B. 3. Deep Learning concept

In the same way that ML corresponds a subset of Al, Deep Learning (DL) is a subset of ML.
Indeed, it is a technique for realizing machine learning, being DL the next evolution of
machine learning.

Deep learning algorithms are inspired by the information processing patterns found in the
human brain. In the same way that a human brain can identify patterns and classify various
types of information (for example, object detection, the first step to perform object
tracking), DL algorithms can be taught to carry out the same tasks for machines. Whenever
the human receives a new information (car on the road, pedestrian crossing 50 meters
ahead), the brain tries to compare it to a known item before making sense of it, which is the
same concept employed by DL algorithms.

While ML requires to be provided manually of features for classification, DL can
automatically discover them. Furthermore, DL requires high-end machines and
considerable huge amounts of training data in order to achieve accurate results.

In conclusion, Deep Learning is the most successful direction in the field of ML. Since
proposed, it has given rise to revolutionary progress and breakthrough in several aspects
of information processing like text, image, video or voice. The advantage of DL is mainly
reflected in the powerful ability in feature expression. Through the multi-level learning and
mapping, deep neural networks can obtain high-level abstract features from colours, edges
and other low-level features gradually. While ML techniques required professional manual
design with traditional feature, DL performs feature extraction in an automatic way.

104

Predictive techniques for Scene Understanding by using Deep Learning

Below it is explained a brief explanation of the main DL concepts used for Multi-Object
Tracking, that is Convolutional Neural Networks (CNNs) and RNNs (Recurrent Neural
Networks), in order to appreciate the particularities of the state-of-the-art approaches of
this master thesis such as GOTURN, MV-YOLO, MDNet, ROLO, Re3 or Deep SORT.

B. 4. Convolutional Neural Networks (CNNs)

The advancements in Computer Vision with Deep Learning has been developed and
improved with time, primarily over one particular algorithm: Convolutional Neural
Network.

A Convolutional Neural Network [22] (CNN/ConvNet) is a Deep learning algorithm which
can take in an input image, assign importance (learnable weights and biases) to some
objects/aspects in the image, being able to differentiate one from the other (that is,
assigning a different semantic identification, such as dog, car or bycicle). The pre-processing
process required in a CNN is much lower than other classification algorithms. While in
primitive methods filters (Machine Learning algorithms) are hand-crafted, with enough
training, CNNs have the ability to learn these characteristics/features. Figure B.4-1
illustrates how ML algorithms require a particular stage for feature extraction before
classifying the input variable, in DL algorithms, and furthermore in a CNN, the feature
extraction and classification is performed at the same level, so required pre-processing
process is decreased.

Machine Learning

G — |Gy

Input Feature extraction Classification

Deep Learning

& — 337 - Il

Input Feature extraction + Classification Output

Figure B.4-1 Comparison between stages required by ML and DL for classification

The architecture of a CNN is analogous to the connectivity pattern of Neurons in the Human
Brain, inspired by the organization of the Visual Cortex. In that sense, individual neurons
respond to stimuli only in a restricted region of the visual field known as the Receptive Field.
A collection of such fields overlaps to cover the whole visual area.

105

Predictive Techniques for Scene Understanding by using Deep Learning

An image is actually a matrix of pixel values, it could be flattened (e.g., 4x4 image matrix into
a 16x1 vector) and feed it to a Multi-Level Perceptron, which is not a recent technique [23].
However, in cases of extremely basic binary images, the method could show an average
precision score while performing prediction and estimation of classes but would have little
to no accuracy when it comes to complex images having pixel dependencies throughout.

On the other hand, a ConvNet is capable of successfully capturing the Spatial and Temporal
dependencies in an image through the application of relevant filters. In that direction, a CNN
architecture performs a better fitting to the image dataset due to the reduction in the
number of parameters involved and reusability of weights. In conclusion, the network can
be trained to understand the sophistication of the image better.

\\ 3 Colour Channels
\
\\,_1

Height: 4 Units
(Pixels)

< >

Width: 4 Units
(Pixels)

Figure B.4-2 RGB image channels and pixel correspondence

Figure B.4-2 represents an example of RGB image which has been separated by its three
colour planes, that is, Red, Green and Blue. There are a number of such colour spaces in
which images exist, such as RGB, HSV, CMYK, Grayscale, etc.

As mentioned above, the classification and prediction of the objects in the scene could be
relatively well-addressed if the image is binary and the dimensions are small. However,
when speaking about computation time it is easy to realize how computationally intensive
things would get once images reach dimensions, for example 8K (768 x 4320). Then, the
role of the CNN is to reduce the images into a simpler form which is easier to address,
without leasing critical features which are essential for getting a good estimation and
classification. It is a key concept when a novel architecture is proposed, since an
architecture does not have to be only good at learning features but also scalable to massive
datasets.

B. 4.1. Convolution Layer - The Kernel

Figure B.4-3 represents the convolution process of 5x5x1 (only a colour channel) with a
3x3x1 kernel in order to obtain a convolved feature with 3x3x1 dimensions. In terms of
image processing, convolution is the process of adding each element of the image to its local

106

Predictive techniques for Scene Understanding by using Deep Learning

neighbours, weighted by a kernel. The matrix operation being performed (also known as
convolution process) is not a traditional matrix multiplication but the result of applying the
kernel over a zone of the image is the sum of dot product between both matrices. The kernel
(also known as mask or convolution matrix) is a small matrix (smaller than image
dimensions) used for sharpening, edge detection, blurring and more. Then, the element
involved in carrying out the convolution operation in the first part of the Convolutional
Layer is called the Kernel/Filter (K), represented in yellow in Figure B.4-3.

111/1(0(0
0/1/1)1|0 4134
0,/0,)1[1]1 2
0/0,/1)1|0
0(j1{1|0]|0
Convolved
Image Feature

Figure B.4-3 Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved
feature

When speaking about CNNs, there are two key concepts related with the application the
kernel, that is, padding and stride:

e Stride: Distance between spatial location where the convolution kernel is applied. In
default scenarios, the distance usually is 1 in each dimension (also the default value
in TensorFlow), that is, each time the kernel moves from left to the right it is only
displaced one position, and the same when it has finished a horizontal movement
and moves down. When the stride is larger than one, it is usually called stride
convolution to make the difference explicit with non-stride (standard) convolutions.

e Padding: Since the result of the convolution between the kernel and the input image
results in a shrank output image, it is easy to realize that corner pixels will only get
covered one time while middle pixels will get covered more than once, giving rise to
a main downside, that is, loosing information on corner of the image. To overcome
this padding is introduced to the image. Padding is an additional layer added to the
border of an image, in order to take into account more times the edge and corner
pixels. Figure B.4-4 represents an example of padding (4x4x1 input image is padded
with Os to create a 6x6x1 image) and stride (1,1, thatis, standard movement both in
X and Y direction), resulting in an output image with identical dimensions than input
image.

107

Predictive Techniques for Scene Understanding by using Deep Learning

Filter Padding = Same
1 0)
Stride X
0 |05 Qutput
0| 0|0]O]| O
0.5 0 0.25 | 0.25
0 1 0 |05|05| 0
0 |[125]| 05| 05
=0 |0 |05 1|0} 0O ——
= @ 0 | 05]|075| 15
=l 0| 0| 1]|05|1]|0 a
< 0.5 | 0.25]1.25 1
0 1 |05]05] 1 0
0 0| 0|0 0 0 _ outDim = (inpDimystrideDim

Figure B.4-4 Example of padding and stride in the input image

In the case of Figure B.4-3, the kernel shifts 9 time since the stride length = 1, so non-strided,
every time performing a matrix multiplication operation between K and the porting T of the
image over which the kernel is hovering.

o

]

e

height

\

\

Figure B.4-5 Movement of a 3D kernel over the image

The filter moves to the right with a certain stride value till it parses the complete width.
Moving on, it hops down to the beginning (left) of the image with the same stride value (if X
stride value and Y stride value are identical) and repeats the process until the whole image
is traversed, as shown in Figure B.4-5.

108

Predictive techniques for Scene Understanding by using Deep Learning

] 0 o o o 0 o o] o o o o o]
o 156 | 155 | 156 | 158 | 158 = o 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 - o 164 | 165 | 168 | 170 | 170 164 | 166 | 166
o 149 | 151 | 155 | 158 | 159 - 0 160 | 162 | 166 | 169 | 170 0 156 | 158 | 162 | 165 | 166
o 146 | 146 | 149 | 153 | 158 0 156 | 156 | 159 | 163 | 168 0 155 | 155 | 158 | 162 | 167
o 145 | 143 | 143 | 148 | 158 0o 155 | 153 | 153 | 158 | 168 o 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green Input Channel #3 (Blue)
1111 1|10]|0
0 |2 |2 1|-1(-1
o2 e S (e § i || e |t
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
ﬂ ﬂ |
308 + —498 + 164 +1=-25
|
Bias=1

Figure B.4-6 Convolution operation of a MxNx3 image matrix with a 3x3x3 kernel

It is important to consider that in the case of images with multiple channels (e.g. RGB), the
kernel has the same depth as that of the input image. Then, matrix multiplication is carried
outbetween K, and I, stack ([Ky,11]; [K2, 5] ; [Kn, K]) and all the results are summed with
the (optional) bias to give the user a squashed one-depth channel Convoluted Feature
Output, as shown in Figure B.4-6.

The objective of the convolution operation is to extract the high-level features (complex
shapes) from the input image. However, CNNs need not be limited to only one Convolutional
Layer. Conventionally, the first CNN is responsible for capturing the low-level features
(gradient orientation, edges, colour, dots, etc.), while subsequent conv-layers the
architecture adapts to the high-level features (built on top of low-level features to detect
objects and larger shapes in the image) as well, giving rise to a network which has the
wholesome understanding of images in the dataset, similar to how the human would. Figure
B.4-7 shows an example of low, middle and high-level feature extraction.

Low-level _| Middle-level Top-level
feature | feature feature

Figure B.4-7 Low, Middle and High-Level feature extraction

109

Predictive Techniques for Scene Understanding by using Deep Learning

B. 4.2. Pooling layer

In a similar way to the conv-layer, the pooling layer is responsible for reducing the spatial
size of the convolved feature. This is very important to decrease the computational time
(and power) required to process the data through dimensionality reduction. Moreover, it is
useful for extracting dominant features that are positional and rotational invariant (keeping
the process of effectively training of the model).

As shown in Figure B.4-8, the main types of pooling are Max Pooling and Average Pooling.
While Max Pooling returns the maximum value from the portion of the image covered by
the kernel, average pooling returns the average of all the values covered. In addition, Max
Pooling performs as Noise Suppressant, that is, it discards the noisy activations altogether
and also performs de-noising along with dimensionality reduction. On the other hand,
Average Pooling simply performs dimensionality reduction as a noise suppressing
mechanism. Then, it is said that Max Pooling performs a lot better than Average Pooling.

max pooling
20(30
112 37
12(20| 30
8 (12| 2
34|70 37| 4 average pooling
112/100f 25 | 12 13| 8
79|20

Figure B.4-8 Types of pooling

The conv-layer and the pooling-layer together form the basic i-th layer of a Convolutional
Neural Network. Depending on the complexities in the images, the number of layers may be
increased for capturing low-levels details even further, but at the cost of more
computational power.

B. 4.3. Classification - Fully Connected Layer

After going through the above layers (conv and pooling), the basic model of CNN to
understand the features is explained. Then, the final output must be flattened and feed it to
a standard Neural Network for classification purposes (Figure B.4-9).

110

Predictive techniques for Scene Understanding by using Deep Learning

Output Volume oytput Volume
588x1 20x1

Output Nodes

5x1
\\\\\

Output Volume
14x14x3

Class 1
RelU Activation Fn.

Volume-28x28x3 __l:|_

O
O
O
O Class 4

Q—,

Convolution Class 5

layer Stride 1 =4l 0_1
Max Pool s
layer Stride 2 O Soft-max Layer
Fully connected Soft-Max
Input Volume Flattenlayer |, orReLU Activation Activation Fn
32x32x1 .

Figure B.4-9 Example of Fully Connected Layer (FC Layer)

Adding a FC layer is a (usually) cheap way of learning non-linear combinations of the high-
level features, as represented by the output of the conv-layer. The FC layer is learning a
possibly non-linear function in that space. After converting the input image into a suitable
for previous layers of the network, now the final image has to be flattened into a column
vector. Then, the flattened output is fed to a Feed-Forward Neural Network, where
backpropagation [25] is applied to every iteration of training. Over a series of epochs (an
epoch can be defined when an entire dataset is passed both forward and backward through
the neural network only once), the model is able to distinguish between low-level and
dominating features in images and classify them using the Softmax Classification technique
[26].

B. 5. Recurrent Neural Networks (RNNs)

While CNNs are able to analyse only a single frame of the image (detecting and classification
the objects found in the scene), a Recurrent Neural Network (RNN) is a kind of neural
network that runs on a sequential data. It basically makes predictions based on the current
input and the previous state of the network. In RNN, the main element that stores the
condition or values of the previous state is known as the RNN hidden layer. This hidden
layer works as a control unit for the network. So as to make good predictions, the RNN
hidden state makes sure a smooth transition between previous and current status, by
making sure that the difference between the previous state and the current one of the
network does not exceed a given limit.

111

Predictive Techniques for Scene Understanding by using Deep Learning

y
O Y Yy Yol
A
TWhy Why T Why Why T
f f hr 1 ht he1
- I+
'y =) —0-—0-—0"—
f f f
Unfold 1
Wxh Wxh Wxh Wxh
X xI—J xt xt+.f

Figure B.5-1 (Left) A standard RNN (Right) Unrolled RNN in time

Figure B.5-1 shows the function of a standard RNN. It can be appreciated that y; is just a
function of hidden state of the RNN, that s, h; (value of the hidden state at time t) multiplied
by the weight matrix W), plus the bias term b,, (overall a linear transformation):

Ve = Wyht + by (Bl)
On the other hand, the value of the hidden state h; is estimated as:
he = gn(Wixy + Wrhi_1 + bp) (B.2)

Where W, represents the weight matrix (also known as learnable parameters) for linear
transformation of input variable x; at time t and W} represents the weight matrix the carry
out the transformation of hidden state of previous time step t — 1, shared across the layers
in time. Weighted information from both hidden state of previous time step h;_; and
current input x; are added together with the bias (offset) term by, and then passed through
a non-linear activation function g to estimate hy, i.e. the value of the new hidden state of
the RNN at time t. Non-linear activations are one the key concepts of the Deep-Learning
breakthrough. Both in CNNs, RNNs or other types of DL networks, if is not applied an
activation function then the output signal would be a simple linear function (polynomial of
one degree), which is easy to solve but they are limited in their complexity and have less
power to learn complex functional mappings from data, i.e.,, a Neural Network without
activation functions would simply be a Linear Regression Model. For that reason, Non-linear
functions (as gp) are those which have degree more than one (considered as Universal
Function Approximators) and are required by Neural Network Models to learn and
represents almost anything and any arbitrary complex function which maps inputs to
outputs. One thing to note in Figure B.5-1 is that the activity of the unit h; depends not only
on the input x; but also on the activity at the previous timestep h;_4, so the activity at the
memory unit at time t is passed on to the unit activity at time t + 1. This is the key concept
by which RNNs have begun to be intensively studied to perform tasks that require
information from previous moments, as is the case with Multi-Object Tracking, where
previous moments must be taken into account for assignment and tracking of multiple
objects.

112

Predictive techniques for Scene Understanding by using Deep Learning

B. 5.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special purpose RNN. An LSTM cell is usually
comprised of three gates which basically controls the flow of the information. These gates
are:
e Forget gate: A memory forgetting mechanism:
fe = o(Welhe—1,x¢] + by) (B.3)
e [nput gate: A memory saving mechanism:

iy = o(Wilhe—q, xc] + by) (B.4)

e Output gate: A memory focusing mechanism, which saves the long-term memory
into workable memory:

0 = o(Wp[he—1, %] + bo) (B.5)

Is important to consider that x; represents the input to the current RNN layer (where LSTM
cell is located) at time t and h;_, represents the previous state of this RNN layer.

\ Vectors! \
e i ©

forget gate

Input gate
["1-1-1: Puto

input

Figure B.5-2 A basic LSTM cell

From the mathematical derivation of the gates, it can be appreciated that each gate performs
a function of a typical fully-connected (FC) layer of a neural network. These gates take h;_
(previous hidden state) and x, (current input) as inputs for estimating the current state.
Figure B.5-2 illustrates a basic LSTM cell, where each gate has small memory block.
Combining these gates, they form a strong memory unit which is helpful in solving non-
trivial tasks of sequential processing and data associations in temporal domain. C;
represents the current input to the LSTM cell at time ¢:

C~t = tanh(WC [ht_l, xt] + bC) (B6)

113

Predictive Techniques for Scene Understanding by using Deep Learning

Where W, represents the weight matrix which computes the new input for the LSTM
memory cell based on x; and h;_;. On the other hand, the output of the LSTM memory cell
is calculated by applying non-linearity to the current memory state C; and then multiplying
with the states of the output gate:

Finally, the new state of the LSTM memory cell for frame t + 1 is a weighted combination
of the current in current input to the LSTM memory cell C; and the current state C;:

Ciy1 = ftCt + itét (B.8)

In other words, the activity of the cell at time t + 1 (the next frame) is equal to the memory
or the amount memory to be forgotten from the previous time step (C;) plus the input at the
new timestep which is multiplied by how much the requirements want to accept from this
new input got at timestep t, or what is the same, the new memory of the LSTM cell C;, is
basically a weighted sum between the amount of information that the input and forget gates
allow to flow.

114

Predictive techniques for Scene Understanding by using Deep Learning

Appendix C: Code of Interest

In this appendix itis shown some interesting parts of the code created and modified in order
to perform most of exposed tasks throughout this master thesis. For a deeper explanation,
the reader should go to the corresponding algorithm in the code in addition to different
bibliographic source that have been used.

Code of Interest C-1 Code to obtain the 3D coloured point cloud

for (pcl::PointCloud<pcl::PointXYZRGB>::iterator pt = coloured->points.begin(); pt < coloured-spoints.end(); pt++)

{
ev::Point3d pt_cv((*pt).x, (*pt).y, (*pt).z);
cv::Point2d uv;
uv = cam_model_.project3dToPixel(pt_cv);

// CARLA simulation

if(uv.x>0 && uv.x < image.cols && uv.y > 0 && uv.y < image.rows &&(*pt).z>=0)

{
(*pt).r = image.at<cv::Vec3b=(uv)[0];
(*pt).g = image.at<cv::Vec3b=(uv)[1];
(*pt).b = image.at<cv::Vec3b>(uv)[2];
}
else // color black cloud to white/grey
(*pt).r = 20.0;
(*pt).g = 20.0;
(*pt).b = 20.0;
}

}
// Publish coloured pPointcloud

sensor_msgs: :PointCloud2 pcl_colour_ros;
pcl::toROSMsg(*coloured, pcl_colour_ros);
pcl_colour_ros.header.stamp = pcl_msg->header.stamp ;
pcl_pub.publish(pcl_colour_ros);

int main(int argc, char **argv){
ros::init(argc, argv, "pcl_coloring”);
ros: :NodeHandle nh_("~"); // LOCAL
// Parameters
nh_.param<std::string=("target_frame", target_frame, "/ego_vehicle/camera/semantic_segmentation/semantic");
nh_.param<std::string>("source_frame", source_frame, "/ego_vehicle/lidar/lidar1");

// Subscribers

message_filters::Subscriber<PointCloud2> pc_sub(nh_, "pointcloud”, 1);
message_filters::Subscriber<Cameralnfo> cinfo_sub(nh_, "camera_info", 1);
message_filters::Subscriber<Image> image_sub(nh_, "image", 1);

pcl_pub = nh_.advertise<PointCloud?> ("velodyne coloured”, 1);
typedef message filters::sync_policies::ApproximateTime<PointCloud2, CameraInfo, Image> MySyncPolicy;
// ExactTime takes a queue size as its constructor argument, hence MySyncPolicy(18)

message_filters::Synchronizer<MySyncPolicy> sync(MySyncPolicy(10), pc_sub, cinfo _sub, image sub);
sync.registerCallback(boost: :bind(&callback, 1, 2, 3));

115

Predictive Techniques for Scene Understanding by using Deep Learning

Code of Interest C-2 Code to concatenate non-discarded CenterNet bounding boxes
def bbox to xywh cls conf (bbox):

type object list = [1,2,3] # person id = 1, bicycle id = Z, car id = 3

bbox of interest = []

k=20

for i in type_object list:
bbox object = bbox[i]
r,c = bbox object.shape
aux = np.zeros({r,l))

gux.fill{i)
bbox object = np.concatenate ([bbox object,aux],l)

if (k==0):
bbox of interest = bbox object
else:
bbox of interest = np.concatenate ([bbox of interest,bbox object])
k= k+1
bbox = bbox of interest
if any(bbox[:,4] > opt.vis_thresh):
bbox = bbox[bbox[:,4] > opt.vis_thresh, :]
bbox[:,2] = bbox[:,2] - bbox[:,0]
bbox[:,3] = bbox[:,3] - bbox[:,1]
retorn bbox[:,:4], bbox[:,4], bbox[:,5]

elsea:

retorn Hone, Hone, None

Code of Interest C-3 Code to update the tracked objects based on Deep SORT

def update (self, bbox zywh, confidences, ori_img):
self.height, self.width = ori_img.shape[:2]

generate detections

try :
features = self. get features(bbox_xywh, ori_img)
except :
print('a"')
detections = [Detection(bboxz xywh[i], conf, features[i]) for i,conf in enumerate(confidences) if conf>self.min confidence]

run on non-maximum supression

bozes = np.array([d.tlwh for d in detections])

scores = np.array([d.confidence for d in detections])

indices = non max suppression(boxes, self.nms max overlap, Scores)
detections = [detections[i] for i in indices]

update tracker
self.tracker.predict ()
self.tracker.update (decections)

output bbox identities
outputs = []
for track in self.tracker.tracks:
if not track.is_confirmed() or track.time_since update > 1:
continue
box = track.to_tlwh()
xl,yl,x2,y2 = self. xywh to Xyxy centernet (box)
track id = track.track id
outputs.append (np.array { [®1, yl, x2, y2, track_id], dtype=np.int})
if len (ocutputs) > 0:
outputs = np.stack(outputs,axis=0)

return cutputs

116

Predictive techniques for Scene Understanding by using Deep Learning

Code of Interest C-4 Code to perform the 3D LiDAR Point Cloud cluster extraction

/4 Auxiliar variables

pcl: :PointCloud<pcl: :PointXYZRGB>: :Prr vlp cloud Ptr (mew pcl::PointCloud<pcl::PointXYZRGB>);
pcl: :PointCloud<pel: :PointXYZRGB>: :Prr cloud filtered (new pcl::PointCloud<pcl::PointXYZRGB>) 7

/4 Read in the cloud data

pcl: :PCDReader reader;

A4 IF Full Cloud is used

pcl: :fromROSMsg (*lidar msg, *vlp cloud Ptr): // vilp cloud Ptr stores the LiDAR point cloud

*cloud filtered = *vlp cloud Ptr;
/4 Filter cloud

pcl: :PointCloud<pcl: :PointXYZRGB> cl filter = xyz filter({cloud filtered):
*cloud filtered = cl filter;

sensor msgs: :PointCloud2 cloud;

pcl: :toROSMsg (*cloud filtered, cloud):

//cloud. header. frame id = "velodyne";
cloud.header.frame id = "ego vehicle/lidar/lidarl™:
cloud.header.stamp = lidar msg —> header.stamp;

/4 Publish only LiDAR cloud

pointcloud only laser pub .publish(cloud);

/4 Cluster Segmentation

/S Creating the KdTree object for cluster extraction (Cloud filtered)

pcl:isearch: :EdTree<pcl: :PointXYZRGB>: :Ptr tree (new pcl::search: ::KdTree<pcl

tree -> setInputCloud (cloud filtered):;

std: :vector<pcl::PointIndices> cluster_indices;

pcl: :EuclideanClusterExtraction<pcl: : PointXYZRGB> ec;
ec.setClusterTolerance (1)

ec.setMinClusterSize (2);

ec.setMaxClusterSize (25000);

ec.setSearchMethod (tree):

: tPointXYZRGB>)

ec.setInputCloud (cloud filtered); // Clusters will be cbtained from this filtersd cloud

ec.extract (cluster indices);

117

Predictive Techniques for Scene Understanding by using Deep Learning

Code of Interest C-5 Code to project the bottom position of the CenterNet+DeepSORT
bounding box onto the 3D space

def Image to RealWorld(self, color, object_ score, object id, obj_coordinates, object type, ori_im):
tracked obstacle = yolo_obstacle ()

proj matrix = np.matrix([[0.0018621145884284534333, 0, -1.1517535525542101573, 0],
[0, 0.0018621149884284534333, -0.670361395834243235%%, 01, [O, O, 1, O], [O, O, O, 111}

camera height = 1.355 # EED camera in SmartElderlyCar
tracked obstacle.type = object type

Bounding Box coordinates in camera frame

tracked obstacle.xl = obj_coordinates[0]

tracked obstacle.yl = obj coordinates[1]

tracked obstacle.x2 = obj_ccordinates[2]

tracked obstacle.y2 = obj_ coordinates[3]

3D box dimensions that ties the object

tracked obstacle.h =

tracked obstacle.w
tracked obstacle.l =

I
]
ooo

Object score

tracked obstacle.probability = object_score
Object ID

tracked obstacle.object_id = object_id

Object colors (since the coleours in Yoleo detection arse in BGR,
so they must be converted to RGE for ROS topic)

tracked obstacle.color.a = 1.0

tracked obstacle.color.r = color[0]/255

tracked obstacle.color.g = color[l]/255

tracked obstacle.color.b = color[2]/255

Image world to Real world

centroid x = (tracked_obstacle.x1+tracted_obstacle.12)/2
pixels = np.matrix([[centroid x], [tracked obstacle.yZ], [11,. [111)
p_camera = proj matrix®*pixels

K = camera_heightprcamera[l]

pP_camera meters = p camera®K

tracked cobstacle.tx = float(p camera meters[2])

tracked obstacle.ty = float(-p_camera meters[0])

tracked cbstacle.tz = float (-p_camera meters[1l])

Append single tracked obstacls to tracked obstacle list

self.tracked obstacle list.yolo list.append(tracked cbstacle)
self.tracked obstacle list.header.stamp = rospy.Time.now()

118

Predictive techniques for Scene Understanding by using Deep Learning

Code of Interest C-6 Code to perform the sensor fusion between BEV VOT proposals and
BEV LiDAR proposals

for (int i=0; i<centernet_msg-»centernet_list.size(); it++) // CenterNet i1s more restrictive than LiDAR
{

float max diff lidar vot = 4; // Initialize maximum allowed differsnce

YCX
¥C¥

float (yolo_msg->yolo_list[i].tx); // Distance to the object-camera in Velodyne frame
float (yolo msg->yolo list[i].ty):

if (only laser objects.size() > 0 && (!strcmp(centernet msg->yolo list[i].type.c str(),"cac™) ||
!strcmp (centernet msg->centernet list[i].type.c_str(),"person™)))
{

#/cout<<endl<<"¥olo msg list size: "<<yolo msg->yolo list.size()<<endl;

double time = centernet msg->header.stamp.toSec():

object_id = centernet msg->centernet_list[i].object id;

geometry msgs::PointStamped local centroid;
geometry msgs::Point32 global centroid:

local centroid.point.x = ycx;

local centroid.point.y = ycy:

local centroid.point.z = 0;

global centroid = Local To_Global_Coordinates(local_centroid):

/4 Find closest LiDAR object with respecto to VOT

for (int j=0:; j<only laser objects.size(): j++)
i

lcx float (only laser objects[j].centroid x):
lcy = float (only laser objects[j].centroid y):

diff lidar vot = float (sgrt (pow(ycx-1cx,2)+pow(ycy-1cy,2))):

if (diff lidar vot < max diff lidar vot) // Find the closest cluster
{

max diff lidar vot = diff lidar vot;

index most_ similar lidar vot = j;

if (max diff lidar vot < 3)
{
only laser objects[index most_similar lidar vot].type = centernet msg->yolo list[i].tvpe:
only laser objects[index most_similar lidar vot].r = centernet _msg->yolo_list[i].color.r;
only laser objects[index most similar lidar wot].g = centernet_msg->yolo_list[i].color.g;
only laser objects[index most similar lidar vot].b = centernet msg->yolo list[i].color.b;
a

only laser objects[index most similar lidar vot].a = centernet msg->yolo_list[i].color.a;

119

Predictive Techniques for Scene Understanding by using Deep Learning

120

Predictive techniques for Scene Understanding by using Deep Learning

Appendix D: User’s manual

This appendix presents the installation guide and execution process in order to reproduce
the obtained results. Due to the numerous tools involved in this work, only the most
relevant are commented, assuming that the reader has some knowledge of the Linux OS.

As commented throughout this work, the architecture proposal for Deep Learning based

Multi-Object Tracking has been implemented in ROS, making use of the its different
packages, in order to provide proper intercommunication with the SmartElderlyCar project.

D. 1. Docker installation

First, Docker must be installed, in this case in Linux:

https://docs.docker.com/install/linux/docker-ce /ubuntu/)

1. Install packages to allow apt to use a repository over HTTPS:

sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \

gnupg-agent \
software-properties-common

2. Add Docker’s official GPG key:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint OEBFCD88

3. Set up the stable repository for the Ubuntu host release:

sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(Isb_release -cs) \
stable"”

4. Install Docker Engine - Community:

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io

This installation guide must be carried out if a new computer wants to use Docker services.

In the case of the SmartElderlyCar project, it is encapsulated in a Docker Image with Ubuntu
14.04 and ROS Indigo Igloo, and then cloning the project in the corresponding Docker

121

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Predictive Techniques for Scene Understanding by using Deep Learning

container from the RobeSafe GitHub. This user’s manual does not cover the SmartElderlyCar
packages installation due to the magnitude of the project.

On the other hand, in the case of the tracking module, it has been encapsulated in a Docker
Image with Ubuntu 18.04. It was performed by typing on the Ubuntu host terminal:

docker pull ubuntu:18.04

Where docker is the name of the Docker group, pull is a command to pull image from
repositories, as explained in previous chapters, ubuntu is the general repository of the
image and 18.04 its particular, since it also can be found other Ubuntu versions such as
16.04 Xenial or 19.04 Disco.

In order to run this docker image for the first time, since it has not registered the host user
in the original Docker File, the container must be run as root, as shown Figure D.1-1, using
a .sh file named launch_docker_version.sh.

#! /bin/bash
directorio=$HOME/compartido_con_docker:$HCME/compartido_con docker

docker run -it --net host --name=CenterNet DeepSORT --privileged -u root -v 7/
tmp/.X11l-unix: /tmp/.X11-unix -v $directorio -v Sdirectorio rosbag -e

DISPLAY=unix$DISPLAY 51 /bin/bash

Figure D.1-1 Bash launch file to run the CenterNet_DeepSORT docker image
Now, in order to run the image, in the Ubuntu host terminal it must be typed:
./launch_docker_version.sh CenterNet_DeepSORT:last
[t is important to consider that this reposity (CenterNet_DeepSORT) and tag (last) were not
the originals but ubuntu and 18.04. It can be easily modified renamed using the following
command:

docker tag ORIGINAL_DOCKER_IMAGE_ID CenterNet DeepSORT:last

At this point, the user is inside the Docker container.

D. 2. ROS installation

Before installing the CenterNet+DeepSORT framework it is advisable to install ROS in such
a way this framework is installed in the source (src) directory of ROS and later modifications
can be compiled in an easy way.

In this docker image it is installed ROS Melodic Morenia since it is the last LTS (Long Term

Support) of ROS1. In addition, ROS2 was installed and the bridge between ROS1 and ROS2
was configured, but it is still in development.

122

Predictive techniques for Scene Understanding by using Deep Learning

To install ROS Melodic Morenia:

http://wiki.ros.org/melodic/Installation/Ubuntu

1. Setup the sources.list

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(Isb_release -sc) main" >
/etc/apt/sources.list.d/ros-latest.list’

2. Setup the keys

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key
C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

3. Installation

sudo apt update

sudo apt install ros-melodic-desktop-full

4.Initialize rosdep (it enables to easily install system dependencies and run some core

components in ROS):

sudo rosdep init
rosdep update

5. Create a ROS Workspace:
mkdir -p ~/catkin_ws/src

cd ~/catkin_ws/
catkin_make

D. 3. Anaconda, CUDA and NVIDIA driver

Anaconda is the easiest way to install Python 3.7 and other Python requirements in other to
run the tracking module. For Linux distribution, it can be downloaded from:

https://www.anaconda.com/distribution/

Then, after the download is complete, in the docker terminal must be typed:

chmod +x Anaconda3-2019.07-Linux-x86_64.sh (in order to give execute permissions)
sh Anaconda3-2019.07-Linux-x86_64.sh

On the other hand, CUDA and CuDNN are required in order to optimize the neural network
computation. According to the Ubuntu version of the docker image (18.04 Bionic), the most
advisable CUDA version is 10.1, as shown in:

https://developer.nvidia.com/cuda-
downloads?target os=Linux&target arch=x86 64&target distro=Ubuntu&target version=
1804 &target type=deblocal

123

http://wiki.ros.org/melodic/Installation/Ubuntu
https://www.anaconda.com/distribution/
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal

Predictive Techniques for Scene Understanding by using Deep Learning

It is recommended to use the deb (local) installer type, so the steps are as following:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntul1804/x
86_64/cuda-ubuntu1804.pinsudo mv cuda-ubuntul804.pin /etc/apt/preferences.d/
cuda-repository-pin-600

wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installer
s /cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amdé64.deb

sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amdé64.deb
sudo apt-key add /var/cuda-repo-10-1-local-10.1.243-418.87.00/7fa2af80.pub

sudo apt-get update

sudo apt-get -y install cuda

To check the CUDA version, run the following command:

nvcc --version

There should appear the installed CUDA version as 10.1.

Finally, in order to run graphic interfaces inside the Docker, both host machine and Docker
image must be synchronized in terms of NVIDIA driver. In contrary case, when typing

nvidia-smi command, there should be an error message as follows:

Failed to initialize NVML: Driver/library version mismatch

To synchronize both graphical interfaces (host machine and Docker), the driver must
be downloaded from NVIDIA driver releases:

https://www.nvidia.es/Download/index.aspx?lang=es

It must be stored in the shared volume (in this master thesis called compartido-
_con_docker) to get access to this host file inside the Docker image. Now open a new
shell with CTRL+ALT+F2 and go to the shared volume where the NVIDIA driver. Then type:

sudo ./NVIDIA-Linux-x86_64-VERSION.run --no-kernel-module
If the system reports that a previous NVIDIA driver was installed, just continue the

installation process. Finally, typing nvidia-smi command in the docker terminal it should
report a message as follows (e.g., in the case of 390.67 NVIDIA Driver):

124

https://www.nvidia.es/Download/index.aspx?lang=es

Predictive techniques for Scene Understanding by using Deep Learning

robesafe@robesafe-X555LD:~$ nvidia-smi

Driver Version: 390.67

Persistence-M| Bus-Id sp.A | Volatile Uncorr. ECC
Temp Perf Pwr'Usage/Capl Memory-Usage | GPU-Util Compute M.
sEnsssdITTrTssssssssnsnansnEs |
GeForce 820M off | 00000000:04:00.0 N/A |
P8 N/A / NJ/A | 216MiB / 964MiB | Default

Figure D.3-1 Check NVIDIA driver in the case of 390.97

D. 4. CenterNet+DeepSORT framework installation

After ROS installation, CenterNet+DeepSORT is installed. To do this, the first step is to
download the files from:

https://github.com/kimyoon-young/centerNet-deep-sort.git

And copy then in the src directory of the previously created ROS Workspace catkin_ws. Once
the files have been copied, inside this centernet directory:

conda env create -f CenterNet.yml
pip install -r requirements.txt

Then, a virtual environment named CenterNet is created with the specified requirements.
To run this virtual environment:

conda activate CenterNet

In summary, Figure D.4-1 shows an example of how should be configured the Python

¥ For CARLA use
export ROS_MASTER_URI-http://localhost:11311
export ROS_IP=localhost

Modify to operate with the SEC

>>> conda initialize >>>
II Contents within thls block are nanaged by 'conda init!
__conda_setup="5(" /root/anaconda3/bin/conda’ ‘shell.bash' ‘hook® 2> Jdev vinull)*
F [57 -eq &]; then
eval "5__conda_setup”

AF [-f "/root/anaconda3/etc/prafile.d/conda.sh™ 1; then
. "/root/anaconda3/etc/profile.dfconda.sh"
else

export PATH="/root/anaconda3/bin:$PATH"

"
unset __conda_setup
<<< Conda initialize <e<

#export PYTHONPATH-= TH: froot, /CenterNet/bi 3.6
rexport PATH=SPATH:/usr/local/cuda-9.2/bin

(EXport. PYTHORPATHrootros2_ws AstalL/Uib/pythana. ofrits-packages: rootfros s devel/Uib/oythonz. T/étst-packages: fopt/ros/dushing Lb/pythons. o/ site-packsges: froot/snscondsa envs/centarnet fbin
python3.

(Export PATH- root fanaconda3/condabla: fopt/rtt. confrt1_connext_dds-5.3.1/LUb/x64Lnux3gees. 4.0: fopt/rt1.con/rtl_connext_dds-5.3.1/bin: fopt/ros/dashing fbin: fuse fLocsl/sbin:fusr local bin: Juse fsbin: fuse
bin: fsbin: /bin: fusrflocalfcuda-9.2/!

export LD_LTBRARY_PATH=SLD_LIBRARY_PATH: fusr/localfcuda-9.2/1ibs4
export rosi_trackings1
Af [“Srosi_tracking” -eq 1]; then

ed ~

cd ros_ws/src/centernet-deep-sort

conda activate CenterNet

seurce foptfrosfmelodic/setup.bash

source froot/ros_ws/devel/setup.bash

python tracking_yolov3_centernet_deepsort.py
L

Figure D.4-1 Bashrc configuration (Docker image of tracking module)

125

https://github.com/kimyoon-young/centerNet-deep-sort.git

Predictive Techniques for Scene Understanding by using Deep Learning

D. 5. Install CARLA 0.9.5

CARLA requires Ubuntu 16.04 or later. First, install the build tools dependencies:

sudo apt-get update

sudo apt-get install wget software-properties-common

sudo add-apt-repository ppa:ubuntu-toolchain-r/test

wget -0 - https://apt.llvm.org/llvm-snapshot.gpg.key[sudo apt-key add -

sudo apt-add-repository "deb http://apt.llvm.org/xenial/ [lvm-toolchain-xenial-7
main"

sudo apt-get update

sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build libvulkan1
python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev
libjpeg-dev tzdata sed curl unzip autoconf libtool rsync

pip2 install --user setuptools

pip3 install --user setuptools

To avoid compatibility issues between Unreal Engine and the CARLA dependencies, the
best configuration is to compile everything with the same compiler version and C++
runtime library (CARLA uses clang 6.0 and LLVM’s libc++):

sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-
7/bin/clang++ 170

sudo update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-7/bin/clang
170

After configuring the tool dependencies, build Unreal Engine:

git clone --depth=1 -b 4.22 https://github.com/EpicGames/UnrealEngine.git
~/UnrealEngine_4.22

cd ~/UnrealEngine_4.22

./Setup.sh && ./GenerateProjectFiles.sh && make

Finally, Build CARLA from GitHub repository:

https://github.com/carla-simulator/carla

git clone https://github.com/carla-simulator/carla

./Update.sh

export UE4 ROOT=~/UnrealEngine_4.22 (it can be also added to the ~/.bashrc file)
make launch # Compiles the simulator and launches Unreal Engine'’s Editor.

make PythonAPI # Compiles the PythonAPI module necessary for running the Python
examples.

make package # Compiles everything and creates a packaged version able to run
without UE4 editor.

make help # Print all available commands.

D. 6. Execution CARLA + SmartElderlyCar (SEC)

The main commands so as to perform a MOT using CARLA and the SmartElderlyCar project
are

126

https://github.com/carla-simulator/carla

Predictive techniques for Scene Understanding by using Deep Learning

Shell 1 (Launch CARLA simulator on Desktop computer host)

cd ~/carla/Dist/0.9.5-96-g67cfd574/LinuxNoEditor
DISPLAY=./CarlaUE4.sh /Game/Carla/Maps/Town03

Shell 2 (Run roscore; SEC Docker, Desktop computer)

./launch_docker_version SmartElderlyCar_project:last

Shell 3 (Run ROSBridge for CARLA and SEC communications; Host, Desktop computer)
roslaunch carla_ros_bridge carla_interface_map.launch

On the MSI computer, run the tracking module

./launch_docker_version CenterNet_DeepSORT:last

cd ~/ros_ws/src/centernet_deepsort_master

python3 tracking_centernet_deepsort.py

Make sure that ROS_MASTER_URI points to the Desktop computer IP address and ROS_IP
points to the laptop IP (it can be checked by typing ifconfig on the Ubuntu terminal and

saving the provided ined addr).

Shell 4 (Include dynamic objects in the CARLA world, such as pedestrians or cars; Host,
Desktop computer)

python manual_control_pedestrian.py --filter=walker --point -1 73 2 --orientation 65
python manual control vehicle.py --filter=vehicle.tesla.model3 --point 244 95 2 --
orientation 270

Shell 5 (Launch map_module to load Lanelets map; SEC Docker, Desktop computer)

roslaunch smart_elderly_car map_module.launch

Shell 6 (Launch navigation_module to perform local navigation; SEC Docker, Desktop
computer)

roslaunch smart_elderly_car navigation_module.launch

Shell 7 (Launch Robograph to activate decision-making layer; SEC Docker, Desktop
computer)

roslaunch smart_elderly_car robograph.launch

127

Predictive Techniques for Scene Understanding by using Deep Learning

128

Predictive techniques for Scene Understanding by using Deep Learning

Appendix E: Specifications

This appendix details the main hardware and software used in this master thesis.

E.1. Hardware

= ASUS Intel Core i5-4210U

s 1.70 GHz CPU

« 8GBDDR3 1333 MHz RAM

% 500 GBHDD

+ NVIDIA GeForce 320 M (CUDA technology available)

= MSIGT62VR-7RE i7-7700HQ

s 2.8 GHz CPU

16 GB DDR4 2400 MHz RAM

% 500 GBSSD

» NVIDIA 1070 GTX (CUDA technology available)

L)

¢

*0

>

L)

*,

» Desktop computer i7-8700

+ 3.2 GHz CPU

% 32 GB DDR4 2400 MHz RAM

% 500 GB SSD NVME

¢ NVIDIA 2070 RTX (CUDA technology available)

» Tabby Evo Open Source Electric Car

+ Maximum speed: 100 km/h
¢ Autonomy: 80 km

s Power: 19 kW

¢ Weight: 380 kg

» Velodyne LiDAR Puck (VLP-16)

% Channels: 16

% Maximum range: 100 m

*¢ Maximum number of points/s: 600,000
% Accuracy: 3 cm

= StereoLabs ZED camera

¢ Sensors: 2 CCD 4M pixels per sensor with large 2-micron pixels
% Field of View: 90 ¢ (Horizontal) x 60 2 (Vertical)

129

Predictive Techniques for Scene Understanding by using Deep Learning

¢ Maximum output resolution: 4416x1242
¢ Technology: Real-time depth-based visual odometry and SLAM

Topcon Hiper Pro GPS

% 1/0 ports: 2x serie (RS232)
¢ Output frequency: 20 Hz

% Communication: Bluetooth 1.1

¢ Search channels: 20 GPS L1+L2 (GD), GPS L1 + GLONASS (GG)

20 GPS L1+L2+GLONASS (GGD)

L)

L)

E.2. Software

130

* Ubuntu 14.04.5 LTS (Trusty Tahr)

= Ubuntu 18.04.3 LTS (Bionic Beaver)
= Docker 19.03

» ROS Indigo Igloo

= ROS Melodic Morenia

* Point Cloud Library V1.7

» CARLA simulator 0.9.4

= ROS packages

» Microsoft Office 365 ProPlus

Predictive techniques for Scene Understanding by using Deep Learning

Appendix F: Budget

This appendix describes the theoretical cost of the whole project.

F. 1. Material cost

In this section, the cost of the different materials (software and hardware) are detailed (21
% VAT is included).

Table F.1-1 Material costs

Concept Units Unit cost [€] Total cost [€]
MSI Laptop 1 1360.00 1360.00
Windows PCi5 1.7 GHz 1 450.00 450.00
Desktop computer 1 2,365.00 2,365.00
Hardware Velodyne LiDAR Puck 1 7560.0 7560.0
(VLP-16)
StereoLabs ZED camera 1 416.00 416.00
Topcon GPS Hiper Pro 1 3,000.00 3,000.00
Tabby Evo 1 20,250.00 20,250.00
Open Source vehicle
Docker 19.03 1 0.00 0.00
CARLA simulator 1 0.00 0.00
ROS Indigo Igloo 1 0.00 0.00
Software ROS Melodic Morenia 1 0.00 0.00
Point Cloud Library V1.7 1 0.00 0.00
ROS packages 1 0.00 0.00
Microsoft Office 365 ProPlus 1 0.00 0.00
Material total costs [€] 35,401.00 €

F. 2. Professional fees

In this point the different professional fees are calculated as gross incomes (not including
VAT). They include all the professional activities related with the project.

131

Predictive Techniques for Scene Understanding by using Deep Learning

Table F.2-1 Professional fees

Activity Salary (€/month) Time (months) Total cost (€)

Engineering 1,250.00 3 3,750.00
Typing 1,000.00 1 1,000.00
Professional fees total costs [€] 4,750.00

F. 3. Total costs

Total costs have been calculated by adding the material total costs and professional fees
total costs.

Table F.3-1 Total costs

Material total costs [€] 35,401.00
Professional fees total costs [€] 4,750.00
Transport [€] 260.00
Total cost [€] 40.411

132

Predictive techniques for Scene Understanding by using Deep Learning

References

(1]

Parekh, Himani S., Darshak G. Thakore, and Udesang K. Jaliya. "A survey on object

detection and tracking methods." International Journal of Innovative Research in
Computer and Communication Engineering 2.2 (2014): 2970-2979

WO]JKE, Nicolai; BEWLEY, Alex; PAULUS, Dietrich. Simple online and realtime
tracking with a deep association metric. En 2017 IEEE International Conference on
Image Processing (ICIP). IEEE, 2017. p. 3645-3649

CIAPARRONE, Gioele, et al. Deep Learning in Video Multi-Object Tracking: A Survey.
arXiv preprint arXiv:1907.12740, 2019

WO]JKE, Nicolai; BEWLEY, Alex. Deep cosine metric learning for person re-
identification. En 2018 IEEE winter conference on applications of computer vision
(WACV). IEEE, 2018. p. 748-756

AGREN, Sanna. Object tracking methods and their areas of application: A meta-
analysis: A thorough review and summary of commonly used object tracking
methods. 2017

PATEL, Sandeep Kumar; MISHRA, Agya. Moving object tracking techniques: A
critical review. Indian Journal of Computer Science and Engineering, 2013, vol. 4, no
2, p-95-102

PAREKH, Himani S.; THAKORE, Darshak G.; JALIYA, Udesang K. A survey on object
detection and tracking methods. International Journal of Innovative Research in
Computer and Communication Engineering, 2014, vol. 2, no 2, p. 2970-2979

ATHANESIOUS, J.; SURESH, P. Implementation and comparison of kernel and
silhouette based object tracking. International Journal of Advanced Research in
Computer Engineering & Technology, 2013, p. 1298-1303

JIA, Xu; LU, Huchuan; YANG, Ming-Hsuan. Visual tracking via adaptive structural
local sparse appearance model. En 2012 IEEE Conference on computer vision and
pattern recognition. IEEE, 2012. p. 1822-1829

KWON, Junseok; LEE, Kyoung Mu. Visual tracking decomposition. En 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. IEEE,
2010.p. 1269-1276

DEL PINO, Ivan, et al. Low resolution lidar-based multi-object tracking for driving
applications. En Iberian Robotics conference. Springer, Cham, 2017. p. 287-298

REKLEITIS, loannis; BEDWANI, Jean-Luc; DUPUIS, Erick. Autonomous planetary
exploration using LIDAR data. En 2009 IEEE International Conference on Robotics
and Automation. IEEE, 2009. p. 3025-3030

PETROVSKAYA, Anna; THRUN, Sebastian. Model based vehicle detection and
tracking for autonomous urban driving. Autonomous Robots, 2009, vol. 26, no 2-3,
p.123-139

133

134

Predictive Techniques for Scene Understanding by using Deep Learning

TEICHMAN, Alex; LEVINSON, Jesse; THRUN, Sebastian. Towards 3D object
recognition via classification of arbitrary object tracks. En 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011. p. 4034-4041

WANG, Dominic Zeng; POSNER, Ingmar. Voting for Voting in Online Point Cloud
Object Detection. En Robotics: Science and Systems. 2015. p. 10.15607

DEWAN, Ayush, et al. Motion-based detection and tracking in 3d lidar scans. En 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016. p.
4508-4513

DE SILVA, Varuna; ROCHE, Jamie; KONDOZ, Ahmet. Fusion of LiDAR and camera
sensor data for environment sensing in driverless vehicles. 2018

CHO, Hyunggi, et al. A multi-sensor fusion system for moving object detection and
tracking in urban driving environments. En 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014. p. 1836-1843

JALAL, Anand Singh; SINGH, Vrijendra. The state-of-the-art in visual object tracking.
Informatica, 2012, vol. 36, no 3

ROMERA, Eduardo, et al. Bridging the day and night domain gap for semantic
segmentation. En 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019. p.
1312-1318

FENG, Xiaoyu; MEI, Wei; HU, Dashuai. A review of visual tracking with deep learning.
En 2016 2nd International Conference on Artificial Intelligence and Industrial
Engineering (AIIE 2016). Atlantis Press, 2016

ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understanding of a
convolutional neural network. En 2017 International Conference on Engineering
and Technology (ICET). IEEE, 2017. p. 1-6

SVOZIL, Daniel; KVASNICKA, Vladimir; POSPICHAL, Jiri. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory systems,
1997, vol.39,no0 1, p. 43-62

KARPATHY, Andrej; JOHNSON, Justin; FEI-FEI, Li. Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078, 2015

HECHT-NIELSEN, Robert. Theory of the backpropagation neural network. En Neural
networks for perception. Academic Press, 1992. p. 65-93

MEMISEVIC, Roland, et al. Gated softmax classification. En Advances in neural
information processing systems. 2010. p. 1603-1611

BEWLEY, Alex, et al. Simple online and realtime tracking. En 2016 IEEE
International Conference on Image Processing (ICIP). IEEE, 2016. p. 3464-3468

KIM, Chanho, et al. Multiple hypothesis tracking revisited. En Proceedings of the
[EEE International Conference on Computer Vision. 2015. p. 4696-4704

HAMID REZATOFIGHI, Seyed, et al. Joint probabilistic data association revisited. En
Proceedings of the IEEE international conference on computer vision. 2015. p. 3047-
3055

Predictive techniques for Scene Understanding by using Deep Learning

KALMAN, Rudolph Emil. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 1960, vol. 82, no 1, p. 35-45

DOSOVITSKIY, Alexey, et al. CARLA: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017

QUIGLEY, Morgan, et al. ROS: an open-source Robot Operating System. En ICRA
workshop on open source software. 2009. p. 5

TE chassis “Open Motors” https://www.openmotors.co/product/tabbyevo/
P. VLP-16, “Velodyne lidar,” http://velodynelidar.com/vlp-16.html

ZED camera, “StereoLabs ZED”, https://www.stereolabs.com/zed/#
Hiperpro, “Topcon gps,” http://www.topcon.com.sg/survey/hiperpro.html.

BENDER, Philipp; ZIEGLER, Julius; STILLER, Christoph. Lanelets: Efficient map
representation for autonomous driving. En 2014 IEEE Intelligent Vehicles
Symposium Proceedings. IEEE, 2014. p. 420-425

ROHMER, Eric; SINGH, Surya PN; FREESE, Marc. V-REP: A versatile and scalable
robot simulation framework. En 2013 IEEE/RS] International Conference on
Intelligent Robots and Systems. IEEE, 2013. p. 1321-1326

KO, Nak Yong; SIMMONS, Reid G. The lane-curvature method for local obstacle
avoidance. En Proceedings. 1998 IEEE/RS] International Conference on Intelligent
Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.
98CH36190). IEEE, 1998.p. 1615-1621

FERNANDEZ, Joaquin Lopez, et al. Improving collision avoidance for mobile robots
in partially known environments: the beam curvature method. Robotics and
Autonomous Systems, 2004

FERNANDEZ, Joaquin L., et al. Using hierarchical binary Petri nets to build robust
mobile robot applications: RoboGraph. En 2008 IEEE International Conference on
Robotics and Automation. IEEE, 2008. p. 1372-1377

Carlos Gomez-Huelamo, Luis M. Bergasa, Rafael Barea, Elena Lépez-Guillén, Sandra
Carrasco, Pablo Sanchez, “Simulating use cases for the UAH Autonomous Electric
Car”, in IEEE Conference on Intelligent Transportation Systems (ITSC), Auckland,
New Zealand, October 2019. Accepted on July 2019

D. S. Michal and L. Etzkorn, “A comparison of player/stage/gazebo and microsoft
robotics developer studio,” in Proceedings of the 49th Annual Southeast Regional
Conference, pp. 60-66, ACM, 2011.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical
simulation for autonomous vehicles,” in Field and service robotics, pp. 621-635,
Springer, 2018

BRANDES, Ulrik. A faster algorithm for betweenness centrality. Journal of
mathematical sociology, 2001, vol. 25, no 2, p. 163-177

HELD, David, et al. Robust real-time tracking combining 3D shape, color, and motion.
The International Journal of Robotics Research, 2016

135

[49]

[50]

[55]

[56]

136

Predictive Techniques for Scene Understanding by using Deep Learning

RUSU, Radu Bogdan; COUSINS, Steve. 3d is here: Point cloud library (pcl). En 2011
IEEE international conference on robotics and automation. IEEE, 2011. p. 1-4

LI, Bi, et al. Learning to Update for Object Tracking With Recurrent Meta-Learner.
IEEE Transactions on Image Processing, 2019, vol. 28, no 7, p. 3624-3635

DUAN, Kaiwen, et al. CenterNet: Object Detection with Keypoint Triplets. arXiv
preprint arXiv:1904.08189, 2019

H. Law and]. Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings
of the European conference on computer vision, pages 734-750, 2018

REDMON, Joseph; FARHADI, Ali. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018

MILLS-TETTEY, G. Ayorkor; STENTZ, Anthony; DIAS, M. Bernardine. The dynamic
hungarian algorithm for the assignment problem with changing costs. 2007

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in NIPS, 2015

REID, Donald. An algorithm for tracking multiple targets. IEEE transactions on
Automatic Control, 1979, vol. 24, no 6, p. 843-854

LIN, Tsung-Yi, et al. Microsoft coco: Common objects in context. En European
conference on computer vision. Springer, Cham, 2014. p. 740-755

LIU, Wei, et al. Ssd: Single shot multibox detector. En European conference on
computer vision. Springer, Cham, 2016. p. 21-37

L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “MARS: A video
benchmark for large-scale person re-identification,” in ECCV, 2016

S.Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC, 2016, pp. 1-12

BEIS, Jeffrey S.; LOWE, David G. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. En cvpr. 1997. p. 1000

MERKEL, Dirk. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014, vol. 2014, no 239, p. 2

HELD, David; THRUN, Sebastian; SAVARESE, Silvio. Learning to track at 100 fps with
deep regression networks. En European Conference on Computer Vision. Springer,
Cham, 2016. p. 749-765

JIA, Yangqing, et al. Caffe: Convolutional architecture for fast feature embedding. En
Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014.
p. 675-678

ALVAR, Saeed Ranjbar; BA]IC, Ivan V. MV-YOLO: Motion vector-aided tracking by
semantic object detection. En 2018 IEEE 20th International Workshop on
Multimedia Signal Processing (MMSP). IEEE, 2018. p. 1-5

NING, Guanghan, et al. Spatially supervised recurrent convolutional neural
networks for visual object tracking. En 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2017. p. 1-4

[78]

[79]

Predictive techniques for Scene Understanding by using Deep Learning

ZHANG, Zizhao, et al. Mdnet: A semantically and visually interpretable medical
image diagnosis network. En Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017. p. 6428-6436

FARHADI, Daniel Gordon1 Ali; FOX, Dieter. Re 3: Real-Time Recurrent Regression
Networks for Visual Tracking of Generic Objects. IEEE Robot. Autom. Lett, 2018, vol.
3,no 2, p. 788-795

SANDERS, Andrew. An Introduction to Unreal Engine 4. AK Peters/CRC Press, 2016

ROMERA, Eduardo, et al. Erfnet: Efficient residual factorized convnet for real-time
semantic segmentation. IEEE Transactions on Intelligent Transportation Systems,
2017,vol. 19,n0 1, p. 263-272

GEIGER, Andreas, et al. Vision meets robotics: The KITTI dataset. The International
Journal of Robotics Research, 2013, vol. 32,n0 11, p. 1231-1237

BERNARDIN, Keni; ELBS, Alexander; STIEFELHAGEN, Rainer. Multiple object
tracking performance metrics and evaluation in a smart room environment. En Sixth
[EEE International Workshop on Visual Surveillance, in conjunction with ECCV.
2006.p.91

ZHANG, Da, et al. Deep reinforcement learning for visual object tracking in videos.
arXiv preprint arXiv:1701.08936, 2017

BABENKQO, Boris; YANG, Ming-Hsuan; BELONGIE, Serge. Robust object tracking with
online multiple instance learning. IEEE transactions on pattern analysis and
machine intelligence, 2010, vol. 33, no 8, p. 1619-1632

KRISTAN, Matej, et al. The visual object tracking vot2015 challenge results. En
Proceedings of the IEEE international conference on computer vision workshops.
2015.p. 1-23

BERTINETTO, Luca, et al. Fully-convolutional siamese networks for object tracking.
En European conference on computer vision. Springer, Cham, 2016. p. 850-865

KAHOU, Samira Ebrahimi, et al. RATM: recurrent attentive tracking model. En 2017
IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE, 2017.p. 1613-1622

GAN, Quan, et al. First step toward model-free, anonymous object tracking with
recurrent neural networks. arXiv preprint arXiv:1511.06425, 2015

REDMON, Joseph, et al. You only look once: Unified, real-time object detection. En
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016.p. 779-788

SHARMA, Sarthak, et al. Beyond pixels: Leveraging geometry and shape cues for
online multi-object tracking. En 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018. p. 3508-3515

XIANG, Yu; ALAHI, Alexandre; SAVARESE, Silvio. Learning to track: Online multi-
object tracking by decision making. En Proceedings of the IEEE international
conference on computer vision. 2015. p. 4705-4713

137

138

Predictive Techniques for Scene Understanding by using Deep Learning

SCHEIDEGGER, Samuel, et al. Mono-camera 3d multi-object tracking using deep
learning detections and pmbm filtering. En 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018. p. 433-440

GUNDUZ, Giiltekin; ACARMAN, Tankut. A lightweight online multiple object vehicle
tracking method. En 2018 IEEE Intelligent Vehicles Symposium (I1V). IEEE, 2018. p.
427-432

KARUNASEKERA, Hasith; WANG, Han; ZHANG, Handuo. Multiple Object Tracking
With Attention to Appearance, Structure, Motion and Size. IEEE Access, 2019, vol. 7,
p. 104423-104

Universidad de Alcala

Escuela Politécnica Superior

%‘*{% Universidad
#89% de Alcals

