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ABSTRACT 20 

The principal direction of inertia in the ultimate limit state under axial load and biaxial 21 

bending of a doubly symmetrical reinforced concrete section is not the same as the direction 22 



 
 

of the principal axis of symmetry. If a hyperbolic stress–strain relationship is used to describe 23 

the behavior of concrete in compression, then, to some extent, the maximum capacity 24 

direction deviates from the apparent main axis of inertia (the main axis of symmetry). This 25 

study explores the real maximum capacity direction of bending of two reinforced concrete 26 

sections with a variable amount of steel using two different axial compression loads and two 27 

different stress–strain relationships for concrete (parabolic-rectangular and hyperbolic). The 28 

results are presented in a collection of interaction diagrams. 29 

 30 

KEYWORDS: Columns, concrete structures, stress analysis. 31 

 32 

INTRODUCTION 33 

The numerical difficulty involved in the exact integration of concrete and steel stress on a 34 

reinforced concrete section subjected to axial load and biaxial bending has led to the adoption 35 

of simplified constitutive models for stress–strain relationship of concrete in compression in 36 

regulatory codes. In the ultimate limit state, ACI-318-14 (2014) allows replacing the real 37 

stress response profile of the compressed concrete area by a rectangular block with reduced 38 

depth and a constant stress value (this hypothesis was formulated and developed by Withney 39 

1956). Alternatively, a non-linear analysis may be performed in which equilibrium conditions 40 

as well as strain compatibility are considered. For this analysis, it is necessary to know the 41 

stress–strain relationship for concrete and steel. Parabolic-rectangular models (Fig. 1a), in 42 

which the compressive stress is achieved for the ultimate strain value, are commonly used.  43 

 44 

A more realistic stress–strain relationship for concrete, which is consistent with, e.g., 45 

Hognestad 1951, Kent 1971, and Sargin 1971, is shown in Fig. 1b. The stress due to the 46 

ultimate strain is not the maximum compressive stress of concrete. In these models, there is a 47 



 
 

significant decline in the stress compared to the maximum stress for strains approaching the 48 

maximum value of the material. 49 

 50 

The choice of the stress–strain relationship for determining section capacity is a relevant 51 

factor in the resolution of the single axial and biaxial load compression issues. If a biaxial 52 

interaction diagram !𝑀#,𝑀%&	is calculated for a section with two axes of symmetry and a 53 

constant axial compression load with simplified stress–strain relationships for concrete (Fig. 54 

1a), the hypothesis by Morán (1972) with regard to the convexity of these diagrams appears 55 

to be confirmed. In this situation, the maximum capacity value is attained in the direction of 56 

the main axis of symmetry of the section (the x axis), which is also the main axis of inertia in 57 

the ultimate limit state. 58 

 59 

In situations with high axial compression loads and hyperbolic stress-strain relationships (Fig. 60 

1b), the maximum bending capacity combined with axial compression load need not be in the 61 

direction of the apparent main axis of inertia (the principal axis of symmetry), but it may 62 

deviate to some extent. This implies that, in some cases, the interaction biaxial diagrams may 63 

have concavities in the areas near the symmetrical directions of the section, that is, the 64 

apparent main axes of inertia	(0°, 90°). Regarding symmetrical sections, under axial load and 65 

single bending, the capacity may be overestimated as well, but the direction where the 66 

maximum capacity is obtained is perpendicular to the external moment direction, as expected. 67 

 68 

Published interaction diagrams (Fig. 2), where a simplified concrete constitutive model was 69 

used, as well as typical calculation models based on uniaxial equivalent eccentricity (Pannell 70 

1959, Bresler 1960) do not reflect the actual loss of the section capacity on the symmetry 71 

axes (0°, 90°)	owing to the use of a simplified stress–strain relationship. For these directions, 72 



 
 

section capcity is overestimated, and therefore unsafe situations may arise during the design 73 

stage. 74 

 75 

Accordingly, this study aims to determine, clarify, and complete related knowledge in the 76 

theory of structures, as well as to evaluate the possible implications for the design of 77 

reinforced concrete sections under compression loads and biaxial bending. It also investigates 78 

the rotation between the principal axis of symmetry and maximum inertia in the ultimate limit 79 

state. Moreover, even though interaction diagrams have been extensively studied, the 80 

previously mentioned numerical singularity is novel and has never been deeply explored.  81 

 82 

SIMPLIFIED STRESS–STRAIN RELATIONSHIP FOR CONCRETE IN AXIAL 83 

LOAD AND BIAXIAL BENDING  84 

To design reinforced concrete sections subjected to an arbitrary normal state of strength 85 

(axial load and biaxial bending), a widely adopted an extensively used technique is to replace 86 

the two eccentricities on the section axes by a single eccentricity on the main axis, which 87 

leads to a state of external strength equivalent to the original. From a numerical point of view, 88 

the design in the context of compression and single bending is simpler than the general 89 

problem of axial load and biaxial bending. In the former, the direction of the neutral axis is 90 

known and is the same as the perpendicular direction of external eccentricity. In the latter, the 91 

direction of the neutral axis is unknown. 92 

 93 

Pannell 1963 established a geometric model to determine the interaction diagrams for square 94 

sections with a homogeneous distribution of reinforcement on the four faces (section with 95 

double symmetry), and used two fundamental hypotheses as a starting point (the first of 96 

which will be shown not to be necessarily true): 97 



 
 

 98 

1. The maximum capacity values are on the planes of symmetry of the section, that is, 99 

the main directions !0°, 90°&. 100 

2. The minimum capacity value is on the plane of the diagonal of the section, bisecting 101 

the main directions !45°&. 102 

 103 

Furthermore, assuming that the interaction diagram must be a continuous curve that is 104 

derivable at all points, a model was formulated that could determine the values of biaxial 105 

failure moments !𝑀#,𝑀%& for arbitrary directions, in which a curve is described that contains 106 

the three known points (nominal moments of the section capacity according to the axes of 107 

symmetry, and the direction of the diagonal), as shown in Fig. 3. 108 

 109 

In a method by Bresler 1960, the axial load (𝑃0) leading to section failure for an arbitrary 110 

eccentricity direction is linearly inferred. For that purpose, 𝑃0	should be determined for each 111 

component of the design eccentricity !𝑒#, 𝑒%&, and the maximum axial load without any 112 

eccentricity (𝑃2). This model can be expressed as follows: 113 

  114 

1
𝑃0
=
1
𝑃#
+
1
𝑃%
−
1
𝑃2
																																																								 [1] 115 

	According to ACI-318-14, this model is a valid strategy for designing sections subjected to 116 

compression and biaxial bending. 117 

 118 

Interaction diagrams for axial and biaxial bending !𝑀#,𝑀%& have been obtained for various 119 

amounts of steel, transversal section shapes, and axial load levels, for instance, in Parme 120 

1966, Weber 1966, Row & Paulay 1973, Grasser 1981, and Calavera 2008. 121 



 
 

 122 

All these calculation methods use a simplified stress-strain relationship to describe the 123 

behavior of compressed concrete (parabolic-rectangular, Withney’s hypothesis).  Given this 124 

simplification, the depth of the neutral axis is reduced, which implies that the center of 125 

gravity of the resultant of the concrete is displaced toward the upper fibers of the section. The 126 

mechanical arm is increased, and consequently the values of section capacity !𝑀#,𝑀%& are 127 

higher than the values calculated for the same section when a hyperbolic stress–strain 128 

relationship for concrete is considered. This leads to the appearance of two concavities in the 129 

areas near the directions marked by the main axes of symmetry of the section, which have 130 

never been considered in published interaction diagrams (Fig. 2) that are currently used for 131 

design purposes, such as the diagrams by Montoya 2001 and Calavera 2008. 132 

 133 

MAXIMUM CAPACITY DIRECTION OF A REINFORCED CONCRETE SECTION 134 

WITH DOUBLE SYMMETRY 135 

To obtain an interaction diagram representing the components of the moment in the ultimate 136 

limit state for the two axes of symmetry of the section, a strain plane should be established 137 

for each possible rotation angle of the neutral axis (0º–90º if the section has two axes of 138 

symmetry). The curvature of the section and the depth of the neutral axis for the failure 139 

moment must be determined by imposing the ultimate strain of the extreme compression fiber 140 

of the concrete (𝜀:;) according to ACI-318-14. For each direction of the neutral axis chosen, 141 

it may be assumed that there is only one failure plane, and the following equilibrium 142 

equations can be formulated with respect to an arbitrary reference system: 143 

 144 

𝑃 = < 𝜎:𝑑𝐴 +@𝐴A,B𝜎A,B

C

BDEF
																																																														 [2] 145 



 
 

𝑀# = < 𝜎:𝑦𝑑𝐴 +@𝐴A,B𝜎A,B

C

BDE

𝑦A,B
F

																																																					 [3] 146 

𝑀% = < 𝜎:𝑥𝑑𝐴 +@𝐴A,B𝜎A,B

C

BDE

𝑥A,B
F

																																																						 [4] 147 

The choice of the stress–strain relationship for concrete in the resolution of the equilibrium 148 

equations [2], [3], and [4] determines the value for the section capacity !𝑃,𝑀#,𝑀%&. In fact, 149 

as shown in this study, when it is expected that the maximum capacity is attained on the main 150 

axis of symmetry (the x axis), the assumption of a hyperbolic model rather than a parabolic-151 

rectangular model implies that this value is located in another direction. This question is 152 

addressed in this study, and a numerical simulation was conducted, in which the interaction 153 

diagrams resulting from the use of two stress–strain relationships (parabolic-rectangular and 154 

hyperbolic) were compared for two doubly symmetrical sections. To this end, a total of 24 155 

diagrams were obtained, in which three reinforcement amounts and two different axial load 156 

levels of compression were considered. 157 

 158 

Each diagram in this study was obtained for two different stress–strain relationships for 159 

concrete, as shown in Figs. 4a and 4b. The stress–strain curve in Fig. 4b was derived from the 160 

equation used by Farah and Huggins 1969, and it is described in polynomial form in Equation 161 

[5]; Fig. 4a shows the curve in Fig. 4b with a constant stress value from 𝜀2 = 0.002 up to  162 

𝜀:; = 0.004 (failure value). 163 

 164 

𝜎: = 𝑓:´N𝑘E𝜀 + 𝑘P𝜀P + 𝑘Q𝜀Q + 𝑘R𝜀RS																																															[5] 165 

 166 

Where the constants denoted by 𝑘 take the following values: 167 

 168 



 
 

𝑘E = 0.985 · 10Q 169 

𝑘P = −0.312 · 10V 170 

𝑘Q = 0.306 · 10X 171 

𝑘R = −0.257 · 10Z 172 

 173 

The stress–strain curve used to characterize steel was also taken from Farah and Huggins 174 

1969 (Fig. 5), as well as the following polynomial expression [6], which describes it 175 

continuously for the entire range of strain: 176 

𝜎A =
𝑓%
2 [

\]
𝜀
𝜀%
+ 1^

P

− \]
𝜀
𝜀%
− 1^

P

_																																										 [6] 177 

 178 

The following characteristic values for concrete and steel were chosen for the diagrams: 179 

𝑓: = 30	𝑀𝑃𝑎 180 

𝑓% = 400	𝑀𝑃𝑎 181 

The resulting diagrams were obtained based on two different rectangular cross-sections with 182 

side ratios ℎ/𝑏 = 1 and ℎ/𝑏 = 2. Three longitudinal reinforcement ratios were studied for 183 

each  section. They are defined in Equation ([7], with values 𝜔E = 0.30, 𝜔P = 0.40, and 184 

𝜔Q = 0.50; moreover, two compression axial loads are defined according to Equation ([8], 185 

with values 𝜐E = 0.85 and 𝜐P = 0.95. A mechanical cover with a value of 𝑟 = 0.10	𝑏  186 

considered in all cases. The two stress–strain relationships for concrete described in Figs. 4a 187 

and 4b are used. 188 

𝜔 =
𝐴A𝑓%
𝑏ℎ𝑓:

																																																																																 [7]		 189 

𝜐 =
𝑃
𝑏ℎ𝑓:

																																																																																	 [8]	 190 

 191 



 
 

The dimensionless moments 𝜇# and 𝜇% in the diagrams are defined as follows: 192 

𝜇# =
𝑀#

𝑏ℎPhi 																																																																											[9] 193 

𝜇% =
𝑀%

ℎ𝑏²𝑓:
																																																																							[10] 194 

 195 

The reinforcement was assumed to be distributed on the perimeter of the section, and a total 196 

of 36 elements of equal area were considered to integrate the stress. Paulay 1973 adopted a 197 

similar reinforce distribution, and in the present study, it is used because it provides greater 198 

generality compared to punctual bars as in real column reinforcement distributions.  199 

 200 

The section was divided into a total of 625 elements of equal area, distributed according to a 201 

25 × 25 matrix to simulate the concrete. To validate the analysis, diagrams with three 202 

different element size were obtained to perform integration in the compressed block. Thus, 203 

the cases  50 × 50 and 100 × 100 (2500 and 10000 elements, respectively) were analyzed as 204 

well, and there were no differences between these results and those presented here. This is 205 

because precision reduction (with respect to the 10000-element case) occurs in both families 206 

of interaction diagrams (for hyperbolic and parabolic-rectangular stress-strain relationship for 207 

concrete), and the relative difference is constant; however, the computation time is increased 208 

more than fifteen times in the 10000-element case. 209 

 210 

A total of 181 points in the rotation range around the neutral axis (from 0° to −90°) were 211 

calculated for each interaction curve, as shown in Fig. 6. This is equivalent to obtaining a 212 

series of the ultimate limit state planes with the lines (neutral axis) at two consecutive points 213 

differing by 0.50º.  214 

 215 



 
 

It is possible to express Equations [2], [3], and [4] in terms of the sums resulting from each 216 

element (concrete and steel) in the cross-section, as follows: 217 

 218 

𝑃 =@𝐴:,0𝜎:,0

j

0DE

+@𝐴A,B𝜎A,B

C

BDE

																																																												[11] 219 

𝑀# =@𝐴:,0𝜎:,0,𝑦:,0

j

0DE

+@𝐴A,B𝜎A,B𝑦A,B

C

BDE

																																																				[12] 220 

𝑀% =@𝐴:,0𝜎:,0,𝑥:,0 +@𝐴A,B𝜎A,B𝑥A,B

C

BDE

j

0DE

																																																		[13] 221 

 222 

To avoid assigning a non-real capacity to the section, the stress of each steel element was 223 

modified to simulate the displaced concrete area by reducing its value according to the 224 

following  expression for compressed steel elements [14]. 225 

 226 

𝜎A,0 =
𝑓%
2 [

\]
𝜀
𝜀%
+ 1^

P

− \]
𝜀
𝜀%
− 1^

P

_		− 𝑓:´N𝑘E𝜀 + 𝑘P𝜀P + 𝑘Q𝜀Q + 𝑘R𝜀RS						[14] 227 

 228 

Initially, each point in the diagrams was calculated imposing four conditions: 229 

 230 

1. The direction of the neutral axis is established (𝛼). 231 

2. The ultimate limit of the section must be achieved by compression in the extreme 232 

fiber, which ensures unlimited steel ductility. From an operational point of view, the 233 

strain value must be defined to describe the stress–strain relationship, and this was set 234 

to	𝜀%; = 0.020, (Fig. 5). This value was not reached in any plane of the ultimate limit 235 

state in this study. This ultimate limit model is used in ACI-318. 236 



 
 

3. No reduction factors in the materials were used.  237 

4. No reduction factor in the section capacity was used. 238 

 239 

The unknown variable of the ultimate limit plane to be determined for each point in the 240 

diagram is the depth of the neutral axis. This is obtained iteratively. The process of finding 241 

each depth end when the internal axial load (after Equations [11], [12], and [13) have been 242 

solved for the postulated plane) is close to the exterior axial load. In this study, the depth of 243 

each neutral axis  considered valid when the difference between axial loads (sought and 244 

calculated) is less than 0.01%, that is, [15]. 245 

 246 

𝑃l − 𝑃 ≤ 0.0001	𝑃																																																										[15]	 247 

Fig. 6 shows the 24 interaction diagrams calculated for the situations described. In every 248 

chart,   four interaction diagrams are presented, and for every pair of lines with the same axial 249 

load, it is possible to observe the different capacity achieved in the symmetry direction of the 250 

section, depending on the stress–strain relationship for concrete (continuous line for the 251 

hyperbolic and dashed line for the parabola-rectangular). 252 

 253 

The maximum value of the capacity moment of the section, as a vector composition with 254 

respect to the axes of symmetry according to Equation ([16] (in dimensionless terms) was 255 

determined for the 24 cases studied, as well as the rotation angle for which that maximum 256 

value was obtained. Effectively, for all the sections in which a parabolic-rectangular stress–257 

strain relationship was used, the maximum capacity value was found for the direction of the 258 

axis of symmetry with the greatest inertia, that is, the x-axis. 259 

 260 

𝑀 = n𝑀#
P + 𝑀%

P																																																															[16] 261 



 
 

 262 

 263 

DISCUSSION 264 

Table 1 shows the relevant values calculated for the 24 interaction diagrams shown in Fig. 6. 265 

The table headers are explained as follows: 266 

 267 

𝒉/𝒃: Ratio between the sides of the transversal section. 268 

𝝎: Ratio of steel according to [7]. 269 

Stress–strain relationship: type of model describing the behavior of concrete in 270 

compression (parabolic-rectangular, hyperbolic). 271 

𝝂: Axial dimensionless load according to [8]. 272 

𝝁(𝜶 = 𝟎°): Dimensionless resistant moment of the section as a vector composition with 273 

respect to the x-axis of symmetry. 274 

𝝁(𝜶 = 𝟗𝟎°): Dimensionless resistant moment of the section as a vector composition with 275 

respect to the y-axis of symmetry. 276 

∅: Maximum capacity angle of the section with respect to the main axis of symmetry of the 277 

section. 278 

𝝁(𝜶 = ∅): Dimensionless resistant moment of the section as a vector composition with 279 

respect to  ∅ direction. 280 

∆𝝁𝒙(%): Percentage difference between the resistant moment of the section with respect to 281 

the x axis for the same section considering two different stress-strain relationships describing 282 

the behavior of concrete in compression. 283 

 284 

According to the values shown in Table 1, for the sections in which a hyperbolic strain–stress 285 

relationship is applied, the maximum capacity value is not the same as the direction of the 286 



 
 

main axis of symmetry, and in all cases the value of the resultant of the maximum moment 287 

with respect to the main axis of symmetry (the x-axis) is smaller than the value of the 288 

resultant ultimate moment on the same alignment for a parabolic-rectangular stress–strain 289 

relationship. 290 

This is because in situations with high axial loads and bending, the maximum stress in the 291 

cross section is not located in the top fiber. In this position, the strain is	𝜀:;, and this causes 292 

the resultant barycentre of the compressed block of concrete to approach the position of the 293 

neutral fibre, decreasing the mechanical arm and reducing the resultant moment.  294 

Fig. 7 shows the stress profile on the compressed area of the analyzed section	ℎ/𝑏 = 1, 𝜔 =295 

0.30, and 𝜈 = 0.95, for parabolic-rectangular and hyperbolic stress–strain relationships for 296 

concrete, and for a 0.5 × 0.5 m section size. In this situation, the difference between the 297 

maximum resistant moment of the section and the resistant moment found for the principal 298 

symmetry axis is the highest (9.615%). It can be seen that the mechanical arm of the section 299 

in Fig. 7b is lower than in Fig. 7a. It can also be observed that in the position of maximum 300 

strain (top fiber in Fig. 7b), the stress decreases with respect to the maximum stress in 301 

concrete, which is compatible with the stress–strain relationship shown in Fig. 4b. 302 

 303 

CONCLUSIONS 304 

 305 

1. In reinforced concrete sections with two axes of symmetry, it cannot be assumed that 306 

the ultimate limit interaction diagram is convex in its entirety. This is true at least, for 307 

stress–strain relationships for concrete in which the ultimate strain has associated 308 

stress values lower than the maximum values. 309 

 310 



 
 

2. The principal axis of inertia of a rectangular or square reinforced concrete section 311 

need not necessarily be the main axis of symmetry of the section in the ultimate limit 312 

state, and consequently, the maximum capacity value of the section need not 313 

necessarily lie in the expected direction (the x-axis). 314 

 315 

3. The rotation deviation between the axis of maximum capacity and the main axis of 316 

symmetry of a double reinforced symmetrical concrete section increases as the axial 317 

load increases. 318 

 319 

4. The divergence in the capacity of the section for axial load and single axial bending 320 

with regard to the main axis of symmetry of the section for the parabolic-rectangular 321 

and hyperbolic models increases as the amount of reinforcement decreases. That is, it 322 

may be assumed that for low steel ratios, the reduction in the capacity of the section 323 

under axial load and uniaxial bending increases with regard to the main axis of 324 

symmetry of the section. 325 

 326 

5. The rotation deviation between the axis of maximum capacity and the principal axis 327 

of symmetry of the reinforced concrete section increases as the variation between the 328 

maximum stress of concrete in compression and the stress for the ultimate strain is 329 

increased. 330 

 331 

6. For both ratios ℎ 𝑏⁄  analyzed in this study, the maximum deviation for the principal 332 

axis of inertia from the principal symmetry axis of the section in the ultimate limit 333 

state has been found for the square section (ℎ 𝑏⁄ = 1). 334 

 335 



 
 

7. The use of a simplified stress–strain relationship to describe the behavior of concrete 336 

in compression for double symmetrical reinforced concrete sections and elevated axial 337 

compression loads results in overestimation of the section capacity in bending with 338 

respect to the symmetry axis. 339 

 340 

8. The convexity hypothesis (Morán 1972) cannot be ruled out in interaction diagrams of 341 

reinforced concrete sections with double symmetry for stress–strain relationships in 342 

which the maximum stress occurs for the ultimate strain. That is, it is not possible to 343 

assert that the principal axes of inertia in the ultimate limit state coincide with the 344 

axes of symmetry of a section when hyperbolic stress–strain relationships are used to 345 

describe the behavior of concrete in compression. 346 

 347 

NOTATION 348 

The following symbols are used in this paper: 349 

b = Cross-section width; 350 

𝑓% = Specified tensile strength of steel reinforcement; 351 

𝑓: = Specified compressive strength of concrete; 352 

h = Overall height of cross-section; 353 

𝑘0 = Coefficients in the description of the stress–strain relationship for concrete; 354 

r = Mechanical cover of the section reinforcement; 355 

A = Gross section area; 356 

𝑀 = Moment resulting from the vectorial composition of its components; 357 

𝑀# = Moment relative to the x axis of the section; 358 

𝑀% = Moment relative to the y axis of the section; 359 



 
 

∆𝑀# = Difference of the component related to the x axis of the section of the bending 360 

moment.  361 

𝑃 = Axial load; 362 

𝑃2 = Nominal axial strength at zero eccentricity; 363 

𝑃l = Design axial load; 364 

𝑃0 = Nominal axial strength in the ultimate limit state applied at a point 𝑖(𝑥, 𝑦); 365 

𝑃# = Nominal axial strength in the ultimate limit state applied at a point 𝑖(𝑥, 0); 366 

𝑃% = Nominal Axial strength in the ultimate limit state applied at a point 𝑖(0, 𝑦); 367 

𝛼 = Neutral axis angle direction;	368 

𝜀 = Strain; 369 

𝜀:2 = Strain of concrete at maximum stress; 370 

𝜀:; = Strain at which the failure in compression in the concrete is reached; 371 

𝜀% = Yield strain of steel reinforcement; 372 

𝜀%; = Tensile strain of steel reinforcement; 373 

𝜇 = Dimensionless bending moment; 374 

𝜈 = Dimensionless axial load; 375 

𝜎: = Stress in a concrete element; 376 

𝜎A = Stress in a steel element; 377 

𝜔 = Ratio of reinforcement of the cross-section; 378 

∅ = Maximum capacity angle of the section with respect to the main axis of symmetry of the 379 

section; 380 

 381 
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• Fig. 1a. Stress–strain relationship diagram for a parabolic-rectangular model.  433 

• Fig. 1b. Stress–strain relationship diagram for a hyperbolic model. 434 

• Fig. 2. Interaction diagrams for axial load and biaxial bending for the analysis of 435 

reinforced concrete sections (Calavera 2008).  436 

• Fig. 3. Ultimate limit area for a pair of moments 𝑀# −𝑀% and the surface of 437 

revolution for the major axis of inertia of the section (Pannell 1963).  438 

• Figs. 4a & 4b. Modified and original stress - strain relationship for concrete used by 439 

Farah and Huggins 1969. 440 

• Fig. 5. Stress–strain relationship used by Farah and Huggins 1969 for reinforcing 441 

steel. 442 

• Fig. 6. Interaction dimensionless diagrams for sections described in Table 1. The 443 

continuous line denotes hyperbolic stress–strain relationship. The dashed line denotes 444 

parabolic-rectangular stress–strain relationship. 445 

• Fig. 7a. Stress profile in concrete for the analyzed section ℎ/𝑏 = 1,  𝜔 = 0.30, 𝜈 =446 

0.95, for parabolic-rectangular strain–stress relationship, 0.5 × 1 m  size member. 447 

• Fig. 7b. Stress profile in concrete for the analyzed section ℎ/𝑏 = 1,  𝜔 = 0.30, 𝜈 =448 

0.95, for hyperbolic strain stress relationship, 0.5 × 1 m size member. 449 
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Table 1. Geometrical and mechanical definition of the analyzed sections and relevant results 451 

obtained from the calculated interaction dimensionless diagrams shown in Fig. 6. 452 

𝒉/𝒃 𝝎 
Stress–strain 

relationship 
𝝂 

𝝁	 

(𝜶 = 𝟎°) 

𝝁 

(𝜶 = 𝟗𝟎°) 

∅ 

(°) 

𝝁 

(𝜶 = ∅) 

∆𝝁𝒙 

(%) 

1 0.30 Parab.-Rect. 0.85 0.133 0.133 0.00 0.133 
6.767 

1 0.30 Hyperbolic 0.85 0.124 0.124 13.00 0.126 

1 0.30 Parab.-Rect. 0.95 0.104 0.104 0.00 0.104 
9.615 

1 0.30 Hyperbolic 0.95 0.094 0.094 40.00 0.100 

1 0.40 Parab.-Rect. 0.85 0.159 0.159 0.00 0.159 
4.403 

1 0.40 Hyperbolic 0.85 0.152 0.152 10.00 0.153 

1 0.40 Parab.-Rect. 0.95 0.134 0.134 0.00 0.134 
6.716 

1 0.40 Hyperbolic 0.95 0.125 0.125 16.50 0.127 

1 0.50 Parab.-Rect. 0.85 0.186 0.186 0.00 0.186 
3.763 

1 0.50 Hyperbolic 0.85 0.179 0.179 3.00 0.179 

1 0.50 Parab.-Rect. 0.95 0.161 0.161 0.00 0.161 
4.969 

1 0.50 Hyperbolic 0.95 0.153 0.153 8.50 0.155 

2 0.30 Parab.-Rect. 0.85 0.139 0.133 0.00 0.139 
5.755 

2 0.30 Hyperbolic 0.85 0.131 0.124 19.00 0.133 

2 0.30 Parab.-Rect. 0.95 0.109 0.104 0.00 0.109 
9.174 

2 0.30 Hyperbolic 0.95 0.099 0.094 50.00 0.104 

2 0.40 Parab.-Rect. 0.85 0.170 0.159 0.00 0.170 
4.706 

2 0.40 Hyperbolic 0.85 0.162 0.152 13.50 0.163 

2 0.40 Parab.-Rect. 0.95 0.141 0.134 0.00 0.141 
6.383 

2 0.40 Hyperbolic 0.95 0.132 0.125 21.50 0.134 

2 0.50 Parab.-Rect. 0.85 0.200 0.186 0.00 0.200 
4.000 

2 0.50 Hyperbolic 0.85 0.192 0.179 10.00 0.193 

2 0.50 Parab.-Rect. 0.95 0.173 0.161 0.00 0.173 5.202 



 
 

2 0.50 Hyperbolic 0.95 0.164 0.153 16.50 0.165 
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