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“En este vasto mundo  
navegáis en pos de un sueño, 

surcando el ancho mar  
que se extiende frente a vosotros. 

 
El puerto de destino es el mañana 

cada día más incierto. 
 

Encontrad el camino, 
cumplid vuestros sueños, 

estáis todos en el mismo barco 
y vuestra bandera es la libertad”            
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Resumen 
 

El presente trabajo propone una arquitectura software precisa y en tiempo real para el 

seguimiento de múltiples objetos basada en aprendizaje profundo (Deep Learning) en el 

contexto de la navegación autónoma. Se ha llevado a cabo una fusión sensorial entre el 

seguimiento visual 2D basado en los algoritmos CenterNet y Deep SORT [2] [49] usando una 

cámara y el clusterizado de la nube de puntos 3D procedent del LiDAR [11] sobre la 

plataforma de desarrollo robótico ROS y contenedores Docker. 

 

Se ha llevado a cabo una comparación entre el enfoque tradicional Precision-Tracking [46], 

tracking visual basado en Deep Learning y fusión sensorial con LiDAR comparando las 

posiciones estimadas para cada uno de ellos. 

 

Las propuestas han sido validadas en el benchmark de KITTI para seguimiento de vehículos 

[69], en el simulador de CARLA [31] para el seguimiento de peatones y en el campus de la 

Universidad de Alcalá sobre nuestro vehículo autónomo desarrollado en el proyecto 

SmartElderlyCar. 

 

Palabras clave: Seguimiento de múltiples objetos, Deep Learning, ROS, CARLA, 

SmartElderlyCar. 
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Abstract 
 

The present work proposes an accurate and real-time Deep Learning based Multi-Object 

Tracking architecture in the context of self-driving applications. A sensor fusion is 

performed merging 2D visual tracking based on CenterNet and Deep SORT algorithms [2] 

[49] using a camera, and 3D proposals using LiDAR point cloud [11] over the ROS 

framework and Docker containers.  

 

A comparison between the traditional Precision-Tracking [46] strategy, Visual Object 

Tracking based on deep learning and sensor fusion approach with LiDAR is carried out 

comparing the obtained pose estimations for each of them. 

 

The proposals have been validated on KITTI benchmark dataset for vehicle tracking [69], 

on CARLA simulator [31] for pedestrian tracking and on the Campus of the University of 

Alcalá using our autonomous vehicle developed for the SmartElderlyCar project. 

 

Keywords: Multi-Object Tracking, Deep Learning, ROS, CARLA, SmartElderlyCar. 
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Extended Abstract 
 

One of the most critical aspects when developing an autonomous vehicle is to perceive and 

understand the dynamic scene as accurately as possible, so that the actions taken by the 

vehicle guarantee the safety of both the vehicle itself and the surrounding obstacles, such as 

people, other vehicles or road infrastructure. 

 

In that sense, the object detection and tracking strategies play a fundamental role, allowing 

the vehicle to predict future positions, as well as plan its possible trajectories dynamically, 

based on previous frames in the scene. 

 

Although there has been great progress in the object detection and tracking methods, object 

tracking remains a problem of interest due to the challenges present in real-world 

applications, such as occlusions, changes in the point-of-view or lighting. In that sense, the 

scientific community is continually developing robust object detection and tracking 

approaches. 

 

Moreover, the Deep Learning paradigm has supposed a breakthrough for the research 

community, giving rise to rapid advances overall in terms of object detection. Recently, 

more and more tracking algorithms, both single and multiple, have started exploiting the 

representational power of deep learning. The strength of Deep Neural Networks (DNNs) 

resides in their ability to learn rich representations and extract complex and abstract 

features from their input, generally an image. Convolutional Neural Networks (CNNs) 

currently constitute the state-of-the-art in spatial pattern extraction, employed in tasks 

such as image classification or object detection. Then, since Deep Learning (DL) methods 

have been able to reach top performance in many of those tasks, the research community is 

now progressively introducing DL in most of the top performing tracking algorithms. 

 

In this work, a Deep Learning based Multi-Object Tracking is presented in the context of 

self-driving applications. This architecture is divided in two branches: The first branch 

performs the object tracking using camera data, so tracking is performed in 2D, using a 

state-of-the-art object detector (CenterNet [49]) and a efficient tracking algorithm with 

deep appearance descriptor (Deep SORT [2]) in order to avoid above mentioned tracking 

challenges as occlusions or changes in the point-of-view. Then, these 2D proposals are 

projected onto the Bird Eye View (BEV) space using projection matrices. The second branch 

focuses on performing the clustering of the 3D point cloud (LiDAR data) in order to obtain 

the most relevant objects in the environment and project them in the BEV. Both proposals 

are fused to get the best positions of the detected object bounding boxes over time. 

 

Finally, in order to evaluate the architecture proposal performance, some tests are carried 

out in KITTI benchmark [69], CARLA simulator [31] and our Campus using our real 

autonomous vehicle, comparing the BEV pose using the Precision-Tracking [46], Visual 

Object Tracking (VOT) based on deep learning and sensor fusion (Merged VOT) approaches. 
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Chapter 1. Introduction 
 

1.1. Motivation 

Autonomous Vehicles (AVs) have held the attention of technology enthusiasts and futurists 

for some time as evidenced by the continuous development and research in Autonomous 

Vehicle Technologies (AVT) over the past two decades, being one of the emerging 

technologies of the Fourth Industrial Revolution, and particularly of the Industry 4.0. 

 

The phrase Fourth Industrial Revolution was first introduced by Klaus Schwab, CEO (Chief 

Executive Officer) of the World Economic Forum, in a 2015 article in Foreign Affairs 

(American magazine of international relations and United States foreign policy). A 

technological revolution is defined as a period in which one or more technologies are 

replaced by other kinds of technologies in a short amount of time. Hence, it is an era of 

accelerate technological progress featured by Researching, Development and Innovation 

whose rapid application and diffusion cause an abrupt change in society. In particular, the 

Fourth Industrial Revolution is expected to be marked by breakthroughs in emerging 

technologies in fields such as Artificial Intelligence (AI), Computer Vision, Internet of Things 

(IoT), fifth-generation wireless technologies (5G), Robotics, 3D printing and the scope of 

this master thesis, fully autonomous vehicles. The sum of all these advances are resulting in 

machines that can potentially see, hear and what is more important, think, moving more 

deftly than humans. 

 

Moreover, Industry 4.0 is the subset of the Fourth Industrial Revolution that concerns 

industry, that is, this concept focuses the existence of factories in which machines are 

enhanced with sensors and wireless connectivity, connected to a system that can visualize 

the whole production line and make decision on its own. In fact, if it is substituted “the whole 

production” by the environment, the concept refers to a self-driving car. 

 

A self-driving car (also known as driverless car or autonomous car) is a vehicle that can 

sense its environment and moving safely with little or even no human input. They combine 

a variety of sensors to recognize their environments, such as GPS, camera, Inertial 

Measurements Units (IMUs), radar, sonar or LiDAR (Light Detection and Ranging). Then, 

advanced control systems process this sensory information in order to calculate in a proper 

way navigation paths, traffic signs or detect and track the road obstacles (which is the main 

purpose of this thesis) to ensure a safe driving. 

 

Furthermore, statistics show that 69 % of the population in the European Union (EU), 

including associated states, lives in urban areas. According to the World Health 

Organization, nearly one third of the will live in cities by 2030. Aware of this problem, the 

Transport White Paper published by the European Commission in 2011 indicated that new 

forms of mobility ought to be proposed so as to provide sustainable solutions for people and 
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goods safely. For example, regarding safety, it sets the ambitious goal of halving the overall 

number of read deaths in the EU between 2010 and 2020. Nevertheless, this goal does not 

seem to be easy since only in 2014 more than 25,700 people died on the roads in the EU, 

many of them caused by an improper behaviour of the driver on the road. 

 

Autonomous driving is considered as one of the solutions to the before mentioned problems 

and one of the greatest challenges of the automotive industry today. The existence of 

reliable and economically affordable autonomous vehicles will create a huge impact on 

society affecting social, demographic, environmental and economic aspects. Besides this, it 

is estimated to cause a reduction in road deaths, reduce fuel consumption and harmful 

emission associated and improve traffic flow, as well as an improvement in the overall 

driver comfort and mobility in groups with impaired faculties, such as disable or elderly 

people. Other industrial applications of autonomous vehicles are agriculture, retail, 

manufacturing, commercial and freight transport or mining.  

 

1.2. Historical context 

Autonomous Vehicles in the form of self-driving cars have become a challenge for auto 

competitions and technology companies, which has derived in an intense competition. 

Nevertheless, the AVs are not new. 

 

The study of Automated Driving Systems (ADS) was started in the 1920s, though trials 

began in the 1950s. The first semi-automated car was developed in 1977 by Japan’s Tsukuba 

Mechanical Engineering Laboratory. The vehicle reached speeds up to 30 km/h with the 

support of an elevated rail. 

 

Nevertheless, the first truly autonomous cars appeared in the 1980s with Carnegie Mellon 

University’s Navlab and ALV projects funded by the American company DARPA (Defense 

Advanced Research Projects Agency) in 1984 and EUREKA Prometheus project (1987) 

developed by Mercedes-Benz and Bundeswehr University Munich’s. By 1985, the ALV 

project had shown self-driving speeds on two-lane roads with obstacle avoidance added in 

1986 and off-road driving in day and night conditions by 1987. Furthermore, from the 

1960s through the second DARPA Gran Challenge in 2005 (212 km off-road course near the 

California-Nevada state line, surpassed by all but one of the 23 finalists), automated vehicle 

research in the United States was primarily funded by DARPA, the US Army and US Navy, 

yielding rapid advances in terms of speed, car control, sensor systems and driving 

competence in more complex conditions. This caused a boost in the development of 

autonomous prototypes by companies and research organizations, most of them Americans. 
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Figure 1.2-1 Self-driving SUV from Carnegie Mellon University's Tartan Racing team 

 

Figure 1.2-1 shows the Self-driving SUB from Carnegie Mellon University’s Tartan Racing 

team during the 10th anniversary celebrations of Tartan Racing’s victory in the 2007 DARPA 

Urban Challenge. 

 

Even though self-driving cars have not yet displaced conventional cars, there can be found 

several examples of how it has become a hot topic for powerful companies such as Delphi 

Automotive Systems, Audi, BMW, Tesla, Mercedes-Benz or Waymo. 

 

In 2005 Delphi broke the Navlab’s record achievement (driving 4,584 km while remaining 

98 % of the time autonomously) by piloting an Audi, improved with Delphi technology, over 

5,472 km through 15 states while remaining in self-driving mode 99 % of the time. 

Moreover, this year the US states of Michigan, Virginia, California, Florida, Nevada and the 

capital of the United States, Washington D.C., allowed the testing of automated cars on public 

roads.  

 

In 2017, Audi stated that its A8 car prototype would be automated at speeds up to 60 km/h 

by using its perception system named “Audi AI”.  Also, in 2017 Waymo (self-driving 

technology development company subsidiary of Alphabet Inc) started a limited trial of a 

self-driving taxi service in Phoenix, Arizona. 

 

Figure 1.2-2 shows the distance between disengagements and total distance travelled in 

California (2018) by the most important self-driving technology development companies in 

the world. A disengagement may be defined as the deactivation of the autonomous mode 

when a failure of the autonomous technology is detected or when a safe operation requires 

than the autonomous vehicle test driver disengages the autonomous mode and takes 

immediate manual control of the vehicle. 
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Figure 1.2-2 Number of test miles and reportable miles per disengagement in California 

(2018) 

 

1.3. Problem statement 

To sum up what commented above, increasing the level of autonomous navigation in mobile 

robots (from agriculture to public and private transport) creates tangible business benefits 

to those users and companies employing them. However, designing an autonomous 

navigation system does not seem to be an easy task. In that sense, it can be found mainly 

five challenges when designing an autonomous navigation system: 

 

1. Gathering enough Real-World data: Functional autonomous navigation systems cannot be 

developed exclusively in a lab (unless they are designed for that purpose). The reason is 

simple: A prototype will not work in a proper way until it has been in a certain number of 

different scenarios since the problems that it is going to experience in the wild cannot be 

replicated in a lab, such as a pedestrian crossing the road through a non-allowed space or 

maintenance works on the road. Essentially, this challenge deals with huge amounts of 

different data; The more edge cases the prototype can solve, the better the navigation 

solution. 

 

2. Installation must be simple: If a company aims a genuinely scalable product, the 

installation process must not be technical but simple. Despite the fact that nowadays many 

robots require an engineer for installation and validation into a new environment, if the 

autonomous machines aim to replace conventional cars, they should show a user interface 

intuitive and lean, dealing with non-technical employees who want to use these machines, 

i.e. designing a system that is easy to use. 

 

3. Reducing False Positives: This challenge is mostly related with detection. In the same way 

a human being can identify if a certain object is a pedestrian, a cyclist or a car on the road, if 

the robot cannot tell a person from a chair on the floor, the decision-making layer of the 
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floor will be affected by these false positives. In that sense, it is critical that the prototype is 

trained to detect and track using sensor data from both virtual environments and real-world 

scenarios to reduce these false positives. Figure 1.3-1 shows an example of false positives 

detection in a real-world situation. 

 

 

Figure 1.3-1 False positives detection in a real-world situation 

 

4. Getting the right Software (SW) and Hardware (HW): Getting the right HW and SW is 

specially challenging for robots that will be autonomously navigating in dynamic 

environments like high-traffic workspaces, malls or airports. Since these areas present tight 

spaces and continuously changing obstacles, the use of suitable HW (odometry with a great 

accuracy for positioning and navigating the complex routes, cameras to identify and classify 

the objects or LiDAR to create a 3D scene of the environment) and SW (writing software 

that handles these challenging situations with and end-user mind, also known as decision-

making layer in the prototypes) seems to be a mandatory task. 

 

5. Creating precision Motion-Control: The last challenge illustrates the design an 

autonomous navigation for the mobile robot creating a system that has accurate and precise 

motion control. In that sense, this task must deal with situations as the need of driving as 

close as possible to an edge, wall or an obstacle. In that sense, designing a system that is as 

accurate and tight as possible gives rise to much better capabilities to navigate in complex 

spaces. 

 

As shown, the design of a reliable architecture for an autonomous robot seems to be a really 

hard task. In that sense, this master thesis is mainly related with the challenge 1. Gathering 

enough Real-World data, 3. Reducing False Positives and 4. Getting the right Software (SW) 

and Hardware (HW) in order to perform an accurate perception of the environment and 

consider the odometry, velocity and predict future actions associated the obstacles 

identified in the scene, also known as object tracking. 

 

While detecting objects in a scene has been getting a lot of attention from the computer 

vision and robotics community, a lesser known and yet an area with widespread 
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applications is object tracking in a real (or virtual) scene, both in an off-line video or in real-

time situations, as can occur with autonomous vehicles.  

 

Object tracking is the process of locating a single or multiple moving object over time using 

a given device (generally a camera or LiDAR) that detects the environment. It is an 

important part of a human-computer collaboration in a moving environment in terms of 

allowing the computer to obtain a better model of the simulation or real-world. Object 

tracking requires to merge the detection of the objects in the scene (frame by frame, i.e., in 

static images) analysing temporal information in order to get the best predicted trajectories. 

It is important to consider the difference between Object Detection and Object Tracking. In 

object detection, the purpose is to detect an object in a single frame and tie this one with a 

mask around or a bounding box, in addition to classify the object (i.e., obtain the position of 

the object and its semantic information in the scene). However, detection process ends at 

this point since it processes each frame independently and identifies several objects in that 

frame. On the other hand, an object tracker must track a particular object across the entire 

scene. For example, if the detector detects two cyclists and three cars. In that sense, the 

object tracking must identify the five separate detections and needs to track them across 

the subsequent frames associating a unique ID to each object.  

 

Object tracking presents a wide range of applications [5] in computer vision and associated 

disciplines such as human computer interaction, traffic flow monitoring, surveillance or 

human activity recognition.  

 

1.4. Tracking foundations 

Today, most tracking approaches are based on traditional techniques. However, deep 

learning is gaining weight and new approaches are emerging using this discipline. Although 

each object tracking method (both traditional or Deep-Learning based) is characterized by 

its particular features, most of them can be classified according to four criteria: 

 

1.4.1. Detection-based vs Detection-free trackers 

Detection-free tracking: It requires a manual initialization of fixed number of objects in the 

first frame of the scene. Then, it localizes these objects (but not others) in the subsequent 

frames, so it cannot deal with the case where new objects appear in the middle frames. 

 

Detection-based tracking: The consecutive video frames are given to a pretrained object 

detector that gives rise to a detection hypothesis which in turn is used to elaborate tracking 

trajectories. It is more popular than detection free tracking because new objects are 

detected and tracked whilst disappearing objects are terminated automatically. In this 

approach the tracker is used in those cases when object detection algorithm fails. Other 

alternatives of detection-based tracking are to run the object detector for every n frame and 

the remaining predictions are done using the tracker. For that reason, this approach is very 

suitable for tracking for a long time. 
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1.4.2. Single vs Multiple Object trackers 

Single Object Tracking (SOT): In this approach a single object is tracked even if the scene 

presents multiple objects in it. The target object to be tracked is determined by the 

initialization in the first frame. 

 

Multiple Object Tracking (MOT): All the relevant objects present in the scene are tracked 

across the frames. If a detection-based tracker is used for MOT it can even track new objects 

that appear in the middle frames of the process. Note how Figure 1.4-1 shows two 

subsequent frames with multiple objects. As explained, their identification must be kept 

until they come from the scene. 

 

  

Figure 1.4-1 Multiple Object Tracking example using Deep Sort 

 

1.4.3. Online vs Offline trackers 

Offline trackers: This kind of trackers is used when the process require to track an object in 

a recorded stream. For that reason, it can be used both the past and future frames (because 

the sequence is already recorded) to elaborate more accurate tracking predictions (no 

causal systems). For example, in the case of basketball teams that have recorded videos of 

a match of an opponent team which needs to be analysed for strategic analysis or if it is 

required to analyse rosbags (file format in ROS for storing ROS message data) recorded for 

a robot to check HW/SW implementation. 

 

Online trackers: This kind of trackers cannot use future frames to improve the tracking 

predictions results (causal systems). Hence, they are used where predictions must be 

available immediately. 

 

1.4.4. Online vs Offline strategy 

Only learning trackers: These trackers usually learn about the object to be tracked by using 

the initialization frame and few subsequent frames. These trackers are more general since 

the algorithm just draws a bounding box around the object and track it. The tracker would 

learn about that target object using these consecutive frames and would continue to track 

it. 
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Offline learning trackers: Whilst online learning trackers learnt about the objects across the 

frames, offline learning trackers do not learn anything during run time. In other words, they 

must be trained and improve offline, but they will not improve themselves while they are 

tracking the objects in the scene. 

 

1.5. Objectives of this work  

Most of the current tracking systems are based on traditional techniques. However, the 

main scope of this work is to study the state-of-the-art of Deep Learning based Multi-Object 

Tracking and implement and validate an optimal architecture both in simulation and real 

world. It is a hard issue due to the lack of literature in this specific branch of deep-learning 

based object tracking applications, as shown in [2] [3] [4]. Moreover, in order to achieve the 

main scope, the following objectives will be met: 

 

1. Researching of current Deep-Learning based Multi-Object Tracking approaches.  

 

2. Study of state-of-the-art software technologies and sensors to perform the MOT 

problem both in simulation and real-world. 

 

3. Explanation of a real-world project named SmartElderlyCar, including its devices and 

hardware and software architecture. 

 

4. Propose an architecture for Deep-Learning based Multi-Object Tracking. 

 

5. Validate the proposed architecture for MOT both in CARLA simulator and real world. 

 

1.6. Structure of this work 

The organization of this document has been done as follows: 

 

• Chapter 2 presents a technical background about current object tracking 

approaches, including Visual Object Tracking, LiDAR based and sensor fusion. Then, 

as this master thesis focuses of 2D tracking, challenges in Visual Object Tracking are 

shown. Then, Deep Learning in MOT is studied in addition to some state-of-the-art 

approaches. 

 

• Chapter 3 focuses on the software technologies used in this master thesis, that is, 

ROS for sensor communication, PCL as point cloud processing, Docker as a tool to 

increase the portability and testability of the project and CARLA as simulator 

environment. 
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• Chapter 4 presents the SmartElderlyCar project, an autonomous electric car able to 

drive in the University of Alcalá campus, as the reference to develop the architecture 

proposal of this work. 

 

• Chapter 5 shows the Deep Learning based Multi-Object Tracking architecture 

proposal. This is the main chapter of this master thesis. 

 

• Chapter 6 shows the validation of the architecture proposal in the KITTI benchmark 

as well as quantitative and qualitative results both in CARLA simulator, KITTI 

benchmark and in the real prototype of the SmartElderlyCar. 

 

• Chapter 7 illustrates the conclusions and future works of this project. 

 

• Appendix A details how Kalman filter works in the object tracking context. 

 

• Appendix B shows the Artificial Intelligence paradigm, including Machine Learning 

and Deep Learning concepts. In addition, a brief explanation of how CNNs and RNNs 

work due to its tight relation with object detection and tracking.  

 

• Appendix C shows some interesting parts of the code created and developed in order 

to perform most of exposed tasks throughout this master thesis. 

 
• Appendix D illustrates the user’s manual so as to install the system requirements and 

reproduce the obtained results. 

 
• Appendix E represents the main hardware and software specifications used in this 

project. 

 
• Appendix F illustrated an estimation of the required budget to develop this thesis. 

 
 
 
 
 
 
 
 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

10 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Predictive techniques for Scene Understanding by using Deep Learning 

 

11 

 

Chapter 2. Technical background 
and State-of-the-Art 
 

2.1. Introduction 

As commented in Chapter 1, even though object tracking is a well-studied problem within 

the area of traditional image processing, it is still considered a complex problem to solve 

even more considering current applications such as robot navigation, intelligent video 

surveillance or self-driving. The broad area of application shows how importance of 

reliable, exact and effective object tracking must be nowadays.  

 

An object tracking system presents three stages, like object modelling and segmentation, 

object location in each frame and object prediction. In order to solve the initial detection and 

so the following stages three different approaches can be used. 

 

2.1.1. Visual Object Tracking (VOT) 

Visual Object Tracking is the process of determining the target object location in a sequence 

(i.e., in a video sequence or a real-world situation). It is one of the many remarkable topics 

in computer vision that has gained considerable weight over the past decade. In VOT 

approach the information of the scene is only captured by cameras, taking advantage of 

video technologies, such as low cost, great portability and considerable speed. There are 

mainly three traditional types [7] to perform VOT:  

 

 

Figure 2.1-1 Traditional techniques to perform Visual Object Tracking 

 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

12 

 

1. Point tracking approach: In an image structure, moving objects are represented by their 

feature points during tracking. In that sense, point tracking is a complex problem 

specially in those cases that present occlusions, false detection or background 

cluttering. It this technique the recognition is carried out relatively simple, by 

thresholding and then identifying these points of interest. 

2. Kernel Based tracking approach [8]: This approach of VOT is usually performed by 

computing the moving object that is represented by an envelope object region, from one 

frame to the next. Then, the object motion is usually in the form of parametric motion 

such as rotation, affine or translation. Different algorithms of kernel-based tracking 

diverge in terms of the presence representation used, the number of objects to be track 

and the method used for approximation to object motion. 

3. Silhouette based tracking approach: This approach focuses on problems of VOT related 

with the geometry of the target objects. Some object will have complex shape such as 

fingers, shoulders or hands which cannot be well defined by simple geometric shapes. 

Silhouette based methods [8] address this problem with an accurate shape description 

for the objects. In that sense, the aim of a silhouette-based object tracking is to find the 

object region in every frame by means of an object model generated by the previous 

frame. Then, these algorithms are able of handling with object occlusion, variety of 

object shapes or even object split. 

 

Moreover, some VTO based works focus on obtaining the shape and appearance of the 

target object not considering the background [9] or even a performing a visual 

decomposition model [10]. Figure 2.1-2 shows an example of visual tracking decomposition, 

successfully tracking a target even though there are severe pose variations, occlusion, 

abrupt motions and illumination changes at the same time. 

 

 

Figure 2.1-2 Visual Tracking Decomposition 

 

2.1.2. Only LiDAR based object tracking 

Another approach for object tracking is LiDAR based [11]. Real-world driving scenarios are 

very dynamic and complex on their own. In this sense, a sensor that directly provide 3D 
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information is more interesting than those that obtain depth in a recovery process based on 

a priori calibration. In addition, the appearance of those scenarios can be greatly affected by 

some issues such as context factors (urban, highway, road, etc.), meteorological conditions 

(rain, fog, snow, etc.) or day-time (sunrise, night, sunset, etc.). In that sense, optical cameras 

are likely to fail perceiving correctly the environment in certain conditions, other robust 

sensors are required.  

 

LiDAR technology is described in Chapter 4. This technology provides the desired 

robustness and precision under harsh conditions [12], that make LiDAR technology suit for 

self-driving applications. LiDAR point clouds have been traditionally processed following 

geometrical approaches like in [13], where clustering algorithms are used to segment the 

data and then assigning the resulting groups to different classes. Other strategies benefit 

from prior knowledge of the environment structure to ease the object segmentation and 

clustering [14]. 3D voxels (volumetric pixels) can be also created in order to reduce 

computational costs by grouping sets of neighbour points. Furthermore, more recent 

methods are able to process the point cloud space (raw or reduced in voxels) so as to extract 

hand-crafted features such as shape models or geometric statistics. For example, [15] uses 

this second approach (extracting hand-crafted features) and then encodes the sparse LiDAR 

point cloud with different features. The resulting representation is scanned by using a 3D 

sliding window of different sizes and an SVM (Support Vector Machine) followed by a voting 

scheme is used to classify the final candidate windows, as shown in Figure 2.1-3. 

 

 

Figure 2.1-3 Example of voting in online point cloud object detection 

 

Other solutions are not based on models but they detect and search for dynamic objects 

using LiDAR which are then segmented using a Bayesian approach (sequence of 

alternations between prediction and update or correction) [16], as illustrated in Figure 

2.1-4: 
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Figure 2.1-4 Object detection and tracking based on dynamic search and Bayesian 

segmentation 

 

2.1.3. Sensor fusion based object tracking 

The third main approach in order to track objects, in particular for self-driving applications, 

is the fusion of different sensors such as camera, LiDAR, radar, IMU or GPS, as shown in 

Figure 2.1-5. 

 

 

Figure 2.1-5 Different sensors in a self-driving car 

 

Chapter 4 offers a more detailed explanation for the sensors used in this master thesis, both 

in real world and simulation. As shown in Figure 2.1-6, each of these sensors has advantages 

and disadvantages. The aim of sensor fusion is to use the advantages of each sensor so as to 
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understand its environment in an accurate way. For example, one of the challenges when 

using LiDAR is the relatively small vertical field of view and angular resolution (30 to 41.3 

º and 1.33 to 2 º for Velodyne LiDAR), giving rise to a small number of points of the object 

to be tracked. While camera is a very good sensor for detecting roads, recognizing the 

semantic information of a target object (car, pedestrian or cyclist, for example) or reading 

signs, the LiDAR technology is better at accurately estimating the position of the object and 

radar is better at accurately estimating its speed.  

 

 

Figure 2.1-6 Sensor benchmark 

 

[17] presents an approach for fusing distance data gathered by a LiDAR (in the form of a 3D 

point cloud) with the luminance data from a wide-angle imaging sensor.  [18] presents its 

tracking system (Figure 2.1-7) as a combination between a fusion layer and sensor layer, 

showing results as illustrated in Figure 2.1-8. As demonstrated in this work, the newly 

introduced vision targets are really useful to improve the performance of data association 

and movement classification for measurements from active sensors.  
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Figure 2.1-7 Sensor fusion based tracking system architecture proposed in [18] 

 

 

Figure 2.1-8 Tracking results of [18] for the qualitative evaluation 

 

To finish the introduction of this chapter, it can be concluded that the object tracking is a 

complex problem even more when speaking about self-driving applications. As commented 

in previous sections, this master thesis focuses on deep learning based multi-object tracking 

by using image data, due to data and code for the learning process are mainly available for 

images, our approach carries out 2D tracking over images and then recovering 3D poses of 

the surrounding objects for our real autonomous driving application. For that reason, the 

next section covers the main challenges associated with Visual Object Tracking to take into 

account how the incorporation of deep learning approaches has leveraged this technique. 
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2.2. Challenges in Visual Object Tracking:  

Some of the fundamental problems in VOT are abrupt object motion, noise in the image 

sequences, changes in scene illumination, object-to-object and object-to-scene occlusions, 

changing appearance patterns of the object and the scene, non-rigid object structures and 

real time processing requirements, which is getting more importance with the presence of 

self-driving applications. [19] In that sense, there are several important challenges that 

must be considered in the design of a robust multi-object tracking system: 

 

1. Object modelling: One of the major tasks in VOT is to find an appropriate visual 

description which makes the object distinguished from other objects and background. 

The development of Deep-Learning and CNNs (Convolutional Neural Networks) has 

meant a revolution in the task of object modelling and detection. 

 

2. Changes in shape and appearance: Both changes are really important to be considered 

during VOT. The appearance of an object may vary as camera angle changes. Deformable 

objects such as pedestrians can change their shape and appearance (different when 

walking, running or being static) along different video frame sequences or in a real 

situation. On the other hand, the shape and appearance can also change due to a 

different point-of-view (objects close to the camera appear bigger than those farther 

from the camera). 

 

3. Illumination changes: Handling with illumination changes is one of the hardest 

challenges for visual object tracking. The appearance of an object and in general the 

background of the scene can largely be affected by illumination changes, not to mention 

that an object may look different in outdoor environment (sun light) than indoor 

environment (artificial light). Even the weather conditions (cloudy, sunny, etc.) and 

specially time of day (morning, afternoon, evening) can be the causes of illumination 

changes. Even though current deep networks are both reliable and efficient (at least in 

standard conditions), there is a large accuracy downgrade when these methods are 

taken to adverse conditions such as night-time.  

 

4. Shadows and reflections: Some of the features such as shape, motion and background are 

more sensitive for a shadow on the ground which appears and behaves like the object 

that casts it. In the same way, reflections of moving objects on smooth surfaces can cause 

problems when dealing with MOT. 

 

5. Occlusion: This phenomenon occurs either due to one object is occluded by some 

component of the background or it is occluded by another object. A robust tracking 

system must be capable to check the individuality of the objects involved in the 

occlusion, before and after occlusion takes place. 

 

It is important to mention that these previous challenges are significant to both multi-object 

tracking and single-object tracking. Nevertheless, multi-object tracking also requires 

solving the issue of modelling the multiple objects so the tracking method must be able to 

distinguish different objects so as to keep them consistently labelled.  
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2.3. Deep Learning in Multi-Object Tracking 

Recently, more and more tracking algorithms (both SOT and MOT) have started exploiting 

the representational power of deep learning [3]. The strength of Deep Neural Networks 

(DNN), resides in their ability to learn rich representations and extract complex and 

abstract features from their input (generally an image). The reader is referred to the 

Appendix B in order to review Artificial Intelligence concepts behind this section. CNNs 

currently constitute the state-of-the-art in spatial pattern extraction, employed in tasks 

such as image classification, object detection or for object tracking in those cases in which 

the CNN is responsible of the first stage of the tracking algorithm (object detection). On the 

other hand, RNNs (like the LSTMs) are used to process sequential data, such as temporal 

series, text, audio signals. In this context, they would process a self-driving scene. Since DL 

methods have been able to reach top performance in many of those tasks, the community 

research is now progressively seeing them used in most of the top performing tracking 

algorithms (overall MOT). In that sense, there are different methodologies [71] when 

performing Deep Learning based MOT: 

 

▪ Classification-based trackers: Trackers for generic object tracking often follows a 

tracking-by-classification approach. A tracker will sample foreground patches near the 

target object while background patches farther away from the target. These patches are 

used to train a foreground-background classifier, and this classifier is used to score 

potential patches in subsequent frames in order to estimate the new target location. 

This classifier is usually first trained off-line and fine-tuned during online tracking. 

Many neural-network trackers follow this approach (such as below studied MDNet [65]) 

have surpassed traditional trackers [72] and achieved state-of-the-art-performance 

[73]. However, these trackers are inefficient in terms of real time applications, such as 

self-driving, since neural networks are very slow to train in an online fashion. Another 

drawback of such a design is that it does not fully utilize all scene information, 

particularly explicit temporal correlation. 

 

▪ Regression based trackers: Some recent works [61] [74] have attempted to perform 

object tracking as a regression instead of classification problem. [61] trains a CNN so as 

to regress directly from two images to the location in the second image of the object 

shown in the first image. Moreover, [74] proposes a fully-convolutional siamese 

network. These DL methods can run at frame-rates beyond real time (> 100 fps) while 

maintaining state-of-the-art performance. Unfortunately, they only extract features 

independently from each video frame and only perform comparison between two 

consecutive frames, not allowing the fully feature of their CNNs to use longer-term 

contextual and temporal information. 

 

▪ Recurrent-neural-network trackers: [75] [76] propose the use of recurrent neural 

networks for the problem of visual tracking. [76] presents an RNN to predict the 

absolute position of the target frame and [75] similarly trains an RNN for tracking using 

the attention mechanism. Although these works brought good intuitions from RNN, 
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these methods have not yet demonstrated competitive results on modern benchmark. 

On the other hand, [64] proposes a spatially supervised recurrent convolutional neural 

network in which a YOLO [77] network is applied on each frame to produce object 

detections and an RNN is used to directly regress YOLO detections. 

 

Hereafter, following points review some of the most interesting state-of-the-art approaches. 

Table 2.3-1 shows a simple qualitative comparison of the below mentioned approaches. 

 

Table 2.3-1 Comparison of some interesting state-of-the-art Deep Learning based MOT 

approaches 

 GOTURN MV-YOLO MDNet ROLO Re3 

Language C++ Python M 
language 

Python Python 

Framework Caffe Tensorflow MATLAB Tensorflow Tensorflow 

Typical FPS 100 (on 
GPU) 

28 (using Yolo 
V3) 

1 35 150 

RNN No No No Yes Yes 

Capable of 

MOT 

No Yes No Yes Yes 

Motion 

information 

No Yes Yes Yes Yes 

Long-Term 

variations 

No Yes No Yes Yes 

 

2.3.1. GOTURN  

GOTURN [61] is a Deep Learning based object tracking algorithm, originally implemented in 

Caffe [62]. GOTURN changed the way to apply DL to the tracking problem by learning the 

motion of an object in an offline way. While previously most tracking algorithms are trained 

in an online way (the tracking algorithm learns the appearance of the object in the runtime), 

GOTURN is trained on thousands of video sequences and does not need to perform any 

learning runtime. 

 

 

Figure 2.3-1 GOTURN architecture 
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As shown in Figure 2.3-1, it is trained using a pair of cropped frames from thousands of 

videos. In the first frame (the previous frame), the location of the object is known, and the 

frame is cropped to two times the size of the bounding box (BB) around the object. The 

object in the first frame is always centered. 

 

On the other hand, the location of the object in the second frame (current frame) must be 

predicted. The BB used to crop the first frame is also used to crop the second frame. Since 

the object might have moved, the object is not centered in the second frame. To do that, a 

CNN is trained to predict the location of the BB in the second frame. The layers of this CNN 

are simply the first five conv-layers of the CaffeNet [62] architecture. The outputs of these 

conv-layers are concatenated into a single vector of length 4096. Then, this vector is the 

input to 3 FC-layers. Finally, the last FC layer is connected to the output layer containing 

four nodes, representing the top and bottom points of the BB. 

 

2.3.2. MV-YOLO 

MV-YOLO (Motion Vector-YOLO) [63] is a Deep Learning based tracking algorithm that 

combines decoded Motion Vectors (MVs) with semantic object detection (performed by 

YOLO [51]) operating on fully decoded frames. Basically, MVs (which already exist in the 

compressed video bitstream) are good enough to indicate the approximate location of the 

target object. Then, semantic object detection refines the target object location by providing 

pixel-precision BB on the decoded frame. The idea of two-stage tracking has been covered 

in other works, like ROLO [64]. ROLO approach is pixel-domain tracker, while MV-YOLO is 

the first hybrid one. Figure 2.3-2 shows the MV-YOLO architecture.  

 

 

Figure 2.3-2 MV-YOLO architecture 

 

This proposal incorporates data reuse from the compressed video bit stream and semantic 

object detection. Based on the MVs extracting during the video decoding process (note that 

this video may also be a real-time situation), a Region of Interest (ROI) for the target object 

is created in the current frame. Then, the output of the semantic object detector (YOLO) is 

used to more precisely localize the target object with the help of the ROI.  

 

[63] shows that MV-YOLO is fast and robust, though depending on the particular object 

detector used (YOLOv2, v3, etc.). Even the slowest version is reasonably fast (28 fps), with 

an accuracy comparable to the recent trackers based on deep models. 



Predictive techniques for Scene Understanding by using Deep Learning 

 

21 

 

 

2.3.3. MDNet 

MDNet (Multi-Domain Network) [65] is a CNN architecture to learn the shared 

representation of targets from multiple annotated video sequences for tracking, where each 

video is regarded as a separate domain. Figure 2.3-3 shows the architecture of the network. 

It has separate branches of domain-specific layers for binary classification at the end of the 

network, sharing the common information captured from all sequences in previous layers 

for generic representation learning.  

 

 

Figure 2.3-3 MDNet architecture 

 

Each domain in MDNet is trained iteratively and separately while the shared layers are 

updated in every iteration. Using this strategy, domain-independent and domain-specific 

information is separated in order to learn generic feature representation. Besides this, [65] 

proposes an effective online tracking framework based on MDNet strategy. When a test 

sequence is given, all the existing branches of binary classification layers (used in the 

training phase) are removed and a new single branch is built to compute target scores in 

the test sequence. The new classification layer the FC layer within the shared layer are 

online fine-tuned during tracking so as to adapt to new domain. Finally, the online update 

is used to model both long-term and short-term appearance variations of a target for 

robustness and adaptiveness, respectively. 

 

2.3.4. ROLO 

ROLO (Recurrent YOLO) [64] is a visual tracking approach based on RNNs, which extends 

the neural network learning and analysis into the spatial and temporal domain. The key 

motivation of ROLO is that tracking failures can often be effectively recovered by learning 

from historical visual semantics and tracking proposals. Traditional Kalman or related 

temporal predictions methods usually only consider the location history. In contrast, ROLO 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

22 

 

examines both the location history as well as the robust visual features of past frames for 

each target object. Figure 2.3-5 shows the ROLO architecture. It uses the YOLO object 

detector to collect robust and rich visual features. Then, LSTM are used in the next stage as 

it is spatially deep and appropriate for sequence processing. Then, as ROLO proposal, this 

architecture uses the regression capability of LSTM and proposes to concatenate high-level 

visual features produced by conv-nets with region information.  

 

 

Figure 2.3-4 ROLO architecture 

 

On the other hand, Figure 2.3-5 shows a simplified but very illustrative overview of the 

tracking process using ROLO. The YOLO input is raw input frames, and its output is a feature 

vector of input frames and bounding box coordinates. Then, the LSTM input is a 

concatenation of image features and bounding box coordinates whilst the LSTM output is 

the bounding box coordinates of the object to be tracked. 

 

 

Figure 2.3-5 (Top) Simplified ROLO overview and tracking procedure (Bottom) ROLO 

architecture 
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2.3.5. Re3 

Re3 (Real-time, Recurrent, Regression) [66] is fast but accurate RNN for generic object 

tracking. Re3 learns to store and modify relevant object information in the recurrent 

information.  

 

 

Figure 2.3-6 Re3 architecture 

 

By incorporating information from large collections of videos and images, this RNN learns 

to produce representations that capture the main features of the tracked object. The goal of 

this process is to teach the network how any given object is likely to change over time. This 

strategy makes Re3 computationally cheap and extremely fast during inference, an 

important quality for algorithms operating on mobile robots, such as autonomous vehicles. 

Figure 2.3-6 shows the Re3 architecture. It consists of conv-layers to extract the object 

appearance, recurrent layers to remember this appearance and motion information of 

previous frames and a regression layer to output the predicted location of the object. 
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Chapter 3. Software technologies 
used in the thesis 
 

3.1. Introduction 

This chapter aims to explain the software tools used in this thesis in terms of perception 

systems. Hardware technologies, sensors and the autonomous car involved in the 

development of this work are detailed in Chapter 4. As mentioned in previous chapters, self-

driving applications require robust tracking system in order to perform a safe navigation. 

Then, there are four main requirements in order to meet this robust tracking system: 

 

• Sensor redundancy (if a sensor fails, the vehicle should be able to continue the trajectory) 

• Perception of the environment as accurate as possible 

• Great accuracy in the on-road obstacle position and velocity estimation 

• Real-time operation in data communication among sensors and decision-making 

process 

 

To meet these conditions, the software tools used in this master thesis have been: ROS (for 

multi-sensor communication), PCL (for 3D reconstruction of the environment), Docker (for 

the automation and portability of the proposed architecture and code between among 

different computers or microcontrollers) and CARLA (for self-driving simulation, as a 

preliminary stage to implement the architecture in the real-world). The following sections 

explain the main features of these tools.  

 

3.2. ROS 

The Robot Operating System (ROS) [32] is a flexible framework (meta-operating system) for 

writing robot software. It is considered an open-source collection of libraries, tools and 

conventions whose aim is to simplify the task of obtaining, building, writing and running 

code across multiple computer to perform robust and complex behaviours over a wide 

variety of robotic platforms.  

 

 

Figure 3.2-1 ROS logotype 

 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

26 

 

It provides the expected services from an operating system, including low-level device 

control, implementation of commonly-used functionality, hardware abstraction, message-

passing between processes and package management. The ROS runtime “graph” is a P2P 

(Peer-to-Peer) network of processes (potentially distributed across machines) which are 

loosely coupled using the ROS communication infrastructure. ROS presents several 

different styles of communication, including asynchronous streaming of data over topics, 

synchronous RPS-style communication over services and storage of data on a parameter 

server. Moreover, in spite of the fact that ROS is not a real-time framework, it is possible to 

integrate ROS with real-time code. 

 

ROS currently only runs on Unix-based platforms and in particular it has primarily tested 

on Ubuntu and Mac OS X systems. The core ROS system, along with useful tools and libraries 

are regularly released as a ROS distribution. A ROS distribution is a versioned set of ROS 

packages. This master thesis is based on two LTS (Long Term Support) distributions: ROS 

Melodic Morenia, for the docker image related with Deep-Learning based Multi-Object 

Tracking, and ROS Indigo Igloo in which the docker image of the SmartElderlyCar project is 

based on. Chapter 5 offers a deeper explanation of the architecture proposal and how ROS 

has been employed in the project. 

 

3.2.1. Goals 

The primary goal of ROS is to support code reuse in robotics research and development. 

ROS is a distributed framework of processes (also known as nodes) that enables executables 

to be individually designed and loosely coupled at runtime. These nodes can be grouped 

into Stacks and Packages, which can be easily shared and distributed. It also supports a 

federated system of code Repositories that enable collaboration to be distributed as well. 

This design, from the filesystem level to the community level, gives rise to independent 

decisions about development and implementation. In order to meet this primary goal of 

collaboration and sharing, there are other goals: 

 

1. Thin: ROS developers intend for drivers and other algorithms to be contained in 

standalone executables in order to allow that code written for ROS can be used with 

other robot software frameworks. This ensures maximum reusability, making ROS easy 

to use (being the complexity in the libraries). This arrangement also facilitates unit 

testing and the developed systems can be completely independent of another system. 

 

2. Peer-to-Peer communication: Complex robotic systems with multiple links usually have 

multiple on-board computers in order to perform parallel tasks connected via a 

network. Peer-to-Peer (P2P) communication avoids the problem of running a central 

master which would result in severe congestion in one particular link. Figure 3.2-2 

shows the difference between centralized and P2P network architecture. While P2P 

does not require a central server but node to node connections, is resilient and support 

large messages (essential for sensor communication), centralized architecture is feature 

by clients that send requests to/via a central server, supports only small messages and 

the main failure point is the master. 
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Figure 3.2-2 Peer-to-Peer vs Client/Server architecture 

 
In ROS, a P2P architecture coupled to a buffering system and a lookup system (a name 

service called master) enables each component to communicate directly with any other, 

asynchronously or synchronously as required.  

 

3. Multi-Language: The ROS framework is featured by a language independence what 

makes easier to implement in any modern programming language. The ROS 

specification works at the messaging layer. P2P connections are negotiated in XML-RPS, 

which exists in a great number of languages. To support a new language, either C++ 

classes are re-wrapped (as happened for the Octave client) or classes are written 

enabling messages to be generated. These messages are described in IDL (Interface 

Definition Language). Currently ROS can be implemented is Python (whose main ROS 

library is rospy), C++ (roscpp) and Lisp (roslisp). 

 

4. Easy testing: ROS has a builtin unit-integration test framework (rostest) that makes it 

easy to bring up and tear down test fixtures. 

 

5. Scaling: ROS framework is suitable for large runtime systems and large development 

processes thanks to the help of the P2P architecture and buffering system. 

 

3.2.2. Main concepts 

ROS has three levels of concepts: The Filesystem level, the Computation Graph level and the 

Community level, that comprise all the relevant information in order to carry out the 

communication between the sensors, actuators and other mechanisms of the robot. 

3.2.2.1. ROS Fylesystem level 

The filesystem level concepts cover ROS resource found on disk, such as: 

 

1. Packages: Main unit for organizing software in ROS. They are considered the most 

atomic build item and release item in ROS, so the most granular thing it can be built is a 

package. A package may contain ROS runtime processes (nodes), a ROS-dependent 

library, configuration files, datasets, or anything else which is usefully organized 

together.  
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2. Metapackages: Specialized packages which only serve to represent a group of related 

packages. 

 

3. Package manifests: Manifests (package.xml) provide metadata about a package (such as 

name, version or description and other metadata information). 

 

4. Repositories: Packages which share a VCS (Version Control System) share the same 

version and can be released together using the catkin release automation tool bloom. 

 

5. Message (msg) types: Message descriptions define the data structures for messages sent 

in ROS. 

 

6. Service (srv) types: Service descriptions define the request and response data structures 

for services in ROS. 

 

3.2.2.2. ROS Computation Graph level 

The Computation Graph is the P2P network is ROS processes that are processing data 

together. The basic Computation Graph concepts are: 

 

1. Nodes: Processes that perform computation. ROS is designed to be modular at a fine-

grained scale, so a robot control system usually comprises many nodes (one node 

controls the wheel motors, another performs localization, etc.) A ROS node is written 

with the use of a ROS client library, such as roscpp (C++) or rospy (Python). 

 

2. Master: The ROS Master provides name registration and lookup to the rest of the 

Computation Graph. Nodes would not be able to find each other, exchange messages or 

invoke services without the presence of the Master. 

 

3. Parameter Server: Server that allows data to be stored by key in a central location 

(currently part of the Master). 

 

4. Messages: Data structure comprising typed fields. Standard primitive types (like integer 

or Boolean) are supported, as are arrays of primitive types. Nodes communicate with 

each other by passing messages. 

 

5. Topics: Messages are routed via a transport system with publish/subscribe semantics. 

A node sends out a message by publishing it to a given topic, that is, bus over which 

nodes exchange messages. A node that is interested in a certain message will subscribe 

to the appropriate topic. There may be multiple concurrent publishers and subscribers 

for a single topic, and a single node may subscribe and/or subscribe to multiple topics. 

Each bus (topic) has a name, and anyone can connect to the bus to send or receive 

messages as long as they are right type. 

 

6. Services: The publish/subscribe ROS model y a very flexible communication paradigm, 

but its many-to-many one-way transport is not appropriate for RPC (Remote Procedure 
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Call) request, which are often required in a distributed system like a multi-sensor robot. 

Then, Request/Reply is performed via a service (srv file) under a string name, and a 

client calls the service by sending the request message and awaiting the reply. 

 

7. Bags: ROS format for saving and playing back ROS message data. They are an important 

mechanism for storing sensor data, essential to be collected for later development and 

testing algorithms. 

 

 

Figure 3.2-3 Example of publisher/subscriber and its relationship with the Master 

 

The ROS master acts as a nameservice in the ROS Computation Graph, storing topics and 

services registration information for ROS nodes. Nodes connect to other nodes directly, and 

the Master only provides lookup information (like a DNS (Domain Name Server)). It is 

important to note that names have a very important role in ROS. Nodes, topics, services and 

parameters all have names. 

 

3.2.2.3. ROS Community Level 

The ROS Community Level concepts are ROS resources that enable separate communities 

to exchange knowledge and software. These resources include: 

 

1. Repositories: ROS relies on a federated network of code repositories, where different 

institutions can develop and release their own SW components. 

 

2. Distributions: Like Linux distributions, ROS Distributions are collections of packages and 

code that make easier to install this collect of SW in the computer. 

 

3. ROS Wiki: Main forum for documenting information about ROS. 

 

4. Mailing lists: Primary communication channel about new updates to ROS, as well as a 

forum to ask questions about ROS software. 

 

5. ROS anwwers: A Q&A (Questions and Answers) site for dealing with ROS-related 

questions. 
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3.2.3. Main ROS tools used in this thesis 

All the code (both in C++ and Python) developed for this master thesis is directly or 

indirectly related with ROS. Apart from the required ROS packages to develop this code, 

there have been used four main tools: 

 

1. roslaunch: Tool for easily launching multiple ROS nodes locally and remotely via SSH, as 

well as setting parameters on the Parameter Server. It includes options to automatically 

respawn processes that have already died. roslaunch takes in one or more XML files 

(configuration files with the .launch extension) that specify the parameters to set and 

nodes to launch, as well as the machines that they should be run on. 

 

2. rqt: Software framework of ROS that implements the various GUI tools in the form of 

plugins (such us the TF tree). The tools can still run in a traditional standalone method, 

but rqt makes it easier to manage all the various windows on the screen at one moment. 

 

3. Rviz (ROS visualization): 3D visualizer for displaying sensor for displaying sensor data 

and state information from ROS, such as camera data, infrared or LiDAR measurements, 

sonar data and more. 

 

4. RoboGraph: ROS tool that allows to define algorithms as computational graphs. Once the 

graph is defined, it can be executed as if it was a software program and get the expected 

outputs. Each graph, made up by nodes and transitions, can accept any number of inputs 

and give at maximum one output. Hierarchical Petri Nets [41], in which the 

SmartElderlyCar project (Chapter 4) is currently based, have been built on RoboGraph. 

 

3.3. Point Cloud Library (PCL) 

The Point Cloud Library (PCL) (Figure 3.3-1) [47] is a standalone, large-scale, open project 

for 2D/3D image and point cloud processing. A point cloud is a data structure that 

represents a set of points in several dimensions (XYZ geometric coordinates) of a sampled 

surface. In addition, it can add a fourth dimension if colour is available. Point clouds can be 

acquired from HW sensors such as 3D scanners, stereo cameras or flight-time cameras, or 

even they can be generated from a computer program synthetically. 

 

 

Figure 3.3-1 Point Cloud Library logotype 
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PCL is a modern C++ library modelled for 3D point cloud processing. It is based on the Eigen 

library for mathematical operations and on FLANN (Fast Library for Nearby Neighbours) 

for the search of neighbouring points. PCL also uses shared Boost pointers. It incorporates 

several 3D processing algorithms, such as filtering, features extraction, surface 

reconstruction or segmentation) which integrate all its functionalities in a compact way. 

Like ROS, it is an open-source software, being free for commercial and research use. In 

addition, it is a multiplatform SW compatible with Windows, MacPS, Android/iOS and Linux.  

 

To simplify the point cloud development, PCL is divided into a series of smaller libraries, 

which can be compiled separately, allowing distribution on platforms with computational 

limitations. The main modules to be used in this work are as following: 

 

1. Filters (pcl_filters): Module that contains noise elimination mechanisms and outliers for 

3D point cloud data filtering applications. 

 

2. Kd-tree (pcl_kdtree): Module that provides the kd-tree data structure, which allows 

quick searches of neighbouring points closest to the analysis point. Kd-tree (K-

dimensional tree) is a data structure that stores a set of k-dimensional points in a tree 

structure to perform range and nearest-neighbour searches. 

 

3. Segmentation (pcl_segmentation): Module that contains algorithms to segment a point 

cloud into different clusters (subsets of relevant spatially isolated points within the 

point cloud). It is used to process a point cloud made up by spatially isolated regions, 

which is divided to be processed independently. 

 

4. Input/output (pcl_io): Module that contains classes and functions for reading and 

writing point cloud data files (PCD). 

 

5. Visualization (pcl_visualization): Module that allows prototyping and visualizing the 

results of the algorithms that operate in 3D point cloud data. It allows to represent and 

set visual properties, draw 3D shapes and their visualization. 

 

3.3.1. PCL-ROS 

The PCL design philosophy relies on the fact that most of the applications that deal with 

point cloud processing are generated as a set of blocks that are parameterized to achieve 

results. 

 

Based on the design of other 3D processing libraries and ROS, each PCL-ROS (Figure 3.3-2) 

algorithm is available as an independent block that can be easily connected to other blocks 

in the same way that nodes connect to each other in ROS. In addition, since point clouds are 

large data structures, in order to ensure that point clouds are not copied in critical ROS 

applications nodelets are created, which are dynamically loadable add-ons that look and 

work as ROS nodes but in a single process (such as simple/multiple threads). 
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Figure 3.3-2 Bird Eye View of PCL-ROS 

 

3.4. Docker 

Docker [60] (Figure 3.4-1) is an open source project that offers a software development 

solution known as containers. It is a tool designed to benefit both developers and system 

administrators, making it a part of many DevOps (Develops + Operations) toolchains. For 

developers (for example, when developing the code of this master thesis), it means that they 

can focus on writing code without worrying about the system that it will ultimately be 

running on. Since containers are platform- independent, Docker can run across both 

Windows and Linux-based platforms. In that sense, the main purpose of Docker is that it 

lets a developer (as the development of this work) run microservice applications in a 

distributed (like the SmartElderlyCar architecture). Currently Docker can be run in desktop 

(Mac OS, Windows 10), Server (various Linux distributions and Windows Server 2016) and 

Cloud (Amazon Web Services, Microsoft Azure or Google Compute platform). 

 

 

Figure 3.4-1 Docker logotype 

 

3.4.1. Docker engine 
 

Docker engine (Figure 3.4-2) is the base of Docker. It allows the user to develop, 

assemble, ship and run applications using the following components: 
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1. Docker Daemon: Persistent background process that manages Docker 

containers, networks, storage volumes and images. It constantly listens for 

Docker API requests and processes them.  

 

2. Docker Engine REST API: API used by applications to interact with the Docker 

daemon. It can be accessed by an HTTP client. 

 

3. Docker CLI: Command line interface client for interacting with the Docker 

daemon. It greatly simplifies the way to manage container instances. 

 

Figure 3.4-2 Docker engine 

 

3.4.2. Docker architecture 

The Docker architecture uses a client-server model that comprises of the Docker Client, 

Docker Host, Network and Storage Components. As shown in Figure 3.4-3, there are three 

types of Docker communication, that is, Build, Pull and Run. For example, pull must be done 

when downloading an image from a determined registry (e.g., DockerHub), build when 

creating an image from a DockerFile and run in order to create a container from a given 

image. 

 

 

Figure 3.4-3 Docker architecture 
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3.4.2.1. Docker Client 

The Docker client enables users to interact with Docker. It can reside on the same host as 

the daemon or connect to a daemon on a remote host. In addition, a docker client can 

communicate with more than one daemon. It provides a CLI (Command Line Interface) in 

order to build, run and stop application commands to a Docker daemon. Its main purpose is 

to provide a means to direct the pull of images from a registry and to have it run on a Docker 

host. Common commands are docker build, docker pull or docker run (build an image from a 

Dockerfile, pull an image from a registry or run a container, respectively). 

 

3.4.2.2. Docker Host 

The Docker Host provides a complete environment to run and execute applications. It 

comprises of Docker daemon, Containers, Images, Networks and Storage. As commented, 

the Docker Daemon is s responsible for all container-related actions, receiving commands 

from the REST API and CLI. The Daemon pulls and builds container images as request by 

the client. Once the image is pulled, the daemon builds a working model for the container 

using a build file (set of instructions).  

 

3.4.2.3. Docker Objects 

There are some objects used in the assembling of an applications. The main objects related 

with the development of this master thesis have been: 

 

1. Images: Read-only binary templates used to build containers. They contain metadata 

that describe the container’s capabilities and needs. Images are used to store and ship 

applications. Container images can be shared across teams using a private container 

registry or shared with the world using a public registry (Docker Hub). In the case of 

this master thesis, Docker Images are stored in Solid-State Disk (SSD), so the image is 

portable in an USB or via-Ethernet if it is required to be pulled in another computer. 

 

2. Container: Encapsulated environments in which the user runs applications. The 

container is defined by the image and any additional configuration options provided on 

starting the container (such as storage options and network connections). A container 

only has access to resources that are defined in the image (unless additional access is 

defined when building the image into a container). When committing the current state 

of the container, the original image is updated or created a new one if it was committed 

with a different tag. 

 

3. Storage: It can be stored data within the writable layer of a container of a container. In 

terms of persistent storage, Docker offers several options. The option used in this 

project has been data volumes. Data volumes provides the ability of creating persistent 

storage, with the ability to rename volumes, list volumes and also list the container that 

is associated with the volume. They sit of the host file system, outside the container copy 

on write mechanism. In other words, if a directory of 59 GB is shared between a docker 
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container and the host machine, when committing that container its size would not 

increase in 59 GB, since these data sit on the host file system. 

 

3.4.2.4. Docker Registries 

Docker registries are services that provide locations from where it can be stored and 

downloaded images. That is, a Docker registry contains Docker repositories that contain 

one or more Docker images. Public registries include a Docker Cloud and Docker Hub, in 

addition to private registries. Common commands when working with registries are docker 

push, docker pull and docker run (push an image to a registry, pull an image from a registry 

and run a service). 

 

3.4.3. Docker advantages 

Before commented the docker advantages, it must be compared with a Virtual Machine and 

why this master thesis has not been developed using a Virtual Machine. 

 

A Virtual Machine (VM) is a virtual server that emulates a hardware server. It relies on the 

system physical hardware to emulate the exact same environment on which the user installs 

applications. Depending on the case, it can be used a system virtual machine (runs an entire 

OS as a process, so the real machine can be substituted for a virtual machine) or process 

virtual machines that allow to execute computer applications alone in the virtual 

environment. An example of a real-world use case for VMs is the Starling Bank (digital-only 

bank built in 2018 on VMs provided by Amazon Web Service. Then, since the VMs efficiency 

deliver over traditional HW servers, as this bank bought thousands of traditional servers, 

the use of VMs is possible). 

 

However, for this master thesis, the use of a VM is not suitable, due to the needs of 

continuous Application Development and Running Microservices Applications in standard 

computers, as used in research. While a container runs natively (for example, on Linux) and 

shares the kernel of the host machine with other containers (running discrete processes, 

taking no more memory that other executable, as a system thread), a VM runs a full-

operating system with virtual access to host resources through a hypervisor (in general, 

VMs provide an environment with much more resources than most applications required). 

Figure 3.4-4 shows a comparison between the architecture of Docker containers and Virtual 

Machines. 
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Figure 3.4-4 Docker containers vs Virtual Machines 

Finally, the main advantages of using Docker and why it has been chosen to develop this 

master thesis have been: 

 

▪ Isolation and lightweight: Docker containers are process-isolated and do not require a 

HW hypervisor, what means that containers are much smaller and require far fewer 

resources that a VM. 

 

▪ Fast: While a VM can take at least a few minutes to boot and be (development-ready), 

container starts from a few milliseconds to (as most) a few seconds to start a container 

from an image. 

 

▪ Portability and interchangeable: Containers can be shared across multiple team 

members, bringing much-needed portability across the development pipeline. This is 

essential to reduce the errors when transferring the code from a machine to another 

one, and in this case, to install the developed code and dependencies in future 

microcontrollers, as the Jetson Xavier. 

 

▪ Flexible: Even the most complex applications can be containerized. 

 

3.5. Carla simulator 

CARLA (Car Learning to Act) [31] (Figure 3.5-1) is an open source simulator for urban 

driving. It has been developed from scratch to support training, prototyping and validation 

of autonomous driving models (including both control and perception). Like CARLA, the 

content of provided urban environment is also free, which includes a multitude of vehicle 

models, pedestrians, street signs, buildings, etc. CARLA simulator supports flexible setup of 

sensor requirements and signals used to train driving strategies, such as speed, acceleration 

or GPS coordinates. A wide range of environmental conditions can also be specified, such as 

rainy, cloudy or sunset. 
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Figure 3.5-1 CARLA logotype 

 

3.5.1. Simulation Engine 

CARLA is implemented as an open-source layer over the Unreal Engine 4 (UE4) [67]. This 

simulation engine provides CARLA flexibility and realism in the rendering and physics 

simulation. It provides state-of-the-art rendering quality, realistic physics and an ecosystem 

of interoperable plugins. In that sense, CARLA simulates a dynamic world (Figure 3.5-2) and 

provides a simple interface between an agent that interacts with the world and the world. 

In order to support this functionality, CARLA is designed as a server-client system, where 

the server runs the simulation and renders the scene. The client API is implemented in 

Python, responsible for the interaction between the autonomous agent and the server. The 

client sends meta-commands and commands to the server and receives as response sensor 

readings. Meta-commands control the behaviour of the server, used for changing the 

properties of the environment (such as the weather conditions or illumination. On the other 

hand, commands control the vehicle, including steering, braking and accelerating.  

 

 

Figure 3.5-2 CARLA world 
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3.5.2. Environment and sensors 

CARLA environment is composed of 3D models of static objects like vegetation, 

infrastructure, buildings or traffic signs, as well as dynamic objects such as pedestrians or 

vehicles. They are designed by using low-weight geometric models and textures but 

maintaining visual realism by carefully crafting the materials and making use of variable 

level of detail.  

 

To build urban environments, CARLA follows the following steps:  

 

1. Laying out roads and sidewalks. 

2. Manually placing vegetation, terrain and traffic infrastructure. 

3. Specifying locations where dynamic objects can appear (spawn). 

 

Additionally, CARLA implements a variety of atmospheric and illumination conditions, 

differing in the position and colour of the sun, intensity and colour of the diffuse sky 

radiation as well as atmospheric fog, ambient occlusion and even precipitation. This gives 

rise to a total of 18 illumination-weather combinations. 

 

 

Figure 3.5-3 Different sensing modalities provided by CARLA: Normal vision, ground-truth 

depth and ground-truth semantic segmentation 

 

From the sensors perspective, CARLA allows for flexible configuration of the agent sensor 

suite. Most common sensors in CARLA are RGB cameras (and pseudo-sensors that provide 

semantic segmentation and groundtruth depth, Figure 3.5-3), LiDAR and GPS (main sensors 

required for self-driving applications). Moreover, camera parameters include 3D 

orientation and position with respect to the car coordinate system, field-of-view and depth 

of field. 

 

In addition to pseudo-sensor and sensor readings, CARLA provides a range of 

measurements associated with the state of the agent and compliance with traffic rules, 

including vehicle location and orientation with respect to the world coordinate system, 

acceleration vector, speed and accumulated impact from collusions. A very important 

feature of CARLA used in this master thesis to validate the proposal in Chapter 6 is that 

CARLA provides access to exact locations and bounding boxes of all dynamic objects in the 

environment, what means a groundtruth to validate a real-time 3D prediction in terms of 

Multi-Object Tracking, like (and even better) that using a static benchmark. 
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3.5.3. Autonomous Driving 

CARLA is used to study the performance of three approaches to autonomous-driving: 

 

1. Classic modular pipeline that comprises a vision-based perception module, a maneuver 

controller and a rule-based planner. 

2. Deep network that maps sensory input to driving commands, trained end-to-end using 

imitation learning. 

3. Deep network maps sensory input to driving commands, trained end-to-end using 

reinforcement learning. 

 

All these approaches make use of a common path planning strategy provided by a high-level 

topological planner. This planner takes the current position of the agent and the location of 

the goals as input, then uses the A* [45] algorithm to provide a high-level plan required by 

the agent to follow in order to reach the goal.  

 

In this master thesis, none of these approaches are used since it is used the SmartElderlyCar 

autonomous architecture proposal (including the Deep Learning based MOT presented in 

this work) in order to navigate with the agent, using CARLA as an excellent simulator to 

bridge in an efficient and right way the real-world and simulation to validate the proposal 

and then implement it in real situations.  

 

Moreover, this master thesis has used the CARLA 0.9.5 release (4th April 2019). It was not 

update to the last release (0.9.6, 12th July 2019) since the ROSbridge, required to 

communicate with the SmartElderlyCar Docker container, was deprecated in order to work 

with 0.9.6. The ROSbridge is a ROS package that aims at proving a ROS bridge for CARLA 

simulator, that is, it allows message passing between simulator and ROS. For example, 

vehicles may publish transform information, sensors of different agents publish data stream 

or it can be published control messages from ROS. It is important to consider that the Ego 

vehicle (main vehicle in which control algorithms and testing are implemented) is separated 

from other vehicles.   
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Chapter 4. SmartElderlyCar project 
 

4.1. Motivation and scope of the project 
 

This chapter focuses on the project in which this master thesis has been applied on. The 

project, named SmartElderlyCar and funded by Ministerio de Economía y Competitividad 

(Spain), aims to implement an autonomous electric vehicle able to drive in the campus of 

the University of Alcalá (Spain). Figure 4.1-1 shows the most recent version of the real 

prototype, still in development, whose software, hardware and structure have been 

developed by a joint work of the University of Vigo (GROBIS research group) and University 

of Alcalá (RobeSafe research group). MOT techniques developed in this project are 

traditional and based on Precision-Tracking [46]. This approach will be considered as 

baseline for the Deep Learning based Multi-Object Tracking architecture proposed in this 

work.  

 

To put in context the final application of the proposed tracking, hereafter it is shown the 

main characteristics of our autonomous navigation architecture (our vehicle, the sensor 

used, the simulator and the different use cases validated in simulation). 

 

 

Figure 4.1-1 Real autonomous electric car of Robesafe Research Group (UAH) 

 

4.2. Autonomous Navigation Architecture 
 

Figure 4.2-1 represents the car software framework as a modular architecture where 

individual modules asynchronously process information. These modules are independent 
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processes that communicate with each other using the ROS inter-process communication 

system (PCS). In particular, the publish/subscribe paradigm is used in order to provide non-

blocking communications.  

 

 

Figure 4.2-1 Proposed autonomous navigation architecture 

 

Each module corresponds to an independent Linux process running on different ECUs 

(Electronic Control Units). Software modules are organized in four sets: 

 

1. The hardware driver layer: Set of programs that control different hardware devices that 

comprise sensors and actuators. 

 

2. The control layer: Set of programs that implements the basic control and navigation 

functionality. It also contains the reactive control (local navigator), localization 

(localization), path planning (map manager) and a program that processes most of the 

exteroceptive sensors to detect relevant events (event monitor). 

 

3. The executive layer: Set of programs that coordinates the sequence of actions that need 

to be executed by other modules to carry out the current behaviour. 
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4. The interface layer: Set of processes to interact with the users and to connect to other 

processes for multi-robot applications. 

 

The environment perception is based on the sensor fusion of camera and LiDAR 

information. The motion control is divided into lower-level reactive control and high-level 

planning. First, the high-level planning calculates a path consisting of a sequence of lanelets 

[37] (which can be modified depending on the performed behaviours by the executive 

layer). The goal of the local navigation system is to safely follow the path, keeping the car 

within the driving lane, and following the behaviours constraints established by the high-

level planning. In order to do that, the car obtains the curvature to guide the car from the 

current position to a look-at-head position placed in the center of the lane by using the Pure 

Pursuit approach [39]. Then, this curvature is used as the reference for an obstacle-

avoidance method based on the Beam Curvature Method (BCM) [40]. This BCM approach 

allows to keep the vehicle centered in the lane while is able to avoid unknown obstacles that 

can partially block the lane.  

 

Finally, the decision making is implemented through Petri nets that take as inputs the map 

manager information, the local perception (provided through the event monitor module) 

and the vehicle localization in the map. In concrete, hierarchical interpreted binary Petri 

nets [41], where a net can stop or start another net of the already started ones. To 

implement them, the RoboGraph tool is employed. 

 

4.3. Real prototype 

The SmartElderlyCar is based on the chassis of an open source EV (Electric Vehicle), the 

TABBY EVO of the company Open Motors [33] (Figure 4.3-1 (a)). Thanks to the huge effort 

of the RobeSafe research group, this chassis has been integrated with a tubular car body, a 

pack of batteries, some sensors (mainly LiDAR, GPS and camera) and a drive-by-wire system 

enable to prepare it for autonomous navigation. The manual steering wheel has been 

removed so as to install a commercial electrical power steering (Opel Corsa model) with an 

encoder to control de vehicle direction electronically, as shown in Figure 4.3-1 (b). In order 

to do that, an ECU (Electronic Circuit Unit) has been designed based on an olimexino STM32 

open-source development board. It receives the angle commands and generates a PWM 

signal to a full bridge by using a PID closed loop control.  

 

 

              (a)                                                                               (b) 
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Figure 4.3-1 (a) Open-source chassis, (b) Electrical power steering wheel 

 

In a setup process the relationship between the desired angle of the steering wheels and the 

steering wheels angle is calculated. A sensor is included in the power steering to read the 

angle as well as switch from autonomous to manual control if the driver puts his hand in the 

wheel. Moreover, the signal generated by the throttle paddle is switched by a signal 

generated by the ECU to obtain the desired acceleration. If the driver puts his foot in the 

paddle the system automatically switches to the manual mode. The inputs of the ECU are 

the angle of the steering wheels and the desired velocity, and these commands are sent 

through the CAN bus from the high-level control. 

 

4.4. Sensors 
For environment perception, the vehicle is mainly equipped with a Velodyne LiDAR (VLP-

16) placed on the top of the vehicle and looking at the front of the vehicle, a stereo vision 2-

sensor colour camera (ZED), which is mounted on the front windshield of the vehicle at 165 

cm height above the ground and oriented to the road and a DGPS-RTK GPS TopCon HiperPro 

installed on the top in the central rear part of the vehicle. These devices are connected to an 

on-board embedded computer, working under Ubuntu OS, where the SW architecture is 

run.  

 

A self-driving car requires more sensors to navigate safely than mentioned above. However, 

since this thesis is specifically based on the above-mentioned sensors (LiDAR, camera and 

GPS) it is required to check the key concepts of each technology in addition to the specific 

features of that models.  

 

4.4.1. Distance sensor: LiDAR 

Actives distance sensors are a key concept in mobile robots in terms of localization and 

environment modelling. They are based on obtaining the distance through the propagation 

speed of an emitted wave, and the time it takes from the emission until it is received (flight 

time): 

 

                                                                     𝑑 =
𝑐0·𝑡

2
                                                                                     (4.1) 

 

Where 𝑐0  is the light speed (when speaking about laser), 𝑡  is the flight time and 𝑑  the 

distance to the object. 

 

The main advantage of laser sensors is that they can obtain more accurate and reliable 

distance measurements than other types of sensor distance, such as ultrasonic.  

LiDAR (Light Detection and Ranging) technology uses a type of sensor that measures 

distance to a target by illuminating the target with laser light (pulsed laser beam) and 

measuring the reflected light with a sensor. Its working principle is relatively simple: A 

diode inside emits the laser beam that is directed through a transmitter lens, hits the target 
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and part of the light is reflected in a photodiode after passing through a receiver lens. Then, 

differences in laser return times and wavelengths can be used to perform 3D 

representations of the target and in general to carry out a 3D reconstruction by using a point 

cloud of the environment. Figure 4.4-1 (a) shows an overview of the LiDAR system (in 

horizontal) and Figure 4.4-1 (b) a 3D reconstruction of the environment with a colour scale 

in such a way that closer objects are painted in green and further objects are painted in dark 

blue. 

 

 

(a) (b) 

Figure 4.4-1 (a) LiDAR system overview in horizontal (b) 3D reconstruction of the 
environment 

 

The 3D LiDAR consists of stacked rotary lasers that obtain information from the 

environment from different angles, which allows to obtain a point cloud. Each layer of lasers 

is a channel that emits a signal that creates a contour line, and that, together with the 

contour lines of the other channels, generates a 3D reconstruction of the environment. 

Therefore, the higher the number of channels, the higher resolution. The SmartElderlyCar 

uses a Velodyne LiDAR Puck (VLP-16) [34], which provides 16 channels of 360 º horizontal 

FoV (Field of View) and +/- 15 º vertical FoV. VLP-16 is the smallest and one of the most 

advanced in the Velodyne 3D LiDAR range, preserving calibrated reflectivity measurements 

and in real-time at 360 º. Figure 4.4-2 shows the VLP-16 dimensions. 

 

 

Figure 4.4-2 VLP-16 dimensions overview 
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On the other hand, Table 4.4-1 shows some of the main specifications of the VLP-16: 

 

Table 4.4-1 Main specifications of VLP-16 sensor 

Sensor specifications Mechanical/Electrical specifications 

Channels 16 Typical power consumption [W] 8 

Measurement range up to [m]  100  Weight (without cabling) [g] 830 

Typical accuracy [cm] 3 𝑐𝑚 Operating temperature  

[º C] 

(-10) to (+60) 

Vertical FoV [º] 30 º (+15 º 

to -15 º) 

Environmental protection IP67 

Vertical angular resolution [º] 2 Output features 

Horizontal FoV [º] 360 º Simple return mode [points/s] 0.3 million 

Horizontal angular resolution 

[º] 

0.1 – 0.4 Dual return mode [points/s] 0.6 million 

Rotation rate [Hz] 5 - 20 Ethernet connection [Mbps] 100 

 

4.4.2. Vision sensor: Camera 
 

Artificial or computer vision is based on capturing visual information from the environment 

(both simulation and real-world) to extract relevant visual features. The essential device for 

obtaining this kind of information is the camera, and one of its main components is the 

vision sensor (part of the image capture sytem), which is responsible for converting the 

received light waves into electrical signals, thanks to its photosensitive components. Then, 

these signals are processed and converted into the images the human beings see. Figure 

4.4-3 shows the camera used in this project.  

 

 

Figure 4.4-3 The ZED camera 

 

Even though there are different types of cameras, in robotics the stereo camera is widely 

used due to it relies on human binocular vision to capture two images that are processed in 
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order to obtain the distance and depth of the elements that make up the scene, and thus be 

able to represent a 3D image. One of its critical points is the correct alignment of the pixels 

of the image of one camera with the other. In particular, the SmartElderlyCar uses the ZED 

stereo camera [35] which has two sensors with a baseline of 12 cm. Using its two “eyes” and 

through triangulation, the ZED provides a three-dimensional understanding of the scene, 

allowing the target application to become space and motion aware. Table 4.4-2 illustrates 

some of its main specifications: 

 

Table 4.4-2 ZED camera main specifications 

Camera specifications 

Sensors 2 CCD sensors 

4M pixels per sensor with large 2-micron pixels 

Native 16:9 format for a greater horizontal FoV 

Stereo baseline [cm]  12 

Depth range [m] 0.5 −  20 

Technology Real-time depth-based visual odometry and SLAM 

Lens Wide-angle all-glass dual lens with reduced distortion 

FoV: 90 º (Horizontal) x 60 º (Vertical) 

f/2.0 aperture 

Connectivity USB 3.0 port with 1.5m integrated cable 

Power via USB: 5V / 380 mA 

Operating temperature [º C] 0 - 45 

Weight [g] 159 

Main Third-party support ROS, Unity, Unreal Engine, OpenCV, MATLAB 

 

4.4.3. Positioning sensor: GPS 
 

One of the most important objectives of a self-driving car is to keep its position and 

localization throughout the whole navigation. This outdoor information is obtained thanks 

to the GPS (Global Positioning System).  

 

The GPS is a system that allows to obtain the position in any point of the Earth with high 

precision. Its operation is based on triangulation (Figure 4.4-4) thanks to the network of 

24 satellites that orbit the Earth at a height of 20,180 km covering its entire surface. The 

GPS receiver takes the signal from the satellites indicating its position and time and obtains 

the time it takes for the signal to arrive to calculate by using triangulation the distance of 

each satellite to the measurement point.  
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Figure 4.4-4 GPS Triangulation process 

 

Mathematically, 4 satellites would be enough to determine the exact position of Earth, since 

the geometric place of the space points that are equidistant from each satellite is a sphere, 

and, therefore, it is the intersection of 4 spheres that allows to obtain a point. However, in a 

self-driving application, positioning is critical, so high accuracies are required and the 

detection of a greater number of satellites is required to achieve this high accuracy. 

 

In order to obtain the global positioning, the SmartElderlyCar uses a multi-constellation 

system (multi-GNSS) with Real-Time Kinematic (RTK) positioning solution. This module is 

directly integrated in the back of the car and is made up by two elements (Figure 4.4-5 (a)): 

Differential Topcon Hiper Pro GPS [36] + Receiver configured as rover and a local base 

station with the purpose of generating differential corrections for the rover. The rover can 

obtain data from both GLONASS (Russian global system positioning, homologous to the GPS 

system managed by USA) and GPS to provide a more robust solution than standard GPS by 

increasing the number of visible satellites.  

 

 

(a)                                  (b) 

Figure 4.4-5 (a) Differential Topcon Hiper Pro GPS configured as rover and base (b) 
Choke-Ring Antenna as local base station 

 

Due to the fact that autonomous vehicles demand real-time positioning, the use of 

differential corrections allows to provide information at a frequency of 10 Hz in order to 

improve the required accuracy. Furthermore, the local base station (located on the roof of 
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the Escuela Politécnica Superior – UAH) is based on Choke-Ring Antenna (Figure 4.4-5 (b)), 

specifically chosen to deal with multipath, connected to a second Topcon Hiper Pro GPS + 

receiver that provides these differential corrections. Finally, these differential corrections 

are published over Internet by using standard open source software in the vehicle using a 

GPRS link via radio. Table 4.4-3 illustrates some of its main features: 

 

Table 4.4-3 Topcon Hiper Pro GPS main specifications 

GPS specifications 

Receiver type Euro-112T (HGGDT) 

Standard channels  20 (GPS, Differential and GLONASS) 

Operation Time [h] +14 

Power consumption [W] < 4.2 

Antenna type Central mount UHF 

Wireless communication Bluetooth 

Communication ports x2 (RS2R2) 

Output frequency [Hz] 20 

 
 

Figure 4.4-6 depicts a handcrafted rack placed on the roof of the car with all mentioned 

sensors integrated and aligned. It can be appreciated that apart from above mentioned 

sensors, there is a router (in order to provide Internet to the vehicle), a switch (to enable 

sensor communication), the Velodyne interface that connects the LiDAR with the on-board 

computer and the Jetson AGX Xavier. A future work of this thesis will be to implement and 

test the tracking layer into this powerful computer so as to distribute the computational 

load currently most performed by the on-board computer (an MSI GT62VR-7RE i7-

7700HQ), and compare the MOT obtain results with respect to the current HW approach. 
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Figure 4.4-6 Handcrafted rack with the main sensors of the SmartElderlyCar 

 

To finish this Sensors section, Figure 4.4-7 illustrates the sensor frames orientation and 

position which is essential to understand the subsequent sensor fusion dealt in Chapter 5. 

It must be regarded that this sensor configuration is maintained both in simulation and real-

world in order to develop and test SW approaches in simulation and then plug-and-play in 

the real prototype so as to check new techniques, not requiring additional transformations.  

 

 

Figure 4.4-7 Frames Orientation and position of the main sensors in the vehicle 
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4.5. Simulation environments 

Most used 3D simulators in the field of robotics are V-REP [38] and Gazebo [43], because of 

their ease integration in ROS. Other simulation environments are Microsoft Airsim [44] 

(initially designed for drones but recently update so as to include autonomous vehicles), 

ROS development studio [43] (based 100 % on Cloud, so a system of gym computers allows 

the parallel training of as many as required) and CARLA [31], which is expected to be the 

reference open-source simulator for autonomous vehicles based on Unreal engine, with a 

recent release of its ROSbridge. 

 

The SmartElderlyCar project has been under simulation development for three years (2016-

2018) using the V-REP simulator but currently CARLA simulator is used in order to get more 

challenging situations to improve the robustness and reliability of the prototype (both in 

simulation and real-world), especially in terms of perception of the environment (which is 

one of the most attractive features of CARLA). Despite the fact that results of this master 

thesis are based on [42] and , it is required to show a brief background of the project 

integration in V-REP (Figure 4.5-1) to understand the validation results carried out with the 

traditional tracking techniques and the modifications performed in CARLA regarding V-

REP. 

 

 

Figure 4.5-1 V-REP logotype 

 

V-REP is a multiplatform simulation software developed by Coppelia Robotics GmbH. With 

integrated development, is based on a distributed control architecture: each model/object 

can be individually controlled via embedded script, a plugin, ROS nodes, BlueZero nodes, 

remote API clients or a custom solution. This makes V-REP very versatile and suitable for 

multi-robot applications. A fully functional free version is available for researchers. 

 

The drivable area is modelled both geographic and topologically by using the lanelet 

approach (Figure 4.5-2) presented in [37] and OpenStreetMap service. Lanes and 

connections among them are manually delimited, including regulatory traffic information, 

to generate an enriched map useful for navigation. While in V-REP the simulation was 

limited to the UAH campus, due to the complexity of mapping other places and manually 

creating the environment, this master thesis has developed a code in order to transform 

from OpenDrive syntax (in which CARLA is based on) to the JOSM format (in which lanelets 

approach is based on) so that CARLA maps fit the needs of the SmartElderlyCar architecture. 

This code is exposed and commented in Chapter 5. In both cases, to create the JOSM map, 
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WGS84 are used (made up by latitude, longitude and height) whilst the SmartElderlyCar 

works in Cartesian coordinates (UTM) relative to an origin (in the UAH campus, it 

corresponds roughly to the center of the campus, but in CARLA maps sometimes the origin 

is referred to a corner and other times is referred to the center). 

 

 

Figure 4.5-2 Map composition based on lanelets 

 

Once the lanelets map is available, the map manager module loads the map and is in charge 

of planning a new path as a sequence of lanelets. Each lanelet is defined by the borders 

named ways. Besides the path, the map manager module serves other queries from other 

modules related to the map, such as providing the contiguous lanes for the overtake 

maneuver, the lanes of an intersection to the event monitor for the cross intersection 

maneuver and it should also provide the position of regulatory elements. For the navigation, 

three different planners are applied. First, a lanelet path is obtained using an A* algorithm 

[45] from the lanelet maps. Then, as commented above, a global path planner calculates an 

executable route by the car that tries to go in the middle of the lanes using the Pure Pursuit 

approach, and finally a local navigation algorithm based on BCM is executed to perform 

different behaviours following this path and avoiding unexpected obstacles.  

 

4.6. Simulating use cases for the UAH Autonomous 

Electric Car 

To finish this chapter, this section deals with the a paper associated to this master thesis 

titled “Simulating use cases for the UAH Autonomous Electric Car”, for publication in the 

ITSC (International Transportation Systems Conference) 2019 and the tracking approach 

used to perform the different use cases, known as Precision-Tracking [46]. [42] shows a 

deeper explanation of this paper. 

 

Precision-Tracking [46] is a 3D tracking method used in real spaces that combines 3D shape 

using a probabilistic framework in which it makes use of the shape information, colour (if 

available) and motion cues so as to accurately track moving objects in real-time. It allocates 

computational effort based on the shape of the posterior distribution. Starting with a course 

approximation to the posterior, precision-tracking approach successively refines this 

distribution, increasing in tracking accuracy over time. It is able to robustly handle changes 
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in viewpoint, occlusions and lighting variations for moving objects of a variety of shapes, 

sizes and distances. 

 

It uses a grid-based method to sample velocities from the state space. While traditional grid-

based methods are often used in SLAM (Simultaneous Localization and Mapping) 

techniques, they are slow for Multi-Object Tracking and so not suitable for self-driving 

purposes, this approach allows fine-sampling on a large grid thanks to use of the ADH 

(Annealed Dynamic Histograms) method, based on histograms. It starts by sampling from 

the state space at a coarse resolution using a posterior distribution over velocities. In this 

way, over time the sampling resolution increases and the probability distribution is 

strengthened (annealed), so the approximate distribution approaches the true posterior. 

Hence, the current approximation to the posterior may be return, with tracking resolution 

based on the needs of the application. 

 

In the context of the SmartElderlyCar project, the precision-tracking approach takes as 

input the 3D clusters proposals after merging the information of a LiDAR point cloud and 

the semantic segmentation of the scene by using the ERFNet (Efficient Residual Factorized 

ConvNet) [68], as shown in Figure 4.6-1.  

 

 

Figure 4.6-1 Precision-Tracking approach in the SmartElderlyCar (Real world) 

 

On the other hand, in simulation, we take advantage of the V-REP characteristics, objects 
are mainly monocolor (Figure 4.6-2), to implement semantic segmentation. 
 

 

Figure 4.6-2 From Left to right, V-REP car and pedestrian models 
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In both cases (simulation and real-world), there must be a projection of the colour 
information (provided by the image) onto the 3D Point Cloud. It can be performed by using 
the algorithm shown in Figure 4.6-3. A more detailed overview of the code can be found in 
Code of Interest C-1. 

 

 

Figure 4.6-3 Algorithm used to project the semantic segmentation into the 3D Point Cloud 

 

It must be considered that the precision-tracking approach depends crucially on the results 

obtained during the detection process since they are used as input, as shown in Figure 4.6-1. 

During the detection process, both the measurement uncertainties of the sensors and the 

occlusions caused by changes in point-of-view must be dealt with, which causes the laser to 

not reflect some points correctly. Moreover, sensory is not perfect. One of the key points 

related with detection problems is that a 16-channels 3D LiDAR is used in the real 

prototype, which in comparison with other 32 or 64-channels 3D LiDAR, has less FoV and 

angular resolution although its has a lower a price and requires less computational effort, 

which makes it attractive to develop algorithm in order to improve detection. On the other 

hand, CARLA and V-REP they are able of simulating several types of LiDAR, with a greater 

resolution than offered by 16-channels LiDAR. 

 

In terms of precision-tracking, there is a trade-off in order to choose the minimum number 

of points that should be considered for an object cluster. Limiting the minimum size to a 

small number of points (to consider a cluster as a relevant object) has the advantage of being 

able to determine the presence of an object that is relatively at a great distance. However, if 

assuming small number of points, it is more likely to fall into a detection error which would 

cause. In that sense, [42] assumes a minimum cluster size which guarantees a more accurate 

detection when the object is relatively close.  
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Figure 4.6-4 Pedestrian crossing simulation example 

 

According to [42], several tests were carried out in the simulated Campus of the UAH. In 

order to perform each use case (Pedestrian Crossing, STOP, Give Way, Traffic Light, 

Adaptive Cruise Control (ACC) and Overtaking), the control layer takes the information of 

the lanelets and nearest regulatory elements, provided by the map manager module, so as 

to generate some velocity command for the low-level control, following the use case 

commanded by the executive layer through the respective Petri net. Figure 4.6-4 illustrates 

a simulation example where left image shows the R-VIZ simulator illustrating the point 

cloud detection and right image shows the V-REP simulator faced by the ego-vehicle 

sensors.  

 

Table 4.6-1 shows a summary of the main features, including inputs, outputs and number 

of elements for the main Petri Nets. As observed, the first Petri Net (Background) is a net 

running always in background. This net is waiting for a message from the user requesting 

to execute some of the car tasks the car can carry out. Selector PN decides which behaviour 

to run, according to the traffic situation, and monitors the execution of the behaviours. Each 

one of the other Petri nets implements the behaviour that corresponds to a particular traffic 

situation use case. 
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Table 4.6-1 Table Main features of the SmartElderlyCar Petri Nets 
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Chapter 5. Architecture proposal 
for Deep Learning based Multi-
Object Tracking  
 

5.1. Introduction 
 
This chapter aims to show the architecture proposal for Deep-Learning based Multi-Object 

Tracking. Due to system requirements, the architecture proposal must offer overall two key 

features: real-time operation and robustness to a number of ambient conditions which 

typically degrade performance. As mentioned in previous chapters, these object tracking 

challenges, mainly in Visual Object Tracking (VOT) include partial occlusion, camera 

modelling errors, photometric changes (lightning, shadows, etc.) or incorrect edge 

matching. 

 

After trying to run several times deep-learning approaches for object tracking, several 

limitations were found about previously mentioned deep-learning state-of-the-art 

approaches for object tracking: 

 

• GOTURN: This deep-learning based tracker presents lack of motion information. 

Since motion information is not integrated in the two-frame model, if the system 

(for example, the autonomous vehicle) is tracking an object (another car or 

pedestrians) moving in one direction and gets partially occluded by a similar object 

moving in the other direction, there is a great change and the tracker will latch onto 

the wrong object.  

 

• MV-YOLO: The code is still not published. In addition, [63] mentions that MV-YOLO 

does not support currently Multi-Object Tracking but only Single-Object Tracking, 

what is not appropriate for self-driving applications (the main purpose of this 

master thesis). 

 

• MDNet: The network is not thought for real-time purposes, at least for the moment. 

It was evaluated on two datasets, Object Tracking Benchmark (OTB) and Visual 

Object Tracking 2014. As mentioned above, the algorithm is implemented in 

MATLAB using MatConvNet toolbox, running at around 1 fps with eight cores of 2.20 

GHz Intel Xeon E5-2660 and an NVIDIA Tesla K20m GPU. This framerate of 1 fps is 

not enough for self-driving applications, since what it means is that the network is 

estimating the position of the object every second, but at certain velocities, one 

second gives rise to great distances and the vehicle could crash an obstacle. 
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• ROLO: The code is totally deprecated in terms of Python and Tensorflow.  

 

• Re3: This approach models both appearance and motion variations using RNNs and 

achieves comparable results on several object tracking benchmarks. However, Re3 

only considers short-term variations [48], is notably affected by partial occlusion 

and requires manual resetting of RNN states every 32 frames. 

 
 

Due to limitations of the current deep learning proposals for object tracking (moreover 

Multi-Object Tracking) unable to be used in an AV application, this master thesis proposes 

a fusion between VOT performed in 2D images and 3D boxes detected by the LiDAR, 

following the architecture shown in Figure 5.1-1. VOT is carried out by using CenterNet [49] 

(one of the most efficient and fastest CNNs right now to detect objects in images, published 

in 2019, even faster than YoloV3 [51]) and Deep SORT [2] (based on the real-time tracker 

SORT [27] with a deep association metric). Image bounding boxes are projected into the 

Bird Eye View (BEV) plane using the calibration matrix and taken a fix depth for each 

bounding box. However, this 3D recovery process is not so accurate. To improve precision, 

LiDAR 3D boxes proposals obtained from the LiDAR point cloud, after a clustering and KD-

Tree process, are projected to the BEV plane. Proposals coming from VOT and LiDAR are 

fused using a simple algorithm consisting in evaluating the overlapping in the two domains. 

If the overlapping is higher than a certain threshold, the LiDAR proposal pass to the output. 

Otherwise, the proposal is discarded. Future works will include BEV VOT proposals if the 

object detection is performed far away from the vehicle and there are not enough points to 

cluster the point cloud at that distances. 

 

 

Figure 5.1-1 Architecture proposal for Multi-Object Tracking 

 

The following sections deal with the main modules of this architecture, both those related 

with the CenterNet+DeepSORT based framework and the PCL-ROS based framework. 
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5.2. Centernet 
 

The first step to carry out object tracking, as mentioned throughout this work, is the 

detection. The CenterNet approach [49] is a CNN that detects each object as a triplet (top-

left corner, center estimation and bottom-right corner), rather than a pair (only the corners) 

of keypoints, which improves both precision and recall. 

 

This technique is based on CornerNet approach [50]. CornerNet represents each object by a 

pair of corner keypoints, which bypassed the need of anchor boxes and achieves the state-

of-the-art-one-stage object detection accuracy. Nevertheless, the CornerNet performance is 

restricted by its relatively weak ability of referring to the global information of an object. 

That is to say, since each object bounding box is constructed by a pair of corners, the 

algorithm is sensitive to detect the boundary of objects so not being aware of which pairs of 

keypoints should be grouped into objects. This weakness gives rise to some incorrect 

bounding boxes, most of which could be easily filtered out with complementary 

information, such as the aspect ratio. 

 

Figure 5.2-1 CenterNet architecture 

 

To address this weakness, CornerNet is equipped with the ability of perceiving the visual 

patterns within each proposed region in order to identify the correctness of each bounding 

box by itself. In that sense, CenterNet is a variation of CornerNet that explores the central 

part of a proposal (region that is close to the geometric center) with one extra keypoint. The 

statement is very simple: If a predicted bounding box has a high IoU (Intersection over 

Union) with the groundtruth box, then, the probability that the center keypoint in its central 

region is predicted as the same class id is high, and vice versa. In other words, if is 

determined if the proposal is indeed an object by checking if there is a center keypoint of 

the same class falling within its central region. Since the approach only pays attention to the 

center information, the cost in minimal. 

 

The overall network architecture is shown in Figure 5.2-1. A convolutional backbone 

network applies center pooling and cascade corner pooling to output a center keypoints 

heatmap and two corner heatmaps, respectively. Each object is represented by a center 

keypoint and a pair of keypoints. CenterNet uses the method proposed in CornerNet in 

order to generate top-k bounding boxes. Nevertheless, to filter the incorrect bounding 

boxes, CenterNet leverages the detected center keypoint and follows this procedure: 
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1. Select top-k center keypoints according to their scores. 

 

2. Use the corresponding offsets to remap these center keypoints to the input image. 

 

3. Define a central region for each bounding box and check if the central region contains 

center keypoints. 

 

4. If a center keypoint is detected in the central region, the bounding box is preserved and 

the score of the bounding boxes will be replaced by the average scores of the keypoint 

triplet. If there are no center keypoints detected in its central region, the bounding box 

is removed. 

 

However, in order to incorporate this object detector, since to define the bounding box and 

detect the object largely depends on the size of the central region in the bounding box. For 

example, smaller central regions lead to a low recall rate for small bounding boxes, while 

larger central regions lead to a low precision for large bounding boxes. Both in simulation 

and of course in the real-world, an object must be tracked (and so previously detected) until 

it disappears from scene. Even if it is at a certain distance (small size in the scene) but still 

on-road, it must be detected since is relevant. In that sense, CenterNet is excellent because 

it proposes a scale-aware central region to adaptively fit the size of bounding boxes. The 

scale-aware central region tends to generate a relatively central region for a small bounding 

box, while a relatively small central region for a large bounding box. 

 

In conclusion, the main highlights of CenterNet are: 

 

▪ Simple: Use keypoint detection technique to detect the bounding box center point and 

regress to all other object properties such as bounding box, pose or 3D information. 

 

▪ Versatile: The same framework can work for object detection, multi-person pose 

estimation with minor modification and 3D bounding box estimation. 

 

▪ Fast: The whole process is included in a single network feedforward. 

 

▪ Strong: The best single model achieves 45.1 AP (Average Precision) on COCO test-dev. 

 

5.3. Deep SORT 

Simple Online and Real Time (SORT) [27] tracking is a pragmatic approach to MOT (Multi-

Object Tracking) where the main focus is to associate objects efficiently for online and real-

time applications. This method represents a lean implementation of a tracking-by-detection 

framework for the problem of MOT where objects are detected each frame and represented 

as bounding boxes. SORT performs Kalman filtering (detailed Appendix A) in image space 

and frame-by-frame data association using the Hungarian method [52] with an association 

metric that measures bounding box overlap. Due to this simple combination, it achieves 
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favourable performance at high frame rates. For example, on the MOT challenge dataset, 

SORT with a state-of-the-art detector (Faster R-CNN, [53]) ranks on average higher than 

Multiple Hypothesis Tracking (MHT) [54]. This method is primarily targeted towards online 

tracking where only detections from the previous and the current frame are presented to 

the tracker, in contrast to many batch based (i.e., offline) tracking approaches ([28] [29]). 

 

However, while achieving overall good performance in terms of accuracy and tracking 

precision, SORT algorithm returns a high number of identity switches since the employed 

association metric is only accurate when state estimation uncertainty is low (that is, 

uncertainty in Kalman filter). Therefore, SORT presents a deficiency in tracking through 

occlusions which they typically appear in frontal-view camera scenes. In order to overcome 

this drawback, [2] replaces the association metric with a more informed metric that 

combines appearance information and motion using a deep learning net. Through the 

integration of this network, the robustness is increased against misses and occlusions while 

keeping the system efficient, applicable to real-time scenarios and easy to implement.  

 

Deep SORT [2] is one of the most widely used and elegant object tracking framework as an 

extension to SORT. Now, it is described briefly each of the four core components of this Deep 

SORT system. Figure 5.3-1 depicts a flowchart for this framework. 

 

 

Figure 5.3-1 Flowchart of the CenterNet+Deep SORT framework 

 

5.3.1.  Track handling and State Estimation 

This component is very similar to the SORT proposal. It is assumed a general tracking 

scenario where the camera is uncalibrated and there is no ego-motion information 

available. Therefore, the tracking scenario is defined on the eight-dimensional state space 

(𝑢, 𝑣, 𝛾, ℎ, 𝑥̇, 𝑦̇, 𝛾̇, ℎ̇) that contains the bounding box center position (𝑢, 𝑣), aspect ratio 𝛾 , 

height ℎ and their respective velocities in image coordinates. Then, a standard Kalman filter 

with constant velocity motion and linear observation model is used, where the bounding 

box coordinates (𝑢, 𝑣, 𝛾, ℎ) are taken as direct observations of the object state. For each 

track k it is counted the number of frames since the last successful measurement association 
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𝑎𝑘. During Kalman filter prediction the counter is increased and reset to 0 if the track has 

been associated with a measurement. Otherwise, tracked objects whose associated counter 

exceed a predefined maximum age 𝐴𝑚𝑎𝑥  are considered to have left the scene and are 

deleted from the track set. On the other hand, new track hypotheses are initiated for each 

detection that cannot be associated to an existing tracked object. Furthermore, these new 

tracks are classified as tentative during their first three frames. If these new tracks 

hypotheses are not associated to an existing tracked object within their first three frames, 

they are deleted. 

 

5.3.2.  Assignment Problem 

The second component deals with the association of predicted Kalman states and newly 

arrived measurements. It can be solved using the Hungarian algorithm, which is a 

combinatorial optimization algorithm that solves the assignment problem in time. In order 

to solve this assignment problem, motion and appearance information are integrated 

through combination of two appropriate metrics.  

 

To incorporate motion information, the (squared) Mahalanobis distance between newly 

arrived measurements and predicted Kalman states is used: 

 

                                                  𝑑1(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇
𝑆𝑖

−1(𝑑𝑗 − 𝑦𝑖)                                                     (5.1) 

                                                                                     

Where the 𝑦𝑖  denote the projection of the 𝑖-th track distribution and 𝑑𝑗 the 𝑗-th bounding 

box detection. The Mahalanobis distance takes the estimation uncertainty for the 

association of the detections with the tracker estimations. In addition, using this motion 

information is possible to exclude unlikely associations thresholding the Mahalanobis 

distance at 95 % confidence interval, computed from the inverse 𝑋2 distribution: 

 

                                                      𝑏𝑖,𝑗
(1) = 𝟏[𝑑1(𝑖, 𝑗) ≤ 𝑡(1)]                                                       (5.2) 

 

In this case, the decision to associate the 𝑖-th track with the 𝑗-th detection is admissible if 

the Mahalanobis distance is lower or equal than its threshold 𝑡(1) = 9.4877. 

 

However, the rougher the estimation of the object location (obtained from the Kalman filter) 

is, the worse works the Mahalanobis distance, since the motion uncertainty is high (for 

example, in unaccounted camera motion that introduces rapid displacements). Then, a 

second metric is introduced into the assignment problem. For each bounding box detection 

𝑑𝑗, the appearance descriptor 𝑟𝑗 is computed. Furthermore, Deep SORT computes a gallery 

𝑅𝑘 = {𝑟𝑘
(𝑖)

} from k = 1 to the last 100 associated appearance descriptors for each track k, 

named  𝐿𝑘. 

                                        

Then, this second metric measures the smallest cosine distance between the 𝑖-th and the 𝑗-

th detection in appearance space: 

 

                                                𝑑2(𝑖, 𝑗) = 𝑚𝑖𝑛{1 − 𝑟𝑘
𝑇𝑟𝑘

(𝑖) |𝑟𝑘
(𝑖) ⋲ 𝑅𝑖}                                        (5.3) 
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Again, a binary variable is introduced so as to indicate if the association is admissible 

comparing this result with a suitable threshold: 

 

                                                   𝑏𝑖,𝑗
(2)

= 𝟏[𝑑2(𝑖, 𝑗) ≤ 𝑡(2)]                                                       (5.4) 

 

In combination, both metrics (motion and appearance) complement each other by serving 

different aspects of the assignment problem. On the one hand, the Mahalanobis distance 

provides information about possible object locations based on motion (very useful for 

short-term predictions). On the other hand, the cosine distance considers appearance 

information that are particularly useful to recover identities after long-term occlusions, 

where motion is less discriminative. This is an excellent solution for real application, like 

self-driving, where a car may be partially occluded by another object for a relative long-term 

for example if they have the same velocity. To build the association problem, both metrics 

are combined using a weighted sum, where the influence of each metric on the combined 

association cost can be controlled through hyperparameter 𝜆: 

 

                                                       𝑐𝑖,𝑗 = 𝜆𝑑1(𝑖, 𝑗) + (1 − 𝜆)𝑑2(𝑖, 𝑗)                                                    (5.5) 

 

Where finally an association is considered admissible if it is within the gating region of both 

metrics (that is, both decisions 𝑏𝑖,𝑗
(1) and 𝑏𝑖,𝑗

(2) are equal to 1): 

 

𝑏𝑖,𝑗 = ∏ 𝑏𝑖,𝑗
(𝑚)

2

𝑚=1

  

 

5.3.3.  Matching Cascade 

When an object is occluded for a longer period of time, subsequent Kalman filter predictions 

increase the uncertainty associated with the object location. For that reason, probability 

mass spreads out in state space and the observation likelihood decreases. The association 

metric should consider this spread of probability mass by increasing the measurement-to-

track distance. On the other hand, counterintuitively when two tracked objects compete for 

the same detection, the Mahalanobis distance favors large uncertainty since it effectively 

reduces the distance in standard deviations of any detection towards the projected track 

mean. This is a problem: It can lead to increased track fragmentations and unstable tracks. 

In that sense, Deep SORT introduces a matching cascade algorithm that gives priority to 

more frequently seen objects to consider in a proper way the probability spread in the 

association likelihood. Figure 5.3-2 shows the matching cascade pseudo-algorithm. 
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Figure 5.3-2 Matching Cascade algorithm to evaluate the age of the tracked objects 

 

Its inputs are the set of track T and detection D indices in addition to the maximum age 𝐴𝑚𝑎𝑥 

(maximum time considered for a tracked object to have left the scene and delete from the 

track set). Lines 1 and 2 compute the association cost matrix and admissible associations 

matrix. Then, using the Hungarian algorithm, it is iterated over track age n (from 1 to 𝐴𝑚𝑎𝑥) 

to solve the linear assignment problem for tracked objects of increasing age. In line 6 a 

subset of n tracks, named 𝑇𝑛 is selected since it has not been associated with a detection in 

the last n frames. In line 7 the linear assignment problem between unmatched detections 𝑈 

and not-associated tracks 𝑇𝑛. In lines 8 and 9 the set of matches and unmatched detections 

is updated, which is returned in line 11. It is important to consider that the matching cascade 

gives priority to tracked objects of smaller age, that is, those that have been seen more 

recently. 

 

 

Figure 5.3-3 Intersection over Union representation 

 
Finally, the Intersection over Union (IoU) (Figure 5.3-3) is performed, as proposed in SORT, 

on the set of unconfirmed and unmatched tracks of age n = 1. This helps to increase 

robustness against erroneous initialization of the Kalman filter and take into account for 

sudden appearance changes, such as partial occlusion with static scene geometry. 

 

5.3.4.  Deep Appearance Descriptor 

At this moment, the above steps represent the SORT algorithm, that is, an object detector 

providing detections (CenterNet in the present work), Kalman filter tracking them and 
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providing missing tracks and the Hungarian algorithm solving the association problem. 

However, despite the effectiveness of Kalman filter, it fails in many of the real-world 

scenarios where associated VOT problems take place, such as occlusions, lighting or 

different point-of-view, in other words, one fundamental thing that SORT algorithm misses, 

which human beings use all the time in tracking, is a visual understanding of the detected 

bounding boxes. In order to overcome this drawback, [2] introduces another distance 

metric based on the appearance of the object. Using deep features allows Deep SORT 

technique to track much better in cases where people are occluding or are very close in the 

image. The idea is to obtain a vector that can describe all the features of a given image. 

 

Original version of [2] employed a CNN trained on a large-scale person re-identification 

dataset (Mars dataset  [57]) that contains over 1,150,000 images of 1,261 pedestrians, so it 

is well suited for deep metric learning in a people tracking context. A classifier over this 

mentioned dataset was trained till it achieves a reasonably good accuracy and then strip the 

final classification layer. That feature vector becomes the appearance descriptor of the 

object. Moreover, currently not only supports people re-identification but also the COCO-

dataset labels (cars, bicycles, etc.) which provides a more robust tracking in terms of MOT 

for self-driving applications. 

 

 

Figure 5.3-4 Overview of the Deep Appearance descriptor CNN architecture 

 
This CNN architecture is shown in Figure 5.3-4. The input constitutes a 32 x 128 x 3 image 

corresponding to each of the bounding boxes (crop) detected in the image. It is actually a 

wide residual network [58] with two convolutional layers followed by six residual blocks. 

The Dense 10 layer will be the appearance feature vector for the given crop. The network 

has 2,800,864 parameters and one forward pass of 32 bounding boxes which takes 30 ms 

on a Nvidia GeForce GTX 1050 mobile GPU. Considering that the available GPU of the 

SmartElderlyCar is better (1070 GTX), this network is well suited for the vehicle online 

tracking purposes. A final batch and 𝑙2  normalization projects features onto the unit 

hypersphere to be compatible with the cosine appearance metric. Once trained, it is just 

required to pass all the crops of the detected bounding box (in this case performed by 

CenterNet) from the image to this network and obtain a 128 x 1 dimensional feature vector 

(for each detected bounding box).  
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In conclusion, a simple distance metric, combined with a powerful DL technique is all it took 

for Deep SORT to be an elegant and one of the most widespread object trackers. In summary, 

given an input image, CenterNet detects the relevant objects in the image according to 

COCO-dataset. By using this bounding box information between the projection of the track 

distribution (Kalman Filter) and bounding boxes detection, Mahalanobis distance is 

computed (Motion metrics); on the other hand, using a deep appearance descriptor based 

on a pretrained CNN, appearance metric is computed as well. By using a weighted sum of 

these motion metrics and appearance metrics, Deep SORT is able to predict in a very 

accurate way feature pose of the tracked objects. 

 

Moreover, Figure 5.3-5 shows the algorithm used to perform VOT using CenterNet and Deep 
SORT approaches. A more detailed overview of the code can be found in Code of Interest 
C-2 and Code of Interest C-3. 
 

 

Figure 5.3-5 Algorithm used to perform VOT using CenterNet and Deep SORT 

 

5.4. LiDAR clustering 

As commented in Chapter 3, working with the whole point cloud can be hard 

computationally to perform detection and tracking on individual objects. For that reason, 

the whole point cloud is usually divided into smaller clouds of points (also known as 

clusters) in which each one contains nearby space points that belong to the same object. 

 

In this master thesis, a clustering based on the 3D point cloud data is performed. Despite 

the fact that it requires a great computational effort than if it was done with 2D data, the 

results (overall the 3D centroid of the object) are more accurate when incorporating the 
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vertical component. The implemented method is based on grouping 3D points by using the 

searching algorithm KD-Tree combined with the cluster extraction based on the Euclidean 

distance (Euclidean Cluster Extraction). 

 

5.4.1. KD-Tree 

KD-Tree (K-dimension tree) is a data structure used to organize points in a k-dimensional 

Euclidean space. It is a binary search tree that only employs perpendicular planes to each 

dimension, where each node contains a point, leaving all the points crossed by planes. It is 

usually used for point searches, such as the Nearest Neighbour [59]. As this master thesis 

works with 3D point cloud data, 3D trees are used (K = 3).  

 

The tree-shaped organization is equivalent to a hierarchical structure divided into levels 

formed by parent nodes and child nodes, where at each level, the nodes are divided by a 

plane perpendicular to an axis. The most efficient way to build it is by using the QuickSort 

algorithm, based on taking the median in one dimension and then ordering the rest of the 

elements (on the right and on the left with respect to a given node) depending on whether 

they have a greater or lesser value. Figure 5.4-1 shows an example of 3D tree structure: 

 

 

Figure 5.4-1 3D KD-Tree example 

 

In this example, the primitive cell is limited by the white cube. The first division is 

performed by the red plane (first dimension), dividing the original cell into two subcells. 

Each of these subcells is divided by the green plane (second dimension), resulting in 4 

subcells which are dividing again by the blue plane (third dimension). In this case, with 8 

subcells, the leaves of the tree are defined, since all the points, which represent the nodes of 

the tree, have been covered. 

 

5.4.2. Euclidean cluster extraction 

As commented, the clustering method is based on dividing the whole point cloud into 

smaller clouds according to the Euclidean distance based on the nearest neighbours as a 

result of the 3D division performed by the KD-Tree algorithm. The Euclidean Cluster 

Extraction works as follow: 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

68 

 

 

1. A KD-Tree is created to process the point cloud data. 

 

2. A list of indices is created. 

 

3. For each point in the cloud: 

a. The set of neighbouring points belonging to a sphere of radius lower than 

the defined threshold is searched. 

b. For each neighbouring point it is checked whether it has already been 

evaluated. If not, it is added. 

 

4. The algorithm ends when all points are part of the cluster list.  

 

In order to implement this algorithm, a EuclideanClusterExtraction object with the 

PointXYZRGB point type from the PCL library is used. The threshold will be set using the 

setClusterTolerance parameter, which varies depending on the object model detected, in the 

same way that the minimum and maximum size of each of the clusters (setMinClusterSize 

and setMaxClusterSize parameters, respectively). Naturally, the number of detected points 

for a car will be higher than for a cyclist or pedestrian.  

 

 

Figure 5.4-2 Algorithm used to compute the 3D LiDAR clustering using Euclidean Cluster 

Extraction and KD-Tree techniques 

 

Figure 5.4-2 shows the algorithm developed to obtain the relevant clusters from the 
detected 3D LiDAR Point Cloud. A more detailed overview of the code can be found in Code 
of Interest C-4. 
 

5.5. Sensor fusion 

Although VOT performs a very accurate 2D tracking, it presents a strong inaccuracy when 

projecting the bottom position of the proposed bounding box onto the 3D space. To solve 



Predictive techniques for Scene Understanding by using Deep Learning 

 

69 

 

this problem, a sensor fusion is performed. As commented in Chapter 2, Sensor fusion is an 

approach that combines sensory data derived from different sources such the resulting 

information has less uncertainty that would be possible when these sources were used 

individually. In terms of AVs, main sensors to perform sensor fusion are camera and LiDAR.  

 

In that sense, this work presents a sensor fusion on BEV between VOT performed in 2D 

image and projected to the BEV plane and the LiDAR 3D boxes proposals and then projected 

to the BEV, as shown in Figure 5.1-1. First of all, in order to perform the sensor fusion, BEV 

projection from 2D tracked objects is carried out.  

 

 

 

Figure 5.4-3 Algorithm used to project the 2D VOT proposals onto the BEV plane 

 

Figure 5.4-3 shows the algorithm used to obtain the BEV pose of the 2D VOT proposals. A 

more detailed overview of the code can be found in Code of Interest C-5. Basically, based on 

the inverse of the camera projection matrix, the position of the camera in the vehicle (mainly 

its height) and the top-left and bottom-right corners of the 2D VOT proposals; the pose of 

the 2D proposals are recovered in the BEV plane. It is important to take into account that 

there is a transformation matrix, both in orientation and position, between the LiDAR and 

camera frame, as shown in Figure 4.4-7. After a proper calibration process, through the 

𝑡𝑓_𝐶𝑎𝑚_𝑡𝑜_𝐿𝑖𝐷𝐴𝑅 parameter, camera information is referred to the BEV LiDAR coordinates 

system. 
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Furthermore, in order to perform the sensor fusion of BEV VOT and LiDAR proposals, both 

ROS topics must be reasonably synchronized when being processed by the fusion callback. 

In that sense, ROS message filters package are used, which contain some message filters 

algorithm out of which the time synchronization messages are the most interesting for this 

purpose. 

 

This synchronization filter is based on a policy that determines how to synchronize the 

different channels. There exist two main policies: ExacTime and ApproximateTime. In the 

case of sensor fusion. In this case, as in Figure 5.4-4, the ApproximateTime policy with a 

interval of time of 200 ms in which both messages may be synchronized is used since it 

performs better results than other configurations. 

 

 
Figure 5.4-4 Main callback using the Approximate Time policy 

 

At this point, both BEV proposals are synchronized in the same callback. Then, sensor fusion 

is performed. Figure 5.4-5 shows the algorithm used to carry out the sensor fusion between 

both proposals. A more detailed overview of the code can be found in Code of Interest C-6. 

Since the BEV VOT approach is generally much more restrictive, that is, the 

CenterNet+DeepSORT framework only identifies and track (if relevant) COCO-objects while 

LiDAR considers an object any relevant group of 3D points, giving rise to a lot of irrelevant 

3D small point clouds. For that reason, the first for loop focuses on the BEV VOT proposals 

and the inner loop in the BEV LiDAR proposals, in order to reduce the computation time. In 

the contrary case, many of irrelevant LiDAR objects would try to be associated with relevant 

BEV VOT objects. Then, a maximum difference is initialized to 4 m in such a way that the 

first preliminary merged object would be represented by the fusion of the BEV VOT 

proposal and a BEV LiDAR proposal if the Euclidean distance between the BEV LiDAR 

centroid and the BEV VOT pose (obtained from the bottom position of the 2D bounding box) 

is lower than this initial 4 m. Moreover, this new max Euclidean distance is updated, and the 

next BEV LiDAR proposal should be closer to the BEV VOT proposal in order to update the 

preliminary merged object. When the BEV VOT proposal is compared with all BEV LiDAR 

proposals, there is a LiDAR candidate with its respective distance to the BEV VOT proposal. 

If this distance is lower than 3 m, the merged object (also known as Merged VOT object) 

stores the LiDAR pose and orientation while keeping the VOT identification (object ID and 

type). Future works will include the BEV VOT pose not exclusively based on the BEV bottom 

position of the bounding box but as a sum of the projected bottom position and its intrinsic 

centroid based on the object type and orientation.   
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Figure 5.4-5 Algorithm to perform the sensor fusion between BEV VOT and BET LiDAR 
proposals 
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Chapter 6. Experimental results 
 

6.1. Introduction 

This chapter aims to present the obtained results in order to validate the architecture 

proposal for Deep Learning based MOT. It is divided in the following sections: 

 

❖ Quantitative results: First, the architecture is validated using the KITTI tracking 

benchmark. Second, a comparison of BEV pose estimation is performed among the 

Precision-Tracking, VOT and Merged VOT strategies in CARLA simulator. Finally, some 

results are shown in the context of our Campus using our real autonomous vehicle. 

❖ Qualitative results: Some visual results are shown to illustrate the effectiveness of the 

MOT approach. 

 

The proposed VOT framework is implemented in a Docker image Ubuntu 18.04 using 

Python and ROS Melodic Morenia. KITTI and CARLA test cases are done in a desktop 

computer with i7-8700, 3.2 GHz CPU, 32 GB DDR4 2400 MHz RAM, 500 GB SSD NVME and 

NVIDIA 2070 RTX. Moreover, in the real prototype test cases, they are performed on an on-

board laptop MSI i7-8700, 2.8 GHz CPU, 16 GB DDR4 2400 MHz RAM, 500 GB SSD and 

NVIDIA 1070 GTX.  

 

In terms of CenterNet, the model was by the CNN was modified from the original 

ctdet_coco_dla_2x.pth model (dla_34 architecture) to ctdet_coco_resdcn18.pth (resdcn_18 

architecture) with ctdet task (general object detection task) and a visualization threshold of 

0.6. With this configuration, CenterNet+DeepSORT framework runs at 38-45 fps in the 

above mentioned MSI laptop. For a deeper info about CenterNet models and parameters 

configuration, the author is referred to the Model ZOO found in CenterNet GitHub. 

 

In addition, sensor fusion has been encapsulated in a Docker image Ubuntu 14.04 using C++ 

and Ros Indigo Igloo.  

 

6.2. Quantitative results 
 

This section shows the quantitative results for each validation tool used, that is, KITTI 

tracking benchmark, CARLA simulator and the SmartElderlyCar real prototype. 

 

6.2.1. KITTI tracking benchmark 

 
The KITTI object tracking benchmark [69] consists of 21 training sequences and 29 test 

sequences, where 31 sequences contains images of size 1242 x 375 while other sequences 

contain images of similar resolution (i.e. 12xx x 37x). Moreover, a 64-channels LiDAR 
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information is provided for each frame. Despite the fact that it labels 8 different classes, only 

the classes Car and Pedestrian are evaluated in the benchmark, as only for those classes 

enough instances for a comprehensive evaluation have been labelled.  

 

KITTI has been performed the labelling process in two steps: First, a set of annotators is 

hired, in order to label 3D bounding boxes as tracklets in point clouds. Since for a pedestrian 

tracklet a single 3D bounding box tracklet (dimensions have been fixes) often fits badly, it 

additionally labels the left/right boundaries of each object by making use of Mechanical 

Turk. It also collects labels of the object occlusion state and computes the object truncation 

via backprojecting a car/pedestrian model into the image plane. 

 

The goal the object tracking task in terms of KITTI benchmark is to estimate object tracklets 

for the classes car and pedestrian. It evaluates 2D 0-based bounding boxes in each image. 

For evaluation, it only considers detections/objects larger than 25 pixel (height) in the 

image and do not count Vans as false positives for cars or Sitting persons as wrong positives 

for Pedestrians due to their similarity in appearance. 

 

The main performance metrics used have been MOTP and MOTA [70]: 

 

• MOTP: Total position error for matched object-hypothesis pairs over all frames, 

averaged by the total number of matches made. It shows the ability of the tracker to 

estimate precise object positions, independent of its skill at recognizing object 

configurations, keeping consistent trajectories, etc. In other words, it is represented by 

the summary of overall tracking precisions in terms of bounding box overlap between 

ground-truth and reported location: 

 

                                                                              𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑖,𝑡𝑖,𝑡

∑ 𝑐𝑡𝑡
                                                              (6.1) 

 

Where 𝑐𝑡  is the number of correct matches found at frame 𝑡  and 𝑑𝑖,𝑡  is the distance 

between predicted detection and groundtruth detection for each correct match which is 

taken as the IoU between the two bounding boxes.  

 

• MOTA: Summary of overall tracking accuracy in terms of false positives, false negatives 

and identity switches: 

 

                                                               𝑀𝑂𝑇𝐴 = 1 −
∑ (𝑚𝑡+𝑓𝑝𝑡+𝑚𝑚𝑒𝑡)𝑡

∑ 𝑔𝑡𝑡
                                                        (6.2) 

 

Where 𝑚𝑡, 𝑓𝑝𝑡 and 𝑚𝑚𝑒𝑡 are the number of misses, of false positives and of mismatches 

respectively for time 𝑡. In that sense, the MOTA can be seen as composed of 3 error 

ratios, as shown in (6.3): 𝑚̅ represents the ratio of misses in the sequence, computed 

over the total number of objects present in all frames, 𝑓𝑝̅̅̅̅  represents the ratio of false 

positives and 𝑚𝑚𝑒̅̅ ̅̅ ̅̅ ̅ represents the ratio of mismatches. 

 

                                               𝑚̅ =
∑ 𝑚𝑡𝑡

∑ 𝑔𝑡𝑡
      ;     𝑓𝑝̅̅̅̅ =

∑ 𝑓𝑝𝑡𝑡

∑ 𝑔𝑡𝑡
     ;     𝑚𝑚𝑒̅̅ ̅̅ ̅̅ ̅ =

∑ 𝑚𝑚𝑒𝑡𝑡

∑ 𝑔𝑡𝑡
                           (6.3) 
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Summing up over these different error ratios gives rise to the total error rate 𝐸𝑡𝑜𝑡, where 

𝑀𝑂𝑇𝐴 = 1 − 𝐸𝑡𝑜𝑡, that is, 1 − 𝐸𝑡𝑜𝑡 represents the resulting tracking accuracy.  

 

In that sense, the results obtained, both applying the traditional Precision-Tracking 

technique and the CenterNet+DeepSORT proposal, in the KITTI tracking dataset 

compared to other state-of-the-art approaches have been: 

 

Table 6.2-1 Results in KITTI tracking validation/test of different state-of-the-art 
approaches 

 MOTA MOTP 

MOTBeyondPixels [78] 84.24 % 85.73 % 

IMMDP [79] 83.04 % 82.74 % 

3D-CNN/PMBM[80] 80.39 % 81.26 % 

extraCK [81] 79.99 % 82.46 % 

MASS [82] 85.04 % 85.53 % 

Precision-Tracking (ours) 40.93 % 79.13 % 

CenterNet+DeepSORT (ours) 82.57 % 81.53 % 

 

All the approaches except ours have been validated on the test datasets for the car class as 

displayed in the benchmark online (April 2019). In our case we have used the validation 

dataset (20 % of the training dataset) because our implementation has not been loaded yet 

into the KITTI public online benchmark. It can be appreciated that the precision-tracking 

technique, even though it performs in terms of precision (MOTP) in a similar way than other 

state-of-the-art approaches (it is able to estimate in a very accurate way the object pose), 

this precision is limited to a good detection, task in which precision-tracking technique fails 

considerably as mentioned throughout this work, due to the presence of small number of 

coloured points at further distances. On the other hand, the architecture proposed in this 

work based on Deep Learning shows some very promising results which are on pair with 

other current state-of-the-art approaches keeping a good processing time. It presents both 

good accuracy, since thanks to the scale-aware paradigm CenterNet is able to detect objects 

at pretty far distance, and precision due to the Deep SORT tracking as a preliminary stage 

to carry out the sensor fusion. Furthermore, in order to improve the MOTP metric, future 

works will deal with other state-of-the-art BEV VOT projection approaches, also considering 

the tracked object type in order to adapt the currently predefined BEV VOT bounding boxes 

to the object orientation so as to improve the posterior sensor fusion. 

 

6.2.2. CARLA simulator 

In spite of the fact that KITTI tracking benchmark is a correct way to validate a tracking 

architecture proposal, all features are fixed and cannot be modified in order to perceive how 

the tracking architecture faces different situations, such as sudden rain, pedestrians 

crossing the road on not-allowed zones or other vehicles performing anomalous 

behaviours. On the other hand, validation is carried out on the images (2D) using the 

projection of the ground truth poses but not directly on the 3D space. 
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Figure 6.2-1 Manual control of dynamic obstacles in CARLA 

 

In that sense, CARLA represents a very powerful simulator in order to validate the tracking 
system by using its modifiable perception environment, manual control of dynamic 
obstacles, like cars, pedestrians or bicycles (Figure 6.2-1), and a fast configuration of the 
vehicle sensors in order to check the best combination to perform the VOT as a preliminary 
stage to carry out the sensor fusion. As shown in Figure 6.2-2, CARLA test were performed 
using an RGB camera 1280 x 720, 32-channels LiDAR and semantic segmentation 
information so as to get a coloured point cloud and carry out the Precision-Tracking 
approach.  
 

 

Figure 6.2-2 CARLA sensors configuration 

 

In order to compare CARLA object location, which represents the groundtruth, with the BEV 
pose estimation of Precision-Tracking, VOT and Merged VOT approaches, some code is 
implemented to return in a topic named /carla/hero/location_list the pose of all manually 
introduced CARLA objects, transforming the GNSS coordinates provided by CARLA to UTM-
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global coordinates with respect to the map origin. For example, if there are five pedestrians, 
this topic must return the pose and orientation of those pedestrian at the same timestamp. 
 

To perform the comparison, it is calculated the Euclidean distance between the CARLA 

object BEV pose and the BEV pose estimation for each of the above-mentioned techniques 

if both BEV bounding boxes are associated. This association is carried out in similar way 

than exposed in Figure 5.4-5: For each technique, a given CARLA object is associated to the 

closest BEV proposal if the Euclidean distance between its BEV pose is lower than a certain 

threshold (2 m in this work). Finally, if they are associated, it is stored in a text file in order 

to perform posterior analysis and comparison, in a similar way that results are compared 

in the KITTI tracking benchmark. Each row is divided into 11 rows, whose associated fields 

are shown in Table 6.2-2. It is remarkable that in this case errors will be directly calculated 

in the BEV plane instead of in images, as happen in the KITTI evaluation. 

 

 

Table 6.2-2 Structure of each element of the comparison file 

Column Meaning 

1 Approach ID (-1 = VOT, -2 = Merged VOT, -3 = 

Precision-Tracking) 

2 CenterNet detector size (how many objects are 

detected in the scene) 

3 CARLA size (how many objects have been 

introduced in the CARLA world) 

4 Tracked object ID (associated ID to an object, 

used to identify ID mismatching) 

5 Tracked object CARLA ID (associated CARLA 

object to that tracked object) 

6 x-groundtruth (CARLA object x position) 

7 y-groundtruth (CARLA object y position) 

8 Estimated BEV x object position 

9 Estimated BEV yobject position 

10 Euclidean distance (between CARLA 

groundtruth and estimated BEV pose) 

11 Timestamp 

 

Following tables and graphics are calculated in terms of Single Object Tracking (SOT) to 

validate the BEV proposals in a more flexible way. Figure 6.2-3 shows the Euclidean distance 

between the CARLA groundtruth and the estimated position using BEV VOT, Merged VOT 

and Precision-Tracking estimated pose versus the X-local distance (road axis).  

 

An interesting metric to compare the performance in the BEV pose estimation is to calculate 

the global Root Mean Square (RMS) error in the whole trajectory and the RMS for each 

interval: 

 

                                                                      𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 = √
1

𝑛
· ∑ 𝑒𝑖

𝑛
𝑖=1                                                                   (6.4) 
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Where 𝑛 is the number of associations that were produced with the CARLA object for each 

technique and edi  the Euclidean distance between the CARLA object pose and the BEV 

proposal for the 𝑖-th association. Table 6.2-3, Table 6.2-4 and Table 6.2-5 show the RMS 

error and number of samples (correctly associated BEV proposals) for each technique. It 

can be appreciated that the maximum registered distance to track an object is 37.34 m. 

Moreover, until distances of 12-13 m all approaches perform a similar behaviour, with a 

Euclidean distance under 0.2436 m. However, for further distances, VOT starts increasing 

its error. Moreover, for distances further than 24 m, due to the point cloud scarcity, 

Precision-Tracking, based on semantic segmentation, is not able to track the object since 

there are very few coloured points, what is represented by 0 samples and a Not Applicable 

(N/A) RMS. Finally, the blue line, representing the Merged VOT proposal, works in a pretty 

accurate way, maintaining an RMS (Root Mean Square) error in the whole trajectory below 

0.2278 m even for distances further than 32 m. Additionally, global RMS 

 

 

Table 6.2-3 RMS error and Number of samples in function of the distance (Precision-
Tracking) 

Interval Number of samples RMS 

 0 m – 4 m 1 0.2164 

 4 m – 8 m 0 N/A 

 8 m – 12 m 2 0.2436 

 12 m – 16 m 1 0.1212 

 16 m –20 m 10 0.2268 

 20 m – 24 m 1 0.2668 

 24 m – 28 m 0 N/A 

 28 m – 32 m 0 N/A 

 32 m – 36 m 0 N/A 

36 m – 40 m 0 N/A 

Whole trajectory 15 0.2259 

 

 

Table 6.2-4 RMS error and Number of samples in function of the distance (VOT) 

Interval Number of samples RMS 

0 m – 4 m 9 0.0472 

4 m – 8 m 21 0.2177 

8 m – 12 m 21 0.1784 

12 m – 16 m 22 1.1189 

16 m –20 m 23 1.5045 

20 m – 24 m 20 0.9613 

24 m – 28 m 18 2.2384 

28 m – 32 m 7 2.6679 

32 m – 36 m 5 1.8596 

36 m – 40 m 7 1.9294 

Whole trajectory 149 1.2811 
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Table 6.2-5 RMS error and Number of samples in function of the distance (Merged VOT) 

Interval Number of samples RMS 

0 m – 4 m 9 0.2156 

4 m – 8 m 21 0.1911 

8 m – 12 m 21 0.1856 

12 m – 16 m 22 0.1884 

16 m –20 m 23 0.1546 

20 m – 24 m 20 0.2278 

24 m – 28 m 15 0.2201 

28 m – 32 m 3 0.1963 

32 m – 36 m 3 0.1408 

36 m – 40 m 5 0.2295 

Whole trajectory 146 0.1963 

 

 

As expected, precision-tracking technique performs a good BEV estimation if a precision 

tracker is associated to the CARLA object, although it is able to perform that identification 

very few times (15) in comparison with VOT (149) and Merged VOT (149). The number of 

samples of VOT is always greater than Merged VOT since at further distances (over 31 m) 

BEV VOT pose and BEV LiDAR pose distance is greater than the required threshold, so 

sensor fusion is not performed. 

 

Figure 6.2-4 and 6.2-5 show a visual comparison of the BEV pose estimations for the 

different techniques (CARLA groundtruth trajectory versus BEV estimated trajectory) in 

straight and curved trajectory respectively. Figure 6.2-5 and Figure 6.2-7 focus on the 

Merged VOT proposal, illustrating the effectiveness of this method. 

 

Figure 6.2-8, Figure 6.2-9 and Figure 6.2-10 show 3D scatter plots to represent the 

Euclidean distance in terms of CARLA (X,Y) groundtruth. It can be appreciated that the 

Precision-Tracking approach presents very few points as a result of not semantic 

segmenting properly the object at further distances due to the points scarcity in that 

particular part of the point cloud. VOT points show how Y-lateral displacements increases 

the error in a parabolic way (it can be appreciated better for low values of X local distances). 

Furthermore, Merged VOT points show a proper behaviour, since despite the presence of 

very few outliers, most of points present a Z-value (that is, the Euclidean distance) under 

0.2764 m even including Y-lateral displacements. All graphics show the position of the ego 

vehicle in order to appreciate properly the pose and orientation of the trajectories. 
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Figure 6.2-3 Euclidean distance vs X local distance with Y displacement = 0 m (including 

all approaches) 

 

 

Figure 6.2-4 BEV of Groundtruth trajectory vs Estimated trajectory in straight line 

(including all approaches) 

  

 

 

Figure 6.2-5 BEV of Groundtruth trajectory vs Estimated trajectory in straight-line 
tracking (only Merged VOT approach) 
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Figure 6.2-6 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking 
(all approaches) 

 
 

 
 
Figure 6.2-7 BEV of Groundtruth trajectory vs Estimated trajectory in curved-line tracking 

(only Merged VOT approach) 
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Figure 6.2-8 3D scatterplot representing the Euclidean distance vs CARLA groundtruth 
(X,Y) (Precision-Tracking approach) 

 

  

 
 

Figure 6.2-9 3D scatterplot representing the Euclidean difference vs CARLA groundtruth 
(X,Y) (VOT approach) 
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Figure 6.2-10 3D scatterplot representing the Euclidean difference vs CARLA groundtruth 

(X,Y) (Merged VOT approach) 

 

6.2.3. SmartElderlyCar 

In spite of the fact that in the Campus there is not a groundtruth, several tests were carried 

out in order to appreciate a preliminary performance of the architecture proposal, obtaining 

successful results. Following figures represent four subsequent frames for the same scene 

where SOT is performed. It can be appreciated that the ID is kept throughout all frames (ID 

= 2) and the projection matrix, though is not the best solution, offers coherent numbers (the 

lateral displacement spans from -0.75 m in the #1st frame, since the car is on the left with 

respect to the ahead vehicle, to -0.028 m in the #4th since both vehicles are almost aligned). 
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Figure 6.2-11 Quantitative results in SmartElderlyCar navigation 

 

6.3. Qualitative results 

This section shows the qualitative results of the architecture proposal, illustrating how MOT 

is performed both in CARLA simulator and in the Campus with our real autonomous vehicle.  

 

6.3.1. CARLA simulator 

All frames show different pedestrians which are included in the CARLA simulator. The top-

left small window shows the semantic segmentation provided by CARLA. On the other hand, 

the bottom-left small window shows the output image as a result of the object detection and 

tracking in the scene performed by the CenterNet+DeepSORT framework. The general 

background shows the coloured point cloud (in R-VIZ simulator) obtained by projecting the 
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semantic segmentation information onto the velodyne point cloud (as shown in Figure 

4.6-3). Each pedestrian (red cluster) has a green arrow, illustrating the predicted position 

using the Merged VOT approach and an arrow with the colour obtained from the 2D tracking 

(VOT). It  can be appreciated that Merged VOT approach estimates better the centroid of the 

objects than the other approaches. 
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Figure 6.2-12 Qualitative results in CARLA simulator 

 

6.3.2. SmartElderlyCar 

This section shows the MOT paradigm in a real-world situation. Tests were performed in 

the Escuela Politécnica Superior (UAH) surroundings. We show results directly on the 

images to understand the robustness of our architecture. Even though most of objects 

(mainly cars) are partially occluded, Deep SORT proposal deals with that issue in an 

accurate way. 
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Figure 6.2-13 Qualitative results in a real-world situation with the SmartElderlyCar 
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Chapter 7. Conclusions and future 
works 
 

7.1. Conclusions 

This master thesis shows the development of a Deep Learning based Multi-Object Tracking 

approach based on CenterNet as object detector and Deep SORT as object tracking 

algorithm and its implementation on KITTI benchmark and on the SmartElderlyCar project 

both in CARLA simulator and real-world. In addition, sensor fusion was performed between 

the deep learning approach and a 64/32 channels LiDAR 3D, obtaining better results than 

other state-of-the-art approaches for object tracking in autonomous driving applications.  

 

It must be considered the architecture proposal depends crucially on the results obtained 

during image detection, since although the sensor fusion performs a very accurate 

estimated pose of the objects, the tracking is performed in 2D. So, if the object detector does 

not work in a proper way, there could be identification mismatching or even loss of 

information, leading to a dangerous situation for the vehicle. In that sense, implemented 

object detector (CenterNet) works in a very accurate way. Even it has been trained using 

real world images (COCO dataset), it performs a good detection with synthetic data (CARLA 

simulator). On the other hand, Deep SORT approach works in a very appropriate way, 

handling the occlusion, lighting, and point-of-view problems as shown in the qualitative 

results illustrating the effectiveness in the use of deep learning approaches in terms of 

object tracking (Deep appearance descriptor). The combination of this object detector and 

the deep learning-based tracking algorithm gives rise to a correct performance in terms of 

2D tracking. 

 

Validation results have been obtained in KITTI dataset showing better results than using 

the traditional Precision-Tracking strategy and being on pair with other state-of-the-art 

proposals. Validation has been performed as well in CARLA simulator since it is able to get 

the groundtruth of the objects in an easy way in order to stablish a proper comparison. As 

expected, the tracking results obtained by the sensor fusion proposal significantly improve 

the tracking performed by Precision-Tracking algorithm and Visual Object Tracking.  

 

The validation has been performed in CARLA since it is able (after few modifications) of 

obtaining the groundtruth of the objects in order to stablish a proper comparison. As 

expected, the tracking results obtained by the sensor fusion proposal significantly improve 

the tracking performed by precision-tracking algorithm and only Visual Object Tracking. 

Despite the fact the estimation of precision-tracking is relatively accurate, it is not able to 

track at further distances than 23 m since it most depends on the projection of the semantic 

segmentation into the point cloud. Since at that distance, even with a 32-channels LiDAR, 

the number of points considerably is decreased, the number of coloured points is not 

enough in order to identify that coloured cluster as a determined object. On the other hand, 
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CenterNet+DeepSORT framework is able to detect and track the object in an accurate way 

until distances of 34 m, when the object size in the image is not big enough to be detected 

by CenterNet object detector, even with its scale-aware paradigm. As expected, the further 

an object is, the greater the Euclidean distance between the groundtruth of CARLA position 

and the estimated position is. However, merging this BEV proposal of the 

CenterNet+DeepSORT framework with the closest BEV LiDAR cluster gives rise to Euclidean 

distances lower than 0.37 m throughout the whole trajectory. 

 

Therefore, it can be concluded that the proposed objectives at the beginning of this master 

thesis, mainly the study of deep learning-based tracking approaches, implementation of a 

Deep Learning based Multi-Object Tracking architecture and validation, have been met. 

 

7.2. Future Works 

In order to improve the present work, the following improvements may be performed: 

 

• Improvement of 3D projection in the tracking layer in order to decrease the error in 

terms of X-axis and Z-axis. 

 

• Improvement in the architecture validation for the case of multiple objects in 

CARLA. 

 

• Update of the CARLA ROSbridge in order to improve the communications between 

the CARLA world and the SmartElderlyCar project. 

 

• Update of the CARLA version (0.9.5 to the most recent) to improve the simulation 

experience and efficiency. 

 

• Improvement of sensor fusion not only taking into account the Euclidean distance 

but also previous behaviours of relevant objects (such as a pedestrian has the 

intention to cross the road or a car is going to perform an anomalous behaviour) 

based on the orientation of the object and biometric features. 

 

• Validation in KITTI using the test dataset and other classes beyond the cars and in 

other tracking datasets. 

 

• Integration of the different SmartElderlyCar software layers in Docker containers in 

order to improve the development and testability of the project. 

 

• Update the ROS version of Docker containers to ROS2 so as to investigate new 

paradigms of real-time operation and Docker integration. 

 

• Implementation of a multi-camera system (both in CARLA and in the real prototype) 

to carry out a tracking in 360 º. 
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• Development of a groundtruth for real-world objects so that the tracking of multiple 

objects in real applications can be validated. 
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Appendix A: Kalman Filter 
 
The Kalman filter [30] (Rudolf E. Kalman, 1960) is an algorithm that uses a set of 

measurements observed throughout the time, containing statistical noise and other 

inaccuracies, producing an estimation of unknown variables that are likely to be more 

accurate than those variables based on a single measurement alone, estimating a joint 

probability distribution over the variables for each timeframe. 

 

Kalman filter can be used in any field where there is uncertain information about some 

dynamic system, performing a quite well guess about what system is going to do next. 

Kalman filter is able to “messy” realities interfering with the clean motion it guessed about, 

figuring out what actually is happening. 

 

A. 1. Introduction to the Kalman Filter 

Kalman filter is ideal for systems that are continuously changing since it is light on memory 

(not requiring to keep any history other than the previous system state), so they are very 

fast, making them well-suited for embedded systems and real-time applications. It can be 

applied to multiple situations and data, such as the amount of fluid in a tank, the position of 

a user’s finger on a touchpad, the temperature of a car engine or any number of things 

needed to keep track of. 

 

However, since the purpose of this master thesis is related with tracking, or keep track of 

an object in a scene, it is reasonable to explain the Kalman filter from a certain (simple) 

dynamic robot perspective.  This robot presents a state 𝑥𝑘⃗⃗⃗⃗  which is just a vector that shows 

its position and velocity: 

 

                                                                         𝑥𝑘⃗⃗⃗⃗  =  (𝑝,⃗⃗⃗   𝑣 ⃗⃗⃗  )                                                                      (A.1) 

 

In spite of the fact that an external user does not know the actual position and velocity, there 

are a whole range of possible combinations of position and velocity which might be true, 

but some of them are more likely than others. The Kalman filter assumes that both variables 

(in this case velocity and position) are random and Gaussian distributed. Each variable has 

a mean value µ, which is the center of the random distribution (moreover, the most likely 

state), and a variance 𝜎2 which is the uncertainty. Figure A.1-1 illustrates how the position 

and velocity are uncorrelated, which means that the state of one variable does not affect to 

the state of the others. 
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Figure A.1-1 Mean µ and variance σ2 of the velocity and position 

 

On the other hand, Figure A.1-2 shows the difference between two uncorrelated (a) and 

correlated (b) variables. In this case, the likelihood of observing a particular position 

depends on what velocity the robot has.  

 

 

                                            (a)                                                                          (b) 

Figure A.1-2 (a) Velocity and position are uncorrelated (b) Both variables are correlated 

 

This kind of situation (correlated position and velocity) might arise if, for example, the 

system is estimating a new position based on an old one. If the velocity was high, the robot 

probably moved farther, and the position will be more distant. This kind of relationship is 

important to keep track of, since it reports more information: The behaviour of a variable 

can be determinant about what the others could be. That is one of the main goals of the 

Kalman, to squeeze as much information from an uncertain measurement as it is possible. 

 

This correlation is capture by a covariance matrix. In statistics and probability theory, 

covariance is a measure of the joint probability of two random variables, so the covariance 

matrix is a matrix whose element in the 𝑖, 𝑗 position is the covariance between the 𝑖-th and 
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𝑗-th elements of a random vector. Given n random variables (each with finite variance and 

expected value) of a column vector: 

 

                                                                 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛)𝑇                                                     (A.2) 

 

Then the covariance matrix 𝑲𝑿𝑿 (also 𝛴𝑋𝑋) can be defined as the matrix whose (𝑖, 𝑗) entry 

is the covariance. It must be noted that the covariance matrix is symmetric, so it does not 

matter to swap 𝑖 and j. 

 

                                             𝑲𝑿𝒊𝑿𝒋
= 𝑐𝑜𝑣[𝑋𝑖 , 𝑋𝑗] = 𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])(𝑋𝑗 − 𝐸[𝑋𝑗])]                            (A.3) 

 

Where the operator E denotes the expected value (the expected value of a random variable 

is the long-run average value of repetitions of the same experiment it represents) of its 

argument. In matrix form, for n random variables, it can be expressed as shown in Figure 

A.1-3: 

 

 

Figure A.1-3 Covariance matrix example 

 

As commented above, Kalman filter assumes that system variables are Gaussian distributed, 

so two pieces of information are required at time k: The best estimate 𝒙̂𝒌 (i.e., the mean, 

elsewhere named μ), and its covariance matrix 𝑷𝒌 (note that here it is written as 𝑃 and not 

as 𝐾 in order to not to confuse with the instante 𝑘: 

 

                                                    𝒙̂𝒌 = [
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

]     ;     𝑷𝒌 = [
∑𝑝𝑝 ∑𝑝𝑣

∑𝑣𝑝 ∑𝑣𝑣
]                                       (A.4) 

 

Where subscripts p and v mean position and velocity respectively. Then, the main goal is to 

consider the current state (at time 𝑘 − 1) so as to predict the next state at time 𝑘. However, 

Kalman filter assumes that the system does not know which the real state of its variables is, 

but the prediction function does not care. Moreover, the prediction function works on all 

possible states giving rise to a new distribution, as shown in Figure A.1-4 (a). 

 



Predictive Techniques for Scene Understanding by using Deep Learning 

 

96 

 

 

                    (a)                                                                     (b) 

Figure A.1-4 (a) New distribution after prediction (b) Transformation matrix between 

original estimate and new prediction position 

 

If the prediction process is represented as a matrix 𝑭𝒌, it takes every point in the original 

estimate and moves it to a new prediction position (which is the point where the system 

would move in the plane, in case of two variables, if that original estimate was the right one). 

In the case of position and velocity, using basic kinematic formulas, it can be expressed as: 

 

                                                    𝑝𝑘 = 𝑝𝑘−1 + 𝛥𝑡 · 𝑣𝑘−1     ;     𝑣𝑘 = 𝑣𝑘−1                                        (A.5) 

 

Rewriting (A.5) in a matrix form: 

 

                                                            𝑥𝑘 = [
1 𝛥𝑡
0 1

] 𝑥𝑘−1 = 𝑭𝒌𝑥𝑘−1                                                    (A.6) 

 

Nevertheless, despite the fact that (A.6) expresses how the next state can be calculated 

based on a prediction matrix 𝑭𝒌 and the current frame, the system still does not know how 

to update the covariance matrix. In order to calculate the new covariance matrix, every 

point in the distribution must be multiplied by a matrix 𝑨, giving rise the identity (matrix 

properties): 

 

                                                       𝐶𝑜𝑣(𝑥) = 𝛴     ;     𝐶𝑜𝑣(𝐴𝑥) = 𝐴𝛴𝐴𝑇                                             (A.7) 

 

And combining (I.7) with equation (I.6), it results in: 

 

                                                        𝑥𝑘 = 𝑭𝒌𝑥̂𝑘−1     ;     𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇                                              (A.8) 

 

A. 2. External influence 

Even though (A.8) captures the covariance matrix and state variables in instant k, there 

might be some changes that are not related to the state itself, that is, the world could be 

affecting the system. For example, in the case of an autonomous vehicle performing an 
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Adaptive Cruise Control (ACC), the vehicle could accelerate. If the system knows what is 

going on in the real-world, this additional behaviour can be stacked in a vector 𝑢⃗ 𝑘, in order 

to incorporate to the prediction as a correction. In the case of the previous robot, the vector 

𝑢⃗ 𝑘  is in the form of an expected acceleration a due to the control commands or throttle 

settings: 

 

                                𝑝𝑘 = 𝑝𝑘−1 + 𝛥𝑡 · 𝑣𝑘−1 + 1/2 · a · 𝛥𝑡2   ;      𝑣𝑘 = 𝑣𝑘−1 + a · 𝛥𝑡                    (A.9) 

 

Or in the matrix form:  

 

                                                 𝑥𝑘 = 𝑭𝒌𝑥̂𝑘−1 + [𝛥𝑡2/2
𝛥𝑡

] 𝑎 = 𝑭𝒌𝑥̂𝑘−1 + 𝐵𝑘𝑢⃗ 𝑘                                 (A.10) 

 

Where 𝐵𝑘 is called the control matrix and 𝑢⃗ 𝑘 the control vector. 

 

A. 3. External influence 

While previous point mentioned what happens if and additional component has an 

influence on the system, this point deals with what happens if the prediction model is not 

100 % accurate, that is, external variables which the system does not know about. In the 

case of self-driving, the wheels could slip or bumps on the ground. If it happens, and the 

system is not prepared for those extra forces, the prediction could be off. The uncertainty 

associated with the “world” (i.e., variables the system is not keeping track of) can be 

modelled by adding some new uncertainty after every prediction step (Figure A.3-1 (a)). 

 

 

(a)                                                              (b) 

Figure A.3-1 (a) New uncertainty after the prediction step (b) New Gaussian distribution 

with a different covariance 

 

Every state in the original estimate could have moved to a range of new states. Since 

variables are expected to be under Gaussian distributions, each point in 𝑥𝑘−1 is moved to 

somewhere inside a Gaussian distribution with the covariance 𝑄𝑘, that is, the system would 

be treating the untracked fluences as noise with covariance 𝑄𝑘 , what produces a new 
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Gaussian distribution with a different covariance but the same mean, as shown in (Figure 

A.3-1 (a)). Then, the new covariance is corrected by simply adding 𝑄𝑘 , giving rise to a 

complete expression for the prediction step: 

 

                                              𝑥𝑘 = 𝐹𝑘𝑥̂𝑘−1 + 𝐵𝑘𝑢⃗ 𝑘     ;     𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘                            (A.11) 

 

In other words, the new best estimate (𝑥𝑘) is a prediction made from the previous best 

system estimate (𝑥𝑘−1) plus a correction for known external influences (𝑢⃗ 𝑘), and the new 

uncertainty ( 𝑃𝑘 ) is predicted from the old uncertainty ( 𝑃𝑘−1 ) with some additional 

uncertainty from the environment. 

 

A. 4. Refining the estimate with measurements 

As commented throughout this master thesis, autonomous vehicles are full of sensors. One 

can read velocity, other position or even calculating the odometry of the vehicle by using 

visual information, but in summary all of them report information about the state of the 

vehicle. Since the units and scale of the reading might not be the same as the units and scale 

of the state the system is keeping track of, these sensors are modelled with a matrix 𝐻𝑘 

(Figure A.4-1). 

 

 

Figure A.4-1 Sensors modelling using matrix transformation 

 

So the expected distribution of sensor readings is as following: 

 

                                                   µ⃗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝐻𝑘𝑥̂𝑘     ;     𝛴𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇                              (A.12) 

 

One thing that Kalman filters are great for is dealing with sensor noise, since even the best 

sensor is at least somewhat unreliable and every state in the original estimate might result 

in a range of sensor readings. From each sensor reading it can be appreciated was in a 

particular state. However, since there is uncertainty, some states are more likely than others 

(Figure A.4-2 (a)). The covariance of this uncertainty (covariance of the sensor noise) is 

called 𝑅𝑘, whose distribution has a mean equal to the reading it was observed by the sensors 

(𝑧 𝑘 ). Then, there are two distributions: One surrounding the mean of the transformed 
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prediction, and one surrounding the actual sensor the system got, as shown in Figure A.4-2 

(b). Then, the system must be able to guess about the readings it would see based on the 

predicted state with a different guess based on the sensor reading that the system actually 

observed. In order to estimate these new possible readings (position and velocity 

estimation in this case) there are two associated probabilities: First, the probability that the 

sensor mean reading 𝑧 𝑘 is a (mis-) measurement of (𝑧1, 𝑧2) and second, the probability that 

the previous estimate (𝑧1, 𝑧2) is the reading the system should see.  

 

 

(a)                                                                     (b)  

Figure A.4-2 (a) Random noise between the current read and the possible real one                                                             

(b) Transformed prediction distribution and sensor measurement distribution 

 

By using basic concepts of statistics, if a system has two probabilities and it is required to 

know the change that both are true, they must be multiplied together, which is actually the 

overlap of both distributions. It is a lot more precise than either of previous estimates of the 

system. The mean of this distribution is the configuration for which both estimates 

(transformed prediction and actual sensor reading) are most likely, and therefore the best 

guess of the true configuration given all the information the system has collected. Then, this 

overlap looks like another Gaussian distribution (furthermore, the multiplication between 

two Gaussian distributions with separate means and covariance matrices results in a new 

Gaussian distribution with its own mean and covariance matrix). 

 

A. 5. Combining Gaussians 

According to the 1D Gaussian bell curve with variance 𝜎2 and mean µ is defined as: 

 

                                                                 𝑁(𝑥, µ, 𝜎) =
1

𝜎√2𝜋
𝑒

−
(𝑥−µ)2

2𝜎2                                                     (A.12) 

                                                       𝑁(𝑥, µ0, 𝜎0) · 𝑁(𝑥, µ1, 𝜎1) ?̿  𝑁(𝑥, µ′, 𝜎′)                                         (A.13) 
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If two normal distributions (µ0, 𝜎0 and µ1, 𝜎1) are multiplied, the result is the unnormalized 

intersection. Substituting (A.12) into (A.13) (then renormalizing, so that the total 

probability is 1), it is obtained: 

 

                                                  µ′ = µ0 +
𝜎0

2·(µ1−µ0)

𝜎0
2+𝜎1

2      ;     𝜎′2 = 𝜎0
2 −

𝜎0
4

𝜎0
2+𝜎1

2                   (A.14) 

 

Then, it can be observed a common factor 𝑘 =
𝜎0

2

𝜎0
2+𝜎1

2, (A.14) can be rewritten as: 

 

                                   µ′ = µ0 + 𝑘 · (µ1 − µ0)     ;     𝜎′2 = 𝜎0
2  −  𝑘 · 𝜎0

2                   (A.15) 

 

In addition, (A.15) can be expressed as a matrix version. If 𝛴 is the covariance matrix of a 

Gaussian distribution and µ⃗  its mean along each axis, then: 

 

                𝐾 = 𝛴0(𝛴0 + 𝛴1)
−1     ;     µ⃗ ′ = µ⃗ 0 + 𝐾(µ⃗ 1 − µ⃗ 0)     ;     𝛴′ = 𝛴0 − 𝐾𝛴0                   (A.16) 

 

Where K is a matrix called the Kalman gain. Finally, after explaining the effect of uncertainty, 

external forces and refining the estimate with sensor measurement, the summary of the 

Kalman filter is as following: There are two distributions: The predicted measurement with 

(µ0, 𝛴0) = (𝐻𝑘𝑥̂𝑘 , 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇)  and the observed measurement (µ1, 𝛴1) = (𝑧 𝑘 , 𝑅𝑘) . Plugging 

these measurements into equation (A.16) is required to find their overlap (i.e., the best 

guess of the true configuration given all the information the system has collected, as 

mentioned above): 

 

                   𝐻𝑘𝑥̂𝑘′ = 𝐻𝑘𝑥̂𝑘  +  𝐾(𝑧 𝑘 − 𝐻𝑘𝑥̂𝑘)     ;     𝐻𝑘𝑃𝑘′𝐻𝑘
𝑇 = 𝐻𝑘𝑃𝑘𝐻𝑘

𝑇  −  𝐾𝐻𝑘𝑃𝑘𝐻𝑘
𝑇      (A.17) 

 

From (A.16), the Kalman gain can be expressed as: 

 

                                                                   𝐾 = 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)
−1

                                           (A.18) 

 

Then, simplifying 𝐻𝑘 in (I.16) and (I.17), the final equations of the Kalman filter that include 

the update step are as following: 

 

                                                 𝑥𝑘′ = 𝑥𝑘  + 𝐾′(𝑧 𝑘 − 𝐻𝑘𝑥̂𝑘)     ;     𝑃𝑘′ = 𝑃𝑘 − 𝐾′𝐻𝑘𝑃𝑘                  (A.19) 

                                                                 𝐾′ = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)
−1

                                            (A.20) 

 

Where 𝑥𝑘′ is the new best estimate and 𝑃𝑘′ the new uncertainty (based on predicted state 

and sensor readings). In order to improve this estimation, this best estimation can be feed 

it (along with 𝑃𝑘′ back into another round of predict or update as many times as is required). 

In conclusion, the main Kalman filter equations are (A.11), (A.18) and (A.19). This allows to 

model any linear system accurately. For non-linear systems, Extended Kalman Filter (EKF) 

must be used, which works by simply linearizing the predictions and measurements about 

their mean. Figure A.5-1 shows the Kalman Filter Information Flow, which sums up what is 

stated in this appendix. 
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Figure A.5-1 Kalman Filter Information Flow 
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Appendix B: Artificial Intelligence 
 
This appendix aims to summarize the main artificial intelligence concepts addressed in this 

master thesis. Artificial Intelligence has been witnessing an exponential growth in bridging 

the gap between the capabilities of machines and humans.  Although the terminologies 

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are usually used 

interchangeably, they do not quite refer to the same issues. Figure B.1-B-1 depicts how DL 

is a subset of ML, which is also a subset of AI. AI is the all-encompassing concept that initially 

erupted, followed by ML and lastly DL that is promising to escalate the advances of AI to 

another level. 

 

B. 1. Artificial Intelligence concept 

Artificial Intelligence is intelligence shown by machines, in contrast to the natural 

intelligence demonstrated by humans. It represents a broader concept that consists of 

everything from GOFAI (Good Old-Fashioned AI, also known as symbolic AI, collection of all 

methods in AI based on high-level symbolic representations of problems, that is, logic and 

search) to futuristic technologies such as deep learning. 

 

 

Figure B.1-B-1 Development of artificial intelligence and its subsequent fields in the last 

six decades 

If a machine performs a task based on a certain algorithm (set of stipulated rules that solve 

problems), like an intelligent behaviour is what is called artificial intelligence. An example 

can be found in robot that can move and manipulate objects in warehouses. 

 

AI powered machines are usually classified into two groups: 

 

• General AI: Also known as “Strong AI”, “Full AI” or “True AI”, machines can 

intelligently solve general problems, for example recognizing if someone has raised 
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the hands or moving a simple box. The machine has the capacity to understand or 

learn any intellectual task that a human can. 

 

• Narrow AI: The machine or technology outperforms humans in some very narrowly 

defined task, focusing on a single subset of cognitive abilities and advances. For 

example, nowadays computers are able to surpass humans in the playing of complex 

games like GO or chess, making intelligent business decisions or classifying images 

and tracking objects. 

 

B. 2. Machine Learning concept 

As mentioned above, Machine Learning (ML) was born in the 80s, whose intention was to 

enable machines to learn by themselves using the provided data and make accurate 

predictions. Indeed, it can be considered a technique for realizing AI as method of training 

algorithms in such a way they can learn how to make decisions. 

 

Then, training in machine learning is based on giving a lot of data to the algorithm and 

allowing it to learn more about the processed information.  

 

B. 3. Deep Learning concept 

In the same way that ML corresponds a subset of AI, Deep Learning (DL) is a subset of ML. 

Indeed, it is a technique for realizing machine learning, being DL the next evolution of 

machine learning.  

 

Deep learning algorithms are inspired by the information processing patterns found in the 

human brain. In the same way that a human brain can identify patterns and classify various 

types of information (for example, object detection, the first step to perform object 

tracking), DL algorithms can be taught to carry out the same tasks for machines. Whenever 

the human receives a new information (car on the road, pedestrian crossing 50 meters 

ahead), the brain tries to compare it to a known item before making sense of it, which is the 

same concept employed by DL algorithms. 

 

While ML requires to be provided manually of features for classification, DL can 

automatically discover them. Furthermore, DL requires high-end machines and 

considerable huge amounts of training data in order to achieve accurate results. 

 

In conclusion, Deep Learning is the most successful direction in the field of ML. Since 

proposed, it has given rise to revolutionary progress and breakthrough in several aspects 

of information processing like text, image, video or voice. The advantage of DL is mainly 

reflected in the powerful ability in feature expression. Through the multi-level learning and 

mapping, deep neural networks can obtain high-level abstract features from colours, edges 

and other low-level features gradually. While ML techniques required professional manual 

design with traditional feature, DL performs feature extraction in an automatic way.  
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Below it is explained a brief explanation of the main DL concepts used for Multi-Object 

Tracking, that is Convolutional Neural Networks (CNNs) and RNNs (Recurrent Neural 

Networks), in order to appreciate the particularities of the state-of-the-art approaches of 

this master thesis such as GOTURN, MV-YOLO, MDNet, ROLO, Re3 or Deep SORT. 

 

B. 4. Convolutional Neural Networks (CNNs) 

The advancements in Computer Vision with Deep Learning has been developed and 

improved with time, primarily over one particular algorithm: Convolutional Neural 

Network. 

 

A Convolutional Neural Network [22] (CNN/ConvNet) is a Deep learning algorithm which 

can take in an input image, assign importance (learnable weights and biases) to some 

objects/aspects in the image, being able to differentiate one from the other (that is, 

assigning a different semantic identification, such as dog, car or bycicle). The pre-processing 

process required in a CNN is much lower than other classification algorithms. While in 

primitive methods filters (Machine Learning algorithms) are hand-crafted, with enough 

training, CNNs have the ability to learn these characteristics/features. Figure B.4-1 

illustrates how ML algorithms require a particular stage for feature extraction before 

classifying the input variable, in DL algorithms, and furthermore in a CNN, the feature 

extraction and classification is performed at the same level, so required pre-processing 

process is decreased. 

 

 

Figure B.4-1 Comparison between stages required by ML and DL for classification 

 

The architecture of a CNN is analogous to the connectivity pattern of Neurons in the Human 

Brain, inspired by the organization of the Visual Cortex. In that sense, individual neurons 

respond to stimuli only in a restricted region of the visual field known as the Receptive Field. 

A collection of such fields overlaps to cover the whole visual area. 
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An image is actually a matrix of pixel values, it could be flattened (e.g., 4x4 image matrix into 

a 16x1 vector) and feed it to a Multi-Level Perceptron, which is not a recent technique [23]. 

However, in cases of extremely basic binary images, the method could show an average 

precision score while performing prediction and estimation of classes but would have little 

to no accuracy when it comes to complex images having pixel dependencies throughout. 

 

On the other hand, a ConvNet is capable of successfully capturing the Spatial and Temporal 

dependencies in an image through the application of relevant filters. In that direction, a CNN 

architecture performs a better fitting to the image dataset due to the reduction in the 

number of parameters involved and reusability of weights. In conclusion, the network can 

be trained to understand the sophistication of the image better. 

 

 

Figure B.4-2 RGB image channels and pixel correspondence 

 
Figure B.4-2 represents an example of RGB image which has been separated by its three 

colour planes, that is, Red, Green and Blue. There are a number of such colour spaces in 

which images exist, such as RGB, HSV, CMYK, Grayscale, etc. 

 

As mentioned above, the classification and prediction of the objects in the scene could be 

relatively well-addressed if the image is binary and the dimensions are small. However, 

when speaking about computation time it is easy to realize how computationally intensive 

things would get once images reach dimensions, for example 8K (768 x 4320). Then, the 

role of the CNN is to reduce the images into a simpler form which is easier to address, 

without leasing critical features which are essential for getting a good estimation and 

classification. It is a key concept when a novel architecture is proposed, since an 

architecture does not have to be only good at learning features but also scalable to massive 

datasets. 

 

B. 4.1. Convolution Layer - The Kernel 

Figure B.4-3 represents the convolution process of 5x5x1 (only a colour channel) with a 

3x3x1 kernel in order to obtain a convolved feature with 3x3x1 dimensions. In terms of 

image processing, convolution is the process of adding each element of the image to its local 
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neighbours, weighted by a kernel. The matrix operation being performed (also known as 

convolution process) is not a traditional matrix multiplication but the result of applying the 

kernel over a zone of the image is the sum of dot product between both matrices. The kernel 

(also known as mask or convolution matrix) is a small matrix (smaller than image 

dimensions) used for sharpening, edge detection, blurring and more. Then, the element 

involved in carrying out the convolution operation in the first part of the Convolutional 

Layer is called the Kernel/Filter (K), represented in yellow in Figure B.4-3.   

 

 

Figure B.4-3 Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved 
feature 

 

When speaking about CNNs, there are two key concepts related with the application the 

kernel, that is, padding and stride: 

 

• Stride: Distance between spatial location where the convolution kernel is applied. In 

default scenarios, the distance usually is 1 in each dimension (also the default value 

in TensorFlow), that is, each time the kernel moves from left to the right it is only 

displaced one position, and the same when it has finished a horizontal movement 

and moves down. When the stride is larger than one, it is usually called stride 

convolution to make the difference explicit with non-stride (standard) convolutions. 

 

• Padding: Since the result of the convolution between the kernel and the input image 

results in a shrank output image, it is easy to realize that corner pixels will only get 

covered one time while middle pixels will get covered more than once, giving rise to 

a main downside, that is, loosing information on corner of the image. To overcome 

this padding is introduced to the image. Padding is an additional layer added to the 

border of an image, in order to take into account more times the edge and corner 

pixels. Figure B.4-4 represents an example of padding (4x4x1 input image is padded 

with 0s to create a 6x6x1 image) and stride (1,1, that is, standard movement both in 

X and Y direction), resulting in an output image with identical dimensions than input 

image. 
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Figure B.4-4 Example of padding and stride in the input image 

 
In the case of Figure B.4-3, the kernel shifts 9 time since the stride length = 1, so non-strided, 

every time performing a matrix multiplication operation between K and the porting T of the 

image over which the kernel is hovering.  

 

 

Figure B.4-5 Movement of a 3D kernel over the image 

 

The filter moves to the right with a certain stride value till it parses the complete width. 

Moving on, it hops down to the beginning (left) of the image with the same stride value (if X 

stride value and Y stride value are identical) and repeats the process until the whole image 

is traversed, as shown in Figure B.4-5. 
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Figure B.4-6 Convolution operation of a MxNx3 image matrix with a 3x3x3 kernel 

 
It is important to consider that in the case of images with multiple channels (e.g. RGB), the 

kernel has the same depth as that of the input image. Then, matrix multiplication is carried 

out between 𝐾𝑛 and 𝐼𝑛 stack ([𝐾1, 𝐼1] ; [𝐾2, 𝐼2] ; [𝐾𝑛 , 𝐾𝑛]) and all the results are summed with 

the (optional) bias to give the user a squashed one-depth channel Convoluted Feature 

Output, as shown in Figure B.4-6. 

 

The objective of the convolution operation is to extract the high-level features (complex 

shapes) from the input image. However, CNNs need not be limited to only one Convolutional 

Layer. Conventionally, the first CNN is responsible for capturing the low-level features 

(gradient orientation, edges, colour, dots, etc.), while subsequent conv-layers the 

architecture adapts to the high-level features (built on top of low-level features to detect 

objects and larger shapes in the image) as well, giving rise to a network which has the 

wholesome understanding of images in the dataset, similar to how the human would. Figure 

B.4-7 shows an example of low, middle and high-level feature extraction. 

 

 

Figure B.4-7 Low, Middle and High-Level feature extraction 
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B. 4.2. Pooling layer 

In a similar way to the conv-layer, the pooling layer is responsible for reducing the spatial 

size of the convolved feature. This is very important to decrease the computational time 

(and power) required to process the data through dimensionality reduction. Moreover, it is 

useful for extracting dominant features that are positional and rotational invariant (keeping 

the process of effectively training of the model). 

 

As shown in Figure B.4-8, the main types of pooling are Max Pooling and Average Pooling. 

While Max Pooling returns the maximum value from the portion of the image covered by 

the kernel, average pooling returns the average of all the values covered. In addition, Max 

Pooling performs as Noise Suppressant, that is, it discards the noisy activations altogether 

and also performs de-noising along with dimensionality reduction. On the other hand, 

Average Pooling simply performs dimensionality reduction as a noise suppressing 

mechanism. Then, it is said that Max Pooling performs a lot better than Average Pooling. 

 

 

Figure B.4-8 Types of pooling 

 
The conv-layer and the pooling-layer together form the basic i-th layer of a Convolutional 

Neural Network. Depending on the complexities in the images, the number of layers may be 

increased for capturing low-levels details even further, but at the cost of more 

computational power. 

 

B. 4.3. Classification – Fully Connected Layer 

After going through the above layers (conv and pooling), the basic model of CNN to 

understand the features is explained. Then, the final output must be flattened and feed it to 

a standard Neural Network for classification purposes (Figure B.4-9). 
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Figure B.4-9 Example of Fully Connected Layer (FC Layer) 

 
Adding a FC layer is a (usually) cheap way of learning non-linear combinations of the high-

level features, as represented by the output of the conv-layer. The FC layer is learning a 

possibly non-linear function in that space. After converting the input image into a suitable 

for previous layers of the network, now the final image has to be flattened into a column 

vector. Then, the flattened output is fed to a Feed-Forward Neural Network, where 

backpropagation [25] is applied to every iteration of training. Over a series of epochs (an 

epoch can be defined when an entire dataset is passed both forward and backward through 

the neural network only once), the model is able to distinguish between low-level and 

dominating features in images and classify them using the Softmax Classification technique 

[26]. 

 

B. 5. Recurrent Neural Networks (RNNs) 

While CNNs are able to analyse only a single frame of the image (detecting and classification 

the objects found in the scene), a Recurrent Neural Network (RNN) is a kind of neural 

network that runs on a sequential data. It basically makes predictions based on the current 

input and the previous state of the network. In RNN, the main element that stores the 

condition or values of the previous state is known as the RNN hidden layer. This hidden 

layer works as a control unit for the network. So as to make good predictions, the RNN 

hidden state makes sure a smooth transition between previous and current status, by 

making sure that the difference between the previous state and the current one of the 

network does not exceed a given limit.  
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Figure B.5-1 (Left) A standard RNN (Right) Unrolled RNN in time 

 
Figure B.5-1 shows the function of a standard RNN. It can be appreciated that 𝑦𝑡 is just a 

function of hidden state of the RNN, that is, ℎ𝑡 (value of the hidden state at time 𝑡) multiplied 

by the weight matrix 𝑊𝑦 plus the bias term 𝑏𝑦 (overall a linear transformation): 

 

                                                                            𝑦𝑡 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦                                                             (B.1) 

 

On the other hand, the value of the hidden state ℎ𝑡 is estimated as: 

 

                                                           ℎ𝑡 = 𝑔ℎ(𝑊𝐼𝑥𝑡 + 𝑊𝑅ℎ𝑡−1 + 𝑏ℎ)                                                (B.2) 

 

Where 𝑊𝐼  represents the weight matrix (also known as learnable parameters) for linear 

transformation of input variable 𝑥𝑡 at time 𝑡 and 𝑊𝑅 represents the weight matrix the carry 

out the transformation of hidden state of previous time step 𝑡 − 1, shared across the layers 

in time. Weighted information from both hidden state of previous time step ℎ𝑡−1  and 

current input 𝑥𝑡 are added together with the bias (offset) term 𝑏ℎ, and then passed through 

a non-linear activation function 𝑔ℎ to estimate ℎ𝑡 , i.e. the value of the new hidden state of 

the RNN at time 𝑡. Non-linear activations are one the key concepts of the Deep-Learning 

breakthrough. Both in CNNs, RNNs or other types of DL networks, if is not applied an 

activation function then the output signal would be a simple linear function (polynomial of 

one degree), which is easy to solve but they are limited in their complexity and have less 

power to learn complex functional mappings from data, i.e., a Neural Network without 

activation functions would simply be a Linear Regression Model. For that reason, Non-linear 

functions (as 𝑔ℎ ) are those which have degree more than one (considered as Universal 

Function Approximators) and are required by Neural Network Models to learn and 

represents almost anything and any arbitrary complex function which maps inputs to 

outputs. One thing to note in Figure B.5-1 is that the activity of the unit ℎ𝑡 depends not only 

on the input 𝑥𝑡 but also on the activity at the previous timestep ℎ𝑡−1, so the activity at the 

memory unit at time 𝑡 is passed on to the unit activity at time 𝑡 + 1. This is the key concept 

by which RNNs have begun to be intensively studied to perform tasks that require 

information from previous moments, as is the case with Multi-Object Tracking, where 

previous moments must be taken into account for assignment and tracking of multiple 

objects. 
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B. 5.1. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a special purpose RNN. An LSTM cell is usually 

comprised of three gates which basically controls the flow of the information. These gates 

are: 

 

• Forget gate: A memory forgetting mechanism: 

 

                                                                 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                      (B.3) 

 

• Input gate: A memory saving mechanism: 

 

                                                                 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                       (B.4) 

 

• Output gate: A memory focusing mechanism, which saves the long-term memory 

into workable memory: 

 

                                                                 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                      (B.5) 

 

Is important to consider that 𝑥𝑡 represents the input to the current RNN layer (where LSTM 

cell is located) at time 𝑡 and ℎ𝑡−1 represents the previous state of this RNN layer.  

 

 

Figure B.5-2 A basic LSTM cell 

 
From the mathematical derivation of the gates, it can be appreciated that each gate performs 

a function of a typical fully-connected (FC) layer of a neural network. These gates take ℎ𝑡−1 

(previous hidden state) and 𝑥𝑡 (current input) as inputs for estimating the current state. 

Figure B.5-2 illustrates a basic LSTM cell, where each gate has small memory block. 

Combining these gates, they form a strong memory unit which is helpful in solving non-

trivial tasks of sequential processing and data associations in temporal domain. 𝐶̃𝑡 

represents the current input to the LSTM cell at time 𝑡: 

 

                                                              𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                                 (B.6) 
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Where 𝑊𝐶  represents the weight matrix which computes the new input for the LSTM 

memory cell based on 𝑥𝑡 and ℎ𝑡−1. On the other hand, the output of the LSTM memory cell 

is calculated by applying non-linearity to the current memory state 𝐶𝑡 and then multiplying 

with the states of the output gate: 

 

                                                                        ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝐶𝑡)                                                                (B.7) 

 

Finally, the new state of the LSTM memory cell for frame 𝑡 + 1  is a weighted combination 

of the current in current input to the LSTM memory cell 𝐶̃𝑡 and the current state 𝐶𝑡: 

 

                                                                       𝐶𝑡+1 = 𝑓𝑡𝐶𝑡 + 𝑖𝑡𝐶̃𝑡                                                              (B.8) 

 

In other words, the activity of the cell at time 𝑡 + 1  (the next frame) is equal to the memory 

or the amount memory to be forgotten from the previous time step (𝐶𝑡) plus the input at the 

new timestep which is multiplied by how much the requirements want to accept from this 

new input got at timestep 𝑡, or what is the same, the new memory of the LSTM cell 𝐶𝑡+1 is 

basically a weighted sum between the amount of information that the input and forget gates 

allow to flow. 
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Appendix C: Code of Interest 
 

In this appendix it is shown some interesting parts of the code created and modified in order 

to perform most of exposed tasks throughout this master thesis. For a deeper explanation, 

the reader should go to the corresponding algorithm in the code in addition to different 

bibliographic source that have been used. 

 

Code of Interest C-1 Code to obtain the 3D coloured point cloud 
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Code of Interest C-2 Code to concatenate non-discarded CenterNet bounding boxes 

 

 

Code of Interest C-3 Code to update the tracked objects based on Deep SORT 
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Code of Interest C-4 Code to perform the 3D LiDAR Point Cloud cluster extraction 
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Code of Interest C-5 Code to project the bottom position of the CenterNet+DeepSORT 
bounding box onto the 3D space 
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Code of Interest C-6 Code to perform the sensor fusion between BEV VOT proposals and 
BEV LiDAR proposals 
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Appendix D: User’s manual 
 

This appendix presents the installation guide and execution process in order to reproduce 

the obtained results. Due to the numerous tools involved in this work, only the most 

relevant are commented, assuming that the reader has some knowledge of the Linux OS. 

 

As commented throughout this work, the architecture proposal for Deep Learning based 

Multi-Object Tracking has been implemented in ROS, making use of the its different 

packages, in order to provide proper intercommunication with the SmartElderlyCar project. 

 

D. 1. Docker installation 
 

First, Docker must be installed, in this case in Linux: 

 

https://docs.docker.com/install/linux/docker-ce/ubuntu/) 

 

1. Install packages to allow apt to use a repository over HTTPS: 

 

sudo apt-get install \ 
    apt-transport-https \ 
    ca-certificates \ 
    curl \ 
    gnupg-agent \ 
    software-properties-common 

 

2. Add Docker’s official GPG key: 

 

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add – 
sudo apt-key fingerprint 0EBFCD88 

 
3. Set up the stable repository for the Ubuntu host release: 
 
sudo add-apt-repository \ 
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ 
   $(lsb_release -cs) \ 
   stable" 
 
4. Install Docker Engine – Community: 
 
sudo apt-get update 
sudo apt-get install docker-ce docker-ce-cli containerd.io 
 
This installation guide must be carried out if a new computer wants to use Docker services. 

 

In the case of the SmartElderlyCar project, it is encapsulated in a Docker Image with Ubuntu 

14.04 and ROS Indigo Igloo, and then cloning the project in the corresponding Docker 

https://docs.docker.com/install/linux/docker-ce/ubuntu/
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container from the RobeSafe GitHub. This user’s manual does not cover the SmartElderlyCar 

packages installation due to the magnitude of the project. 

 

On the other hand, in the case of the tracking module, it has been encapsulated in a Docker 

Image with Ubuntu 18.04. It was performed by typing on the Ubuntu host terminal: 

 

docker pull ubuntu:18.04 

 

Where docker is the name of the Docker group, pull is a command to pull image from 

repositories, as explained in previous chapters, ubuntu is the general repository of the 

image and 18.04 its particular, since it also can be found other Ubuntu versions such as 

16.04 Xenial or 19.04 Disco. 

 

In order to run this docker image for the first time, since it has not registered the host user 

in the original Docker File, the container must be run as root, as shown Figure D.1-1, using 

a .sh file named launch_docker_version.sh. 

 

 

Figure D.1-1 Bash launch file to run the CenterNet_DeepSORT docker image 

Now, in order to run the image, in the Ubuntu host terminal it must be typed: 

 

./launch_docker_version.sh CenterNet_DeepSORT:last 

 

It is important to consider that this reposity (CenterNet_DeepSORT) and tag (last) were not 

the originals but ubuntu and 18.04. It can be easily modified renamed using the following 

command: 

 

docker tag ORIGINAL_DOCKER_IMAGE_ID CenterNet_DeepSORT:last 

 

At this point, the user is inside the Docker container. 

 

D. 2. ROS installation 

Before installing the CenterNet+DeepSORT framework it is advisable to install ROS in such 

a way this framework is installed in the source (src) directory of ROS and later modifications 

can be compiled in an easy way. 

 

In this docker image it is installed ROS Melodic Morenia since it is the last LTS (Long Term 

Support) of ROS1. In addition, ROS2 was installed and the bridge between ROS1 and ROS2 

was configured, but it is still in development. 



Predictive techniques for Scene Understanding by using Deep Learning 

 

123 

 

 

To install ROS Melodic Morenia: 

 

http://wiki.ros.org/melodic/Installation/Ubuntu 

 

1. Setup the sources.list 

 

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 
/etc/apt/sources.list.d/ros-latest.list' 
 
2. Setup the keys 

 
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key 
C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 
 
3. Installation 
 
sudo apt update 
sudo apt install ros-melodic-desktop-full 
4.Initialize rosdep (it enables to easily install system dependencies and run some core 
components in ROS): 
 
sudo rosdep init 
rosdep update 
 
5. Create a ROS Workspace: 
 
mkdir -p ~/catkin_ws/src 
cd ~/catkin_ws/ 
catkin_make 
 

D. 3. Anaconda, CUDA and NVIDIA driver 

Anaconda is the easiest way to install Python 3.7 and other Python requirements in other to 
run the tracking module. For Linux distribution, it can be downloaded from: 
 
https://www.anaconda.com/distribution/ 
 
Then, after the download is complete, in the docker terminal must be typed: 
 
chmod +x Anaconda3-2019.07-Linux-x86_64.sh (in order to give execute permissions) 
sh Anaconda3-2019.07-Linux-x86_64.sh 
 
On the other hand, CUDA and CuDNN are required in order to optimize the neural network 
computation. According to the Ubuntu version of the docker image (18.04 Bionic), the most 
advisable CUDA version is 10.1, as shown in:  
 
https://developer.nvidia.com/cuda-
downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=
1804&target_type=deblocal 
 

http://wiki.ros.org/melodic/Installation/Ubuntu
https://www.anaconda.com/distribution/
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=deblocal
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It is recommended to use the deb (local) installer type, so the steps are as following: 
 
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x 
86_64/cuda-ubuntu1804.pinsudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/ 
cuda-repository-pin-600 
 
wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installer 
s /cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb 
  
sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb 
sudo apt-key add /var/cuda-repo-10-1-local-10.1.243-418.87.00/7fa2af80.pub 
sudo apt-get update 
sudo apt-get -y install cuda 
 
To check the CUDA version, run the following command: 
 
nvcc --version 
 
There should appear the installed CUDA version as 10.1. 
 
Finally, in order to run graphic interfaces inside the Docker, both host machine and Docker 
image must be synchronized in terms of NVIDIA driver. In contrary case, when typing 
nvidia-smi command, there should be an error message as follows: 
 
Failed to initialize NVML: Driver/library version mismatch 

 

To synchronize both graphical interfaces (host machine and Docker), the driver must 
be downloaded from NVIDIA driver releases:  
 
https://www.nvidia.es/Download/index.aspx?lang=es 

 

It must be stored in the shared volume (in this master thesis called compartido-

_con_docker) to get access to this host file inside the Docker image. Now open a new 
shell with CTRL+ALT+F2 and go to the shared volume where the NVIDIA driver. Then type: 
 
sudo ./NVIDIA-Linux-x86_64-VERSION.run --no-kernel-module 
 
If the system reports that a previous NVIDIA driver was installed, just continue the 
installation process. Finally, typing nvidia-smi command in the docker terminal it should 
report a message as follows (e.g., in the case of 390.67 NVIDIA Driver): 
 

https://www.nvidia.es/Download/index.aspx?lang=es
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Figure D.3-1 Check NVIDIA driver in the case of 390.97 

 

D. 4. CenterNet+DeepSORT framework installation 

After ROS installation, CenterNet+DeepSORT is installed. To do this, the first step is to 

download the files from: 

 

https://github.com/kimyoon-young/centerNet-deep-sort.git 

 

And copy then in the src directory of the previously created ROS Workspace catkin_ws. Once 

the files have been copied, inside this centernet directory: 

 

conda env create -f CenterNet.yml 
pip install -r requirements.txt 
 
Then, a virtual environment named CenterNet is created with the specified requirements. 
To run this virtual environment: 
 
conda activate CenterNet 
 
In summary, Figure D.4-1 shows an example of how should be configured the Python 
 

 

Figure D.4-1 Bashrc configuration (Docker image of tracking module) 

https://github.com/kimyoon-young/centerNet-deep-sort.git
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D. 5. Install CARLA 0.9.5 

CARLA requires Ubuntu 16.04 or later. First, install the build tools dependencies: 
 
sudo apt-get update 
sudo apt-get install wget software-properties-common 
sudo add-apt-repository ppa:ubuntu-toolchain-r/test 
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key|sudo apt-key add - 
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 
main" 
sudo apt-get update 
sudo apt-get install build-essential clang-7 lld-7 g++-7 cmake ninja-build libvulkan1 
python python-pip python-dev python3-dev python3-pip libpng16-dev libtiff5-dev 
libjpeg-dev tzdata sed curl unzip autoconf libtool rsync 
pip2 install --user setuptools 
pip3 install --user setuptools 
 

To avoid compatibility issues between Unreal Engine and the CARLA dependencies, the 
best configuration is to compile everything with the same compiler version and C++ 
runtime library (CARLA uses clang 6.0 and LLVM’s libc++): 
 
sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/lib/llvm-
7/bin/clang++ 170 
sudo update-alternatives --install /usr/bin/clang clang /usr/lib/llvm-7/bin/clang 
170 
 
After configuring the tool dependencies, build Unreal Engine: 
 
git clone --depth=1 -b 4.22 https://github.com/EpicGames/UnrealEngine.git 
~/UnrealEngine_4.22 
cd ~/UnrealEngine_4.22 
./Setup.sh && ./GenerateProjectFiles.sh && make 
 
Finally, Build CARLA from GitHub repository: 
 
https://github.com/carla-simulator/carla 
 
git clone https://github.com/carla-simulator/carla 
./Update.sh 
export UE4_ROOT=~/UnrealEngine_4.22 (it can be also added to the ~/.bashrc file)  
make launch     # Compiles the simulator and launches Unreal Engine's Editor. 
make PythonAPI  # Compiles the PythonAPI module necessary for running the Python 
examples. 
make package    # Compiles everything and creates a packaged version able to run 
without UE4 editor. 
make help       # Print all available commands. 
 

D. 6. Execution CARLA + SmartElderlyCar (SEC) 

The main commands so as to perform a MOT using CARLA and the SmartElderlyCar project 
are 

https://github.com/carla-simulator/carla


Predictive techniques for Scene Understanding by using Deep Learning 

 

127 

 

 
# Shell 1 (Launch CARLA simulator on Desktop computer host) 
 
cd ~/carla/Dist/0.9.5-96-g67cfd574/LinuxNoEditor 
DISPLAY= ./CarlaUE4.sh /Game/Carla/Maps/Town03 
 
# Shell 2 (Run roscore; SEC Docker, Desktop computer) 
 
./launch_docker_version SmartElderlyCar_project:last 
 
# Shell 3 (Run ROSBridge for CARLA and SEC communications; Host, Desktop computer) 
 
roslaunch carla_ros_bridge carla_interface_map.launch 
 
# On the MSI computer, run the tracking module 
 
./launch_docker_version CenterNet_DeepSORT:last 
cd ~/ros_ws/src/centernet_deepsort_master 
python3 tracking_centernet_deepsort.py 
 
Make sure that ROS_MASTER_URI points to the Desktop computer IP address and ROS_IP 
points to the laptop IP (it can be checked by typing ifconfig on the Ubuntu terminal and 
saving the provided ined addr). 
 
# Shell 4 (Include dynamic objects in the CARLA world, such as pedestrians or cars; Host, 
Desktop computer) 
 
python manual_control_pedestrian.py --filter=walker --point -1 73 2 --orientation 65 
python manual_control_vehicle.py --filter=vehicle.tesla.model3 --point 244 95 2 --
orientation 270 
 
# Shell 5 (Launch map_module to load Lanelets map; SEC Docker, Desktop computer) 
 
roslaunch smart_elderly_car map_module.launch 
 
# Shell 6 (Launch navigation_module to perform local navigation; SEC Docker, Desktop 
computer) 
 
roslaunch smart_elderly_car navigation_module.launch 
 
# Shell 7 (Launch Robograph to activate decision-making layer; SEC Docker, Desktop 
computer) 
 
roslaunch smart_elderly_car robograph.launch 
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Appendix E: Specifications 
 

This appendix details the main hardware and software used in this master thesis.  

 

E.1. Hardware 

 
▪ ASUS Intel Core i5-4210U 

 
❖ 1.70 GHz CPU 
❖ 8 GB DDR3 1333 MHz RAM  
❖ 500 GB HDD 
❖ NVIDIA GeForce 320 M (CUDA technology available) 

 
▪ MSI GT62VR-7RE i7-7700HQ 

 
❖ 2.8 GHz CPU 
❖ 16 GB DDR4 2400 MHz RAM  
❖ 500 GB SSD 
❖ NVIDIA 1070 GTX (CUDA technology available) 

 
▪ Desktop computer i7-8700 

 
❖ 3.2 GHz CPU 
❖ 32 GB DDR4 2400 MHz RAM  
❖ 500 GB SSD NVME 
❖ NVIDIA 2070 RTX (CUDA technology available) 

 
▪ Tabby Evo Open Source Electric Car 

 
❖ Maximum speed: 100 km/h 
❖ Autonomy: 80 km 
❖ Power: 19 kW 
❖ Weight: 380 kg 

 
▪ Velodyne LiDAR Puck (VLP-16) 

 
❖ Channels: 16 
❖ Maximum range: 100 m 
❖ Maximum number of points/s: 600,000 
❖ Accuracy: 3 cm 

 
▪ StereoLabs ZED camera 

 
❖ Sensors: 2 CCD 4M pixels per sensor with large 2-micron pixels 
❖ Field of View: 90 º (Horizontal) x 60 º (Vertical) 
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❖ Maximum output resolution: 4416x1242 
❖ Technology: Real-time depth-based visual odometry and SLAM 

 
▪ Topcon Hiper Pro GPS 

 
❖ I/O ports: 2x serie (RS232) 
❖ Output frequency: 20 Hz 
❖ Communication: Bluetooth 1.1 
❖ Search channels: 20 GPS L1+L2 (GD), GPS L1 + GLONASS (GG)  

      20 GPS L1+L2+GLONASS (GGD) 
 
 

E.2. Software 

▪ Ubuntu 14.04.5 LTS (Trusty Tahr) 
▪ Ubuntu 18.04.3 LTS (Bionic Beaver) 
▪ Docker 19.03 
▪ ROS Indigo Igloo 
▪ ROS Melodic Morenia 
▪ Point Cloud Library V1.7 
▪ CARLA simulator 0.9.4 
▪ ROS packages 
▪ Microsoft Office 365 ProPlus 
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Appendix F: Budget 
 

This appendix describes the theoretical cost of the whole project. 

 

F.  1. Material cost 
 
In this section, the cost of the different materials (software and hardware) are detailed (21 

% VAT is included). 

  

Table F.1-1 Material costs 

Concept Units Unit cost [€] Total cost [€] 

 

 

 

Hardware 

MSI Laptop 1 1360.00 1360.00 

Windows PC i5 1.7 GHz 1 450.00 450.00 

Desktop computer 1 2,365.00 2,365.00 

Velodyne LiDAR Puck  

(VLP-16) 

1 7560.0 7560.0 

StereoLabs ZED camera 1 416.00 416.00 

Topcon GPS Hiper Pro 1 3,000.00 3,000.00 

Tabby Evo  

Open Source vehicle 

1 20,250.00 20,250.00 

 

 

 

Software 

Docker 19.03 1 0.00 0.00 

CARLA simulator 1 0.00 0.00 

ROS Indigo Igloo 1 0.00 0.00 

ROS Melodic Morenia 1 0.00 0.00 

Point Cloud Library V1.7 1 0.00 0.00 

ROS packages 1 0.00 0.00 

Microsoft Office 365 ProPlus 1 0.00 0.00 

Material total costs [€] 35,401.00 € 

 

F.  2. Professional fees 

 
In this point the different professional fees are calculated as gross incomes (not including 

VAT). They include all the professional activities related with the project. 
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Table F.2-1 Professional fees 

Activity Salary (€/month) Time (months) Total cost (€) 
Engineering 1,250.00 3 3,750.00 

Typing 1,000.00 1 1,000.00 

Professional fees total costs [€] 4,750.00 

 

F.  3. Total costs 

 
Total costs have been calculated by adding the material total costs and professional fees 

total costs. 

 

Table F.3-1 Total costs 

Material total costs [€] 35,401.00 

Professional fees total costs [€] 4,750.00 

Transport [€] 260.00 

Total cost [€] 40.411 
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