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Abstract 

Introduction: Atherothrombotic disease is the leading aetiology of mortality in the 

Western countries. Its main cause is not hypercholesterolemia but the Metabolic 
Syndrome (MetS). In the last three decades MetS evolved from a quintet 
(hyperglycaemia, hypertension, hypertriglyceridemia, low HDL and waist) to become an 
octet named Cardiometabolic Syndrome (CMS), where the triad, consisting of 
inflammation/metaflammation, oxidative stress (OS) and endothelial dysfunction (ED) is 
essential to understand its impact at the vascular level. Insulin resistance (IR) is 
located at the heart of both syndromes. From the inflammatory point of view, the most 
used marker has been the CRP with the inconvenience of being highly unspecific.  
Finding new markers has become the researchers‟ goal for the last years. The present 
work confirms that the C3 convertase in plasma can be useful as a marker and 
possibly as a pathogenic factor, which if confirmed, would postulate C3 as a target of 
future preventive strategies.  
Objectives: Assess the behaviour of C3 convertase, key enzyme that controls the 

complement cascade in relation to MetS, CMS including ED, IR and cardiovascular 
(CV) risk in a population referred to cardiometabolic secondary care.  
Methodology: An observational retrospective cross-sectional study was performed on 

a random cohort of adult individuals from Madrid. Specific cardiometabolic factors were 
measured as part of the clinical routine of the Cardiometabolic Unit. CV risk was 
calculated by REGICOR formula. IR was estimated by HOMA-IR formula in a non-
exogenous insulin replacement group. Subjects were stratified by C3 complement 

quartiles to assess the distribution of the cardiometabolic markers. Multivariable 
regression analysis was applied to identify predictors of C3 variability.  
Results: A total of n=374 subjects were selected (53.60±14.80 yr. old, 44.9% females), 

where 65% were hypertensive, 42% hyperglycaemic and 35% MetS. C3 complement 
levels were associated with: 1. MetS: MetS diagnosis, each single MetS criterion, 
proportional number of MetS criteria and new MetS criteria (p<0.001). 2. CMS: 

inflammation (CPR, fibrinogen, p<0.001) and metaflammation (Adiponectin, IL-6, 
p≤0.05), ED (TPA, PAI-1, VCAM, p≤0.050) and OS showed tendency (TBARS, 
p=0.084). 3. IR: HOMA (p<0.001). 4. CV risk: factors and CV risk (p<0.001). All of 

these correlations were independent of age and gender. Most of the previous variables 
were also correlated with C3 quartiles. Hypertriglyceridemia had the highest impact on 
C3 differing from clinical guidelines according to multivariate analysis (p<0.001). 
Conclusions: In relation with the MetS quintet, C3 resulted a strong predictor of each 

criteria, C3 was proportional to number of MetS criteria and described a possible 
arbitrary threshold between two and three criteria suggesting earlier CV prevention 
through equal risk.  In relation to the CMS octet, C3 also predicted strongly 
inflammation/metaflamation, ED and showed tendency with OS. In this order, 
hypertriglyceridemia, CRP, HTA, waist, HOMA and hyperglycaemia resulted predictors 
of the 34% of C3 complement variability by multivariate analysis. The association with 
HOMA may influence the results of this study but can not explain all the correlations. 
This study suggested that simultaneous evaluation of CRP and C3 would increase the 
intrinsic reliability of CRP as required in precise Cardiometabolic Medicine.  
 
UNESCO International Nomenclature: 3207.04 Cardio-vascular pathology, 3207.02 
Atherosclerosis, 3201.01 Clinical Pathology. 
 

Keywords: C3 complement, C3 convertase, atherotrhombosis, MetS, IR, CV risk, 

CRP, ED, inflammation, atherosclerosis, fibrinogen, OS, REGICOR, HOMA, multi-

regression analysis.  
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Introduction  

Cardiovascular diseases (CVDs) are the primary aetiology of morbidity and mortality 

in the world. An estimated 17.3 million people died from CVDs in 2008, representing 

30% of world mortality, being the main cause of death. By 2030, more than 23 million 

people will die annually from CVDs. According to WHO data collected in 2013, 2.8 

million deaths are caused every year by obesity and being overweight, being the fifth 

leading risk for global deaths [1]. Moreover, overweight and obesity account for 44% of 

the diabetes burden, 23% of the coronary heart disease and between 7% and 41% of 

certain types of cancer. 

Even though over 80% of CVD deaths take place in low and middle-income countries, 

we have to keep in mind that the CVDs retain ultimate responsibility for 41% of the total 

mortality in western countries [2]. CVDs entail more than 2 million deaths per year in 

the European Union. One of every eight European men and one of every 17 European 

women will die before 65 years of age due to cardiovascular reasons. They are also 

the main cause of invalidity and decreased quality of life. 

 

 

Fig. 1.1 Modified from comparison of leading causes of deaths, Global, 2000 and 2012, 

health statistics and information systems, World Health Organization. 

It is known worldwide that most CVDs can be prevented by acting on the classical 

cardiovascular risk factors. These risk factors are mainly divided into three principal 
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groups such as behavioural, metabolic and other risk factors. Human behaviour is 

related to tobacco use, physical inactivity, alcohol abuse and unhealthy diet (rich in fat, 

sugar, calories and salt). The metabolic group agglomerates overweight and raised 

blood pressure, hyperglycaemia and hyperlipidaemia. Finally, the third heterogenic 

group conglomerates genetic disposition, psychological factors, age, gender and other 

risk factors such as hyperuricemia, hyperhomocysteinemia, hyperferritinemia, raised 

CRP, many others which we will study [3]. 

Medical professionals cannot forget that the governmental institutions, health 

organizations and also our professional duty is to promote, prevent and control the 

already known risk factors. Nevertheless, our duty as healthcare professionals and 

researchers has to advance a step further, pointing out the primary prevention and 

unknown risk factors such as C3 convertase.  

The underlying pathologies of CVDs are mainly atherosclerosis or atherothrombotic 

disease, and at great distance rheumatic heart diseases, congenital heart diseases, 

disorders of the heart muscle, electrical conduction system of the heart and heart valve 

diseases [3, 4]. 

The leading pathogenic role is played by atherosclerosis, which develops over the 

years and is usually advanced by the time symptoms occur, generally in middle age. 

Acute coronary and cerebrovascular events frequently occur suddenly, and are often 

fatal before medical care can be given. Modification of risk factors has been shown to 

reduce mortality and morbidity in people with diagnosed or undiagnosed cardiovascular 

disease[5].  

Atherosclerosis has moved from being considered a deposit and degenerative disease 

to be understood as a chronic inflammatory disease, which will develop an acute 

clinical event as a result of atheromatous plaque‟s disruption [4, 6]. Nowadays, the 

atheroma formation with superimposed thrombosis represents the underlying 

pathophysiological process in the development of cerebrovascular diseases, deep 

venous and pulmonary thrombosis and acute coronary syndromes (ACS), namely 

unstable angina, acute myocardial infarction and sudden death, arising due to partial or 

complete occlusion of the artery [7].  Atheroma formation can begin in infancy and 

progresses over decades until eventual weakening of the cap results in a plaque which 

is vulnerable to rupture and thrombosis [8]. On the other hand, there is mounting 

evidence to support a central role for inflammatory processes in the pathogenesis of 

CVDs, and similar inflammatory processes are also related to the pathogenesis of type 

two diabetes mellitus (T2DM), supporting the common soil hypothesis.  
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The inflammation does not start alone; it belongs to a triad with oxidative stress and 

endothelial dysfunction instead. The outcome of the chronic damage may trigger 

atheroma rupture and thromboembolic occlusion [9]. Therefore, the latest researching 

pathways are directed towards the inflammatory, oxidative stress and endothelial 

dysfunction biomarkers as the first step in the atheroma formation chain. The 

endothelium has emerged as the key regulator of vascular homeostasis. In that, it has 

not merely a barrier function but also acts as an active signal transducer for circulating 

influences that modify the vessel wall phenotype [10]. Alteration in endothelial function 

precedes the development of morphological atherosclerotic changes and can also 

contribute to lesion development and later clinical complications.  

The biomarkers will play a crucial role in the diagnosis monitoring and treatment of the 

early as well as late stages of the CVDs development. These markers would represent 

the key factors to predict the cardiometabolic risk inherited to a person from his 

childhood, allowing us to develop a real primary prevention [11]. Elevation in markers 

of inflammation predicts outcomes of patients with acute coronary syndromes, 

independently of myocardial damage. their diagnostic role in basal conditions have not 

been sufficiently studied. Low-grade chronic inflammation, as indicated by levels of the 

inflammatory marker C-reactive protein (CRP), prospectively defines risk of 

atherosclerotic complications, but CRP is not an specific marker, condition that reduces 

its value in the clinical practice. 

Therefore, the aim of this thesis will be the correlation between C3 convertase as key 

component of the intricate inflammatory cascade complement pathways, endothelial 

damage, reticulum and metabolic stress and cardiovascular risk. Nowadays, the 

secondary prevention with our current treatments such as statins or diuretics reduces 

the probabilities of CVDs when the arterial damage was already initiated. Then the 

question should be what if we could tackle this risk in early steps. 
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2. Knowledge review 

 

2.1. Atherosclerosis as low-grade inflammatory process 

Atherosclerosis has moved from being considered a deposit degenerative disease to 

be understood as a chronic inflammatory disease which complications lead to acute 

clinical episodes when the atherosclerotic plaques are disrupted or become occlusive 

[12]. 

Firstly, we should differentiate between two key concepts, arteriosclerosis and 

atherosclerosis. Both processes jointly participate in the cardiovascular disease 

development. 

Arteriosclerosis corresponds to a diffuse process characterised by a progressive loss of 

elasticity and increment of the arterial wall stiffness thereof. Therefore, arteriosclerosis 

is a generalized age-related process, which is presented as a diffuse thickening of the 

endothelial and medial layers of the arteries.  

Atherosclerosis is a focal process of atheroma deposit localised in certain territories, 

such as proximal and distal thirds of the coronary arteries and carotid arteries 

bifurcation.  

The formation of atherosclerotic plaque or atheromatous disease was first defined by 

Marchand in the early nineteenth century as an arterial lesion characterised by sclerotic 

fibrous tissue enveloping a central soft atheroma. This term remains as the cornerstone 

of the CVD but has evolved to a multifactorial background.  The atheroma‟s basic 

components are lipid deposit and cellular and collagen progressive proliferation. 

The atherogenic process starts at early age. The turnover of lipoproteins in and out of 

the subendothelium is a normal physiological process. But the generation of lipids‟ 

deposits is conditioned by the inflow of these lipoproteins and their resistance to 

oxidative modifications involve a change in their biological behaviour. The modified 

low-density lipoproteins (LDLs), especially oxidized, are cytotoxic and harmful to the 

endothelium, chemotactic for monocytes and also inhibit macrophages‟ migration. 

Oxidized LDLc induce the expression of tumour necrosis factor α (TNF-α) or interleukin 

1 (IL-1), which favour the endothelial expression of adhesion endothelial molecules 

[13].
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Monocytes phagocytise these modified LDLc becoming foam cells. If the circulating 

lipoprotein level exceeds the phagocytic capacity of monocytes, macrophages exert a 

chemotactic function on monocytes and smooth muscle cells of the arterial wall which 

become macrophages. 

The lysis of these lipid-laden cells releases cholesterol crystals and catalytic enzymes 

contained in cell debris to the cellular interspace, triggering a local inflammatory 

process. This early precursor stage of the atheromatous plaque stage can be observed 

from the childhood as fatty streaks. The atheroma may be macroscopically visible at 

the end of puberty. 

Due to the perpetuation of the pathogenetic mechanism outlined above a defensive 

endothelial wall mechanism through connective tissue reaction stabilises the plaque 

and generates a fibroathenoma. Rokitansy in 1852 postulated his inlayed theory where 

the initial mechanism was the fibrotic and thickening intima reaction which was 

secondarily loaded with lipid content. However, for Virchow (1856), the lipid infiltration 

determined the plaque formation. Both theories considered the endothelium as a 

passive agent of an undergoing fibrotic process. It was needed a century to reach the 

integration of both theories and consider atherogenesis as an inflammatory response to 

a endothelial aggression by Ross [14], where mechanical, chemical, biological and 

immunological stimuli develop endothelial dysfunction and damage. Endothelial injury 

triggers a response of monocyte infiltration, alters the endothelial antithrombotic ability, 

fibrinolytic properties and even vasomotor response.  

These facts facilitate the platelet aggregation. Fuster [15] classified the endothelial 

damage into three stages: 

 Stage I: functional but not morphological damage due to local changes in the 

blood flow (flexure areas, hypertension, arterial branches) or inside the wall 

itself (ischemia vasa vasorum). When these lesions remain the release of 

proteolytic enzymes, free radicals, etc. the endothelial damage leads to stage 

two. 

 Stage II: endothelial denudation with intimal damage keeping intact the internal 

elastic lamina. In this phase platelet aggregation and fibrin deposit, secondary 

to activation of the coagulation cascade, may lead to thrombosis [5]. 

 Stage III: intima and media layers are involved Inflammation is considered the 

key regulatory process and predisposes to thrombogenesis. There is an early 
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involvement of both monocytes and macrophages during atherogenesis. These 

inflammatory monocytes express high levels of beta transforming growth factor 

(TGF-β), tumour necrosis factor (TNF), interleukin (IL-1) and angiogenic 

mediators, such as vascular endothelial growth factor (VEGF). Mast cells 

produce various mediators such as histamine, leukotrienes, chymase, trytasa, 

interleukin-6 (IL-6),  interferon gamma (IFN-γ) and are involved in adaptive 

immunity. Successive evidence attribute them a key regulatory role in 

inflammation, immunity, atherosclerosis and its complications[7].  

Multiple factors contribute to the pathogenesis of atherosclerosis, including endothelial 

dysfunction, dyslipidemia, inflammatory, and immunologic factors, plaque rupture and 

smoking. In particular, endothelial dysfunction is induced by oxidized low density 

lipoprotein (LDLc), can be considered as a final common pathway [19] and is felt to be 

caused principally by loss of endothelium-derived nitric oxide [18]. This starting point of 

endothelial damage generated by inflammation processes triggers the atheroma 

formation process.  

 

 

2.2. Atheroma formation from healthy endothelium and  

progression to CVD 

 

Fatty streaks represent the first step of the atheroma formation.  The histologists 

describe it as focal thickening of the intima with accumulation of lipid-laden 

macrophages (foam cells), which constitute the hallmark of the early atheroma, and 

extracellular matrix[16]. Hematopoietic stem cells migrate, and proliferate populating 

the intima [17]. Lipids accumulate both intracellular land extracellular deposits 

producing the fatty streak binding and trapping low density lipoprotein and T 

lymphocytes. [10]. The smooth muscle cells accumulated within the deep layer of the 

fatty streak are susceptible to apoptosis, which is associated with further macrophage 

accumulation. Their vesicles can calcify into chronic atherosclerotic plaques [11]. A 

dense cap of collagen will cover a lipid core and micro-vessels will supply oxygen and 

nutrients forming the atheroma‟s own microvasculature network (vasa vasorum). The 

atheroma will extend from the adventitia through the media and into the thickened 

http://uptodate.m-hmos.csinet.es/contents/pathogenesis-of-atherosclerosis/abstract/10
http://uptodate.m-hmos.csinet.es/contents/pathogenesis-of-atherosclerosis/abstract/11
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intima [13]. These thin vessels are prone to disruption, haemorrhage and progression 

of the coronary atherosclerosis [14,15].  

We described below a comprehensive modified classification based on morphologic 

descriptions of the coronary atheroma formation and progression and symptoms 

(fig.2.). This modified clasification combines the American Heart Association (AHA) 

consensus drawn by Fuster [12] and modified by Virmani [18] with Stary original 

classification. 

 

 

Comprehensive atheroma formation classification: 

a. Early lesions:  

Nonatherosclerotic intimal lesions: Absent Thrombosis. Reversible lesions. 

Asymptomatic. 

 Type I: Intimal thickening, fatty dot: Normal accumulation of smooth muscle 

cells (SMCs) in the intima in the absence of lipid or macrophage foam cells. 

This lesion is only visible under microscopy.  

 

 Type II: Intimal xanthoma or fatty streak: Superficial (luminal) accumulation of 

foam cells without a necrotic core or fibrous cap; based on animal and human 

data, such lesions usually regress. Yellowish lesion which is macroscopically 

visible. Foaming cells are seen arranged in rows and accompanied by SMC and 

T lymphocytes. Extracellular lipid deposits are only visible with electronic 

microscope. 99% of children between 2 and 15 years old have these lesions at 

aortic level. 

 

 Type III: preatheroma. Pathologic intimal thickening: SMC-rich plaque with 

proteoglycan matrix and focal accumulation of extracellular lipid. The deposit of 

extracellular lipids or "core" is visible with a conventional microscope. This 

deposit interrupts the ordered arrangement of the foam cells and displace the 

SMC of the intima. There is no decrease in vessel lumen because collagen 

formation, thrombosis and bruising do not occur in the plaque. 

 

 

http://uptodate.m-hmos.csinet.es/contents/pathogenesis-of-atherosclerosis/abstract/13
http://uptodate.m-hmos.csinet.es/contents/pathogenesis-of-atherosclerosis/abstract/14,15
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b. Advanced lesions 

 

 

b.1. Progressive atherosclerotic lesions: Absent thrombosis or thrombus mostly 

mural and infrequently occlusive. From this phase the lesions are potentially 

symptomatic but normally silent. 

  

 Type IV. Atheroma: is developed from the third decade of life. The blood lumen 

may start diminishing. There is a lipid nucleus constituted by an initially 

delimited accumulation of extracellular lipids at the intima level, which evolves 

to disorganized nucleus by eccentric thickening. SMC are displaced by this lipid 

accumulation. A layer of peptidoglycans (PG) separates this nucleus and the 

intimal endothelial cells filtered by macrophages, lymphocytes and SMC. At the 

same time, some capillaries emerge surrounding the lipid nucleus and some 

foam cells and SMC start apoptosis . This atheroma can evolve to a thin fibrous 

cap atheroma: a thin, fibrous cap (< 65 µm) infiltrated by macrophages and 

lymphocytes with rare or absence of SMCs and a relatively large underlying 

necrotic core; intraplaque haemorrhage/fibrin may be present.  

 

 Type V: Fibrous cap atheroma: When the layer of PG is substituted by fibrous 

tissue such as collagen it results in type V lesion. In the fibrous atheroma we 

find a well-formed fibrous layer that covers the lipid nucleus, composed 

basically by collagen. This collagen is synthesized by the SMC in response to 

the disorganization of the intima and replaces the matrix of proteoglycans. It 

occurs from the fourth decade onwards. This lesion is susceptible to necrosis 

fissure and thrombosis and also presents a stenosis of the arterial lumen to a 

greater or lesser degree: 

 

 Early necrosis: focal macrophage infiltration into areas of lipid pools with 

an overlying fibrous cap.  

 

 Late necrosis: loss of matrix and extensive cellular debris with an 

overlying fibrous cap. 

 

The lipid nucleus will continue generating capillaries, favouring micro-

haemorrhages. At the tunica media level of the artery wall, an increase in 
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macrophages, lymphocytes and lipid deposit weakens the arterial wall and 

facilitates the appearance of aneurysms. 

 

b.2. Lesions with acute thrombi: Symptomatic. 

 

 Type VI: complicated atheroma. The type IV and V lesions are susceptible to 

fissures and thrombosis through its weaker areas resulting in type VI lesion with 

luminal thrombosis or no communication of thrombus with necrotic core. 

 

o Plaque rupture: Fibroatheroma with fibrous cap disruption. The luminal 

thrombus communicates with the underlying necrotic core producing 

occlusive or nonocclusive thrombus. 

 

o Plaque erosion: Plaque composition, as above plus no communication of 

the thrombus with the necrotic core. It can occur on a plaque substrate 

of pathologic intimal thickening or fibroatheroma. Usually nonocclusive 

thrombus. 

 

o Although thrombosis in general will be favoured by disruption of plaques, 

in other cases they will occur without previous ruptures, favoured by 

predisposing personal factors. Some identified fibrinolysis inhibitor 

factors are diabetes, smoking status, increased fibrinogen or high levels 

of Lp (a). 

 

 Type VII: Calcified nodule atheroma: Eruptive (shedding) of calcified nodules 

with an underlying fibrocalcific plaque with minimal or absence of necrosis. 

Usually resulting in nonocclusive thrombus. 

 

b.3. Lesions with healed thrombi: absent thrombosis. 

 

 Type VIII: Fibrotic plaque (without calcification): Collagen-rich plaque with 

significant luminal stenosis. These lesions may contain large areas of 

calcification with few inflammatory cells and minimal or absence of necrosis and 

represent healed erosions or ruptures 

 

 Type VIII calcified: Fibrocalcified plaque (+/- necrotic core) 
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Fig. 2.1: Clinical phases of coronary atherosclerosis modified from Fuster: Phase 1 

(types I to III of Stary): consists of a small plate, which progresses very slowly. It is 

common in subjects younger than 30 years of age and is usually asymptomatic. 

Phase2 (types IV and V of Stary): characterized by atheroma rich in extracellular lipids, 

and capable of producing an asymptomatic stenosis. Phases 3 and 4 (type VI of Stary) 

make unpredictable the course of atherosclerosis and they occur with rupture of the 

plate that is accompanied by a mural thrombus. Phase III symptoms comprise angina 

unstable angina, infarction or sudden death. Phase 5 (type VII and VIII Stary) vessel 

occlusion occurs without rupture of the plaque. This type of lesion produces a third of 

the coronary occlusions and is morphologically accompanied by a greater myocytes 

proliferation. 

 

Atheroma formation associates coronary artery remodelling with abnormal arterial 

physiology and development of clinical symptoms [16]. Positive remodelling is linked to 

unstable plaques in patients presenting with unstable angina; meanwhile, negative 

remodelling is associated with obstructive plaques in patients with stable angina [17].  
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2.3. Endothelium’s role in vascular pathology 

2.3.1. Endothelial complexity 

 

Healthy endothelium has been described as an unicellular layer of endothelial cells 

(ECs), which coats the blood vessels (arterial and venous), lymph vessels, heart 

chambers, corpora cavernosa and eye anterior chamber. It comprises an area over a 

1000 square metres (6 tennis courts), it weighs about 4 kg, being regarded as the 

greatest virtual organ of our body, which regulates the flow of 7200 litres of blood a day 

and the cells are oriented in the direction of the blood flow [19]. The endothelium is a 

unique structure. Twenty years ago was seen as a passive coating which facilitated the 

passage of cells and molecules into the surrounding tissues. In the past two decades 

the EC has been studied in the umbilical cord, synovial villi, foreskin, placenta, breast 

and abdominal adipose tissue. This layers maintains vascular tone and organs blood 

perfusion, maintains vascular patency, regulates hemostasis balancing thrombosis and 

clotting, is a barrier for toxics, controls inflammation and regulates angiogenesis. 

As an organ of enormous complexity, the endothelium is involved in embryogenesis, 

histogenesis, organogenesis, wound healing, angiogenesis, tumorigenesis and 

metastasis. The endothelial tissue also plays a vital role in host defence and is involved 

in the organization of thirteen barriers: I alveolar-capillary, placenta, liver, glomerular, 

blood-brain, blood-nerve, blood-cerebrospinal fluid, blood-ocular (blood-retinal and 

blood-aqueous), hematic-testicular, hematic-splenic, hematic-thymic and 

hematopoietic. The endothelium is the inner skin of the human body. It is considered a 

paraneurona belonging to the diffuse neuroendocrine system. The EC plays an 

important role in the regulation of capillary‟s permeability, lipoprotein's metabolism and 

tissue's aging. Actively involved in immunological reactions (systemic lupus 

erythematous, scleroderma, Raynaud's phenomenon, psoriasis, preeclampsia, 

Kawasaki disease, asthma event), inflammatory (rheumatoid arthritis), tumour growth 

and metastatic process. Furthermore EC synthesises neuropeptides, 

neurotransmitters, cytokines, growth factors, adhesion molecules and membrane 

receptors. It also expresses autocrine, paracrine and endocrine functions[20]. 

One of the most striking features of the endothelial lining is its ability to keep the blood 

soluble even in prolonged contact with the vessel wall, as well as their participation in 
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clot formation. The molecular mechanism of the hemocompatibility of normal 

endothelium is given by the expression of thrombomodulin, and plasminogen activators 

of type heparan sulfate glycosaminoglycans may interact with antithrombin III, all 

produced by the endothelium. But at the same time is able to synthesize endothelium 

stabilizing molecules of the blood clot and cause thrombosis to synthesize plasminogen 

activator inhibitor (PAI - 1), tissue factor, interleukin-1 and alpha tumour necrosis factor. 

All these cytokines are synthesized by the endothelium. As well as being a 

multifunctional organ, the endothelium is also defined as compartmentalized and 

specialized organ depending on the anatomical region where is located [21].  

 

The endothelial lining has vasoconstrictor and vasodilator, procoagulant and 

anticoagulant, pro-and anti-inflammatory functions. It also promotes and inhibits cell 

growth and promotes and stops the process of angiogenesis. In addition, the 

endothelium actively participates in the inflammatory response and immune 

phenomenon. The endothelium, with circadian behaviour, early morning is different, 

increases the synthesis of PAI - 1 and decreases fibrinolytic activity, which is consistent 

with increased sympathetic activity and increased platelet aggregation. Therefore, it is 

suspected that this is the reason why cardiovascular and stroke are more common 

early in the morning.   

The endothelial cells are rich in lipids (cholesterol, phospholipids, sphingolipids) 

proteins (caveolin, actin PCK) and enzymes (nitric oxide synthases).  Zawadzki and 

Furchogtt suggested that ECs secreted substance with vasorelaxant properties and an 

intense investigation that led to the identification of the endothelium-derived relaxing 

factor started, nowadays known as nitric oxide (NO). NO is considered the epitome of 

healthy endothelium, from the metabolic conversion of L-arginine to L-citrulline. NO has 

vasodilatory effectsand is a physiologic inhibitor of smooth muscle growth and 

promotes apoptosis with an unclear role in relation to angiogenesis[22]. Other 

vasoactive substances released by the endothelial prostacyclin, bradykinin, angiotensin 

II and endothelin. The factors released by endothelial cells will be crucial in the 

regulation of vascular tone.  

A proper balance between the vasoconstrictor factors released by the endothelium 

(angiotensin II and endothelin), and vasodilators (prostacyclin, bradykinin and NO) 

allow the maintenance of normal vascular tone, which under physiological conditions is 

slightly vasodilator. NO is a paracrine mediator, different than angiotensin and 
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antidiuretics [23]. NO is a molecular gas with an extremely short half-life, unstable out 

of the system and difficult to measure. 

The normal endothelium does not generally support binding of white blood cells. 

However, with an atherogenic diet, early patches of endothelial cells start to express on 

their surface selective adhesion molecules which will bind leukocytes. The VCAM-1 

(vascular cell adhesion protein 1) precisely attracts monocytes and T lymphocytes 

found in the early human nascent atheroma [24] The usual loci for atheroma formation 

are located at branch points in arteries, where the endothelial cells experiment the not 

laminar flow‟s aggression. This aggression reduces the production of nitric oxide (NO), 

natural anti-inflammatory molecule with vasodilator properties and increases the 

production of intercellular adhesion molecules (ICAM-1) and proteoglycans. These 

mechanisms promotes multiplied by 4 the promotion of early atheromatous lesions 

attracting inflammatory cells which will perpetuate the inflammatory response.  

Inflammatory processes are involved in the promotion, evolution and also contribute to 

precipitate the acute thrombotic complications of the atheromatous plaque. The 

macrophages produce proteolytic enzymes which will degrade the collagen support 

and procoagulant tissue factors which will trigger thrombosis response [25] as already 

described, inflammation contributes across the spectrum of cardiovascular disease, 

including the earliest steps in atherogenesis.  

To date, elevated levels of several inflammatory mediators among apparently healthy 

men and women have proven to have predictive value for future vascular events. In 

particular, prospective epidemiological studies have found increased vascular risk in 

association with increased basal levels of cytokines such as IL-6 and TNF-α  [12], cell 

adhesion molecules such as soluble ICAM-1, P selectin, and E selectin and 

downstream acute-phase reactants such as CRP, fibrinogen, and serum amyloid [13].  

 Several traditional cardiovascular risk factors track with these inflammatory 

biomarkers, in particular, central obesity and body mass index due to adipocytes can 

produce inflammatory cytokines, and a common underlying disorder of innate immunity 

may well link obesity, accelerated atherosclerosis, and insulin resistance. In support of 

this hypothesis, very recent observations show that elevated levels of both IL-6 and 

CRP associate not only with the subsequent development of atherosclerosis, but also 

with the development of type II diabetes, even among individuals with no current 

evidence of insulin resistance [26]. During the last decades the CRP (C reactive 

proteína) appeared like the most promising inflammatory biomarker [27]. 
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Fig. 2.2: Atherosclerosis is a chronic low-grade inflammatory process started in the 

endothelium. The atherosclerosis formation is triggered and chromicised maintaining 

endothelial damage by constant toxics such as tobacco, HBP, hyperlipidaemia or 

hyperglycaemia among others and subsequently initiating the inflammation cascade. 

Modified from “Ethnicity, Metabolism and Vascular Function: From Biology to Culture” 

Caballero E. 2008.  

 

But these already classic inflammatory biomarkers are not the sole new molecules 

which can predict and measure the cardiovascular events and their evolution. There 

are multiple soluble immune effector molecules found in arterial lesions, such as 

antibodies and complement proteins. Complement activation, either by the antibody-

dependent classical pathway or the alternative or lectin pathways, generates 

proinflammatory mediators. A good example of them, are C3a and C5a, which activate 

endothelium and enhance leukocyte recruitment to inflammatory sites. The 

complement cascade is involved in the stimulation and regulation of antibody 

responses. In particular, the CD19/ CD21 receptor complex on B cells links the 

complement system to the activation of B cells [13]. 

Patients with atherosclerotic disease produce antibodies specific to atheroma antigens. 

These antigens groups include oxidized low-density lipoproteins, and heat shock 

protein.  The complement system is involved in both the inductive and effector phases 

of humoral immune responses. Due to this dual mechanism by which these antibodies  
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influence atherogenesis, the process complexity is not clearly explained. However, 

several studies demonstrate that complement is involved in modulating atherogenesis 

[28]. Furthermore, antibody-independent activation of complement in arterial lesions 

may contribute to the inflammatory process of atherosclerosis and several studies 

provide evidence that complement activation is involved in atherogenesis. Besides this, 

components of the complement system are frequently found in human atheromas [29]. 

C3 and C4 deposition in arterial lesions has also been demonstrated [30]. Additionally, 

RNA analysis studies indicate that complement genes are expressed locally within the 

plaques [20]. 

In relation to this fact, the complement system, found by J Bordet in the 19th century, 

represents one of the most important figures of the inflammation cascade. The 

complement cascade acts as a protein functional system. These proteins are 

synthesized by hepatocytes, tissue macrophages, blood monocytes, and epithelial cells 

of the genitourinal tract and gastrointestinal tract. In the bloodstream, they develop an 

amplified self-regulated enzymatic response during the inflammatory process. This 

process includes several functions such as opsonization (enhancing phagocytosis of 

antigens), chemotaxis  (attracting macrophages and neutrophils), cell lysis  (rupturing 

membranes of foreign cells), and agglutination (clustering and binding of pathogens 

together). All of these are basic steps in the formation and rupture of the atheroma 

plaque.  

 

2.3.2. Endothelial dysfunction (ED)  

ED represents the inability of the small arterioles to vasodilate when necessary, leading 

to microvascular dysfunction and possible myocardial ischemia. The NO-mediation is 

compromised due to reduced production and favoured consumption. Beyond this main 

action, ED also promotes leukocyte and platelets activation and adhesion, increases 

the permeability of the arterial wall, favouring the protein oxidation, cell proliferation and 

atherosclerosis[31].  

Besides NO, other markers of ED are circulating progenitor cells (CPCs), 

atherosclerosis, hyperlipidemia, DM, smoking habit, ischemia and aging among others. 

EPCs are regenerative cells that are rarely found in blood in healthy individuals. EPCs 

are reported to participate in neovascularization after stroke, remodelling ischemic 

cardiac tissue and correlated to microvascular peripheral endothelial function [32, 33]. 

On top of EPCs and NO, atherosclerosis is also involved in impaired vasodilation, 
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augmented vasoconstriction through serotonin upregulation and microvascular 

dysfunction. DM, as well as tobacco, contributes to ED increasing oxidative stress. 

Additionally, hyperlipidemia reduces flow response to acetylcholine and hypertension 

reduced relaxation mediated by the endothelium [34, 35]. 

 

2.3.3 Evaluation of the endothelial function  

The endothelium has emerged as the key regulator of vascular homeostasis, 

damaged endothelial function precedes the development of morphological 

atherosclerotic changes. Endothelial function can be evaluated directly or indirectly. 

All the direct testing techniques involve the microvascular response to endothelial-

dependent stimuli such as reactive hyperhemia or vasoactive substances. 

Unfortunately endothelial function testing, using direct or indirect methods, is not 

routinely used in everyday clinical practice. 

Direct testing is infrequent in the clinical studies due to its invasive nature involving 

biochemical and cellular integrity via coronary angiography. The coronary 

microvascular response to acetylcholine or adenosine is tested by blood flow 

measurement via intracoronary Doppler[36]. A healthy endothelium results in 

vasodilation and ED in vasoconstriction as observe in angina[37]. Besides 

angiography, an impedance plethysmography test measures forearm blood flow but 

also requires the direct intravascular administration of vascular agonists.  

Due to the invasive character of the direct ED measurements, the assessment of the 

endothelium function in this study was indirect via cytokines as endothelial dysfunction 

markers, such as vascular adhesion molecule-1 (VCAM-1) and plasminogen activator 

inhibitor-1 (PAI-1). 

Most cardiovascular risk factors activate molecular machinery in the endothelium that 

results in expression of chemokines, cytokines, and adhesion molecules, like VCAM-1 

and PAI-1. 

Vascular cell adhesion molecule 1 (VCAM-1):  

VCAM-1 mediates the adhesion of lymphocytes, monocytes, eosinophils, and 

basophils to vascular endothelial wall after endothelial cells are activated by pro-

inflammatory cytokines such as TNF-α and IL-6, leading to vascular inflammation and 

atherosclerosis [38].  Mediators of endothelial dysfunction, such as 
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hypercholesterolemia, smoking, or oxidative stress, enhance endothelial cell activation, 

measured by VCAM-1 levels, leading to increased vasoconstriction, smooth muscle 

proliferation, platelet aggregation, leukocyte adhesion and LDLc oxidation[38].  

VCAM-1 has been associated independently of traditional cardiovascular risk factors 

and inflammatory markers with common carotid artery intima–media thickness and 

endothelial dysfunction[39]. An alternative method to assess endothelial function, more 

accurate than the measurement of instable NO gas, involved the measurement of 

biomarkers of endothelial activation and dysfunction (VCAM-1). Elevated circulating 

levels of adhesion molecules have been associated with cardiovascular risk factors and 

predict atherosclerosis and cardiovascular events [40]. 

Plasminogen activator inhibitor-1 (PAI-1): 

PAI-1 is the principal inhibitor of tissue-type and urokinase-type plasminogen 

activators, which convert plasminogen to plasmin. PAI-1 stimulates cell migration by 

binding to the low-density lipoprotein receptor-related protein. Then, fibrinolysis is 

regulated by PAI-1 which prevents the escape of this potentially destructive protease 

system. Increased PAI-1 levels predispose patients to the formation of atherosclerotic 

plaques prone to rupture with a high lipid-to-vascular smooth muscle cells ratio as a 

result of decreased cell migration.  

Overexpression of PAI-1 has been linked to endothelial dysfunction, metabolic 

syndrome and cardiovascular disease [41]. PAI-1 has been also implicated in adipose 

tissue development, control of insulin signalling in adipocyte, atherothrombosis, 

diabetogenesis and insulin resistance [42]. The PAI-1 production has been positively 

associated to oxidative stress, TNF-α, cortisol and IL-6 levels, disturbances of the 

renin-angiotensin and insulin glycolipid control systems[43, 44]. 

 

 

2.4. Inflammatory cascade: complement system interaction 

with pro-inflammatory factors 

The fundamental role of the inflammatory cascade in the pathogenesis of CVDs has 

been globally recognised. Inflammation contributes to the development and 

progression of atherosclerotic lesion formation, plaque rupture and thrombosis [45]. 

The most consistently studied and demonstrated factor in relation to prediction of CVDs 
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development has been the CRP [46, 47]. CRP levels can be induced by a wide variety 

of stimuli, including acute and chronic infection and are elevated in various 

inflammatory diseases such as rheumatologic pathologies as demonstrated in several 

studies and meta-analysis[48]. The lack of specificity related to CRP encourages the 

authors to expand the research to other inflammatory markers and provide us with 

supporting evidence of the functional role for the complement activation in the 

pathogenesis of CVDs through pleiotropic effects on endothelial and hematopoietic cell 

function and haemostasis[49]. 

Inflammatory response is part of a complex biological mechanism activated by harmful 

stimuli involving immune cells, blood vessels and molecular mediators. Chronic 

inflammation leads to progressive simultaneous destruction and healing processes of 

the affected tissue. A chronic inflammatory disorder may lead to a variety of diseases, 

such as atherosclerosis, allergic reactions as asthma, immune system disorders and 

rheumatologic diseases among others. 

Inflammation is currently viewed as a complex pathophysiologic process that engages 

hundreds of mediators and different cell types and tissues and can be initiated by any 

stimulus causing cell injury. This complex cascade is triggered by a variety of stimuli: 

 Inflammatory mediators (bacterial/viral/fungal sources, endotoxins, cytokines, 

histamine, oxidized products, complement fragments, etc.) 

 Depletion of anti-inflammatory mediators (nitric oxide, IL-10, glucocorticoids, 

albumin, etc.) 

 Fluid stress, transients of gas pressure or temperature, etc. 

The intricacy of this inflammatory cascade involves multiple steps as follow: 

 Early Cell Responses: ion exchange, depolymerisation, degranulation, release 

of inflammatory mediators, strengthening endothelial permeability and 

upregulation of adhesion molecules. 

 Tissue Degradation: neutrophil entrapment into vessels, transvascular 

migration, platelet aggregation and thrombosis, red cell aggregation, protease 

release, oxygen free radical formation, apoptosis and organ dysfunction. 

 Initial Repair: downregulation of anti-inflammatory genes, upregulation of pro-

inflammatory genes (cytokines), monocyte and T-Lymphocyte infiltration. 

 Repair: release of growth factors, connective tissue growth, revascularization. 
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The complement system is actively involved in the inflammation cascade in a 

multifaceted way regulating actively various steps of the inflammatory response, 

including changes in vascular flow and calibre, the increase in vascular permeability, 

extravasation of leukocytes, and chemotaxis. Complement components are activated in 

plasma. Complement may regulate other inflammatory mediators or be associated with 

a direct action on target cells and can independently participate in the regulation of 

inflammation, in either the presence or absence of an infection [50]. 

Three biochemical pathways activate the complement system: the classical 

complement pathway, the alternative complement pathway, and the lectin pathway. 

These three activation pathways converge at the formation of the C3 convertase which 

cleave C3, the central effector protein of the complement cascade, to C3a and C3b.  

The classical complement pathway typically requires for activation antigen-antibody 

complexes (immune complexes) generating a specific immune response, whereas the 

alternative and mannose-binding lectin pathways can be activated by C3 hydrolysis or 

antigens without the presence of antibodies (non-specific immune response). The 

activation of the alternative pathway via generation of hydroxilated C3 surges and a 

surveillance mechanism enabling rapid responses to invading pathogens or modified 

self-cells. Lectin and alternative pathways also constitute the amplification loop for 

complement activation [51].  

The classical pathway is activated by the interaction antibody-antigen to cells surface 

mediated by the C1 binding and subsequent cleavage of C4 and C2. On the surface of 

the active cell a serine protease, namely C3 convertase, will synthetize an 

anaphylotoxin, C3a, which will promote opsonisation. This response will also 

beamplified by C3 convertase generating further C3b [52]. The MBL pathway is similar 

to the classical pathway, albeit antibodies are substituted by lectin proteins[53]. 

Conversely, the alternative pathway owns the ability to initiate the complement 

cascade without requiring contact with proteins. The thioester bond of C3 produces a 

significant quantity of self-activated C3 which binds B factor. C3 convertase will also 

cleavage C3 amplifying the response. The C3b proteins produced by the classical 

pathway will generate a positive feedback loop to form C3 convertase [54].  

The three pathways of activation generate homologous variants of the protease C3-

convertase. In all of them, C3-convertase cleaves and activates component C3, 

creating C3a and C3b, and causing a cascade of further cleavage and activation 

events[55].  
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C3 complement plays a central role in the activation of the complement system. Its 

processing by C3 convertase is the central reaction in both classical and alternative 

complement pathways. C3 convertase belongs to the family of serine proteases as a 

part of complement system which eventuate in opsonisation of particles, release of 

inflammatory peptides, C5 convertase formation and cell lysis. C3 convertase is mainly 

synthetized in the liver, in smaller proportion in the adipose tissue and it is present 

circulating in plasma to participate in the complement cascade. 

 

 

 

Fig.2.3. Overview of the complement activation pathways, modified from Kuby et al.’s 

algorithm, Inmunology 2003.The three pathways of complement activation: classical, 

lectin (mannose-binding lectin (MBL)) and alternative converge at formation of the C3 

convertase products. C3b acts as an opsonintargeting C3b surfaces for phagocytosis. 

C3a and C5a act as anaphylotoxins, promote chemotaxis and the degranulation of 

mast cells.  

http://en.wikipedia.org/wiki/Serine_protease
http://en.wikipedia.org/wiki/Complement_(biology)
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 The smaller fragment called C3a is released and stimulates inflammation through the 

chemo-attractant activity. C3b fragment, becomes covalently attached to the cell 

surface or to the antibody molecules through the thioester domain at the site of 

complement activation. Derived from proteolytic degradation of complement C3, C3a 

anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of 

smooth muscle, increases vascular permeability and causes histamine release from 

mast cells and basophilic leukocytes. It also interacts with adipogenic proteins that 

stimulate triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat 

storage and playing a role in postprandial TG clearance. 

After cleavage and binding to cell surface, the C3b fragment is ready to bind a plasma 

protein called Factor B. The Factor B (a zymogen) is cleaved by a plasma serine 

protease Factor D releasing a small fragment called Ba and generating a larger 

fragment called Bb that remains attached to C3b. Thus, the alternative pathway C3 

convertase is formed and is able to cleave C3 now [56]. On the other hand, during the 

classical or lectin pathways, the C3 convertase contains different proteins of 

complement system – C4b and C2a. The cleavage of C4 and C2 is mediated by serine 

proteases - C1 complex in classical pathway and Mannose-binding lectin-associated 

serine proteases in lectin pathway. C4 is homologous to C3, and C4b contains an 

internal thioester bond, similar to that in C3b, that forms covalent amide or ester 

linkages with the antigen-antibody complex or with the adjacent surface of a cell to 

which is antibody bound. C2 is cleaved by C1s to a smaller fragment called C2b and 

larger fragment called C2a that binds to C4b. The fragments C4a and C2b are released 

[57].  

C3 convertase exists in two forms (C3bBb and C4bC2a) but both of them cleave C3, 

central molecule of complement system  (hence the name "C3-convertase").  C3b 

binds to the surface of pathogens, leading to greater internalization by phagocytic 

cells by opsonization. C3a is the precursor of an important cytokine (adipokine) 

named ASP and is usually rapidly cleaved by carboxypeptidase B. C3a and C5a 

have anaphylatoxin activity, directly triggering degranulation of mast cells as well as 

increasing vascular permeability and smooth muscle contraction.  

This accelerated spiral has its own regulatory systems, thus C3-convertase can be 

inhibited by Decay accelerating factor (DAF), which is bound to erythrocyte plasma 

membranes via a glycophosphatidilinositol anchor and blocks the membrane attack 

complex [58]. C3 convertases are unstable, their average half-life lasts 10 to 20 

minutes. C3 convertases are deactivated spontaneously or their dissociation is 
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facilitated by the regulators of complement activation proteins, such as decay 

acceleration factor (DAF), complement receptor 1 (CR1), C4b-binding protein and 

Factor H. C3 convertase assembling is suppressed by the proteolytic cleavage of C3b 

(and C4b), mediated by Factor I in the presence of membrane cofactor protein (MCP, 

CD46), C4b-binding protein, CR1 or a plasma-glycoprotein Factor H.  

These negative control processes are essential for the protection of self-tissue [59]. On 

the contrary, C3 convertase cleaves C3 producing C3b, which can form an additional 

C3 convertase. This positive-feedback effect is a unique feature of the alternative 

pathway of complement and results in the deposition of large numbers of C3b 

molecules on the surface of activating particles [60] Properdin (Factor P) is the only 

known positive regulator of complement activation that stabilizes the alternative 

pathway convertases (C3bBb).  

The complement deficiency would result in increased susceptibility to infection and to 

complement-tissue damaged. Deficiency of C3 and C4 have been linked to 

glomerulonephritis sue to an increased deposit of immune complexes in the glomerula 

[61]. Dysregulations in the alternative complement cascade have demonstrated an 

accelerated development of atherosclerosis and thrombosis and point to the potential 

role for complement C3 in CVDs [62, 63]. As an example, some studies have 

demonstrated that elevated levels of C3 at the time of an acute ischaemic event have 

been associated with worse outcomes and predict restenosis following 

endarterectomy[64]. 

Already defined atherosclerosis as a chronic low-grade inflammatory disease 

comprises the action of T-Lymphocytes, mast cells and macrophages at the early 

lesions. A healthy endothelium maintains vascular tone, flow and patency, inhibits cell 

adhesion and suppresses activation of the coagulation cascade via the secretion of 

multiple molecules such as nitric oxide (NO), endothelin I and prostacyclin [20].  

The atherosclerosis developing process will start via endothelial cell activation towards 

to an inflammatory, vasoconstrictive and thrombotic phenotype. This atherogenic 

endothelial cell phenotype increases the expression of cellular adhesion molecules, 

namely vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 

(ICAM-1), E-selectin and P-selectin. These adhesion molecules promote binding of 

inflammatory cells to the activated endothelium and support their migration into the 

arterial intima magnifying the inflammatory response within the arterial wall [65]. C5a 

and C5b interact with endothelial cells regulating these cellular adhesion molecules, 

http://en.wikipedia.org/w/index.php?title=Decay_acceleration_factor&action=edit&redlink=1
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therefore, contribute to endothelial activation and leukocyte infiltration into the wall[49, 

66]. 

The activation of the alternative complement cascade also shows pathophysiological 

relevance in its role as rise giver to fibrin clots of denser structure. C3 has been 

identified as a clot component which bounds to fibrin with high affinity supporting a 

functional relationship between elevated C3 and prolonged fibrinolysis[67].  

Cross-talks among complement, coagulation cascades and atherosclerosis therefore 

occurs at multiple levels to coordinate haemostatic and immune response. The C3 

seems to play a central role in the complement system and its regulation is exerted by 

a complex mechanism composed by its own intrinsic decay, stabilization by properdin, 

disassembly by glycoprotein B1H, inactivation by C3b inactivator and protection by 

activators from the alternative pathway. Consequently, C3 convertase plays the 

junction point role of the three complements pathways and its study as an inflammatory 

biomarker and acute phase reactant seems the logic approach in the cardiovascular 

pathogenesis environment [68].  

There is rising interest in identifying new inflammatory risk factors for cardiovascular 

disease, to improve our understanding of the cardiovascular events development 

biology and to account for the cases of heart disease that cannot be explained by 

known risk factors.  

Investigation of the newly adopted risk factors frequently involves the study of 

circulating biomarkers. In recent years, a spirited debate has arisen regarding the 

validity and usefulness of these new measures. A careful assessment of the evidence 

suggests that most newer biomarkers are not ready for routine clinical use in the 

primary prevention setting. The traditional risk factors perform quite well with regard to 

the prediction of future cardiovascular risk. Inadequate recognition and control of the 

„classic‟ risk factors continues to account for a large number of avoidable 

cardiovascular events. At the same time, new insights into disease mechanisms should 

lead to the development of novel preventive therapies, regardless of how well 

biomarkers themselves perform in risk stratification. Furthermore, new developed 

technologies allow the profiling of large panels of genes, transcripts, proteins, or small 

molecules and facilitate the discovery of newer biomarkers capable of providing both 

mechanistic insight and true prognostic utility, and here C3 convertase plays a main 

role again. 
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Our research team has not been the first one which paid attention to this protein. In 

1987 Muscari et al noticed the humoral immunity changes in patients with coronary 

ischemia [69] and later when continuing their studies he described for the first time the 

possible predictive value related to coronary disease [28]. Five years later the same 

team linked the C3 protein levels to insulinemia in patients with personal history of 

atheroeslerosis [29]. Another Italian team paid attention to the relation of the C3 with 

the hypertension [70]. Lately, other authors correlate C3 serum levels with the central 

obesity and smoking habit [71].  Several researches during the last 3 decades are 

intensifying the fence attack towards the final target and seeding the possible relations 

of the C3 convertase levels with the diverse cardiometabolic risk factors. Most of the 

classical cardiovascular risk factors are included in the metabolic syndrome (MetS) 

entity. Subsequently, most studies reveal a tendency pointing out the C3 convertase as 

the main character of the complement cascade and the future metabolic syndrome 

biomarker. 

 

 

2.4.1.  C-reactive protein as first inflammatory marker linked to 

metabolic syndrome 

Circulating levels of several inflammatory biomarkers have been studied to assess their 

value in predicting CVD. The best characterized and standardized biomarker of 

inflammation is C-reactive protein (CRP). The largest study to date that examined the 

association between inflammation and the MetS was the NHANES III study [72]. 

CRP was described as an inflammatory protein produced by hepatocyte and activated 

monocyte under the influence of cytokines such as interleukin (IL) -6 and tumour 

necrosis factor-alpha [73], being acute phase reactant in stress situations. Clinical 

evidence since the 1990s has demonstrated the relationship between inflammatory 

process, atherogenesis, plaque rupture and cardiovascular event. The elevation of 

serum concentrations of acute phase reactants, such as CRP [74] and IL-6 suggests 

that chronic inflammation of the coronary artery wall can play an important role in 

plaque rupture. This leads to a growing interest in the study of inflammatory biomarkers 

as markers of underlying atherosclerosis in apparently healthy individuals and the risk 

of recurrent events in patients with atherosclerotic vascular disease [75, 76]. Many 

studies have linked the metabolic syndrome to CRP since [77-79]. 
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Despite the lack of specificity of CRP to narrow inflammation aetiology, a significant 

association has been demonstrated between elevated serum CRP levels and the 

prevalence of underlying atherosclerosis. CRP has also been correlated to risk of 

recurrence of cardiovascular events among patients with established disease, 

incidence of early CVDs events [80, 81] and drugs used in the treatment of 

cardiovascular diseases reduce serum levels of CRP. Therefore, it is possible that 

inflammation contributes reducing the beneficial effects of these drugs. 

 As a direct pathogenic role, CRP has been found in atherosclerotic lesions, as well as 

linked to LDLc facilitating the action of macrophages, inducing the expression of 

adhesion molecules and the production of interleukin-6 and monocyte chemotactic 

protein-1 (MCP-1) in endothelial cells and recruitment of monocytes and lymphocytes 

[82]. As possible consequence the risk of ischemic heart disease was found 

significantly higher in individuals with higher serum CRP levels.  

The Centres for Disease Control and Prevention and the American Heart Association 

(CDC / AHA) (Pearson et al., 2004) define low, medium and high cardiovascular risk 

values as <1, 1 to 3, and> 3 mg / L of serum CRP respectively, these values 

correspond to the approximate tertiles in the general population. They also suggest that 

a value greater than 15 mg / L should initiate a search for a source of infection or 

inflammation. For patients with coronary heart disease> 3 mg / L would predict stable 

coronary disease and passing the threshold >10mg / L would be more predictive of 

acute coronary syndrome [83]. Among apparently healthy men, the plasma 

concentration of CRP predicted the long-term risk of a first myocardial infarction, 

ischemic stroke or peripheral vascular disease [84].  

Some studies associate CRP with the risk of future acute events in patients with stable 

angina and angiography [85] or the degree of calcification of the coronary arteries in 

the CT-scan. In patients with established coronary disease, a strong correlation 

between initial CRP and future acute coronary events has been demonstrated [86]. 

Several studies point to CRP as a predictor of the development of heart failure, new-

onset diabetes, a marker of rapid progression of coronary disease in revascularized 

patients correlation of serum levels of CRP with induction of ischemia in Stress tests 

[74, 87]. 

Previous studies have shown that MetS factors are individually associated with 

decreased endothelium-dependent vasodilatation, such as obesity, low HDL 

cholesterol, IGT, hypertriglyceridemia, and hypertension. Also, insulin resistance is 

associated with endothelial dysfunction. Subsequently several authors established the 
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link between CRP and endothelial dysfunction.  To demonstrate this theory, in-vivo 

studies [88] have shown that CRP impairs endothelial vasoreactivity and decreases 

eNOS activity. Knowing that patients with MetS are in a procoagulant state as 

evidenced by increased circulating plasminogen activator inhibitor-1 (PAI-1, some 

authors have shown that CRP induces PAI-1 and decreases tissue plasminogen 

activator (tPA) in endothelial cells [89, 90]leading to endothelial dysfunction. 

 

 

 

2.5. Evolution of the metabolic syndrome to cardio-metabolic 

syndrome 

 

The metabolic syndrome (MetS) was defined for the first time by Reaven in 1988 as 

"syndrome X" or "insulin resistance syndrome" [91]. Since then, several studies and 

definitions have been conducted and copious pieces of literature have been produced 

as shown in the figure 2.4.   

The MetS concept has evolved to cardio-metabolic syndrome (CMS) by the addition of 

inflammation and reticular stress to the equation [92]. In fact, MetS and CMS are 

complementary pathophysiological concepts. If we include biomarkers of inflammation, 

oxidative stress, endothelial dysfunction and pro-thrombotic state, we refer to CMS, 

otherwise MetS.  

Metabolic syndrome represents a cluster of interrelated risk factors that promote the 

development of atherosclerotic vascular disease and are commonly associated with 

insulin resistance and type 2 diabetes. These include hyperglycaemia, dyslipidaemia, 

hypertension and abdominal obesity [93].  Dyslipidaemia involves elevated triglycerides 

(TGs) and low-density lipoprotein cholesterol (LDLc) and low high-density lipoprotein 

cholesterol (HDLc). 



UAH, PhD program: D234 Medicine  Rodriguez-Guerrero, A. 

44 

 

 

Fig. 2.4: History evolution of the Metabolic Syndrome (MetS) concept. Modified from 

Anti-Obesity Drug Discovery and Development 2014 [94]. 

 

Cardio-metabolic syndrome (CMS) definition evolves one step further, adding the 

promotion of pro-inflammatory and pro-thrombotic states. The mayor mechanisms of 

the underlying forces of CMS are abdominal obesity, insulin resistance, obesity-

induced inflammation, reticulum and metabolic stress. It is also important to analyse 

the role of low-grade inflammation or meta-inflammation in fat tissue, as well as two 

new metabolic phenomena, metabolic Inflexibility and endoplasmic reticulum stress, 

and their interaction with the vascular triad: endothelial dysfunction, oxidative stress 

and vascular inflammation. 

Despite the MetS worldwide prevalence, there is still a lack of a uniformly accepted 

definition and great controversy with regard to the pathogenesis of MetS [35]. 

In our research team, we agreed with the most widely accepted definition, which was 

proposed by the National Cholesterol Education Program-Adult Treatment Panel-III 

(NCEP-ATPIII).  

Their criteria require three or more of the following parameters: waist circumference 

(WC) >102 cm in men and >88 cm in women, HDLc <40 mg/dl (<1.04 mmol/l) in men 
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and <50 mg/dl (< 1.29 mmol/l) in women, TG ≥150 mg/dl (≥1.7 mmol/l), blood pressure 

(BP) ≥130/85 mmHg and fasting glucose ≥100 mg/dl (≥6.1 mmol/l)[95].  

 

The clinical criteria for the metabolic syndrome diagnosis according to the ATP-III can 

be summarized into three or more of the following parameters: 

1. Variable waist circumference according to the different specifications related     

to populations, genders and location. 

2. Raised hypertriglyceridemic levels (or patient under specific treatment) > 

150 mg/dl. 

3. Reduced plasmatic C-HDLc levels (or patient under specific treatment)  < 40 

mg/dl (males) <50 mg/dl (females) 

4. Hypertension (or patient under specific treatment): 

i. Systolic blood pressure ≥130 mmHg 

ii. Diastolic blood pressure ≥ 85 mmHg 

5. Raised plasmatic fasting glucose ≥100 mg/dl 

 

Besides this definition, there are two other commonly used. The first one proposed by 

the International Diabetes Federation (IDF) [95], and a second one by the National 

Heart Lung and Blood Institute (NHLBI) and the American Heart Association (AHA). 

According to the IDF definition, MetS is diagnosed if an individual has abdominal 

obesity, that is waist size ≥94 cm in European men and ≥80 cm in European women 

and ≥2 of the remaining four criteria of the NCEP-ATP III definition. Cut-off points for 

hypertension, TG and HDLc levels are the same but glycaemia is considered abnormal 

at lower levels (FG≥100 mg/dl).  

The definition proposed by the AHA/NHLBI in 2005 retained most of the NCEP-ATPIII 

criteria but adopted the same waist thresholds for some ethnic groups (e.g., South 

Asians) but their cut-off points for fasting glucose levels [≥100 mg/dL (5.6 mmol/L)] are 

lower following the IDF definition [96]. 

Recently, the 2009 Joint Interim Societies (JIS) proposed a MetS definition to unify the 

aforementioned three definitions. This definition uses the same thresholds for TG, BP, 

and HDLc considers WC based on ethnicity (≥94 cm (males) or ≥80 cm (females) for a 

Mediterranean population, but this is not a mandatory criteria though) and finally 

glycaemia (FG≥100 mg/dl).  
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Three or more of these criteria are required for diagnosis. All these criteria are 

presented in table 2.1. 

 

 

Table2.1: listed MetS diagnosed criteria differentiated by each health organization 

standards, gender and personal characteristics. Modified from Indian Journal of 

Endocrinology and Metabolism, 2012. Abbreviations: as shown in list of acronyms.  

 

Summing up, obesity predisposes the individual to increased risk of developing 

diabetes mellitus (DM). It reflects our contemporary world‟s sedentary lifestyle, over-

nutrition, and resultant excess adiposity due to overweight. It seems to affect about 

one-fourth to one-fifth of the Mediterranean population, and its prevalence increases 

with age due to a reduction in energy requirements and consumption [97]. The “Look 

AHEAD Study” has shown that a body weight reduction of 7% improves glycemic 

control and cardiovascular risk factors in subjects with type 2 diabetes[98]. 

The physiopathological effects of adipose tissue are related to the specific site where 

fat is stored [99]. There is a clear functional distinction between visceral or 

intraperitoneal fat, extraperitoneal (peripancreatic and perirenal) and intrapelvic 

(gonadal/epididymal and urogenital) adipose tissues, all of them presenting a higher 
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metabolic activity than subcutaneous peripheral adipose tissue [100]. Moreover, 

abdominal obesity with low metabolic activity, android obesity, is strongly associated 

with MetS, cardiometabolic risk and cardiovascular disease, therefore the importance 

of the waist circumference measurements [101]. The term adiposopathy or sick fat, 

described by Dr Saban-Ruiz, refers to an excess of adipose tissue which results in 

pathogenic enlargement of fat cells and functional abnormalities, including endocrine 

and immune disorders.  

Obesity is already considered as a low-grade chronic inflammation disease or meta-

inflammation that comprises fat and vascular stroma [101]. This meta-inflammation 

involves adipocytes and the stroma (vascular endothelial cells) is infiltrated by 

macrophages, and leukocytes. As a result, the macrophages secrete pro-inflammatory 

cytokines and reactive oxygen species (ROS). The pro-inflammatory cytokines levels, 

such as IL-6, TNF-α, resistin and leptin are raised in obese patients along with reduced 

adiponectin. ROS activates stress pathways and disrupt metabolic processes as the 

insulin signalling cascade, energy homeostasis, lipid metabolism increasing the 

production of triglycerides and leading to MetS. 

 

Two concepts have been recently added to complete the MetS physiological picture:  

Metabolic Inflexibility (MI) and the Endoplasmic Reticulum Stress (ERS).  

The metabolic inflexibility is considered the ability to switch from fat to carbohydrate 

oxidation. Consequently, a healthy organism counts with a great adaptability to the fat 

from diet, so it is able to suitably metabolize this fat, while maintaining body weight. 

This process is mediated by genetic and hormonal factors [102, 103] .  

On the contrary, metabolically inflexible subjects present decreased adaptability to fat 

ingestion, which appears to usually be impaired in insulin-resistant subjects. In MI 

subjects, a fat accumulation occurs, fatty acids are stored in muscles and the liver and 

thus weight gain occurs as food intake increases. In addition, consumption of local 

glucose at muscular tissue is increased and consumption of postprandial glucose is 

decreased. MI individuals can lead to IR by interfering with the insulin-signalling 

cascade [104].  

MI is closely related to IR, and both processes are intimately linked Endoplasmic 

Reticulum Stress. ER is a cellular organelle that integrates the protein, lipid, and 

glucose metabolism. The secretion of inflammatory mediators increases as fat 

accumulation grows. The inflammatory mediators promote lipogenesis and impair 
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mitochondrial respiratory chain function and increases the generation of ROS, leading 

to mitochondrial calcium overload, and oxidative stress From chronic inflammation of 

adipose tissue and metabolic inflexibility, [105]. 

 Endoplasmic reticulum stress has been considered as the first step which leads to 

oxidative stress, vascular inflammation, endothelial dysfunction, T2DM and MetS. 

Because of the increased importance of obesity, waist circumference has been 

recommended as a screening tool to evaluate the risk of developing metabolic 

syndrome, diabetes and cardiovascular disease since 1995, though exact cut off points 

for maximum waist circumference have been debated [106].  The risk of developing 

diabetes (controlled for age, sex, race, and smoking) is 4.12 (2.72–6.24) times higher if 

waist is larger than International Diabetes Federation (IDF) recommendations [107]. 

 The risk of developing cardiovascular disease is greater for persons with intra-

abdominal obesity who have high levels of triglycerides. A recent study conducted in 

the United Kingdom proposes that screening for increased waist circumference and 

hypertriglyceridemia (the hypertriglyceridemic-waist phenotype) is an inexpensive 

approach for identifying patients with excess intra-abdominal adiposity and associated 

metabolic abnormalities[108]. This theory has been tested with confirmative results 

across the world, from China [42] to Brazil [109] and Puerto Rico [110].  

Several studies suggest that measuring triglycerides and waist circumference is 

particularly important in patients with normal traditional risk scores. Patients who have 

hypertension, diabetes or raised cholesterol will be identified with traditional methods. 

However, patients with hypertriglyceridemic waists and normal values on traditional risk 

scores had double or triple the risk of developing heart disease [111].  

There are several cut-off points of maximum waist circumference in relation to the 

different health organizations, ethnicity and gender. The European  Society of 

Cardiology (ESC) establish the cut-off point in 102 cm for men and 88 cm for women, 

while the International diabetes Federation (IDF) specify a cut-off point specifically for 

Mediterranean population lower than that, with 94 cm for men and 80 cm for women. 

Consensually, the WHO considers the IDF‟s cut off point as high risk and the ESC‟s cut 

off point as very high risk to develop cardiovascular diseases.  
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Population Organization Men waist circumference Women waist 

circ. 

Europeans IDF ≥94 cm ≥80 cm 

Europeans ECVs ≥102 cm ≥88 cm 

Caucasians OMS ≥94 cm high risk  

≥102 cm very high risk 

≥ 80 cm 

≥ 88cm 

Asians IDF ≥ 90 cm ≥ 80 cm 

Asians (excluiding 

Japanese) 

OMS ≥ 90 cm ≥88 cm 

Japanese Obesity Jap. Soc. ≥ 85 cm ≥80 cm 

Chinese Coop. Task 

Force 

≥85 cm ≥80 cm 

Mediterranean IDF ≥94 cm ≥80 cm 

Subsaharians IDF ≥94 cm ≥80 cm 

South Americans IDF ≥90 cm ≥80 cm 

USA AHA/ATP III ≥102 cm ≥88 cm 

Canadians Health Canada ≥102 cm ≥88 cm 

 

Table 2.2: cut off points for waist circumference according to ethnicity, gender and 

health organization. 

 

 

Beyond CVD and DM, the metabolic syndrome is also associated with higher urinary 

albumin excretion, lower glomerular filtration rate (GFR) and a greater prevalence of 

chronic kidney disease [46]. Other co-morbidities include non-alcoholic fatty liver 

disease [47-49], sleep-disordered breathing [112], and hypogonadism in males [113] .  

 

Furthermore, MetS has been associated with increased incidence of some types of 

cancer, such as pancreatic cancer, with DM being the key component for this 

correlation [52, 53], and breast cancer [54] One of the proposed mechanisms for this 

association may be related to increased insulin and insulin-like growth factor-I (IGF-I) 

activities observed in MetS. Elevated serum insulin concentrations observed in MetS 
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and IR states increase the level and bioavailability of IGF-I, which in turn plays a key 

role in the development and progression of several diseases. 

In nondiabetic, normotensive overweight individuals, serum triglyceride concentration, 

the ratio of triglyceride to high density lipoprotein HDLc concentrations, and fasting 

insulin concentration are useful markers. This makers identify those who may be insulin 

resistant, as measured by an insulin suppression test.  

Optimal cut-points were identified as 130 mg/dL for triglycerides, 3.0 (1.8 SI units) for 

triglyceride-to HDLc ratio and 15.7 µU/mL  for insulin, respectively [55]. The co-

segregation of overall obesity (increased BMI), abdominal obesity (raised waist 

circumference), raised blood pressure, increased fasting glucose levels, raised 

triglyceride levels, and low HDLc concentration suggest the existence of metabolic 

syndrome, which is closely related with the development of insulin resistance.  

 

 

2.6. The metabolic triad 

 

The association between T2DM and inflammation was noted in early 20th century when 

sodium salicylate therapy showed lower levels of glycosuria and further evidence 

emerged when aspirin treatment improved blood glucose control in T2DM [114]. 

Oxidative stress and increased ROS are associated with chronic hyperglycaemia and 

both play a role in endothelial dysfunction (ED) development. Chronic hyperglycaemia, 

as seen in diabetes, leads to ED and subsequently reduces the bioavailability of NO 

and increases the platelet activation, SMC and expression of adhesion molecules 

participating from the first step in the development of atherothrombosis.  

Thus, hyperglycaemia is likely to induce and perpetuate inflammation through 

increased mitochondrial reactive oxygen species (ROS) formation [115]. Furthermore, 

studies have shown that improving glycaemic control of T2DM can reduce plasma 

inflammatory proteins such as C3 complement [116]. T2DM may be implicated in the 

glycation of C3 and fibrinogen enhancing the incorporation of C3 in fibrin clots and 

promoting a prothrombotic estate [67]. The discovery in the 1990s that adipose cells 

were capable of secreting the pro-inflammatory cytokine, TNF-α, which subsequently 

able induced insulin resistance changed our approach [117]. 
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2.6.1. Insulin resistance as component of the metabolic triad 

The concept of a vasculo-metabolic theory interrelates two pathogenic bidirectional 

ways in the process of generating and maintaining low-grade fat inflammation and 

activation of adipose tissue stroma [94]. This theory of a meta-process combines the 

vascular triad, which includes endothelial dysfunction, oxidative stress and vascular 

inflammation, and the metabolic triad, which is composed by insulin resistance (IR), 

metabolic inflexibility (MI) and endoplasmic reticulum (ER) stress. 

Metabolic flexibility has been defined as the capacity for the organism to adapt fuel 

oxidation to fuel availability. In metabolic patients the inability to modify fuel oxidation in 

response to changes in nutrient availability has been implicated in the accumulation of 

intramyocellular lipid and insulin resistance. Insulin-resistant patient become 

metabolically inflexible (MI) and their ability to switch from fat to carbohydrate oxidation 

is usually impaired during a hyperinsulinemic clamp [104]. 

ER stress plays a role in the pathogenesis of diabetes, obesity, cardiovascular 

diseases [118] and myocardial damage by contributing to pancreatic beta-cell loss and 

insulin resistance. Components of the unfolded protein response (UPR) play a dual role 

in beta-cells, acting as beneficial regulators under physiological conditions or as 

triggers of beta-cell dysfunction and apoptosis under situations of chronic stress such 

as chronic high glucose and fatty acid exposure.  

High fat feeding and obesity induce ER stress in liver, which suppresses insulin 

signalling via kinase activation and contributes to cytokine-induced beta-cell death. The 

B-cell mediators, namely cytokines IL-1beta and interferon-gamma, induce severe ER 

stress and NO-mediated depletion of ER calcium and amplify the proapoptotic 

pathways [119]. Moreover, the endoplasmic reticulum stress induces autophagy 

response, a catabolic and degradation process for long-lived proteins and unnecessary 

or damaged organelles [120]. In healthy conditions starvation and cellular nutrient 

limitation triggers this stress, but also pathological conditions given in cardiometabolic 

subjects produce the autophagic response as prof. Y. Ohsumi, 2017 Medicine Nobel 

Prize, and other authors noted [121]. 

As a confirmation of this vasculo-metabolic theory hyperinsulinemia also comes along 

with raised levels of PAI-1 (Plasminogen-Activator Inhibitor-1), main inhibitor of tissue 

plasminogen activator (tPA) and urokinase (uPA), the activators of plasminogen and 

hence fibrinolysis, and it appears to be also associated with endothelial dysfunction, left 

ventricular hypertrophy and coronary disease. 
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2.6.2. Insulin resistance as single cardio-metabolic factor 

 

The insulin resistance (IR) is intimately associated with abdominal obesity and a 

variety of abnormalities that impact upon the cardiovascular system, such as T2DM, 

hypertension, an atherogenic lipid profile that includes hypertriglyceridemia and low 

serum HDL-cholesterol concentrations, and coronary disease. Adipose cells are 

metabolically active and lead to the hyperglycaemic hyperinsulinaemic state which 

characterised T2DM. Fatty hepatocytes and adipocytes increase the recruitment of 

inflammatory cells. These active inflammatory macrophages raise the cytokine 

production, which in conjunction with insulin resistance through impairment of 

adipocyte differentiation generate a positive feedback for hepatic and skeletal muscle 

lipid accumulation. 

Insulin resistance has been defined as a subnormal biological response to normal 

insulin concentrations. In clinical practice, insulin resistance refers to a state in which a 

given concentration of insulin is associated with a subnormal glucose response [122]. 

This abnormal response is to both, endogenous and exogenous insulin. Insulin 

resistance, instead of being a rare complication of the diabetes‟ treatment is now 

recognized as a component of several disorders, including the following: 

 Major causes of insulin resistance: Inherited states of target cell resistance, 

leprechaunism (insulin-receptor mutations), Rabson-Mendenhall syndrome 

(insulin-receptor mutations), type A syndrome of insulin resistance (insulin-

receptor mutations in some) and lipodystrophies. 

 Secondary insulin resistance: obesity (adipocytokines may contribute), excess 

counter regulatory hormones (glucocorticoids, catecholamines, growth 

hormone, placental lactogen), type 2 diabetes mellitus (secondary to obesity 

and other factors), inactivity, stress, infection (counter regulatory hormones), 

pregnancy (placental lactogen), immune mediated (anti-insulin antibodies), 

starvation, uraemia, cirrhosis and ketoacidosis. 

 Multifactorial aetiology of insulin resistance: HBP, polycystic ovary syndrome, 

MetS, T2DM. 

 

Insulin resistance contributes to the pathophysiology of diabetes and is a hallmark of 

obesity, metabolic syndrome, and many cardiovascular diseases. Therefore, 
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quantifying insulin sensitivity/resistance in patients was of great importance for 

epidemiological and clinical studies, and eventual use in clinical practice [123].   

In a research setting, the hyperinsulinemic euglycemic insulin clamp technique has 

been considered to be the gold standard, and intravenous glucose tolerance test 

(IVGTT) and/or the insulin tolerance test (ITT)/insulin suppression test are the tests 

most frequently used [124]. It is an invasive test and takes about two hours. The insulin 

is perfused through a peripheral vein and in order to balance the glycaemia a glucose 

20% is also infused.  

Low-dose insulin infusions are more useful for assessing the response of the liver, 

whereas high-dose insulin infusions are useful for assessing peripheral insulin action. 

Levels between 4.0 and 7.5 mg/min are not definitive and suggest "impaired glucose 

tolerance," an early sign of insulin resistance [123]. The main limitations of the glucose 

clamp approach are that it is an invasive technique, time consuming, expensive, and 

requires an experienced operator to manage the technical difficulties.  

The modified insulin suppression test is another measure of insulin resistance is 

developed by Gerald Reaven at Stanford University. The test suffers from less 

operator-dependent error than the clamp. Nonetheless, it is also requires a complicated 

methodology with infusion of octreotide, somatostatin, insulin and glucose. Subjects 

with  steady-state plasma glucose level greater than 150 mg/dl are considered to be 

insulin-resistant [125]. 

However, both techniques are impractical for routine clinical use, the methods to 

directly measure insulin resistance are invasive, complex, and costly. Given the 

complicated nature of the "clamp" technique (and the potential dangers 

of hypoglycemia in some patients) to directly measure the insulin sensitivity, 

alternatives have been sought to simplify the measurement of insulin resistance.  

Several authors developed simple surrogated indexes to calculate the relation in 

between insulin resistance and sensitivity. The first was the Homeostatic Model 

Assessment (HOMA), and a more recent method is the Quantitative insulin sensitivity 

check index (QUICKI). Both employ fasting insulin and glucose levels to calculate 

insulin resistance, and both correlate reasonably with the results of clamping studies. 

Simple surrogate indexes of insulin sensitivity/resistance are inexpensive quantitative 

tools that can be easily applied in almost every setting, including epidemiological 

studies, large clinical trials, clinical research investigations, and clinical practice.  

http://en.wikipedia.org/wiki/Hypoglycemia
http://en.wikipedia.org/wiki/Homeostatic_model_assessment
http://en.wikipedia.org/wiki/Homeostatic_model_assessment
http://en.wikipedia.org/wiki/Quantitative_insulin_sensitivity_check_index
http://en.wikipedia.org/wiki/Quantitative_insulin_sensitivity_check_index
http://en.wikipedia.org/wiki/Fasting
http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Glucose
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To develop these indexes we have to assume that our patients accomplish a strictly 

fasting conduct along the previous night to reflect a primary hepatic insulin sensitivity 

versus resistance during a basal state of plasma glucose and Insulin levels. Both 

methods are widely used in our department of endothelial pathology, HOMA has been 

chosen for this study because of practicality. 

The homeostasis model assessment (HOMA) was developed in 1985 by Matthews 

and cols.[126]. At that time the steady-state basal plasma glucose and insulin 

concentrations were determined by their interaction in a feedback loop. A computer-

solved model was used to predict the homeostatic concentrations which arose from 

varying degrees beta-cell deficiency and insulin resistance.  

Matthews and cols. compared the patient's fasting values with the model's predictions 

and allowed a quantitative assessment of the contributions of insulin resistance and 

deficient beta-cell function to the fasting hyperglycaemia. The accuracy and precision 

of the estimation was determined by comparison with independent measures of insulin 

resistance and beta-cell function using hyperglycaemic and euglycaemic clamps and 

an intravenous glucose tolerance test. HOMA-IR had a reasonable linear correlation 

with glucose clamp and minimal model estimates of insulin sensitivity/resistance in 

several studies of distinct populations [127]. Both, the original HOMA and the updated 

HOMA2 assume a feedback loop between the liver and β-cell [128].  

The approximating equation for insulin resistance, in the early model, used a fasting 

plasma sample, and was derived by use of the insulin-glucose product, divided by a 

constant: (assuming normal-weight, normal subjects < 35 years, having 100% β-cell 

function an insulin resistance of 1).  In the table below referred to the primary HOMA 

model, IR is insulin resistance and  % β is the β-cell function. Insulin is given in mU/L. 

Glucose and insulin are both analyzed during fasting basal conditions. The HOMA 

model follows the formulas presented below: 

  

  

Fasting Glucose in Molar Units mmol/L Fasting Glucose in mass units mg/dL 

 

http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Insulin_therapy#The_dosage_units
http://en.wikipedia.org/wiki/Blood_glucose#Blood_glucose_measurement_units
http://en.wikipedia.org/wiki/Blood_glucose#Blood_glucose_measurement_units
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In clinical practise, most studies using HOMA employ an approximation described by a 

simple equation to determine a surrogate index of insulin resistance. The denominator 

of 22.5 is a normalizing factor. This factor is determined by the normal individual 

results: the product of normal fasting plasma insulin of 5 μU/ml and normal fasting 

plasma glucose of 4.5 mmol/l typical of a “normal” healthy individual = 22.5. Therefore, 

for an individual with “normal” insulin sensitivity, HOMA-IR = 1. Even so, the coefficient 

of variation for HOMA-IR varies considerably depending upon the number of fasting 

samples obtained and the type of insulin assay used [63]. Hence, Log (HOMA-IR) is 

useful for evaluation of insulin resistance in individuals with glucose intolerance, mild to 

moderate diabetes, and other insulin-resistant conditions. However, in subjects with 

severely impaired or absent β-cell function, HOMA-IR may not give appropriate results. 

The updated HOMA2 adjusted the assessment of HOMA%S and HOMA%B in subjects 

with glucose levels ≤25 mM, accounts for renal glucose losses, assumes reduced 

suppression of HGP and increased insulin secretion in response to glucose levels >10 

mM, and allows for the use of total or specific insulin assays [128].  

The formula was based on the principle that assumes glucose concentrations are 

regulated by insulin-dependent hepatic glucose production, whereas insulin levels 

depend on the pancreatic β-cell response to glucose concentrations. Thus, deficient β-

cell function reflects a diminished response of β-cell to glucose-stimulated insulin 

secretion. Likewise, insulin resistance is reflected by diminished suppressive effect of 

insulin on hepatic glucose production. Decreases in [beta]-cell function were modeled 

by changing the [beta]-cell response to plasma glucose concentrations. Insulin 

sensitivity was modeled by proportionately decreasing the effect of plasma insulin 

concentrations at both the liver and the periphery [129]. In either situation, the glucose 

turnover in the model remains constant. In the HOMA model, no distinction has been 

made between hepatic insulin sensitivity and peripheral insulin sensitivity. The model 

predicts fasting basal levels of plasma glucose and insulin for any given combination of 

pancreatic β-cell function and insulin sensitivity.  

 

On the other hand, the quantitative insulin sensitivity check index (QUICKI) is 

derived using the inverse of the sum of the logarithms of the fasting insulin and 

fasting glucose: 

1 / (log(fasting insulin µU/mL) + log(fasting glucose mg/dL)) 

http://en.wikipedia.org/wiki/Insulin
http://en.wikipedia.org/wiki/Glucose
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This index correlates well with glucose clamp studies (r = 0.78), and is useful for 

measuring insulin sensitivity (IS), which is the inverse of insulin resistance (IR). It has 

the advantage of that it can be obtained from a fasting blood sample, and is the 

preferred method for certain types of clinical research [130]. During development of 

QUICKI, sensitivity analysis of data from the first 20 min of an FSIVGTT revealed that 

physiological fasting steady-state values of plasma insulin and glucose contain critical 

information about insulin sensitivity as determined by the reference standard glucose 

clamp [131] . Since fasting insulin levels have a non-normal skewed distribution, log 

transformation improves its linear correlation with insulin sensitivity.  

To accommodate some clinical circumstances such as where fasting glucose is 

inappropriately high and insulin is inappropriately low, addition of log (fasting glucose) 

to log (fasting insulin) provides a reasonable correction such that the linear correlation 

with insulin sensitivity, is maintained in both diabetic and non-diabetic subjects. Log 

(HOMA) is roughly comparable to QUICKI in this regard. Nevertheless, both indexes 

are mathematically related, QUICKI is proportional to 1/log (HOMA-IR).  

 

For selected patients, who have been brought under the oral glucose tolerance test, we 

can perform another test with dynamic properties. Obviously, dynamic testing requires 

more effort and cost than simple fasting blood sampling. Dynamic indexes that depend 

on dynamic testing take into account both fasting steady-state, dynamic postglucose 

load plasma glucose and insulin levels. Glucose disposal after an oral glucose load or 

a meal is mediated by a complex dynamic process that includes absorption, glucose 

effectiveness, neurohormonal actions, incretin actions, insulin secretion, and metabolic 

actions of insulin that primarily determine the balance between peripheral glucose 

utilization and hepatic glucose production. Logically, the oral glucose intake is more 

physiological than intravenous glucose infusion, taking into account the possible 

variability in the glucose absorption. For this specific patients spectrum in our unit we 

develop the Matsuda index.  

 

The oral glucose tolerance test is a simple test widely used in clinical practice to 

diagnose glucose intolerance and T2DM. After an overnight fast, blood samples for 

determinations of glycaemia and insulin concentrations are taken at 0, 30, 60, and 120 

min following a standard oral glucose load (75 g). The OGTT mimics the glucose and 

insulin dynamics of physiological conditions. more closely than conditions of the OGTT 

http://en.wikipedia.org/wiki/Glucose_clamp_technique
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is less invasive than the glucose clamp, IST, or FSIVGTT. Besides this, OGTT provides 

useful information about glucose tolerance but not insulin sensitivity/resistance per se.  

Because of this Matsuda and cols. proposed an insulin sensitivity index (ISI Matsuda) 

where the insulin secretion activity could be obtained at the same time as the insulin 

action was measured, where fasting glucose and insulin data are taken from time 0 of 

the OGTT, and the mean data represents the average values obtained during the 

whole process: 

 

 ISI(Matsuda) = 10,000/√[(Gfasting × Ifasting) × (GOGTTmean × IOGTTmean)] 

  

Nevertheless, HOMA or log(HOMA) are used widely in large epidemiological studies, 

prospective clinical trials, and clinical research studies. A big portion of them relate the 

insulin resistance measured by HOMA model to metabolic and hemodynamic 

alterations and higher cardio metabolic risk [67-70]. A cross-sectional and longitudinal 

research established relationships between C-reactive protein (CRP), a marker of low-

grade inflammation, and insulin resistance and whether the association was 

independent of obesity and oxidative stress [132]. Inflammation, measured by 

plasmatic CRP levels, showed a significant positive association with insulin resistance. 

During the last decade several authors have developed successful research which 

correlates C3 convertase, inflammation, metabolic syndrome, diabetes, hyperlipidemia, 

polycystic ovary syndrome, and new cardiovascular risk factors to HOMA and insulin 

resistance [72-77]. All of them seed a fruitful growing field to develop future studies 

which will connect a logical chain from C3 convertase, arterial chronic inflammation, 

metabolic risk factors, insulin resistance and cardiovascular events. 

Besides this, the criteria for metabolic syndrome are just a part of the cardiovascular 

risk factors. We have to remember that the classic risk factors also include smoking 

and a sedentary lifestyle. Into the bargain, during the last 3 decades the authors have 

included new interesting risk elements such as polycystic ovary syndrome, chronic liver 

disease, hyperferritinemia among others. 
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2.7. New components of metabolic syndrome 

 

2.7.1. Hyperuricemia  

 

Kyllin observed the role of hyperuricemia as a component of the metabolic syndrome. 

This observation was forgotten in the 20th century, but strong evidences during the last 

two decades reintroduced the hyperuricemia in the complex cocktail of cardiometabolic 

factors. Hence, large epidemiologic studies have shown that hyperuricemia is 

associated with an increased incidence of cardiovascular events, specifically coronary 

heart disease. Lately, hyperuricemia has been also correlated to metabolic syndrome 

[133], also in Mediterranean population [134]. It has been also demonstrated an 

increased mortality rate [135], mainly in patients with heart failure, due to a decrease in 

the tissue perfusion.  It is unclear if hyperuricemia has a causal effect, but it may 

develop HBP and oxidative stress, or is simply a marker for HBP, dyslipidaemia, and 

diabetes [136]. 

Lehninger described uric acid as the end product of purine degradation, nucleic acids 

and nucleoproteins [133, 137]. Hyperuricemia is a frequent metabolic disorder in 

general population [138]. The observed prevalence in studies of Tecumseh and 

Framinghan was about 5%. Uric acid overload is usually caused by an unhealthy 

lifestyle and the progression from asymptomatic hyperuricemia to urate deposition and 

advanced gout with organ damage varies among individuals.  

Body Mass Index (BMI) has been identified as the best predictor for levels of uric acid, 

showing a strong positive correlation [139]. Uric acid overload has been considered as 

a component of the called "insulin resistance syndrome " or "Syndrome X" or Metabolic 

Syndrome (MetS). Hyperuricemia is also associated with the consumption of drugs 

most frequently the use of diuretics and antihypertensives. Therefore, before 

considering hyperuricemia as a component of the syndrome, some authors 

recommend to rule it out as "secondary hyperuricemia". Hyperuricemia has been linked 

to cardiovascular pathology such as myocardial infarction, stroke, hypertension and 

heart failure [140, 141].  

Uric acid can change its chemical activity of antioxidant to prooxidant when entering 

the atherosclerotic plaque [142]. Within the plaque, the uric acid contributes to oxidize 
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lipoproteins in patients with metabolic syndrome and diabetes mellitus type 2. The 

association between uric acid and MetS promotes sinergically the renin angiotensin 

aldosterone system activation. Angiotensin II is a potent inducer of NADPH oxidase, 

which increases NADPH, this in turn increases the reactive oxygen species (ROS) in 

the arterial intima-media layers [143]. Meanwhile, hyperinsulinemia increases the renal 

reabsorption of urate. 

The association between MetS and increased uric acid levels was highlighted by 

Professor Reaven (Hayden, 2004), discoverer of the syndrome-X, then called 

metabolic syndrome. Lately uric acid levels have been correlated to Mets, insulin 

resistance and C3 complement in Japanese population [144]. In an experimental model 

of MS developed in rats an increase of uric acid in the plasma, concomitant with 

increased triglycerides, hyperinsulinemia and hypertension was observed [145]; as well 

as, increased reactivity of the left ventricular myocardium together with endothelial 

dysfunction expressed as attenuation vasodilator response to acetylcholine in aortic 

rings according to Rosa, et al. in 2005. 

The mechanisms that can raise uric acid in hypertensive are as follows: first, reduced 

blood flow, second, microvascular local ischaemia, third, increased lactate production 

by the aforementioned ischemia, which blocks the secretion of urate the proximal 

tubule, increased degradation of RNA and DNA which increases the uric acid synthesis 

by xantine-oxidase protein [146]. All this increases ROS production neutralizing 

endothelial nitric oxide and produce vascular endothelial dysfunction. Treatments to 

reduce uric acid concentrations, allopurinol and oxypurinol (inhibitors of xanthine 

oxidase), reverse the reduced synthesis of endothelial nitric oxide in patients with heart 

failure and T2DM. Despite controlling blood pressure with medication, hyperuricemia is 

significantly associated with increased incidence of cardiovascular events. The DASH 

diet (Dietary Approach to Stop Hypertension) not only reduces blood pressure but also 

the the plasma concentration of uric acid and its co-morbidities [147]. 

 

2.7.2.  Hyperferritinemia  

 

Hyperferritinemia is associated with inflammatory processes such as metabolic 

syndrome [148], chronic rheumatological disorders, chronic anemia or 

hemochromatosis, iron overload after transfusions, chronic non-alcoholic liver disease, 
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hemochromatosis and other hereditary diseases. Therefore, it is undisputed its 

relationship with the inflammatory generation of atherosclerotic plaques and 

consequently with markers of the inflammatory cascade and acute phase reactants. 

Iron overload in vital organs, even in mild cases, increases the risk of atherosclerosis 

[149], dyslipidaemia [150], heart failure [151], metabolic syndrome[152], myocardial 

infarction [150], hypothyroidism [153], hypogonadism [153], osteoarthritis, 

osteoporosis, liver disease (cirrhosis), numerous symptoms and in some cases 

premature death. Mismanagement resulting in iron overload can accelerate 

neurodegenerative diseases such as Alzheimer's, early onset Parkinson's, 

Huntington's, epilepsy and multiple sclerosis [154]. 

The liver is the major reservoir of iron. Excess stored iron in the liver causes 

hyperinsulinemia via both decreased insulin extraction and impaired insulin signalling. 

On top of this hyperinsulinemia encourages and increase of iron deposition as a 

positive feedback [155]. Iron deposits within hemosiderin in different cells, including b-

cells, induce apoptosis and impaired response to insulin in the liver, muscle, and 

adipose tissue [156]. Subsequently, iron overload leads to diabetes by progressively 

reducing their β-cell function. Disruption of iron homeostasis, either in excess or in 

defect, results in impaired adipocyte differentiation and may affect insulin action by 

modulating the degree of adiposity. Iron-enriched diets reduce the adipocyte size and 

its insulin sensitivity [157]. 

The relationship between hyperferritinemia and various cardiovascular risk factors has 

been shown in multiple studies. A long list of metabolic risk factors has been correlated 

to iron overload such as diabetes mellitus [116], central obesity [158], metabolic 

syndrome [152], hypertriglyceridemia and dyslipidaemia [159], hepatic steatosis [160], 

insulin resistance [161], damage vascular [162], lipid metabolism disorders [163] 

among others. Increased transferrin saturation due to iron overload showed a dose-

dependent association with an increased total mortality [164]. Excess iron store 

contributes to the pathogenesis of MetS, T2DM, entothelial dysfunction and oxidative 

damage [165]. 
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2.7.3.  New cardiovascular biomarkers 

 

Multiple cardiometabolic markers have been involved during the last two decades in 

the complex process of atheroma formation. Some of them were used in the daily 

clinical activity of the Endothelium and Cardiometabolic Medicine Unit (ECMU). These 

available data represented an excellent opportunity to compare the C3 complement 

activity with the new cardiometabolic markers participation in the cardiovascular 

pathology development. 

 

2.7.3.1. Inflammatory biomarkers: Adiponectin TNFα IL6 IL10 

 

Inflammation, already explained earlier on in this chapter, was widely known as to play 

a key role in the development and progression of cardiovascular diseases and obesity 

has been linked to many proinflammatory and cardiovascular conditions. It has also 

been observed that adipokines play an important role in systemic and local 

inflammation and adipose tissue have a more important role than previously thought in 

the pathogenesis of cardiometabolic syndromes.  Adipokines (such as leptin, TNF-α, 

PAI type 1, IL-1β, IL-6, and IL-8) are proinflammatory and increased in cardiometabolic 

pathologies. As Inflammatory markers and inmunomodulatory factors TNF-α and 

adiponectin intersect with the inflammation associated with both cardiovascular and 

metabolic pathologies. 

Tumour necrosis factor-α (TNF-α): 

TNF-α as part of the inflammatory cascade, plays a key role in the formation of 

atherosclerotic lesions [166]. Among many inflammatory markers TNF-α emerged as a 

pleiotropic cytokine that influences intermediary metabolism. TNF-α has 

proinflammatory properties, which play crucial roles in the innate and adaptive 

immunity, cell proliferation, and apoptotic processes. Tumour necrosis factor-α (TNF-α) 

has been correlated with chronic inflammatory conditions where a shift toward a 

proatherogenic lipid profile and impaired glucose tolerance occurs and worsen 

prognosis [167]. Adipose tissue secretes inflammatory cytokines, such as TNF-α, which 

in turn contribute to impaired glucose tolerance, insulin resistance, and T2DM. The 

TNF-α cytokine is produced by different kind of cells (macrophages, monocytes, T-
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cells, smooth muscle cells, adipocytes, and fibroblasts). In animal models, 

administration of TNF-α led to severe impairment of glucose tolerance and insulin 

sensitivity [168]. TNF-α has emerged as an important contributor to the development of 

atherosclerotic lesions, by promoting the expression of adhesion molecules on 

endothelial cells, recruitment and activation of inflammatory cells and initiation of the 

inflammatory cascade inside the arterial wall. Has been demonstrated that TNF-α 

directly interferes with the metabolic pathways of TGs and cholesterol and the 

development of dyslipidaemia, insulin resistance, metabolic syndrome and 

cardiovascular diseases [169].  

Secondly, TNF-α is able to induce proatherogenic changes in lipoproteins and 

influences the lipid metabolism. This action has been seen in patients with acute and 

chronic inflammatory disorders, such as sepsis and AIDS. Both pathologies, in which 

increased TNF-α concentrations occur, have been shown to have increased TG 

concentrations.  Also, the administration of TNF-α and endotoxin (LPS) to mice and 

humans resulted in an acute TNF-α induced hypertriglyceridemia in several studies. 

The effects of TNF-α on plasma triglycerides concentration occur through effects on 

both adipose tissue and liver triglycerides metabolic pathways. Besides increasing the 

concentration of TG-rich VLDL particles, TNF-α may also alter their composition, 

making them proatherogenic[170]. TNF-α is also involved in the cholesterol metabolism 

although the mechanisms are nor clear, high concentrations of TNF-α have been 

correlated to a reduction of HDLc concentrations and may decrease hepatic cholesterol 

catabolism and excretion [171]. 

Finally, TNF-α, by decreasing insulin sensitivity, interferes in the glucose 

metabolis[172]. Obesity has been proved as a state of low-grade chronic inflammation 

with increased concentrations of C-reactive protein, IL-6, and other inflammatory 

markers in plasma. Consequently other authors investigated the interaction between 

inflammation, TNF-α and diabetes. In 1993, TNF-α was the first inflammatory marker 

demonstrated to be involved in the pathogenesis of insulin resistance [173]. It was 

demonstrated that adipocytes became insulin-resistant when exposed to TNF-α by 

inhibiting the insulin-stimulated tyrosine kinase activity of the insulin receptor [174]. The 

TNF-α also stimulates lipolysis in the adipose tissue, thus increasing the plasma 

concentration of the free fatty acids that eventually contributes to the development of 

the insulin-resistant phenotype. All these factors contribute to the fact that TNF-α was 

also correlated to endothelial dysfunction [175]. 
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Adiponectin: 

Adiponectin is a cytokine, “adipokine”, produced almost exclusively in adipose tissue. 

Its concentrations are higher in healthy individuals and decline in pathological and 

inflammatory conditions such as diabetes, hypertension, obesity and cardiovascular 

pathologies inversely to TNF-α levels [176, 177]. Low adiponectin levels are inversely 

related to high levels of inflammatory markers, such as C-reactive protein (CRP), in 

patients with obesity, type 2 diabetes, and cardiovascular diseases [178].  

 

Fig. 2.5: In healthy individuals, adiponectin maintains anti-inflammatory properties. 

Cardiometabolic pathologies where adiponectin levels decrease result in pro-

inflammatory signalling and exacerbation of disease. 

Adiponectin inhibits the expression of TNF-α in adipocytes, and likewise, both TNF-α 

and IL-6 inhibit the production of adiponectin [173]. Negative regulation of adiponectin 

expression also results from hypoxia and oxidative stress . In cardiometabolic patients, 

adiponectin levels are decreased, and the ability of adiponectin to inhibit the 

inflammatory processes becomes limited. Hypoadiponectinemia also contributes to 

insulin resistance, impaired endothelium-dependent vasodilatation, impaired ischemia-

induced neovascularization, hypertension progression, and diastolic heart failure [70, 

174-176].  

Thus, adiponectin mediates protective effects cardio-metabolic and vascular disease 

presumably by its anti-inflammatory actions and protects the heart against ischemia-

reperfusion injury through its ability to suppress myocardial inflammation and apoptosis 

[177]. 
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Interleukin-6 (IL-6): 

IL-6 is a multifunctional signalling cytokine which modulates responses to 

cardiovascular diseases and an independent indicator of vascular homeostasis. IL-6 is 

produced by a wide variety of vascular cells, including macrophages, lymphocytes, 

fibroblasts, endothelial cells and smooth muscle cells, and its secretion is up-regulated 

in response to inflammation, angiotensin II, oxidative stress, endothelial damage and 

vascular injury. IL-6 upregulates AT1R gene expression, it leads to increased 

angiotensin-mediated vasoconstriction and ROS production, and thereby plays an 

important role in mediating endothelial dysfunction. Consistent with this idea, it was 

observed that IL-6 deficiency protects against angiotensin-induced endothelial 

dysfunction [179, 180].  

As an inflammatory factor, IL-6 promotes macrophage differentiation, growth arrest and 

eventual apoptosis. IL-6 stimulation causes these cells to increase in size, develop 

irregularly shaped nuclei, larger vacuolar cytoplasm and become surface adherent 

inducing thrombosis. Through direct membrane receptor or trans-signaling modalities, 

IL-6 has diverse actions including modulating endothelial-dependent vasorelaxation, 

monocyte differentiation, platelet function, pro-coagulant state, myocardial hypertrophy, 

and effects on obesity and intermediary metabolism [181]. 

IL-6 levels are positively correlated to cardiovascular risk and myocardial re-infarction, 

obesity, diabetes, metabolic syndrome and inversely correlates with AHA functional 

classification, ejection fraction, and survival [182]. IL-6 has actions locally in the vessel 

wall in coronary atherosclerotic plaques interacting with angiotensin-stimulated vessels. 

Here, IL-6 is predominantly expressed by fibroblasts and activated macrophages in the 

adventitial and endothelial layers signalling pathway during very early phases of 

atherosclerosis [183]. 

 

Interleukin-10 (IL-10): 

. IL-10 has been considered the prototype of anti-inflammatory interleukins [184]. 

Contrarily to the previously mentioned pro-inflammatory cytokines, IL-10 acts as an 

endothelial protector. Its effector functions include a shift of T-cell cytokine expression, 

down-regulation of the production of pro-inflammatory cytokines by macrophages and 

represent the autocrine negative feed-back and cross-talk inhibition of cytokine 

signalling. IL-10 inhibits the induction of the pro-inflammatory cytokines such as TNFα 

and IL-6. IL-10 also enhances B cell survival, proliferation, and antibody production. 
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Moreover, IL-10 reduces vascular injury by its paracrine effect mediated by modulation 

of immune function by reduction in inflammatory gene expression [185].  

IL-10 is expressed in human atherosclerotic plaque reducing atherogenesis and 

improving the stability of plaques. Increased IL-10 serum levels are associated with 

improved systemic endothelial vasoreactivity in patients with coronary artery disease 

[186]. Besides this, IL-10 has been linked to myokines showing that exercise promotes 

an increase in circulating levels of IL-10 and fosters an environment of anti-

inflammatory cytokines. Therefore, IL-10 levels have been inversely associated to 

metabolic syndrome, vascular diseases, obesity, diabetes, fatty liver and insulin 

resistance [187]. 

 

Lipoprotein(a) (Lp(a)): 

As cardiovascular risk marker, Lp(a) was a lipoprotein subclass discovered by Berg in 

1963. Genetic and epidemiologic studies have identified Lp(a) as a risk factor for 

cardiovascular diseases.  Lp(a) consists of an LDL-like particle and the specific 

apolipoprotein(a), which is covalently bound to the apoB of the LDL-like particle. The 

mechanism and sites of Lp(a) catabolism, but the kidney has been identified as playing 

a role in Lp(a) clearance from plasma and Apo(a) is expressed by hepatocytes [188]. 

Lp(a) as atherogenic carrier attracts inflammatory cells to vessel walls, reduces 

plasmin generation and leads to inflammation and smooth muscle cell proliferation. Its 

association with proteins of the acute phase response has been demonstrated [189]. 

Among its main functions, Lp(a) contributes to the process of atherogenesis. The 

macorphages low density lipoprotein receptor mediates de Lp(a) catabolism via 

endocytosis and lysosomic degradation leading to macrophagic accumulation of lipids. 

Lp(a) promotes endothelial dysfunction via selective impairment of vasodilation, binding 

extracellular matrix components and oxidizing LDLc [190]. Lp(a) also leads to 

thrombogenesis due its structural similarity to plasminogen stimulates PAI-1 secrection 

[191]. Moreover, Lp(a)‟s competitive inhibition with fibrinogen reduces fibrinolysis. Lp(a) 

also binds to macrophages via a high-affinity receptor that leads to foam cell formation 

and the deposition of cholesterol in atherosclerotic plaques. 

High Lp(a) has become a new modest independent predictor of atherosclerosis, 

especially myocardial infarction, and a coagulant risk of plaque thrombosis indicator 

after adjustment for traditional cardiovascular risk factors [192]. Lp(a) is also associated 

with unstable angina and complex coronary lesions, suggesting a possible role in 
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plaque rupture and coronary thrombosis. In patients with an acute coronary syndrome, 

Lp(a) concentrations predict increased risk of cardiac death [193]. The European 

Atherosclerosis Society recommended to measure Lp(a) levels in patients with 

moderate or high cardiovascular risk. 

 

 

2.7.3.2. Oxidative stress markers: TAP, homocysteine. 

 

Total antioxidant capacity of plasma (TAP): 

Oxidant factors, such as superoxide anion (O2-) and hydrogen peroxide, are produced 

in the body as a consequence of normal aerobic metabolism. These oxidant molecules 

interact with reactive oxygen species (ROS). Under normal physiologic conditions, the 

production of oxygen free radicals and peroxides is balanced by a system of 

antioxidants preventing oxidative damage [194]. The plasma capacity to scavenge 

ROS is measured by the TAP.  

At the cellular level, enzymatic antioxidants, such as superoxide dismutase and 

catalase, convert ROS to oxygen and water. Several non-enzymatic antioxidants, such 

as vitamins E and C, also tackle free radicals. In chronic inflammation, atherosclerosis, 

the free radicals are presented in excess leading to the pathologic condition of 

oxidative stress [195]. Measurement of the combined enzymatic plus non-enzymatic 

antioxidant capacity of plasma  provides an indication of the overall capability to 

counteract reactive oxygen species (ROS), resist endothelial oxidative damage and 

combat oxidative stress. 

TAC has been inversely related to the presence of obesity diabetes, metabolic 

syndrome insulin resistance, intima-media thickness and cardiovascular diseases [196-

198]. Antioxidants inhibit lipid peroxidation and therefore play a protective role in the 

development of cardiovascular disease by preventing the formation of early 

atherosclerotic lesions. Plasma concentrations of individual antioxidants could be 

measured separately in laboratory, but these measurements are time-consuming and 

costly. Therefore, since antioxidant effects of antioxidant components of plasma are 

additive, several methods have been developed to determine the total antioxidant 

plasma status [199].  
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Homocysteine (Hcy): 

Hyperhomocysteinemia has been described as high levels of Hcy in blood. 

Etiologically, hyperhomocysteinemia is the consequence of a genetic disorder, certain 

drugs or related to nutritional deficiency in vitamins B6, B9 and B12. Hcy 

concentrations can be reduced by vitamins supplements.  

Hyperhomocysteinemia has been associated with cardiovascular pathology. Hcy has 

atherogenic and prothrombotic properties, promotes intimal thickening, elastic lamina 

disruption, smooth muscle hypertrophy, marked platelet accumulation, and the 

formation of platelet-enriched occlusive thrombi [200]. Supplements with folic acid 

lower Hcy concentrations and reduce endothelial dysfunction [201] and oxidative stress 

[202, 203]. Hyperhomocysteinemia screening has been recommended in Canada for 

people at moderate CVD risk. 

Hcy promotes vascular injury by recruiting leukocytes, up-regulating pro-inflammatory 

interleukines expression and secretion[204], interacting with LDLc and macrophages 

activation which release the lipids into atherosclerotic plaques  and increasing smooth 

muscle cell proliferation and enhances collagen production [205]. Hcy is also a pro-

thrombotic factor inhibiting plasminogen activation, heparin sulphate and endothelium-

mediated platelet-aggregation inhibition [206]. Evidence shows that 

hyperhomocysteinemia is a risk factor for venous thromboembolic disease (pulmonary 

embolism and deep vein thrombosis) [207, 208].  

 

Thiobarbituric acid reactive substances (TBARS)  

TBARS are formed as a byproduct of lipid peroxidation, which can be detected by the 

TBARS assay using thiobarbituric acid as a reagent. The TBARS assay has been 

assessed as an indicator of oxidative stress in a multiple cardiovascular disease 

models [209].  

In vivo, plasma TBARS concentration can be normalized through supplementation with 

various antioxidants [201]. TBARS were found to be elevated in the serum of cigarette 

smokers, patients with documented coronary artery disease and carotid atherosclerotic 

plaque progression. Serum levels of TBARS could predict major cardiovascular events 

and the need for a major vascular procedure independently of traditional risk factors. 
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Animal and human studies therefore support a potential role of lipid oxidation in 

predicting the progression of CVD and response to therapies [210]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. HYPOTHESIS AND OBJECTIVES 
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3. Hypothesis and objectives 

 

3.1 Hypothesis 

C3 complement levels are positively correlated to higher cardiovascular risk and 

endothelial dysfunction in patients referred to cardiometabolic secondary care 

 

3.2 Objectives 

Primary  

1. Assess the parallelism between C3 complement levels and cardiovascular risk 

score amongst the Spanish population (REGICOR).  

 

Secondary  

1. Assess the role of C3 complement as a counterpart of the inflammatory 

cascade in correlation to other inflammatory markers. 

2. Study the correlation of C3 levels with insulin resistance as measured by the 

HOMA model. 

3. Evaluate the C3 levels‟ correspondence with metabolic syndrome criteria. 

4. Examine the C3 convertase measurement parallelism with classical 

cardiovascular factors in cardiovascular risk prognosis. 

5. Analyse the role of C3 complement as an oxidative stress marker and its 

interrelationship with other oxidative stress markers. 

6. Appraise the correspondence between C3 complement measurements with 

endothelial damage biomarkers. 



UAH, PhD program: D234 Medicine  Rodriguez-Guerrero, A 

72 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. MATERIAL AND METHODS  
 



 

 



C3 convertase as a novel biomarker of cardiovascular pathology, insulin resistance and endothelial dysfunction  

75 

 

4. Material and methods 

 

4.1. Study design  

An observational, cross-sectional, retrospective study was designed. For the initial 

database, we selected all participants who were referred to secondary cardiometabolic 

care at the ECMU during their first visit between December 2002 and September 2012 

and had their C3 complement levels measured. 

This research was designed to evaluate the aforementioned objectives. The study 

sample population was selected from an original cohort of n=776 according to the 

exclusion objectives (figure 5.2). 

Study design and population diagram: 

  

Figure 4.1: Study design inclusion and exclusion criteria’s flow chart obtaining the 

baseline population sample. 
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4.2. Study population 

 

Our cohort evaluated consisted of patients from the Endothelium and Cardiometabolic 

Medicine Unit (ECMU) at Ramon y Cajal University Hospital (Madrid, Spain). 

The random sample included Spanish individuals from the province of Madrid referred 

to cardiometabolic secondary care from primary care, plus voluntary healthy first-

degree family members of these cardiovascular pathology patients. The group of 

patients referred to secondary care comprises a heterogenic cluster of cardiometabolic 

pathologies and healthy individuals including the following: diabetes, dyslipidaemia, 

hypertension, obesity, MetS, first-degree family history of early coronary disease 

(parents or siblings), coronary, cerebral or peripheral established atherosclerosis, 

precocious menopause (<40 years), hyperferritinemia (exception: alcoholism in activity) 

and voluntary healthy family members.   

All the individuals studied were of Spanish and South American origin, both Caucasian.  

 

Exclusion criteria  

i) Subjects under age (younger than 18 years old).  

ii) Individuals having CRP values >15 mg/L, given that extreme CRP values are 

usually not associated with cardiometabolic disorders [211].  

iii) Patients with a history of current infection in the month preceding the study, such 

as acute hepatitis. 

iv) Chronic systemic inflammation or rheumatologic chronic diseases were not elicited, 

such as renal impairment with creatinine levels higher than 2 mg/dl, chronic 

rheumatologic disease, HIV, active cancer under treatment protocol, kidney, 

pulmonary or liver disease. 

v) Type 1 diabetes and LADA, because of their different genetic characteristics, 

metabolic and cardiovascular morbidity behaviour. 

vi) Participants with previous or current cardiovascular event such as history of 

myocardial infarction, angioplasty, coronary artery bypass or cerebrovascular 

ischemia/stroke, symptomatic congestive heart failure, atrial flutter or unstable 

angina, because the aim of this study is the primary prevention of cardiovascular 

events.  
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vii) Subjects with outlier C3  complement values, according to Reed‟s theory, 

establishing 1/3 ratio as a cut-off value, where observed values smaller than one-

third of the range R, to avoid bias from outlaying observations [212].  

viii) Additionally, any other condition that could interfere with study participation, such 

as pregnancy, alcohol or drug abuse and severe neurological or mental disorder. 

After the inclusion and exclusion criteria were applied, the resulting sample contained 

374 participants in primary cardiovascular prevention, free from cardiovascular events. 

 

4.3. Ethics 

The study conformed to the principles embodied in the Declaration of Helsinki 

(Appendix 10.2) and conducted in accordance to the research activity within the clinical 

routine of the ECMU. The researches at the unit follow the ethical guidelines of Good 

Clinical Practice (GCP) of the International Committee on Harmonization (ICH) and the 

law Biomedical Research (14/2007 of 3 July). Verbal informed consent was obtained 

from all study participants after having listened to an explanatory note about the 

ongoing scientific researching characteristics of the service before study enrolment.   

Following the 15/1999 Spanish Personal Data Protection Law, the patents included in 

the study were informed of their right of access, rectification and deletion of data. In 

case of publication of the study results, the identity of the participants would not be 

disclosed. 

Participants in this study did not receive any form of compensation for their 

participation. There are no declared conflicts of interest. 

 

4.4. Measurements of variables 

 

4.4.1. Demographic variables 

In both studies, the participants‟ age was measured in years and gender was divided 

between males and females.  
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4.4.2. Anthropometric parameters 

 

i) Weight was measured without shoes in light indoor clothes using a scale in 

kilograms (Kg).  

ii) Waist circumference was measured with a tape (Roche LI95 63B 00; Roche 

Diagnostics, Mannheim, Germany), with the subject standing and wearing only 

underwear, at the level midway between the lower rib margin and the iliac crest 

(centimetres).  Waist circumference high risk threshold for high risk population 

followed the Regicor and ATP-III recommendations >102 cm for male patients 

and >88 cm for female patients. 

iii) Height was measured in centimetres (cm) using an upright scale which 

consisted of a scale platform, a height scale, a height rod and a balance scale 

validated by the European Community standards. 

iv) Body mass index (BMI) was calculated as weight divided by height squared, in 

kilograms per square meter (kg/m2). BMI measurements were divided into 

normal weight (18-25), overweight (25-30) and obese (>30), according to the 

WHO recommendations. 

 

4.4.3. Haemodynamic parameters 

 

i) Blood pressure (BP) was measured in the sitting position on the right arm, and 

the mean of 2 recordings at least 3 minutes apart was recorded with OMRON 

705 CP device, after 5 min of rest in the seated position. Each measurement of 

BP included systolic and diastolic blood pressures (SBP and DBP), considering 

the threshold for high blood pressure measurements >135/85 mmHg according 

to the ATP-III recommendations.  

ii) Mean Arterial Pressure (MAP) describes the average blood pressure of an 

individual during a single cardiac cycle. It is determined from the following 

formula using the diastolic (DBP) and systolic (SBP) blood pressures previously 

measured: MAP=DBP + 1/3 (SBP-DBP). 

iii) Pulse pressure was calculated as the result from the difference between the 

systolic and diastolic pressure readings.  

iv) Heart rate (HR) was recorded with OMRON 705 CP device, after 5 min of rest 

in the seated position on the right arm. 
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4.5. Personal Medical History (PMH) 

 

 

PMH including age (years), gender, previous diseases and allergies, 1st-degree family 

history of CVD (parents or siblings before the age of 55 years for men and 65 years for 

women), as well as physical inactivity (< 90 min/week of walking), smoking status, 

treatments and surgeries were recorded at baseline examination by a doctor at the 

ECMU during the first visit. Self-reported cigarette smoking status was categorized into 

non-smokers, former smokers (more than three months smoking-free) and current 

smokers. 

 

 

4.6. Laboratory measurements and formulas 

 

Overnight fasting blood samples were processed within 90 min of blood collection. 

Then, fasting serum concentrations of total cholesterol, triglycerides, HDL cholesterol, 

fasting glucose, creatinine and uric acid were measured (Hitachi Automatic Analyser).  

The table 4.1 lists the measured biochemical parameters, units and method of measure 

at the Ramon y Cajal hospital general laboratory. 

LDL-cholesterol was estimated indirectly with the Friedewald equation. The LDLc was 

analysed directly by the laboratory when chylomicrons were present and when plasma 

triglyceride concentration exceeded 400 mg/dL to avoid the limitations of the 

Friedewald equation. 

The homeostatic model assessment score was calculated following the given formula: 

HOMA score = Fasting insulin (µU/mL) x fasting plasma glucose (mmol/L)/22.5. 

The cardiovascular laboratory is located at the service of The Endothelium and 

Cardiometabolic Medicine Unit (ECMU). The ECMU, which is part of the Internal 

Medicine Service of the Ramón y Cajal Hospital, was conceived in 1998, the same 

year that the first researchers on endothelium pathology were awarded with the 

medicine Nobel Prize. The ECMU is a unit with clinical and research activity [213]. 
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Currently the unit is composed of a multidisciplinary group of professionals, doctors, 

nurses, nutritionists, geneticists, biologists, biochemists and engineers.  

General laboratory. Biochemistry parameters Units Measurement method 

CRP mg/L Behring nephelometer 

Albuminuria mg/24h Nephelometry 

Aldosterone ng/dL RIA Inmunotech 

Creatinine mg/dl HITACHI autoanalyser 

Complete Blood Count  

(polimorphonuclear leukocytes and monocytes) 
n x 103/µl GEN-S Coulter 

HDLc mg/dl HITACHI autoanalyser 

Triglycerides mg/dl HITACHI autoanalyser 

Fasting glucose mg/dl HITACHI autoanalyser 

Ferritin  µg/dl MSSA 

Fibrinogen mg/dl Behring System 

GFR, glomerular filtration rate 
ml/min per 

1.73 m2 

Cokrofl-Gault  

equation. HPLC 

A1c % 
HPLC (High pressure 

liquid chromatography) 

LDLc mg/mL Friedewald formula 

Uric acid mg/dl HPLC 

Table 4.1: Biochemistry parameters measured at the hospital general laboratory, units 

and methodology.  

Vascular damage is assessed in daily clinical practice by: determining 22 

cardiometabolic risk biomarkers measurements at ECMU laboratory (inflammation, 

endothelial dysfunction, oxidative stress, chemokines and adhesion biomarkers), 

general blood indicators measured at the hospital general laboratory,  blood pressure 

and glycaemia ambulatory monitoring, five non-invasive hemodynamic examinations 

(SphygmoCor, EndoPat, DRT4, FMD-Celermajer, transcranial Doppler), indicators of 

atherosclerosis AAI (ankle arm index) and AIT (arterial intima thickness) and the 

evaluation of cardiorespiratory fitness. 

At the ECMU laboratory, focussed in cardiovascular and metabolic risk, whole blood 

was collected into anticoagulant-treated tubes (e.g., EDTA-treated or citrate-treated). 

Blood samples were clotted and centrifuged prior to testing. The cells where removed 
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from plasma by centrifugation for 10 minutes at 1000 –2000 × g using a refrigerated 

centrifuge. The platelets were depleted by centrifugation for 15 minutes at 2000 × g.  

The supernatant plasma was transferred into 0.5mL aliquots using a Pasteur pipette. 

The aliquots were stored at -80ºC for assessment of biomarkers. Biomarkers were 

measured using commercial cytokine enzyme-linked immunosorbent assays.  

The complete list of biomarkers measured in daily practice in the ECMU laboratory and 

used in this research is displayed in more detail in the table 4.2. 

ECMU laboratory 
Biochemical parameters 

Units Measurement method 

Adiponectin µg/ml Elisa Thermofisher 

Antioxidant capacity of plasma(TAC) μM  Copper Reducing Equivalents. 
Colorimetry 

Complement C3 mg/dl Nephelometry 

Complement C4 mg/dl nephelometry 

Homocysteine (Hcy) µM/L IMX, Abott 

Interleukin-6 (IL-6) pg/ml Chemiluminescent /Immunometric 
Assay. Immulite.DCP Labs 

Interleukin-10 (IL-10) pg/ml Chemiluminescent /Immunometric 
Assay. Immulite.DCP Labs 

Insulin (in blood) µU/mL Inmunometric assay. Inmulite.DCP 

Lipoprotein-a (Lpa) mg/dL NLatex Lp(a) Reagent 

Plasminogen activator inhibitor-1 (PAI-
1) 

ng/ml ELISA Meranini 

Thiobarbituric acid reactive 
substances (TBARS) 

μM/L Cayman 

Tumoral necrosis factor (TNFα) pg/ml Chemiluminescent /Immunometric 
Assay. Immulite. DCP Labs 

Tissue Type Plasminogen Activator 
(tPA) 

pg/ml ELISA Eiboscience 

VCAM ng/ml ELISA Menarini 

 

Table 4.2: parameters measured at the ECMU laboratory on clinical routinely basis, 

units and used methods. 

 

C3 complement levels in plasma, main variable of this research, were measured from 

the stored aliquots by human competitive ELISA kit. A C3 complement specific 

antibody was pre-coated onto well plates and blocked. Standard plasma samples were 

added to the wells which included C3 complement detection proteins. The plates were 

washed with buffer solution. Streptavidin-Peroxidase Conjugate was added and 
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unbound conjugates were washed away with a second wash buffer. Chromogen 

solution was added and catalysed by Streptavidin-Peroxidase enzymatic reaction 

producing visible blue colour that changes into yellow after adding acidic stop solution. 

The density of yellow coloration was inversely proportional to the amount of C3 

complement captured in plate. The procedure is summarized in the figure 4.2. 

 

 

Figure 4.2: Summary of the nephelometry procedure to measure C3 complement 

concentrations by ELISA. Modified from Abcam ELISA kit manual. 

 

4.6.1. Inflammatory biomarkers measurement methods 

Inflammatory markers, such as PCR and fibrinogen, provide us with information about 

the degree of vascular inflammation. Beside the classical inflammatory markers, 

adipokines and cytokines (IL-6, adiponectin, IL-10hs and TNF-α) are released by the 

fat cells and / or vascular stroma in close contact with fat. These new inflammatory 

markers report the degree of inflammation of active adipose tissue (abdominal obesity). 
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Adiponectin and IL-10 are considered anti-inflammatory, anti-aggregant and anti-

hyperglycaemic markers. However, TNF-α and IL-6 are considered pro-inflammatory, 

pro-aggregative and hyperglycaemic markers. 

Adiponectin concentration in plasma aliquots is measured by enzyme-linked 

immunosorbent assay (Thermofisher® ELISA kit). The ELISA kit is based on solid 

phase sandwich Enzyme Linked-Immuno-Sorbent Assay.  

An antibody against the specific antigen is coated onto the wells of the microtiter strips. 

During the first incubation, samples are added to the coated wells to allow the antigen 

from the samples to bind to the immobilized (capture) antibody. After washing, an 

antigen-specific human antibody is added that binds to the immobilized antigen 

captured. After removal of excess detection antibody, a horseradish peroxidase 

enzyme is added. This binds to the detection antibody to complete the four-member 

sandwich. After a second incubation and washing to remove all the unbound enzyme, a 

stabilized substrate solution is added, which is acted upon by the bound enzyme to 

produce colour. The intensity of this coloured product is directly proportional to the 

concentration of antigen present in the original specimen. This process is illustrated in 

the figure 4.3.  

 

Figure 4.3: Pictogram of the adiponectin concentration measurement procedure by 

ELISA sandwich method. 

 

Interleukin-6 and interleukin-10 concentrations (IL-6, IL-10) were measured by an 

immunometric method. DPC IMMULITE immunoassay system uses enzyme-amplified 

chemiluminescence chemistry for the detection of IL-6. INMULITE device comprises 

several subsystems to process the assay tube minimizing human errors. After loading 
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a carousel with alkaline phosphatase-labelled reagents, followed in each case by an 

assay tube, the assay tubes are transferred to the incubation carousel. The alkaline 

reagent initiates the reaction and the tubes are intermittently agitated during incubation. 

After incubation, the assay tubes are shuttled to the wash station. A chemiluminescent 

substrate for alkaline phosphatase is added and the tubes are transferred to the 

luminometer. The light output is measured with a photomultiplier tube in the photon-

count. Counts are converted to analysed concentration by use of stored standard 

curves.  

Tumoral necrosis factor (TNF-α) concentration in plasma was measured by 

chemiluminescent-immunometric assay (Immulite® DCP Labs ELISA Kit) following the 

procedure explained in the figure 4.4. 

 

 

 

Figure 4.4: Summary of the laboratory technical procedure steps to measure TNF-α 

concentration, modified from DCP Labs manual. 
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4.6.2. Endothelial damage measurement methods 

Endothelial peptides values, such as PAI-1 and TPA, are related to endothelial damage 

by any of the classical cardiovascular risk factors (hypertension, smoking, 

dyslipidaemia, hyperglycaemia, etc). Chemokines and adhesion molecules, such as 

VCAM-1, were also activated in the early stages of endothelial dysfunction and 

responsible for the infiltration of the monocyte into the wall. Meanwhile, nitric oxide 

measurement was considered a controversial technique for this research because its 

concentrations were not reliable due to its instability in frozen samples. 

PAI-1 antigen (Imulyze) was assayed by ELISA using kits from Biopool-Menarini. PAI-1 

is synthesized and secreted by many tissue and cell types. Free PAI-1 is relatively 

unstable in its active form and readily converts into a latent, inactive form; however, 

binding of vitronectin to PAI-1 stabilizes the active form. The active form of PAI-1 binds 

tightly with tPA in a 1:1 ratio. After the formation of an initial docking complex, the 

proteases cleave the reactive central loop of PAI-1 to form a stable, covalent complex, 

resulting in the inactivation of the targeted serine protease. The ELISA protocol is 

similar to the ELISA kits for other variables explained above. 

Tissue Type Plasminogen Activator (TPA) in plasma was also measured by an 

ELISA kit. Specific antibodies were pre-coated onto the well plates and blocked. 

Streptavidin-peroxidase conjugate was added and unbound conjugates were washed 

away by buffer solution. TMB is catalysed by streptavidin peroxidase to produce a blue 

colour product that changes into yellow after adding acidic stop solution. The density of 

yellow coloration was directly proportional to the amount of TPA captured in plate. 

Vascular cell adhesion molecule-1 (VCAM-1) human solid-phase sandwich ELISA 

Kit quantified natural and recombinant soluble VCAM-1 in human serum. VCAM-1 is a 

member of the immunoglobulin gene superfamily. ELISA technical procedures were 

similar the ELISA techniques explained above. 

 

4.6.3. Oxidative stress measurement methods  

The increase of oxidative stress (OS) is one of the essential characteristics of 

endothelial damage. OS along with endothelial dysfunction and vascular inflammation 

form a triad in the initial phases of a prothrombotic status. OS can be measured by OS 

markers, such as total antioxidant capacity of plasma (TAP), thiobarbituric acid reactive 
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substances (TBARS) and homocysteine. The oxidative degradation, called lipid 

peroxidation, of lipids by reactive oxygen species (ROS) results in the formation of 

highly reactive lipid peroxides. Decomposition of lipid peroxides results in the formation 

of TBARS.   

The TBARS generated during oxidative stress were measured by a microplate-based 

TBARS Parameter Assay Kit which quantifies TBARS levels in plasma by setting up a 

reaction between MDA and two molecules of 2-thiobarbituric acid (TBA). In the 

presence of heat and acid, MDA reacts with TBA to produce a coloured end-product 

that can be measured. Intensity of the colour corresponds to the level of lipid 

peroxidation in the sample. This process is summarised in more detail in the figure 4.5. 

 

Figure 4.5: Summary of the TBARS measurement method by nephelometric assay. 

Step 1: Acid-treated samples and TBA reagent are added to the included well 

microplates. Step 2: The microplates are incubated at 45-50 °C for 2-3 hours to 

produce a coloured end product. Step 3: The microplates are read and the intensity of 

the colour corresponds to the level of lipid peroxidation in the sample (TBARS 

Parameter™ Kit for Measuring Oxidative Stress). 

 

Total Antioxidant Capacity (TAP) was measured by assessing the total copper 

antioxidant capacity of the combination of both small molecule antioxidants and 

proteins in plasma. Plasma samples are compared to a known concentration of uric 

acid standard within a 96-well microtiter plate.  Samples and standards are diluted with 

https://resources.rndsystems.com/images/site/tbars_assay.png
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a reaction reagent  upon the addition of copper.  Cu2+ ions are converted to Cu+ by 

both small molecules and proteins. The TAC Assay is based on the reduction of copper 

by antioxidants such as uric acid.  The reduced copper further reacts with a coupling 

chromogenic reagent that produces a color and gives a broad absorbance peak 

proportional to the total antioxidant capacity. The net absorbance values of antioxidants 

are compared with a known uric acid standard curve. Antioxidant capacity is 

determined by comparison with the uric acid standards.  

Homocysteine (Hcy) concentrations were measured by an automated latex-enhanced 

immunoassay for the quantitative determination of total L-homocysteine in human 

citrated plasma. Hcy levels in plasma were measured in three stages as explained in 

the figure below. The degree of agglutination is inversely proportional to the 

concentration of Hcy in the sample and is determined by measuring the decrease of 

transmitted light caused by the aggregates (figure 4.6) 

 

 

Figure 4.6: Stages of Homocystein measurement: 1. Reduction of mixed disulphides 

and protein-bound forms of Hcy present in the plasma samples to free Hcy. 2. 

Enzymatic conversion of free Hcy to S-adenosyl-L-homocysteine in the presence of 

adenosine. 3. SAH-antibodies conjugate allows competitive immunoprecipitation 

reaction between anti-SAH latex and free SAH/conjugate. Modified from HemosIL® 

Homocysteine manual. 
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4.7. Variables Definitions 

 

4.7.1. Metabolic syndrome 

Complete metabolic syndrome [214] diagnosis was met when at least three of five of 

the ATPIII criteria listed below were present.  

Incomplete metabolic syndrome diagnosis for this study was met when one or two 

ATPIII SM criteria were present.  

A healthy individual, metabolic syndrome-free, was defined when none of the ATPIII 

criteria were present. 

 

i) Abdominal obesity, recognized by increased waist circumference, was the first 

criterion listed when waist circumference was greater than 88cm (women) or 

102cm (men).  

ii) Patient with raised triglycerides (≥150 mg/dL) and/or treated with fibrates or 

nicotinic acid. 

iii) Individual with reduced HDL cholesterol (men <40 mg/dL, women <50 mg/dL) 

and/or under lipid lowering treatment. 

iv) Elevated blood pressure (≥130/85 mm Hg) and/or under antihypertensive 

treatment. 

v) Raised fasting plasma glucose (≥100 mg/dL) and/or under antidiabetic 

treatment.  

 

 

4.7.2. Homeostasis model assessment of insulin resistance 

(HOMA-IR)  

Homeostatic Model Assessment (HOMA) is a method for assessing β-cell function and 

insulin resistance (IR) from basal (fasting) glucose and insulin or C-peptide 

concentrations. Insulin resistance was calculated with standard methods [215] HOMA-

IR using an approximation described by a simple equation to determine a surrogate 

index of insulin resistance: 

 



C3 convertase as a novel biomarker of cardiovascular pathology, insulin resistance and endothelial dysfunction  

89 

 

 

The denominator of 22.5 is a normalizing factor. This factor is determined by the 

normal individual results: the product of normal fasting plasma insulin of 5 μU/ml and 

normal fasting plasma glucose of 4.5 mmol/l typical of a “normal” healthy individual = 

22.5 (assuming normal-weight, normal subjects < 35 years, having 100% β-cell 

function an insulin resistance of 1). Therefore, for an individual with “normal” insulin 

sensitivity, HOMA-IR = 1.   

Glucose and insulin are both analyzed during fasting basal conditions. Log (HOMA-IR) 

is useful for evaluation of insulin resistance in individuals with glucose intolerance, mild 

to moderate diabetes, and other insulin-resistant conditions. However, in subjects with 

severely impaired or absent β-cell function, HOMA-IR may not give appropriate results. 

To avoid this eventuality we used the HOMA2 adjusted computer system. HOMA2 

adjusted the assessment of previous HOMA in subjects with glucose levels ≤25 mM, 

accounts for renal glucose losses, assumes reduced suppression of HGP and 

increased insulin secretion in response to glucose levels >10 mM, and allows for the 

use of total or specific insulin assays.   

Despite this improvement with HOMA2, for the secondary objectives studies, which 

imply insulin resistance calculation, patients under exogenous insulin treatment had to 

be excluded (n=54). The assumptions about hepatic extraction included in the model 

do not apply when a subject is being treated with exogenous insulin. The insulin-

glucose HOMA model cannot be used to assess β-cell function in those taking 

exogenous insulin[216]. 

 

4.7.3. REGICOR 

 

The REGICOR model calibrates and adjusts the Framingham CHD functions for 

Spanish population in cardiovascular primary prevention by substituting the prevalence 

of CHD risk factors and incidence found in Framingham with the same values for 

Spain. The REGICOR model replaces the incidence of the Framingham equation with 

the data observed in the population of Gerona through the REGICOR population-based 

registry of cardiac disease in 1995.  
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The data observed in REGICOR were validated for the entire Spanish population 

through the VERIFICA study. Studies with REGICOR have enabled the variables 

included in the Framingham equation to be refined by including antihypertensive and 

lipid-lowering therapies. The REGICOR model estimates the 10-year probability of 

developing a CHD event according to the risk factor profile and HDL levels ranging 

from 35 to 59 mg/dl. Tables with the general model of all the Framingham coronary 

events were calculated using the equation published in 1998 by Wilson et al. that 

follows the described calibration method. The following ratio was used:  

 

H0(t)/FramAll / H0(t)/FramHard 

 

Where t is the follow-up time, 10 years in our case; H0(t)/FramAll is the coronary event 

rate including Framingham angina and silent AMI, and H0(t)/FramHard is the rate of 

symptomatic AMI, fatal or non-fatal. The heart event rate in males of Girona in the 

REGICOR registry (3.5%) is multiplied by 1.400 to obtain an estimated total coronary 

event rate (4.9%). This allows calculation of 95.1% male population without events 

(100-4.9%). In females the hard event rate (1.1%) is multiplied by its quotient (1.910) to 

obtain the estimated total coronary event rate (2.2%).  97.8% female population 

resulted without events (100-2.2%). 

 

 In this study the cardiovascular risk in 10 years thresholds have been assigned as 

being <5% low cardiovascular risk, 5-10% moderate risk and >5% high cardiovascular 

risk, as established by the REGICOR model. Due to an insufficient number of high 

cardiovascular risk patients in some statistical analyses moderate and high risk 

patients are grouped as high cardiovascular risk patients.  

 

Two examples of REGICOR function color-coded charts for hazard intensities in the 

risk factor combinations for diabetic and non-diabetic of overall CHD risk for the 

Spanish population according to the adapted equation are presented in the figure 4.7. 

These are separated for male/female and diabetic/non-diabetic population. The tables 

below are calculated for average HDL cholesterol (47.5 mg/dL) in 35 to 74 year old 

Spanish males.  
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Figure 4.7: Example of REGICOR cardiovascular color-coded charts in non-diabetic 

and diabetic men divided into smokers and non-smokers, where low risk represents 

<5% possibilities of suffering a cardiac event in ten years, moderate risk is between 5% 

and <10% and high risk is ≥10%. 

 

 

4.8. Data collection and coding methodology 

Data collection process 

Data were obtained by a detailed personal medical history of the previous years via a 

questionnaire developed by a permitted doctor following the privacy policies of the 

Ramon y Cajal Hospital. The physical examination of the cardiovascular system, 

electrocardiogram test if required and the non-invasive endothelial function were 

performed by a permitted physician offering a chaperone if required. Blood samples 
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were taken by a permitted nurse following the phlebotomy Ramon y Cajal hospital 

policies.  

The results of the tests mentioned above were extracted from medical records codified 

into ECMU numbers to preserve patients‟ privacy. Data were collected manually from 

printed reports to an intranet electronic database electronically secured by a permitted 

laboratory biologist and a permitted doctor between August 2010 and August 2013. 

Three permitted professionals, a doctor, a laboratory technician and an IT engineer 

reviewed the data base three times to reduce personal bias.  

 

4.9. Statistical data analyses 

Statistical analyses were performed using SPSS 15 for Windows (SPSS, Inc., Chicago, 

IL, USA).  

 

4.9.1. Descriptive analysis 

Qualitative variables were described as percentages. Quantitative continuous variables 

were determined as mean ± standard deviation (SD).  The confident intervals were 

95%. 

 

4.9.2. Hypothesis testing  

Prior to hypothesis testing, variables were examined for normality by Kolmogorov-

Smirnov test. Differences at baseline in quantitative variables were assessed by 

student t-test for independent samples for a normal distribution or Mann-Whitney test 

for non-normal distribution. Anova test was performed for comparisons of independent 

sample means of more than two groups. Differences in qualitative variables were 

assessed by chi-square test. The significance level predetermined p-value for 

differences between groups was agreed at 0.05. 

The correlation between C3 levels and several continuous analytical variables was 

studied by linear Pearson coefficient agreeing statistical significance at p<0.05.  
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Serum complement C3 was used as a continuous variable and as quartiles for logistic 

regression analyses to ascertain whether a threshold effect existed. The quartiles were 

calculated from the median forming cut points. For correlations, a value of P ≤0.05 on 

the 2-sided test was considered statistically significant. 

 

4.9.3. Association of variables 

 

A multivariable linear regression analysis corresponding to the outcome measure 

(dependent variable) was developed to identify predictors. Backward variable selection 

was used for modelling, with the standard significance level for contrasts P≤0.05. 

Independent variables associated with an outcome of P≤0.20 in univariate analysis 

were included in the corresponding multivariate model.  

 

The collinearity of the maximum models was assessed with the criteria proposed by 

Belsley [217]. Normality and homocedasticity assumptions in each final model were 

assessed by analysing model residuals. Model validation was evaluated by bootstrap 

techniques and leave-one-out cross-validation.  

 

The maximum predictive model was determined by C3 levels as the continuous 

dependant variable. The independent selected variables, were: age, gender, CRP 

levels, presence or absence or MS, low or high cardiovascular risk according to 

REGICOR model for Spanish population (<5% or >5% risk in 10 years), insulin 

resistance measured by HOMA, hyperhomocysteinemia, Lpa levels, smoking status, 

smoking status adjusted by age, presence or absence of MS ATPIII criteria for 

hypertriglyceridemia, high blood pressure, hyperglycaemia, waist, low HDL and 

hypercholesterolemia. The selection of the independent variables was made in relation 

to the previous univariate analysis results and their interest in the study objectives. 

 

Smoking status was included twice in the regression model, as independent sole 

variable (dichotomised smoking status) and adjusted by age (smoking status multiplied 

by age), to established its association to age as a possible confounding factor.  
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4.10. Literature review  

 

i) English and Spanish language only: time limits made the translation from any 

other language impractical.  

 

ii) Synonyms were limited to Thesaurus 

 

iii) The information sources were limited to : 

o PubMed, Medline, LSE‟s library, Ramon y Cajal Hospital‟s library, 

Mostoles Hospital‟s library and Google databases. The first three are 

included in EndNote bibliographic software and facilitate the quick 

reading of abstracts and literature classification.  

o Documents and grey literature located in Endothelial Pathology Unit‟s 

intranet, professionals‟ personal files compilation and archives of hard 

copies. 

 

iv) Literature published between 1992, when Muscari et al. [70] performed a study 

to assess the possible involvement of humoral immunity in essential 

hypertension and cardiovascular pathology, and December 2016 only. Some 

previous references are limited to definitions of terms included in more recent 

publications. 

 

v) Keywords: C3 complement OR/AND C3 convertase OR/AND metabolic 

syndrome OR/AND insulin resistance OR/AND cardiovascular risk OR/AND C-

reactive protein OR/AND endothelial function OR/AND inflammatory cascade 

OR/AND atherosclerosis OR/AND complement pathways OR/AND 

inflammatory markers  OR/AND endothelial dysfunction OR/AND C-reactive 

protein OR/AND Lp(a) OR/AND homocystein OR/AND fibrinogen OR/AND 

oxidative stress OR/AND Regicor OR/AND HOMA OR/AND multi-regression 

analysis OR/AND hyperlipidaemia OR/AND nitric oxide OR/AND  ATPIII criteria 

OR/AND hypertension OR/AND T2DM 

 

vi) After basic searches in Cochrane and Google, in September 2016, a similar 

recent study of C3 convertase relation to cardiovascular risk and endothelial 

function in Spanish population was not identified. 
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vii) Search strategy algorithm: 

 

. 

Figure 4.8: Search strategy algorithm 

 

 

 

4.11. Limitations 

 

Financial and personnel constraints limited the availability of tests and reactives for a 

certain length of time and the number of performed tests for the study. 

The overlap of active clinical routine as a physician on top of the research activity 

reduces the available time to develop the research and extended the timeline. 

The lack of resources (human and financial) in research and development limited the 

number of available tests throughout the research and also affected by the availability 

of reactants for ECMU laboratory. 

The calculation of cardiovascular risk would be more precise in treatment-free patients, 

but the incremented risk of cardiovascular events by removing indicated treatments in 

cardiometabolic patients is ethically controversial. 
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4.12 Study timeline 

 

The data collection process started in August 2010, during the development of my 

doctoral advanced studies project until August 2013. The thesis project was submitted 

in October 2012. The literature, references review and writing processes were on-going 

routine in parallel with the thesis development. The statistical analysis progressed from 

October 2015 until August 2016, the results analysis between April 2016 and October 

2016, and the discussion slightly overlapped from August until February 2016. 

Conclusions, text formatting, style review, printing and submission were performed 

from December 2016 until March 2017 when the final paper was submitted (figure 4.9). 

 

 

Figure 4.9: Study timeline graph from data collection to submission. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

5. RESULTS 
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5. Results  

 

5.1. Population description 

The study population included a total of n=374 subjects, where 168 were females 

(44.9%). At baseline examination, the mean age of the overall population was 

53.6±14.8 years.  

Study sample population (n=374) N Percentages 

Gender Males 206 55.1% 

Females 168 44.9% 

Table 5.1: Gender distribution of the study sample population. 

The majority of patients were overweight (BMI≥25), dyslipidaemic (altered lipid profile) 

and hyperglycaemic (FG≥100 mg/dl), as seen in more detail in the table 5.2.  

 
 Variables 

Population (n=374) 

Mean ±SD Minimum Maximum 

Demography             Age (years) 53.60  ±14.80 19.70 90.70 

Anthropometry BMI (kg/m2) 27.10  ±4.70 17.30 49.52 

Waist (cm) Males 95.70 ±9.70 70 139 

Females 87.70 ±13.80 59 128 

Waist/hip ratio Males 0.95 ±0.06 0.77 1.20 

Females 0.86 ±0.09 0.66 1.09 

Haemodynamic  
 

SBP (mmHg) 133.33 ±20.13 87 205 

DBP (mmHg) 82.11 ±10.56 55 116 

Pulse Presure (mmHg) 55.22 ±16.68 21 134 

MAP (mean arterial pressure) 99.18 ±12.14 69.67 142.67 

Heart rate (bpm) 71.86 ±12.40 55 116 

Metabolism 
 

Fasting Glucose (FG) (mg/dl) 107.36 ±40.02 64 421 

A1c (%) 5.81 ±1.21 4 11.70 

Total cholesterol (mg/dl) 201.99 ±46.45 83 407 

LDLc (mg/dl) 128.09 ±41.47 25 316 

TG (mg/dl) 118,39 ±63.33 34 381 

HDLc Males  (mg/dl) 44.66 ±8.27 25 76 

Females (mg/dl) 56.76 ±13.14 29 105 

Table 5.2: Summary of baseline characteristics of the study sample population. Means 

were calculated from their clinical examination and basic blood test data with special 

interest in metabolic profile. Abbreviations: body mass index, BMI; systolic blood 

pressure, SBP; diastolic blood pressure; A1c glycosylated haemoglobin; DBP; low-

density lipoprotein cholesterol; LDLc; high-density lipoprotein cholesterol, HDLc; 

triglycerides, TG.
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5.1.1 Personal Medical History (PMH)  

 

The metabolic profile of our sample population showed a high prevalence of 

hypertension (55.1%), hypercholesterolemia (46%) and T2DM (27.8%) in their personal 

medical history (PMH). The distinctive feature of our sample population was the high 

proportion of basally diagnosed metabolic pathologies.  

Furthermore, the population exhibited a tendency to obesity where 23.5% patients 

were obese (BMI≥30 kg/m
2
) and 42% overweight (BMI ≥25-<30 kg/m2). In particular, 

we highlighted the prevalence of central obesity. The average waist-hip ratio in both 

genders (0.95 in men, 0.86 in women) overcame the upper recommended limit 

established by the WHO. These particular PMH characteristics of our population are 

displayed in more detail in table 5.3.  

Regarding smoking habits, 27.8% were active smokers and 25.1% former smokers (>3 

months smoking-free period). The forthcoming analysis pointed out that smokers were 

significantly younger than non-smokers (48.44±11.97 vs. 55.64±16.63 yr. old; 

p<0.001).  

 

 

Personal medical history population variables 

Population (n=374) 

N Percentages 

PMH  Hypertension  206 55.1% 

Hypercholesterolemia (LDLc>160 mg/dl) 173 46.3% 

Low HDL-c (<40mg/dl males, <50md/dl females) 78 20.95 

Hypertriglyceridemia (TG>150mg/dl) 86 23.0% 

Type-2 diabetes mellitus 95 25.4% 

Obesity Obese (BMI>30 Kg/m
2
) 88 23.5% 

Overweight (BMI 25-30 Kg/m
2
) 157 42.0% 

Smoking habit Smokers 104 27.8% 

Ex-smokers 94 25.1% 

 

Table 5.3: Summary of the proportions of metabolic conditions presented in the 

patients’ personal medical history (PMH). There is a high prevalence of hypertension, 

dyslipidaemia, obesity and diabetes in the main sample population. Obesity degrees 

were calculated from BMI data. Abbreviations: low-density lipoprotein cholesterol,LDLc; 

high-density lipoprotein cholesterol, HDLc; triglycerides, TG; body mass index, BMI. 
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5.2 Metabolic Syndrome (MetS) and C3 complement 

 

In order to classify the population sample we stratified the population into three groups 

according to the number of ATPIII criteria met per patient.   

MetS criteria diagnosis comprised patients with ciphers over each criterion threshold 

and/or already diagnosed in their PMH and under treatment for each metabolic 

pathology. 35.3% of the sample population presented MetS (≥3 MetS-criteria), 49.7% 

suffered from incomplete MetS (1-2 MetS-criteria) and 15% were metabolically healthy 

population (MetS-criteria free). As observed in the table 5.4 and graph 5.1 the majority 

of patients suffered from incomplete or complete metabolic MetS. 

 

In addition to this first finding, we distributed the population into groups, from zero to 

five fulfilled constitutive factors of metabolic syndrome per individual. The population 

were distributed among all the groups, with representatives in all the categories (graph 

5.1. and table 5.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Bar graph shows the stratification of our population by number of ATP-III 

metabolic syndrome (MetS) criteria met per patient. Complete metabolic Syndrome is 

displayed in red, incomplete MetS in yellow and healthy metabolic patients in green. 
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Metabolic 
syndrome 

Number of 
criteria 

N  
Percentages 

Healthy 
subjects 

None 56 15.0% 15% 

Incomplete 
MetS 

One 80 21.4% 49.7% 

Two 106 28.3% 

Complete 
MetS  

Three 75 20.1%  
35.3% Four 40 10.7% 

Five 17 4.5% 

 

Table 5.4: Percentages of subjects classified in healthy, incomplete and complete MetS 

according to the number of MetS criteria met per patient. 

 

 

Hypertension (65%) and hyperglycaemia (42%) resulted the most prevalent criteria 

when we analysed individually the constitutive factors of the metabolic syndrome; albeit 

all ATP-III criteria were also presented in a significant percentagein the sample 

population (central obesity 36%, low HDLc 35%, hpertriglyceridemia 26%), as shown in 

the table 5.5.  

 

ATP-III Metabolic Syndrome criteria (n=374) N Percentages 

1. Hypertension (BP >135/85 mmHg or under treatment for HBP) 244 65.2% 

2. Hyperglycaemia (fasting glucose >100mg/dl or under treatment for 

hyperglycaemia) 

156 41.7% 

3. Central obesity (waist ≥88cm in women and  ≥102cm in men) 133 35.6% 

4. Low HDLc (HDLc <40mg/dl in males, <50mg/dl in females or 

treated with diet and exercise) 

132 35.3% 

5. Hypertriglyceridemia (TG>150mg/dl and/or under treatment for 

hypertriglyceridemia)  

97 25.9% 

 

Table 5.5:  Percentages distribution of ATP-III metabolic syndrome criteria in the study. 

Hypertension (65.2%) and hyperglycaemia (41.7%) were the most prevalent 

characteristics. TG: triglycerides. 
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5.2.1. C3 levels and ATPIII criteria 

 

The first step of our study was to assess the correlation between C3 concentrations 

measured in blood and the presence of MetS.  

C3 complement was measured in all the subjects of our population sample (n=374). 

The descriptive statistical values were mean 129.65 (±26.02) mg/dl, minimum 62.00 

mg/dl and maximum 216.00 mg/dl respectively. 

Patients who suffer from metabolic syndrome had statistically significant higher 

concentrations of C3 complement than metabolically healthy patients (142.10±25.47 

vs. 122.88±20.68; p<0.001). Furthermore, the mean levels of C3 complement 

increased proportionally to the number of MetS criteria met per patient (p<0.001), as 

shown in table 5.6.  

C3 levels (mg/dl) per number of Metabolic Syndrome criteria  

MetS criteria  N Mean ±SD p-value 

0 56 106.85 ±20.14 <0.001 

1 80 120.22 ±19.69 

2 106 133.36 ±24.22 

3 75 136.53 ±22.60 

4 40 148.67 ±26.78 

5 17 151.00(±23.49 

 

Table 5.6 Distribution of the population (n=374) per number of MetS criteria met per 

patient. The mean value of C3 complement measurements per group of number of 

MetS criteria met, standard deviation within each group and significant difference 

among groups (p<0.001) 

 

 

The association between C3 and MetS criteria was barely linear, showing a strong 

positive linear correlation (Pearson coefficient r=+0.49, p<0.001). Linear correlation is 

also graphically represented in figure 5.3. Moreover, the representation of C3 

complement concentrations is in correlation to the number of MetS criteria fulfilled by 

patient appeared almost linear as shown in the graph 5.3. 

 

The outcome of this C3 concentrations increment was proportional to the number of 

MetS criteria. As seen in figure 5.2 and 5.3 the difference between the two and three 

criteria groups was noticeably shorter though. 
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Figures 5.2 and 5.3: median graphs. The first one shows the almost linear correlation 

between C3 complement level means and the number of C3 criteria met. In the graph 

on the right, the C3 complement plasma concentrations are expressed per number of 

MetS criteria met per patient, with error bars depicting the variation (±1 standard 

deviation).  

 

 

Distribution of C3 complement (mg/dl)  among MetS and MetS criteria 
 

 
 
Variable 

 
 
N 

C3 complement (mg/dl) 
 

Mean ±SD Mean 
difference 

95%-CI of the mean p-
value Upper b. Lower  

b.  

MetS No 242 122.88 ±24.20 19.20 24.38 14.01 <0.001 

Yes 132 142.08 ±24.71 

MetS 
criteria 
 

HTG No 277 124.45 ±24.41 20.07 25.76 14.38 <0.001 

Yes 97 144.52 ±24.84 

HBP No 130 119.41 ±24.91 15.69 21.02 10.37 <0.001 

Yes 244 135.11 ±24.98 

Low 
HDLc 

No 242 125.33 ±25.70 12.25 17.65 6.84 <0.001 

Yes 132 137.58 ±24.80 

T2DM No 218 124.21 ±24.89 13.04 18.25 7.83 <0.001 

Yes 156 137.26 ±25.74 

Central 
obesity 

No 241 123,70 ±24.47 16.68 21.95 11.42 <0.001 

yes 133 140.41 ±25.38 

 

Table 5.7: C3 complement concentrations’ means per presence or absence of MetS 

criterion. The presence of each Mets criterion is associated with higher C3 levels than 

absence. The MetS criteria presence/absence were calculated according to MetS 

criteria definitions described in table 5.5. Abbreviations: hypertriglyceridemia, HTG; 

hypertension, HBP. 
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The MetS group (≥3 MetS criteria, mean=142.08±24.71 mg/dl) presented higher levels 

of C3 complement than Mets-free group (mean=122.88±24.20 mg/dl; p<0.001). In 

addition to this, the presence of the MetS constitutive factors individually was also 

significantly associated (p<0.001) with higher concentrations of C3 complement as 

shown in table 5.7.  

 

 

5.3. Association between C3 inflammation and coagulation 

In the first place, the correlation between inflammatory markers and C3 complement 

levels in plasma was tested with C-reactive protein (CRP) concentrations. CRP 

measurements were obtained in all the subjects of the study population (n=374). CRP 

descriptive values were 2.89±2.12 mg/L), ranged from a minimum of 0.14 mg/L to a 

maximum of 14.90 mg/L.  Subjects with CRP over 15 mg/l were excluded from the 

study (see methodology).  

The relationship between the C3 complement and the CRP showed a strong linear 

correlation in our population sample (r=0.271, p<0.001), as displayed in the figure 5.4.  

 

Figure 5.4: Scattered plot showing a strong statistical correlation (p<0.001) between 

CRP and C3 complement measurements. The vertical line of dots at 3mg/L represents 

the test sensitivity limit before a high sensitivity test was set up in the hospital general 

laboratory. 

 

Coagulation was analysed in this population by three pro-thrombotic factors such as 

fibrinogen and homocysteine. 
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As main representative of pro-thrombotic marker fibrinogen was measured in our 

sample population (297.63±64.32 mg/dl). There was strong association (r=0.254, 

p<0.001) between fibrinogen and C3 complement values. 

 

 

5.4. C3 complement and insulin resistance 

 

The correlation between C3 complement levels and insulin resistance was checked by 

the association with HOMA variable, as explained in the methodology. Hence, as 

disclosed in the methodology, the sample population was reduced to n=320 patients 

with basal insulin measured. The division of the original sample population resulted into 

two cohorts, the/a non-exogenous insulin replacement group (NEIR, n=320) and an/the 

exogenous insulin replacement group (EIR, n=54).  

Since EIR group required exogenous insulin and presented fictitious endogenous 

insulin levels, clinical metabolic differences were assumed between both groups. Even 

though this premise was assumed, both cohorts were tested for differences in their 

hydrocarbon metabolism. The (?) EIR group showed higher fasting glucose 

concentrations (130.65±66.17 mg/dl) and A1c (6.75±1.62 mmol/L) than the NEIR group 

(103.43±32.22 mg/dl and 5.66±1.05 mmol/L). Therefore, both groups showed 

significantly different glucose-metabolism characteristics as shown in table 5.8. . 

Independence tests for NEIR (n=320) vs. EIR (n=54) 

Variable N Mean ±SD Mean 
difference 

95%-CI p-value 

Lower b.  Upper b.  

C3 
(mg/dL) 

EIR 54 130.42 ±26.01 5.30 -2.22  12.81 
 

0.17 
 NEIR 320 125.12 ±25.87 

FG 
(mg/dl) 

EIR 54 130.65 ±66.17 27.22 
 

8.83 38.61 
 

0.004 
 NEIR 320 103.43 ±32.22 

A1c 
(mmol/L) 

EIR 54 6.75 ±1.62 1.09 0.63 1.54  <0.001 

NEIR 320 5.66 ±1.05 

Age 
(years) 

EIR 54 55.69 ±15.20 2.49 -1.80 6.77 0.225 

NEIR 320 53.20 ±14.75 

Table 5.8: Independence assessment for several non-modifiable, age, and modifiable 

glucose-metabolism variables, such as C3 complement, fasting glucose (C3), glycated 

haemoglobin (A1c) and age was performed between exogenous insulin replacement 

group (EIR) and non-exogenous insulin replacement group (NEIR). 
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On the other hand, there was no difference in age distribution between the two groups 

(p=0.225). In addition to age, C3 mean concentrations showed no differences between 

both groups (p=0.17) either. Meanwhile, gender distribution between both groups 

differed with borderline significance (EIR group women=57%, p=0.046), as shown in 

the table 5.8 

For the population used in the insulin resistance sub-study, NEIR, where the basal 

insulin levels were measured, the calculated HOMA values (2.19±1.67%) were as 

shown in table 5.9. 

HOMA values distribution in NEIR group (n=320)  

Variable Mean SD Range 

minimum Maximum 

HOMA    (%)  2.19 1.67 0.32 10,18  

 

Table 5.9: Summary of HOMA variable descriptive statistics in non-exogenous insulin 

replacement (NEIR) group. 

 

 

The C3 complement concentrations showed a positive linear correlation with insulin 

resistance measured by HOMA (r=0.406 p<0.001). Therefore, higher levels of C3 

complement were strongly associated with increasing levels of insulin resistance as 

shown in figure 5.5.  

 

Figure 5.5: Scatter plot shows the relationship between HOMA, insulin resistance, and 

C3 complement plasma concentrations. A strong linear correlation was exhibited 

between both variables (r=0.406 p<0.001).    
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 Since insulin plasma levels were not available in the EIR group, the glucose-

metabolism was checked through the fasting glucose levels.  The fasting glycaemia in 

the EIR group did not show a significant correlation with C3 complement levels. Thus, 

the difference in the metabolic characteristics between both groups was corroborated 

again (r=0.164, p=0.241) as shown in the figure 5.6.  

 

 

Figure 5.6: Scatter plot did not show correlation between fasting glucose 

measurements and C3 complement levels in exogenous insulin replacement cohort 

(EIR), where consequently, basal insulin was not measured (r=0.164, p=0.241). 

 

 

 

5.5. Correlation of C3 with classical cardiovascular risk factors  

 

Non-modifiable classical cardiovascular factors, such as gender and age, did not show 

statistically significant association with C3 complement levels. Age was not linearly 

correlated to C3 complement levels (r=0.09, p=0.090). With regard to gender, there 

were no significant differences in C3 levels between males and females (p=0.210), as 

seen in table 5.10. 

 

There were no differences in age and gender distribution among the groups of subjects 

who presented each one of the modifiable risk factors and those who were factor-free, 

as seen in figure 5.7 and table 5.10. For instance, hypertensive and normotensive 
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patients had similar age and gender proportion. The exception was tobacco 

consumption, which was age dependant as explained in subsequent results.  

C3 complement (mg/dl) and gender 

Variable 

Gender 

N Mean SD Mean 

difference 

95%-Confidence interval p-value 

Lower bound Upper bound 

Male 206 131.18 24.31 3.39 -1.92  8.70 0.210 

Female 168 127.78 27.93 

 

Table 5.10: Distribution of C3 values according to gender.  

 

After confirming this independence, we studied the possible behavioural analogy 

between C3 convertase levels and the most frequent classical cardiovascular risk 

factors.  

 

Figure 5.7: Scatter diagram representing a certain tendency but no significant 

correlation between age and C3 complement concentrations in blood (r=0.088 p=0.09). 

 

As first analysed cardiometabolic risk factor, obesity, as defined by BMI, was 

measured according to BMI and showed a linear positive correlation with C3 levels. 

The sample population was divided into three groups: normal weight (BMI<25), 

overweight (BMI 25-30) and obesity (BMI>30). In both extremes, morbid obesity and 

anorexia, we assumed similar progressive distribution of weight values. C3 values were 

significantly different among the three groups (p<0.001), with higher values of C3 

complement associated to degree of obesity (table 5.11). Moreover, There was a 
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positive linear correlation betweenC3 levels and increasing obesity degrees (r=0.37, 

p<0.001)(Figure 5.8)  

 

C3 complement (mg/dl) and general obesity 

Variable N Mean SD P-value 

BMI 

 

Normal weight <25 129 118.31 2.23 <0.001 

Overweight 25-30 157 131.13 1.82 

Obesity  ≥30 88 143.66 2.66 

 

Table 5.11: Differences in C3 according to the degree of obesity. BMI cut-off points 

followed the obesity standards established by the WHO for Caucasians.  

 

 

Figure 5.8: Positive linear correlation between C3 levels and increasing obesity 

degrees (r=0.37, p<0.001). 

Following this study line, C3 concentrations were compared among subjects with and 

without the presence of classical risk factors other than obesity (Table 5.12). 

The strongest positive correlation bound high C3 concentrations to high levels of 

triglycerides (p<0.001).  

Hypertensive patients also showed higher levels of C3 complement than 

normotensive patients as displayed in table 5.12. 
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C3 complement (mg/dl) and classical cardiovascular risk factors 

Variable N Mean ± SD MD 95%-CI p-value 

Lower b. Upper b.  

Hypertension 

(>135/85mmHg) 

No 168 124.80±27.93 8.82 3.57 14.07 0.001 

Yes 206 133.62±23.70 

Hypercholesterolemia 

(LDLc >160mg/dl) 

No 201 125.52±25.84 8.93 3.69 14.16 0.001 

Yes 173 134.45±25.48 

Low HDLc  

(<40 mg/dL males, 

<50mg/dL females) 

No 296 127.58±26.14 9.94 3.50 16.38 0.003 

Yes 78 137.22±24.15 

Hypertriglyceridemia 

(TG> 150 mg/dl) 

No 288 124.89±24.25 20.71 14.78 26.64 <0.001 

Yes 86 145.60±25.52 

Hyperglicaemia 

(FG>100 mg/dl) 

No 279 127.54±26.41 8.30 2.28 14.33 0.007 

Yes 95 135.85±23.93 

 

Table 5.12: Summary of significant associations between presence of cardiovascular 

risk factors and   higher levels of C3 complement. 

We also analysed the association (p<0.001) of high concentrations of C3 with high 

levels of LDLc (>160mg/dl). In order to compare the LDLc levels in our population, a 

common cut-off value of >160mg/dl was established for hypercholesterolemia 

diagnosis in our sample population. The LDLc cut-off point for hypercholesterolemia 

differs from treatment threshold goal (general LDLc<130mg/dl) in the cardiovascular 

unit and is personalised per patient according to cardiometabolic PMH. 

Diabetic patients showed significantly higher C3 concentrations than those without 

T2DM (p=0.007), as shown in the table 5.9. To confirm this fact we also tested the 

relationship between C3 measurements and A1c determinations in our population.  

The T2DM ranges include pre-diabetes diagnosis for percentages of A1c of 5.7% or 

above until diabetes diagnosis from 6.5% or above. Both variables, C3 complement 

and A1c, reinforced a positive linear correlation (r=0.112, p=0.03) as shown in the 

figure 5.6.  
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Figure 5.9: Scattered plot shows statistically significant correlation between A1c(%) 

measurements and C3 complement (mg/dl) concentrations (r=0.112 p=0.03). 

In relation to the tobacco consumption, the association between C3 complement and 

smoking habits showed a significant inverse correlation (p=0.001). Due to the 

questionable implications of a possible protective effect of tobacco against atheroma 

formation, we analysed closely the characteristics of the population of smokers.   

This examination showed that smokers (48.44±11.97 yr. old) were significantly younger 

than former smokers (53.34±12.72 yr. old) and non-smokers (55.64±11.97 yr. old. 

There was also a significant association between age and tobacco consumption 

(p<0.001) The association between age and smoking habit is also shown in the table 

5.13 and graphs 5.10 and 5.11. 

Figures 5.10, 5.11: Graphs displaying the means of C3 (first graph) and age (second 

graph) per tobacco consumption status. 
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Anova  C3 complement (mg/dl) (n=374) 

Variable N Mean ±SD P-value 

Tobacco Non-smoker 176 128.99 ±25.34 0.001 

 Ex-smoker 94 137.16 ±25.40 

 Smoker 104 123.99 ±26.02 

Age  Non-smoker 176 55.64 ±16.63 <0.001 

Ex-smoker 94 55.34 ±12.72 

Smoker 104 48.44 ±11.97 

 

Table 5.13: C3 complement means per smoking habit status which shows a negative 

correlation between smoking consumption and C3 complement concentrations. There 

is also a negative association between age and tobacco consumption, with the 

smokers group being the youngest and the non-smokers the oldest group (p<0.001).  

 

 

5.6. Association between C3 and new cardiovascular risk markers 

As a young component of the MetS, uric acid was measured in our population 

(5.81±1.59 mg/dl). The relationship between C3 complement and uric acid 

measurements exposed a strong linear correlation (r=0.224, p<0.001). Therefore, high 

levels of uric acid were associated with high levels of C3 complement as shown in the 

plot 5.12.  

 

Figure 5.12: Uric acid levels and C3 complement measurements regression graph. For 

these results r=0.224, showing strong linear correlation (p<0.001) 
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Since the values of uric acid could be compromised by treatment with allopurinol, the 

relationship between C3 complement and uric acid concentrations could be also 

compromised. In virtue of this assumption, the correlation of C3 levels with the absence 

or presence of diagnosed hyperuricemia (9.8% of the study population) was also 

tested. Although the correlation between both variables was not significant, a positive 

tendency was shown, as displayed in table 5.14.  

According to ferritin levels measured in our population sample (117.05±11.87µg/dl), 

there was strong linear association between ferritin blood concentrations and C3 

complement levels (r=0.142, p<0.006) as shown in figure 5.13. As we did with the 

previous variables, in order to check the possible effect of patients treated with 

phlebotomies, we also compared the presence or absence of diagnosed 

hyperferritinemia (9.9% of the sample population) with C3 measured values. The 

association between both variables did not reach statistical significance, as shown in 

the table 5.14. 

 

Figure 5.13: scattered plot with regression line of ferritin concentrations and C3 levels 

in 374 patients, both measurements are statistically positively associated (r=0.14, 

p=0.006). As seen in the graph outlier values have not been excluded here. 

Regression analysis has been done to fit a representative line of the set of data 

association between both variables. 

 

With regard to lipoprotein(a) (Lp(a)) (22.77±29.64 mg/dl), new cardiovascular 

biomarker also related to inflammation no significant linear correlation with C3 was 

shown, as seen in graph 5.14. Accordingly, the concentrations of C3 were not 

significantly different between patients with and without presence of 
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hyperlipoproteinemia(a) (11.8% of the analysed population) as seen in figure and table 

5.14. 

 

 

Figure 5.14: Graph showing Lp(a) and C3 complement values did not have a significant 

correlation (r=0.013, p=0.802). The vertical line drew by an accumulation of dots 

displays the Lp(a) test sensitivity limit before a second high sensitivity test, which 

included values close to 0, was set up in the Endothelium Pathology Unit. 

 

T-student  C3 complement (mg/dl)  Difference 

Variable N Mean SD MD 95% CI p-value 

 Lower 

bound 

Upper 

bound 

Hyperuricemia 

(>7µg/dl) 

No 337 129.33 26.27 3.31 5.56 12.18 0.463 

Yes 37 132.63 23.80 

Hyper-Lpa  

(>30 mg/dl) 

No 330 129.10 26.47 4.69 -3.52 12.90 0.262 

Yes 44 133.79 22.17 

Hyperferritinemia 

(>180 µg/dl) 

No 337 128.99 26.13 4.50 2.15 15.54 0.137 

Yes 37 135.69 24.52 

 

Table 5.14: Differences in C3 complement concentrations according to the presence or 

absence of hyperuricemia, hyperferritinemia and high-Lp(a),none on them showed 

statistical significance. . 
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5.7. C3 complement association with cardiovascular risk (REGICOR)   

 

 

The cardiovascular risk was calculated through the REGICOR model (Framingham 

model adapted for Spanish population) as the risk of suffering a cardiovascular event in 

10 years according to patient‟s age, gender and personal characteristics.  In our 

population, REGICOR mean was  3.65±2.91% 10-year cardiovascular risk of an 

individual, ranged from 0.01% as minimum value to 17.65% as maximum value. 

 

Testing the relationship between both variables, a positive linear correlation was 

observed between C3 concentrations and REGICOR values (Pearson r=0.196, 

p<0.001), as shown in graph 5.16. 

 

 

 

Figure 5.15: scattered plot representing the linear correlation between C3 levels in 

plasma and cardiovascular risk percentages in 10 years calculated by REGICOR 

(r=0.196, p<0.001) 

 

As in routine clinical practice, we divided our population sample into three levels 

according to their cardiovascular risk. Following the REGICOR scales, as mentioned in 

the methodology, low risk was given to those individuals with less than a 5% possibility 

of suffering from a cardiovascular event in the next ten years, patients with 5-10% were 

considered moderate risk and those with >a 10% possibility were considered high risk 

as shown in table 5.15 and graphs 5.16 and 5.17. 
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C3 (mg/dl) and REGICOR N Mean SD P-value 

REGICOR  

Levels (CV risk) 

Low risk <5% 286 127.51 25.56 0.016 

Moderate risk 5-10% 72 136.32 27.08 

High risk >10% 16 129.65 24.08 

 

Table 5.15: Distribution of C3 concentrations according to cardiovascular risk 

REGICOR levels (low, moderate and high cardiovascular risk). 

 

 

 

 

 

Figures 5.16 and 5.17: representation of C3 mean concentrations per cardiovascular 

risk level (low, moderate, high) according to REGICOR formula. 
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The high risk cardiovascular group sample resulted too small (n=16) for statistical 

analyses and we decided to group moderate and high cardiovascular risk subjects into 

one moderate-high cardiovascular risk group for further calculations.  

 

Two population groups of low cardiovascular risk <5% (n=286) and moderate-high 

cardiovascular risk ≥5% (n=88) were created. The relationship between C3 

complement levels and REGICOR risk levels was tested again, showing that higher 

concentrations of C3 complement were significantly associated with higher 

cardiovascular risk (p=0.004), as displayed in graph 5.18 and table 5.16. 

 

 

Figure 5.18: representation of C3 mean concentrations per cardiovascular risk levels 

(low and moderate- high) calculated according to REGICOR formula. 

 

 

C3 complement (mg/dl) and REGICOR Difference 

 Coronary risk according 

to REGICOR model (%) 

N Mean ±SD MD 95%-CI p-value 

Lower b. Upper b. 

Low risk <5% 286 127.51 ±25.56 9.09 2.91 15.27 0.004 

High risk >5% 88 136.61 ±26.44 

 

Table 5.16: Statistically significant positive correlation (p=0.004) between C3 

concentrations and cardiovascular risk levels calculated by REGICOR formula, with the 

C3 levels being higher for high cardiovascular risk patients (136.61±35.56 mg/dl) than 

for low risk subjects (127.51±26.44 mg/dl). 
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5.8. Emerging cardiometabolic risk and endothelial damage biomarkers  

 

 

In random sub-groups of the population several detection tests were carried out, such 

as adiponectin, IL-10, IL6, TNF-α, VCAM-1, TAP, TAC or TBARS measurements. 

These tests were performed according to the availability of reactant‟s kits at the 

Endothelium and Cardiometabolic Unit‟s laboratory. These subgroups were selected 

randomly according to the accessibility to kits and reactants during their first visit. The 

characteristics of the multiple subgroups were not tested due to the limitations of the 

study and we assumed no differences with the original sample population.  

 

 

5.8.1. Metainflammatory biomarkers  

 

Adiponectin is considered an anti-inflammatory marker and recognised endothelial 

protector. The adiponectin levels (µg/ml) were arbitrarily measured in 254 subjects of 

the sample population. Adiponectin concentrations in plasma were negatively 

correlated to C3 complement values (r= -0.184, p= 0.003).  

 

The distribution of adiponectin values was different across the C3 complement 

quartiles, with lower adiponectin levels associated with upper quartiles. (p=0.025) as 

shown in table 5.17 and figure 5.19.  

 

Adiponectin levels (µg/ml) distribution between C3 quartiles 

C3 N Mean SD  ±S Error 

95% CI for Mean 

Min. Max. Lower B. Upper B. 

Q1 64 10.45 6.03 ±0.75 8.94 11.95 2.36 35.78 

Q2 67 9.85 5.71 ±0.69 8.46 11.24 3.80 31.54 

Q3 57 9.57 5.23 ±0.69 8.18 10.96 3.15 37.41 

Q4 66 7.74 3.99 ±0.49 6.76 8.72 2.38 21.70 

Total 254 9.39 5.36 ±0.33 8.73 10.05 2.36 37.41 

 

Table 5.17: Distribution of the adiponectin values across the C3 complement quartiles,. 
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Figure 5.19: The graph represents the negative association between adiponectin 

leveles and C3 quartiles (p=0.025). 

 

 

Interleukin-6 levels were randomly quantified in 244 patients of the population sample. 

Higher levels of interleukin-6 were positively correlated to C3 complement 

concentrations in plasma (r=0.747, p=0.021). 

 

Interleukin-10 concentrations were randomly determined in 112 individuals of our study 

population. Il-10 showed an inverse correlation with C3 complement measurements, 

with borderline significance (r= -0.169, p=0.075). However, assessing the distribution of 

Il-10 between the C3 complement quadrants, a correlation was not shown (r= -0.134, 

p=0.262), as displayed in table 5.18 and figure 5.20 in further detail. 

Distribution of Interleukin-10 (pg/ml) between C3 quartiles 

C3 N Mean ±SD 

Std. 

Error 

95% CI for Mean 

Min. Max. Lower B. Upper B. 

1,00 25 1.73 ±1.19 0.24 1.24 2.23 0.16 5.23 

2,00 32 1.63 ±1.18 0.21 1.21 2.06 0.13 5.83 

3,00 27 1.32 ± 0.73 0.14 1.03 1.61 0.31 3.35 

4,00 28 1.25 ±1.02 0.19   .86 1.65 0.30 4.89 

Total 112 1.49 ±1.05 0.10 1.29 1.68 0.13 5.83 

 

Table 5.18: distribution of Interleukin-10 levels among across C3 quartiles (p=0.262). 
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Figure 5.20: mean values of Il-10 according to C3 complement cuartiles.  

Tumoral necrosis factor (TNF-α) levels were quantified randomly in 90 subjects of our 

study population, a considerable smaller sample. TNF-α levels displayed a mild 

negative behaviour with respect to C3 complement values (r=-0.03, p=0.078,), albeit 

this negative association was not demonstrated. 

 

 

5.8.2. Endothelial damage biomarkers 

 

Plasminogen activator inhibitor-1 (PAI-1) was measured at random in 75 subjects of 

our sample population. The association with C3 complement was significant (r=0.335, 

p=0.003,), but the distribution between C3 complement quartiles exhibited borderline 

association (p=0.068) as shown in table 5.19 and figure 5.21. 

 

Figure 5.21: means of PAI-1 concentrations per quartile of C3. 
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PAI-1 mean values (ng/ml) per C3 quartiles 

C3 N Mean ±SD 

Std. 

Error 

95% CI for Mean 

Min. Max. Lower B. Upper B. 

Q1 25 28.90 ±25.98 5.19 18.17 39.62 1.76 109.03 

Q2 22 38.52 ±34.52 7.36 23.21 53.83 8.15 135.47 

Q3 13 34.85 ±14.81 4.11 25.90 43.81 7.02 64.24 

Q4 15 53.18 ±32.29 8.33 35.30 71.07 10.93 104.86 

Total 75 37.61 ±29.43 3.39 30.84 44.38 1.76 135.47 

 

Table 5.19: descriptive distribution of the PAI-1 means between C3 quartiles 

 

Tissue-type plasminogen activator (TPA) levels were determined in 265 patients 

selected randomly. These values were compared with C3 complement levels and a 

strong association between both variables resulted (r=0.263. p<0.001). The distribution 

of the means per C3 quartiles was also studied, but the association in the distribution 

was not shown as seen in figure 5.22 and table 5.20. 

 

 

Figure 5.22: Representation of the means of TPA and quartiles of C3. 
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Endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) correlates with 

atheroma formation. We obtained the results from 208 subjects at random. There was 

also a significant correlation between both variables (r=0.19, p=0.019). 

 

Distribution of TPA means (pg/ml) 

C3 N Mean ±SD Std. Error 

95% CI for Mean 

Min. Max. Lower B. Upper B. 

Q1 71 2904.43 ±1507,50 178.91 2547.62 3261.26 730.3 8261.2 

Q2 70 3411.56 ±1717.37 205.26 3002.07 3821.05 966.9 9090.0 

Q3 57 3329.34 ±1467.73 194.45 2939.90 3718.78 1222.4 7746.0 

Q4 67 3981.37 ±1577.25 192.69 3596.64 4366.09 1562.7 8852.7 

Total 265 3402.07 ±1614.10 99.15 3206.84 3597.30 730.3 9090.0 

 

Table 5.20: Distribution of the TPA mean values per C3 quartiles  (r=0.19, p=0.019). 

 

 

 

 

5.8.3. Oxidative stress biomarkers 

 

 

Finally the oxidative stress biomarkers were represented by total antioxidant capacity 

(TAC) and thiubarrbituric acid substances (TBARS).  

 

TAC levels (µM) were determined in 201 subjects of our sample population in an 

arbitrary way. The initial inverted direction of C3 convertase and TAC values, did not 

reach statistical significance (r=-0.50, p=0.485). 

 

TBARS (µM/L) values were measured in 232 patients of our study population chosen 

randomly. TBARS levels showed marginal linear correlation with C3 complement 

values (r=0.114, p=0.084). 
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Figure 5.23: Borderline linear association between C3 complement and TBARS values 
(p=0.084). 

 

 

 

5.9. Variables distribution analysis between C3 complement quartiles  

 

To assess more exhaustively the correlation between all our variables with C3 

complement we performed an analysis per C3 quartiles. The distribution of the 

variables per quartiles also distributed their thresholds and pathological diagnosis per 

quartiles. 

Before proceeding with the analysis of the variables‟ behaviour, we assessed the 

distribution of the population across the C3 quartiles. The results of this analysis 

showed, that the number of subjects was homogenously distributed among quartiles 

with a similar number and percentage of subjects per quartile as shown in table 5.21. 

Complement C3 quartiles Frequency Percentage (%) Valid % Cumulative % 

Q1 93 24.9 24.9 24.9 

Q2 92 24.6 24.6 49.5 

Q3 93 24.9 24.9 74.3 

Q4 96 25.7 25.7 100 

Total 374 100 100  

Table 5.21: Homogenous distribution of the sample population among the quartiles of 

C3 complement concentrations. 
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5.9.1. Distribution of Sample population into C3 quartiles 

 

In order to assess the behaviour of different variables along the whole range of C3 

concentrations, we first assessed the distribution of the C3 complement variable, 

showing a histogram compatible with a normal distribution as shown in graph 5.24.  

 

Figure 5.24: histogram of C3 complement concentrations and normal distribution curve.  

 

Our study population (n=374) was divided into 4 quartiles based on the distribution of 

the C3 complement concentrations among the subjects. The division by quartiles was 

not affected by extreme values of non-normal distributions because the quartiles were 

calculated from non-parametric parameters (percentiles). In the study population the 

C3 complement variable (mean=129.65±26.02 mg/dl) had a median value of 127.00 

mg/dl (percentile 50). C3 complement quartiles cut-off values were as follows: Q1: 

C3<111.75; Q2: C3 ≥ 117.5 to <127; Q3: 3 ≥127 to <147; and Q4 C3 ≥147, as shown 

in table 5.22.  

 

Percentiles 25th  50th  75th  

C3 (mg/dl) 111.75 127.00 147.00 
 

Table 5.22: C3 distribution by percentiles, representing the quartiles cut-off points. 

Percentile 50 represents de median (127.00 mg/dl). 
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To check the independence of modifiable variables in our study the homogeneity of 

non-modifiable variables among the quartile‟s groups was assessed as follows.  

 

There was no significant association between the gender distribution and C3 quartiles‟ 

groups as seen in the table 5.23 (p= 0.175).  

C3 complement quartiles 
(N=374) 

Gender 

Total Females Males 

Q1 N 42 51 93 

Percentage 45.2 54.8 100 

Q2 N 52 40 92 

% 565 43.5 100 

Q3 N 54 39 93 

% 58.1 41.9 100 

Q4 N 58 38 96 

% 60.4 39.6 100 

Total N 206 168 374 

% 55.1 44.9 100 

 

Table 5.23: Homogenous gender distribution per quartile according to the number of 

subjects and percentages (p=0.175).  

 

There were not significant differences either in age among the C3 complement 

quartile‟s groups. The distribution of subjects per groups according to age was 

homogenous as seen in table 5.24. 

Age distribution among the C3 complement quartiles (years) 

C3 quartiles N Mean ±SD Std. Error 

95% CI for Mean 

Min. Max. Lower B. Upper B. 

Q1 93 51.08 ±15.18 1.57 47.95 54.20 24.79 90.70 

Q2 92 53.73 ±16.13 1.68 50.39 57.07 19.70 85.80 

Q3 93 56.26 ±14.56 1.50 53.26 59.26 19.92 82.31 

Q4 96 53.20 ±13.11 1.33 50.54 55.85 22.84 85.39 

Total 374 53.56 ±14.82 0.766 52.05 55.07 19.70 90.70 

Table 5.24: Display of the age distribution in the sample population across the C3 

quartiles. There was not a significant correlation of the mean ages among groups 

(p=0.12).  
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5.9.2. Distribution of Cardiometabolic continuous variables across the C3 

quartiles 

 

In order to assess the association between C3 complement concentrations and 

cardiovascular risk, the relationship between C3 values distributed by quartiles and 

several cardiometabolic continuous variables was evaluated. 

 

Description of population distribution divided into C3 complement quartiles (n=374) 

 Variables 
 

C3 
quartiles 
 

N 
 

Mean ±SD 
 

Std. 
Error 
 

95% CI for Mean 

Min. 
 

Max. 
 

Lower B. 
 

Upper B. 
 

SBP (mmHg) Q1 93 126.30 ±18.73 1.94 122.44 130.16 87 204 

Q2 92 134.72 ±23.20 2.41 129.91 139.52 91 205 

Q3 93 135.26 ±20.16 2.09 131.11 139.41 91 197 

Q4 96 136.94 ±16.61 1.69 133.57 140.30 101 183 

Total 374 133.33 ±20.13 1.04 131.28 135.38 87 205 

DBP (mmHg) Q1 93 78.00 ±10.57 1.09 75.82 80.18 55 112 

Q2 92 82.27 ±9.816 1.02 80.24 84.30 60 103 

Q3 93 82.59 ±9.83) 1.02 80.57 84.62 59 110 

Q4 96 85.46 ±10.74 1.09 83.28 87.64 65 116 

Total 374 82.11 ±10.55 0.54 81.03 83.18 55 116 

Waist/hip ratio Q1 93 0.87 ±0.09 0.01 0.85 0.89 0.70 1.05 

Q2 92 0.90 ±0.09 0.01 0.88 0.92 0.63 1.16 

Q3 93 0.93 ±0.07 0.01 0.92 0.95 0.70 1.09 

Q4 96 0.94 ±0.08 0.01 0.92 0.95 0.67 1.20 

Total 374 0.91 ±0.09 0.01 0.90 0.92 0.63 1.20 

Waist (cm) Q1 93 85.46 ±11.67 1.21 83.05 87.86 63 113 

Q2 92 90.43 ±12.42 1.29 87.86 93.01 59 128 

Q3 93 94.59 ±9.93 1.03 92.54 96.63 67 113 

Q4 96 97.75 ±12.05) 1.23 95.30 100.19 70 139 

Total 374 92.11 ±12.41 0.64 90.84 93.37 59 139 

BMI (Kg/m²) Q1 93 25.09 ±3.98 0.41 24.27 25.91 17.75 35.35 

Q2 92 25.91 ±4.32 0.45 25.01 26.80 18.31 47.54 

Q3 93 28.07 ±3.94 0.41 27.25 28.87 17.30 37.17 

Q4 96 29,40 ±5.24 0.53 28.33 30.45 21.14 49.52 

Total 374 27.13 ±4.71 0.24 26.65 27.61 17.30 49.52 

 

Table 5.25: Description of the haemodynamic and anthropometric variables distribution 

along the C3 complement levels quartiles.  
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All the anthropometric cardiometabolic variables‟ means increased in proportionally to 

the C3 complement quartiles. Furthermore, all the anthropometric means, such as BMI 

(p<0.001), SPB (p=0.001), DPB (p<0.001), waist/hip ratio (p<0.001) and waist size 

(p<0.001) showed positive linear correlations. The variables distribution among C3 

complement quartiles is displayed in table 5.25. 

 

The number of MetS factors per patient was associated with C3 quartiles (p<0.001). 

Thus, most of the MetS factors-free or metabolically healthy patients were situated in 

the first C3 complement and there were no patients presenting five MetS constitutive 

criteria. Additionally, the percentage of patients showing positive for all the factors 

increased accordingly to the quartiles increment as shown in table 5.26. Furthermore, 

the majority of the measured numerical metabolic variables also showed a positive 

correlation to the C3 complement concentration per quartiles. In particular, those 

related to MetS. 

 
 

Number of MetS criteria per C3 complement quartiles distribution 

C3 quartiles 
 

Percentage of number of MetS criteria presented 
per patient 

Total 
 

0 1 2 3 4 5 

Q1 N 31 27 23 11 1 0 93 

% within Q1 33.3 29.0 24.7 11.8 1.1 0.0 100 

% within no. of criteria 55.4 33.8 21.7 14.7 2.5 0.0 24.9 

Q2 N 17 23 26 16 8 2 92 

% within Q2 18.5 25.0 28.3 17.4 8.7 2.2 100 

% within no. of criteria 30.4 28.7 24.5 21.3 20.0 11.8 24.6 

Q3 N 6 20 23 24 10 10 93 

% within Q3 6.5 21.5 24.7 25.8 10.8 10.8 100 

% within no. of criteria 10.7 25.0 21.7 32.0 25.0 58.8 24.9 

Q4 N 2 10 34 24 21 5 96 

% within Q4 2.1 10.4 35.4 25.0 21.9 5.2 100 

% within no. of criteria 3.6 12.5 32.1 32.0 52.5 29.4 25.7 

Total N 56 80 106 75 40 17 374 

% by no. of criteria 15.0 21.4 28.3 20.1 10.7 4.5 100 

% within no. of criteria 100 100 100 100 100 100 100 

 
Table 5.26: Distribution of the percentage of number of metabolic criteria met per C3 

quartile. 
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 The cardiovascular risk calculated by the REGICOR model showed a sample 

population distribution with a mean risk in 10 years of 3.63 ±2.9 % cardiovascular, from 

a minimum of 0.01% to a maximum of 17.63%. The risk measured by REGICOR 

showed a statistically significant difference across the C3 complement quartiles 

(p=0.004), as displayed in table 5.27. 

REGICOR (%) distribution by C3 complement quartiles 

Q N Mean ±SD Std. error 95% CI for Mean Min Max 

Q1 93 2.70 ±2.43 0.25 2.20 3.20 0.03 11.90 

Q2 92 3.77 ±3.21 0.33 3.10 4.43 0.01 17.65 

Q3 93 3.90 ±2.99 0.31 3.28 4.52 0.03 14.94 

Q4 96 4.13 ±2.79 0.28 3.57 4.70 0.04 12.95 

Total 374 3.63 ±2.91 0.15 3.33 3.93 0.01 17.65 

 

Table 5.27: Differences in Cardiovascular risk measured by REGICOR formula among 

the C3 quartile groups (p=0.004). 

Fasting glucose, a metabolic marker of hyperglycaemia, showed a positive tendency 

towards the increment of C3 quartiles. The mean values of fasting glucose (p=0.119), 

had an increasing trend according to the C3 quartiles, but they did not reach a 

statistically significant difference as seen in figure 5.25. A similar non-significant trend 

was also observed in the glycosylate haemoglobin values (p=0.171). Both values were 

measured in the whole population without exclusions. 

 

Figure 5.25: Bar chart representing the tendency incrementing the mean fasting 

glucose levels per C3 complement quartiles (p=0.171). 



UAH, PhD program: D234 Medicine  Rodriguez-Guerrero, A. 

130 

 

Meanwhile, the insulin resistance representative variable, calculated through the 

HOMA formula, showed a strong positive correlation with the C3 quartiles. The different 

sample population used to calculate insulin resistance was noted again, which 

excluded exogenous insulin dependent subjects (n=320) as explained earlier in this 

paper.  

 

The Insulin resistance drew a clear positive correlation (p<0.001) with C3, HOMA 

incremented proportionally its percentages per quartile.  

 

All the variables related with the glycaemic metabolism, FG, A1c and HOMA showed 

strong association (p<0.001) with C3 quartiles, as the distribution of their means along 

the C3 quartiles show in more detail in table 5.28. 

 

The lipid metabolism of our population showed a more pathologic lipid profile in those 

patients with higher C3 quartiles as follows: Triglycerides levels were positively 

correlated (p<0.001) as showed in figure 5.26.  

 

Meanwhile HDLc concentrations were inversely correlated as low HDLc is correlated to 

cardiovascular risk (p<0.001).  

 

 

 

Figure 5.26: Values of triglycerides concentrations means per C3 complement 

quartiles.Both variables showed a strong linear correlation (p<0.001). 
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 Description of population divided into C3 complement quartiles (n:374) 

T2DM variables N Mean ±SD S error 95% CI for Mean Min Max 

Fasting 

glucose 

(mg/dl) 

Q1 93 102.03 ±48.09 4.98 92.13 111.94 64 421 

Q2 92 102.58 ±36.82 3.83 94.95 110.20 71 280 

Q3 93 112.44 ±33.60 3.48 105.52 119.36 71 241 

Q4 96 112.18 ±39.47 4.02 104.18 120.17 73 302 

Total 374 107.36 ±40.02 2.06 103.29 111.43 64 421 

A1c 

(%) 

Q1 93 5.76 ±1.29 .13 5.49 6.03 4.0 11.5 

Q2 92 5.61 ±1.08 .11 5.39 5.84 4.4 10.3 

Q3 93 5.99 ±1.17 .12 5.75 6.23 4.1 10.8 

Q4 96 5.88 ±1.24 .12 5.63 6.13 4.6 11.7 

Total 374 5.81 ±1.20 .06 5.69 5.93 4.0 11.7 

HOMA 

(score) 

Q1 73 1.31 ±1.01 .12 1.08 1.55 .32 6.16 

Q2 78 1.74 ±1.23 .14 1.46 2.02 .40 7.43 

Q3 84 2.45 ±1.58 .17 2.11 2.80 .39 10.19 

Q4 85 3.07 ±2.05 .22 2.62 3.51 .37 10.95 

Total 320 2.18 ±1.67 .09 2.00 2.37 .32 10.95 

 

Table 5.28: Distribution of the sample population values of fasting glucose, glycosylate 

haemoglobin and insulin resistance (calculated with HOMA formula) per C3 

complement quartiles. 

 

 

On the other hand, other lipid profile parameters, such as LDLc and total cholesterol, 

did not show significant differences between LDLc (p=0.720) levels, total cholesterol 

concentrations (p=0.466) and the C3 complement quartiles as showed in table 5.29. 

None of these parameters are MetS criteria. Therefore, they are not directly involved in 

the cardiovascular risk score accepted in this study (REGICOR), 
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Description of population divided into C3 complement quartiles (n:374) 

Lipid profile N Mean ±SD Std. error 95% CI for Mean Min Max 

Total 

cholesterol 

(mg/dl) 

Q1 93 199.85 ±43.58 4.519 190.87 208.82 130 365 

Q2 92 203.99 ±45.63 4.757 194.54 213.44 83 407 

Q3 93 196.99 ±46.25 4.796 187.46 206.51 115 389 

Q4 96 207.00 ±50.07 5.110 196.85 217.15 122 367 

Total 374 201.99 ±46.45 2.402 197.27 206.71 83 407 

LDLc 

(mg/dl) 

Q1 93 127.86 ±39.19 4.064 119.79 135.93 55 274 

Q2 92 128.15 ±40.65 4.238 119.73 136.57 25 316 

Q3 93 124.61 ±40.46 4.195 116.28 132.94 61 315 

Q4 96 131.60 ±45.53 4.647 122.38 140.83 59 280 

Total 374 128.09 ±41.47 2.144 123.87 132.30 25 316 

Triglycerides 

(mg/dl) 

Q1 93 84.14 ±35.94 3.727 76.74 91.54 34 233 

Q2 92 120.92 ±65.79 6.859 107.30 134.55 41 354 

Q3 93 123.53 ±61.01 6.327 110.96 136.09 40 273 

Q4 96 144.16 ±69.95 7.140 129.98 158.33 44 381 

Total 374 118.39 ±63.33 3.275 111.95 124.83 34 381 

HDLc 

(mg/dl) 

Q1 93 54.62 ±13.56 1.406 51.83 57.42 32 101 

Q2 92 51.34 ±13.37 1.393 48.57 54.10 25 105 

Q3 93 48.16 ±11.32 1.174 45.83 50.49 29 80 

Q4 96 46.39 ±9.03 .922 44.56 48.21 29 71 

Total 374 50.09 ±12.30 .636 48.84 51.34 25 105 

 

Table 5.29: Distribution of the means lipid profile parameters among the C3 

complement quartiles.   

 

 

 

5.9.3. C3 quartiles association with inflammation and coagulation. 

 

The inflammation biomarker, CRP, increased its values accordingly to increasing C3 

complement quartiles. High sensitivity CRP showed a statistically positive correlation 

with the C3 complement levels divided in quartiles (p<0.001).  Coagulation was 

represented in this analysis by three pro-thrombotic factors such as fibrinogen, 

homocysteine and lipoprotein(a).  
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Description of the sample population divided into C3 complement quartiles (n:374) 

Biomarkers  N Mean ±SD Std. Error 95% CI Mean Min Max 

CRPhs 

(mg/L) 

Q1 93 2.50 ±1.80 0.18 2.12 2.87 0.4 10.30 

Q2 92 2.45 ±1.92 0.20 2.05 2.85 0.16 14.90 

Q3 93 2.90 ±2.17 0.22 2.45 3.35 0.33 13.40 

Q4 96 3.6.5 ±2.32 0.23 3.18 4.12 0.29 12.70 

Total 374 2.88 ±2.17 0.10 2.67 3.10 0.14 14.90 

Fibrinogen* 

(mg/dl) 

Q1 62 275.42 ±56.20 7.13 261.15 289.69 181.7 464.0 

Q2 68 291.22 ±63.63 7.71 275.82 306.63 159.9 517.2 

Q3 79 299.48 ±59.76 6.72 286.10 312.87 161.0 448.2 

Q4 75 319.83 ±69.50 8.02 303.84 335.82 153.4 522.9 

Total 284 297.63 ±64.31 3.81 290.11 305.14 153.4 522.9 

Homocysteine 

(µmol/L) 

Q1 93 12.28 ±4.37 0.45 11.38 13.18 6.0 30.0 

Q2 92 11.96 ±3.36 0.35 11.27 12.66 4.5 21.6 

Q3 93 11.52 ±3.02 0.31 10.90 12.15 4.9 21.4 

Q4 96 11.69 ±2.79 0.28 11.12 12.26 5.9 21.8 

Total 374 11.86 ±3.43 0.17 11.51 12.21 4.5 30.0 

Lp(a) 

(mg/dl) 

 

Q1 93 27.92 ±28.88 2.99 21.97 33.87 2.4 147.0 

Q2 92 27.90 ±30.56 3.18 21.58 34.23 2.3 164.4 

Q3 93 26.50 ±29.36 3.04 20.45 32.55 2.4 141.3 

Q4 96 28.71 ±30.17 3.08 22.60 34.83 2.3 170.9 

Total 374 27.77 ±29.64 1.53 24.75 30.78 2.3 170.9 

Ferritin 

(µg/dl) 

Q1 93 91.15 ±93.24 9.66 71.95 110.36 7.20 526.65 

Q2 92 109.13 ±92.33 9.62 90.05 128.29 2.42 514.06 

Q3 93 123.22 ±109.56 11.36 100.65 145.78 2.95 687.80 

Q4 96 143.70 ±134.22 13.69 116.50 170.89 4.43 829.14 

Total 374 117.04 ±110.22 5.69 105.84 128.25 2.42 829.14 

 

Table 5.30: Description of the distribution of levels of inflammation and coagulation 

markers in the sample population divided by C3 complement concentration 

levels.*p<0.05. 

As a first coagulation representative, fibrinogen was distributed in the sample 

population from a minimum of 153.4 mg/dl to a maximum of 522.9 mg/dl, with a mean 

of 2 97.63 ±69.50 mg/dl.  
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Second representative, homocysteine (Hcy) values ranged from 4.5 µmol/L to 30 

µmol/L, with a  mean of 11.86 ±2.79 µmol/L.  

Finally, Lpa measurements varied from 2.3 mg/dl to 170 mg/dl and the mean was 

29.64±27.77 mg/dl (table 5.30). Values of Lipoprotein-a (Lp(a)) over 30 mg/dl indicated 

Lp(a) overload. There was not a significant correlation shown between 

hyperlipoproteinemia(a) and higher quartiles of C3 complement (p=0.504).    

None of both variables, Lpa (p=0.966) nor Hcy (p=0.464), showed a correlation with C3 

complement quartiles.  Only fibrinogen values were significantly different among the C3 

quartiles, as shown in table 5.30 (p=0.034). 

 

 

 

5.9.4. Metabolic pathologies distribution between C3 quartiles 

 

The sample population was distributed according to the presence or absence of 

cardiometabolic pathologies into two dichotomous variables. The percentages 

allocated per yes/no diagnosis and differences per quartile were assessed by cross-

tabulation and chi squared.     

A uric acid level over 6µg/dl was defined as iron overload, hyperuricemia. The sample 

population was divided into hyperuricemic and non-hyperuricemic groups. There was 

not significant association between the presence of hyperuricemia and higher values 

of C3 complement in plasma divided into quartiles (p=0.812).  

 

On the other hand, Hyperferritinemia threshold was set at ferritin values in plasma 

over 180µg/L. The study population was split in two groups and correlated to C3 

complement quartiles. The population was also segmented into hyperferritinemic and 

normal values of ferritin patients. There was no significant association between both 

variables (p=0.386). Both associations are shown in more detail in table 5.31.  
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C3 quartiles cross-tabulation with uric acid and lipoprotein(a) overloads 

 

 C3 quartiles 

 

Hyperuricemia 

 

Hyperferritinemia 

No Yes Total No Yes Total 

Q1 N 86 7 93 86 7 93 

% Q1 92.5 7.5 100 92.5 7.5 100 

% Variable 25.5 18.9 24.9 26.1 15.9 24.9 

Q2 N 82 10 92 81 11 92 

% Q2 89.1 10.9 100 88.0 12.0 100 

% Variable 24.3 27.0 24.6 24.5 25.0 24.6 

Q3 N 84 9 93 80 13 93 

% Q3 90.3 9.7 100 86.0 14.0 100 

% Variable 24.9 24.3 24.9 24.2 29.5 24.9 

Q4 N 85 11 96 83 13 96 

% Q4 88.5 11.5 100 86.5 13.5 100 

% Variable 25.2 29.7 25.7 25.2 29.5 25.7 

Total N 337 37 374 330 44 374 

% Total 90.1 9.9 100 88.2 11.8 100 

% Variable 100 100 100 100 100 100 

 

Table 5.31: Cross-tabulations between c3 quartiles and presence of hyperuricemia or 

hyperferritinemia.  

 

 

The same analysis was performed with CRP and homocysteine. A CRP level over 

2mg/L, according to Jupiter study, was defined as high CRP. Likewise, a correlation 

between both variables was not demonstrated (p=0.622).  Homocystein overload 

hyperhomocyteinemia, was conventionally described as above 15 µmol/L. A statistical 

association was demonstrated between high C3 complement quartiles and a diagnosis 

of hyperhomocysteinemia (p=0.025). These three cross-tabulations are shown in 

table 5.32. 
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C3 quartiles cross-tabulation with: 

C3 complement  
Quartiles 

Iron excess High C-reactive protein Hyperhomocysteinemia 

No Yes Total No Yes Total No Yes Total 

Q1 N 88 5 93 92 1 93 81 12 93 

% Q1 94.6 5.4 100 98.9 1.1 100 87.1 12.9 100 

% Variable 26.1 13.5 24,9 24.9 20.0% 24.9 28.2 13.8 24.9 

Q2 N 82 10 92 91 1 92 72 20 92 

% Q2 89.1 10.9 100 98.9 1.1 100 78.3 21.7 100 

% Variable 24.3 27.0 24,6 24.7 20.0 24.6 25.1 23.0 24.6 

Q3 N 83 10 93 91 2 93 66 27 93 

% Q3 89.2 10.8 100 97.8 2.2 100 71.0 29.0 100 

% Variable 24.6 27.0 24,9 24.7 40.0 24.9 23.0 31.0 24.9 

Q4 N 84 12 96 95 1 96 68 28 96 

% Q4 87.5 12.5 100 99.0 1.0 100 70.8 29.2 100 

% Variable 24.9 32.4 25,7 25.7 20.0 25.7 23.7 32.2 25.7 

Total N 337 37 374 369 5 374 287 87 374 

% Total 90.1 9.9 100 98.7 1.3 100 76.7 23.3 100 

% Variable 100 100 100 100 100 100 100 100 100 

 

Table 5.32: Cross-tabulation between C3 complement quartiles and iron excess, CRP 

overload and Hyperhomocysteinemia.  

 

 

Because of their particular relevance, the classical cardiovascular factors were studied 

with more attention. The association of C3 complement quartiles with hypertension 

was doubly examined. First, we analysed the association with previous clinical 

diagnoses of hypertension  (BP>135/85), second, with HBP MetS criterion (BP >135/85 

mmHg or under treatment for HBP).  

 

This double analysis showed significant association between the prevalence of 

hypertension and its incremental distribution per higher C3 complement quartiles. 

However, the association was stronger with HBP MetS criterion (p<0.001) than with 

hypertension diagnosis (p=0.011), as shown in table 5.33.     
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Cross tabulation between  

C3 complement 

Quartiles 

Hypertension HBP MetS criterion 

No Yes Total No Yes Total 

Q1 N 55 38 93 52 41 93 

% Q1 59.1 40.9 100 55.9 44.1 100 

% Variable 32.7 18.4 24.9 40.0 16.8 24.9 

Q2 N 41 51 92 33 59 92 

% Q2 44.6 55.4 100 35.9 64.1 100 

% Variable 24.4 24.8 24.6 25.4 24.2 24.6 

Q3 N 36 57 93 22 71 93 

% Q3 38.7 61.3 100 23.7 76.3 100 

% Variable 21.4 27.7 24.9 16.9 29.1 24.9 

Q4 N 36 60 96 23 73 96 

% Q4 37.5 62.5 100 24.0 76.0 100 

% Vatriable 21.4 29.1 25.7 17.7 29.9 25.7 

Tot

al 

N 168 206 374 130 244 374 

% Total 44.9 55.1 100 34.8 65.2 100 

% Variable 100 100 100 100 100 100 

 

Table 5.33: Cross-tabulation between hypertension, HBP MetS criteria and C3 

complement quartiles. 

 

The distribution of hypercholesterolemia (LDLc>160mg/dl) per C3 complement 

quartiles also showed a significant association (p=0.006). A closer examination of the 

patients with a presence of low HDLc (men<40mg/dl, women<50mg/dl) also showed a 

significant association between both variables (p=0.007).  

 

This association was even stronger when C3 complement quartiles were crossed with 

low HDLc MetS criteria (low cyphers or under treatment, p=0.001) as displayed in more 

detail in table 5.34. 
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 Cross tabulation between  

Quartiles 

Low HDLc Low HDLc MetS criterion 

No Yes Total No Yes Total 

Q1 N No Yes Total 75 18 93 

% Q1 85 8 93 80.6 19.4 100 

% Variable 91.4 8.6 100 31.0 13.6 24.9 

Q2 N 28.7 10.3 24.9 60 32 92 

% Q2 70 22 92 65.2 34.8 100 

% Variable 76.1 23.9 100 24.8 24.2 24.6 

Q3 N 23.6 28.2 24.6 57 36 93 

% Q3 72 21 93 61.3 38.7 100 

% Variable 77.4 22.6 100 23.6 27.3 24.9 

Q4 N 24.3 26.9 24.9 50 46 96 

% Q4 69 27 96 52.1 47.9 100 

% Variable 71.9 28.1 100 20.7 34.8 25.7 

Total N 23.3 34.6 25.7 242 132 374 

% Total 296 78 374 64.7 35.3 100 

% Variable 79.1 20.9 100 100 100 100 

 

Table 5.34: The distribution of population with low HDLc diagnosed by plasma 

concentrations and by MetS criteria among the C3 complement quartiles showed 

strong association. 

 
 
The allocation of patients diagnosed with hyperglycaemia per C3 complement quartile 

showed a positive association. Again the diagnosis of hyperglycaemia MetS criterion 

(p<0.001) was stronger than the single fasting glucose levels measurement 

(FG>100mg/dl, p=0.01) as is shown in table 5.35. 

 

Assuring the aforementioned statistical analysis, the distribution of hypertriglyceridemic 

patients among the C3 complement quartiles showed the strongest association. The 

majority of the hypertriglyceridemic subjects was allocated in the higher quartiles, 

inversely to the non-hyperglyceridemic individuals. Both the diagnosis of 

hypertriglyceridemia according to triglycerides plasma levels (TG>150mg/dl, p 

<0.001) and hypertriglyceridemia MetS criterion (p<0.001) showed a significant 

association with C3 quartiles, as displayed in more detail in table 5.36. 
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Cross tabulation between  

Quartiles 

Hyperglycaemia Hyperglycaemia MetS criteria 

No Yes Total No Yes Total 

Q1 N 75 18 93 66 27 93 

% Q1 80.6 19.4 100 71.0 29.0 100 

% Variable 26.9 18.9 24.9 30.3 17.3 24.9 

Q2 N 76 16 92 62 30 92 

% Q2 82.6 17.4 100 67.4 32.6 100 

% Variable 27.2 16.8 24.6 28.4 19.2 24.6 

Q3 N 59 34 93 44 49 93 

% Q3 63.4 36.6 100 47.3 52.7 100 

% Variable 21.1 35.8 24.9 20.2 31.4 24.9 

Q4 N 69 27 96 46 50 96 

% Q4 719 28.1 100 47.9 52.1 100 

% Variable 24.7 28.4 25.7 21.1 32.1 25.7 

Total N 279 95 374 218 156 374 

% Total 74.6 25.4 100 58.3 41.7 100 

% Variable 100 100 100 100 100 100 

Table 5.35: distribution of the sample population classified by presence/absence of 

hyperglycaemia and C3 complement quartiles.  

  
Cross tabulation between 

Quartiles 

HTG HTG MetS Criterion 

No Yes Total No Yes Total 

Q1 N 89 4 93 89 4 93 

% Q1 95.7 4.3 100 95.7 4.3 100 

% Variable 30.9 4.7 24.9 32.1 4.1 24.9 

Q2 N 73 19 92 71 21 92 

% Q2 79.3 20.7 100 77.2 22.8 100 

% Variable 25.3 22.1 24.6 25.6 21.6 24.6 

Q3 N 71 22 93 61 32 93 

% Q3 76.3 23.7 100 65.6 34.4 100 

% Variable 24.7 25.6 24.9 22.0 33.0 24.9 

Q4 N 55 41 96 56 40 96 

% Q4 57.3 42.7 100 58.3 41 100 

% Variable 19.1 47.7 25.7 20.2 41.2 25.7 

Tot
al 

N 288 86 374 277 97 374 

% Total 77.0 23.0 100 74.1 25.9 100 

% Variable 100 100 100 100 100 100 

 

Table 5.36: The distribution of the hypertrygliceridemic and non-hypertrigliceridemic 

populations by C3 quartiles showed a statistical correlation (p<0.001). 



UAH, PhD program: D234 Medicine  Rodriguez-Guerrero, A. 

140 

 

As described in the methodology, the sample population was stratified by degrees of 

obesity as follows, normal healthy weight (BMI=18-25), overweight (BMI>25-30), obese 

(BMI>30). The distribution of these three groups among the C3 complement quartiles 

was positively associated (p<0.001).  The obese and overweight groups were more 

prevalent in the upper quartiles. Abdominal obesity (waist >102 cm in males, >88 cm in 

females) was also significantly associated with increased C3 complement levels, and 

more prevalent in superior quartiles (p<0.001) as shown in table 5.37. 

 

Cross tabulation between  

Quartiles 

Waist BMI 

Normal 
MetS 
waist Total Normal Overweight Obese Total 

Q1 N 73 20 93 49 34 10 93 

% Q1 78.5 21.5 100 52.7 36.6 10.8 100 

% Variable 30.3 15 24.9 38.0 21.7 11.4 24.9 

Q2 N 69 23 92 42 38 12 92 

% Q2 75 25 100 45.7 41.3 13 100 

% Variable 28.6 17.3 24.6 32.6 24.2 13.6 24.6 

Q3 N 53 40 93 19 44 30 93 

% Q3 57 43 100 20.4 47.3 32.3 100 

% Variable 22 30.1 24.9 14.7 28 34.1 24.9 

Q4 N 46 50 96 19 41 36 96 

% Q4 47.9 52.1 100 19.8 42.7 37.5 100 

% Variable 19.1 37.6 25.7 14.7 26.1 40.9 25.7 

Total N 241 133 374 129 157 88 374 

% Total 64.4 35.6 100 34.5 42 23.5 100 

% Variable 100 100 100 100 100 100 100 

 

Table 5.37: Cross-tabulation distribution of BMI and central obesity across the C3 

complement quartiles.  

 

However, there was not a demonstrated association between gender and distribution 

by C3 complement quartiles either, showing that C3 levels were independent of 

gender(p=0.157). 
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As explained further above, due to the scarce number of high cardiovascular risk 

subjects, the sample population was stratified in low (<5%) and moderate-high (≥5%) 

cardiovascular risk. Moderate-high CV risk showed a trend of association with C3 

complement quartiles (p=0.092). Meanwhile, C3 complement quartiles exhibited a 

positive association with diagnosis of MetS (≥3 MetS criteria), as the number of 

metabolic patients increased proportionally to the C3 quartiles (p<0.001), as can be 

seen in table 5.38 in more detail. 

 

Cross tabulation between  

Quartiles 

Gender MetS REGICOR CV risk 

Male Female Total No Yes Total <5% >5% Total 

Q1 N 42 51 93 81 12 93 80 13 93 

% Q1 45.2 54.8 100 87.1 12.9 100 86 14.0 100 

% Variable 20.4 30.4 24,9 33.5 9.1 24.9 28 14.8 24.9 

Q2 N 52 40 92 66 26 92 68 24 92 

% Q2 56.5 43.5 100 71.7 28.3 100 73.9 26.1 100 

% Variable 25.2 23.8 24,6 27.3 19.7 24.6 23.8 27.3 24.6 

Q3 N 54 39 93 49 44 93 69 24 93 

% Q3 58.1 41.9 100 52.7 47.3 100 74.2 25.8 100 

% Variable 26.2 23.2 24,9 20.2 33.3 24.9 24.1 27.3 24.9 

Q4 N 58 38 96 46 50 96 69 27 96 

% Q4 60.4 39.6 100 47.9 52.1 100 71.9 28.1 100 

% Variable 28.2 22.6 25,7 19 37.9 25.7 24.1 30.7 25.7 

Total N 206 168 374 242 132 374 286 88 374 

% Total 55.1 44.9 100 64.7 35.3 100 76.5 23.5 100 

% Variable 100 100 100 100 100 100 100 100 100 

 

Table 5.38: Cross-tabulation distribution of gender, presence of MetS and 

cardiovascular risk among C3 quartiles. C3 complement quartiles were independent of 

gender (0.157). Reversely, moderate-high cardiovascular risk was correlated (p=0.092) 

and metabolic syndrome was strongly associated (p<0.001) to C3 complement 

quartiles’ distribution.  

 

Finally, the presence of active smokers was higher in the lower quartiles and inversely 

distributed. A smoking habit was not statistically associated with C3 complement 

quartiles (p=0.59). When we separated non-smokers into ex-smokers and never-

smokers the inverse correlation was not statistically significant either (p=0.10), table 

5.39.  
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Cross tabulation between smoking habit and C3 

Quartiles 

Smoking Smoking 

No Yes Total No Former Yes Total 

Q1 N 61 32 93 50 11 32 93 

% Q1 65.6 34.4 100 53.8 11.8 34.4 100 

% Variable 22.6 30.8 24.9 28.4 11.7 30.8 24.9 

Q2 N 62 30 92 38 24 30 92 

% Q2 67.4 32.6 100 41.3 26.1 32.6 100 

% Variable 23.0 28.8 24.6 21.6 25.5 28.8 24.6 

Q3 N 76 17 93 47 29 17 93 

% Q3 81.7 18.3 100 50.5 31.2 18.3 100 

% Variable 28.1 16.3 24.9 26.7 30.9 16.3 24.9 

Q4 N 71 25 96 41 30 25 96 

% Q4 74 26 100 42.7 31.3 26 100 

% Variable 26.3 24 25.7 23.3 31.9 24 25.7 

Total N 270 104 374 176 94 104 374 

% Total 72.2 27.8 100 47.1 25.1 27.8 100 

% Variable 100 100 100 100 100 100 100 

Table 5.39: Association between smoking status classifications (smoker/non-smoker 

vs. smoker/ex-smoker/non-smoker) and C3 levels. 

 

 

5.10. Multivariate analysis of factors associated to C3 complement 

concentrations 

 

 

The multivariate model of lineal regression was performed as described in the 

methodology. With this model, we analysed the constitutive factors of MetS and certain 

laboratory variables as possible predictors of C3 complement levels.  

 

Our maximum model initially comprised 17 variables, which explain the 34% of the C3 

complement values variability (co-linearity coefficient=34), as described in the table 

5.40.  

The non-modifiable variables, age and gender, remained in the model to adjust 

interaction of the modifiable variables, although none of them had statistical 

significance in the initial model. Co-linearity between age and gender was associated. 
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Tobacco consumption variable was adjusted to age. To avoid co-linearity problems, 

quantitative variables were centred at their mean before including them in the 

multivariate models. 

We initially suspected interaction between age and smoking habit variables in our 

sample population. Therefore, the association between C3 and smoking habit would 

have been influenced by the patient‟s age. Consequently, we introduced a variable to 

model the interaction, age per smoking habit. By doing so, the relation of smokers and 

C3 levels was differentiated from non-smokers. 

Descriptive Statistics C3 multivariate model population 

 Mean ±SD N 
Pearson 

Correlation 
Sig. (1-
tailed) 

C3  130.42 ±26.01 320 1.000 . 

Age 53.21 ±14.75 320 0.07 0.120 

Gender 0.43 ±.50 320 -.104 0.032 

CPR 2.72 ±1.90 320 0.277 <0.001 

MetS 0.33 ±.47 320 0.362 <0.001 

REGICOR high risk 0.23 ±.42 320 0.161 0.002 

Hypertriglyceridaemia 0.26 ±.44 320 0.379 <0.001 

Hypertension 0.64 ±.48 320 0.282 <0.001 

Low HDLc 0.34 ±.47 320 0.209 <0.001 

Hyperglycaemia 0.40 ±.49 320 0.252 <0.001 

Waist 0.32 ±.47 320 0.310 <0.001 

HOMA 2.19 ±1.68 320 0.406 <0.001 

Hypercholesrerolemia 0.47 ±.50 320 0.187 <0.001 

Hyperhomocysteinemia 11.63 ±3.36 320 -0.069 0.110 

Lipoprotein(a) 27.51 ±29.79 320 -0.016 0.385 

Smoking 0.28 ±.45 320 -0.131 0.010 

Smoking-age 13.24 ±22.44 320 -0.115 0.020 

  

Table 5.40: Multivariate model for C3 complement population description. N=320, 

Patients under exogenous insulin treatment were excluded as explained in insulin 

resistance analysis.  

 

Gender, hyperhomocysteinemia and lipoprotein(a) diagnosis variables according to 

cut-off points were not significantly associated to C3 complement conforming to the 

multivariate analysis (p>0.050). Gender was inversely correlated to C3 levels (males 

have higher C3 values). Smoking habit negatively correlated to C3 concentrations and, 

as mentioned earlier, was associated to age. 
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According to beta coefficient‟s significance the first less significant variables removed 

from the maximum model were smoking and interaction of smoking habit and age. 

When we adjusted tobacco to age there was not significant association any longer. At 

the same moment or directly after removing smoking habit, the next less influential 

variables Table 5.41 presents data of the multivariable model.  

 

 

Initial maximum multivariate model  

Variable 

Unstandardized 

Coefficients 

Standard 

Coefficient 

t Sig. 

95% CI for B 

B Std. Error Beta Lower B Upper B 

C3 121.67 7.44  16.36 .000 107.04 136.31 

Age -0.19 011 -0.11 -1.66 0.10 -0.41 0.04 

Gender -3.76 2.89 -0.07 -1.30 0.19 -9.44 1.93 

CPR 2.10 .65 0.15 3.23 0.00 0.82 3.39 

MetS -7.78 4.62 -0.14 -1.69 0.09 -16.87 1.31 

REGICOR -2.72 3.45 -0.04 -.79 0.43 -9.51 4.06 

Hypertriglicerida

emia 
15.73 3.31 0.26 4.75 0.00 9.21 22.25 

HBP 10.85 3.05 0.20 3.56 0.00 4.84 16.86 

Low HDLc 5.74 3.10 0.11 1.85 0.07 -0.36 11.83 

Hyperglycaemia 8.59 3.33 0.16 2.58 0.01 2.03 15.14 

Waist 12.10 3.30 0.22 3.65 0.00 5.57 18.63 

HOMA 2.06 0.90 0.13 2.29 0.02 0.29 3.83 

Hypercholesterol

emia 
6.21 2.53 0.12 2.46 0.02 1.23 11.18 

Hyperhomocyste

inemia 
-0.59 0.40 -0.08 -1.50 0.14 -1.37 0.19 

Lipoprotein(a) -0.02 0.04 -0.03 -0.53 0.59 -0.10 0.06 

Smoking -4.56 10.95 -0.08 -0.48 0.68 -26.10 16.99 

Smoking-age -0.07 0.21 -0.06 -0.34 0.73 -0.49 0.35 

Table 5.41: initial analysis of the maximum model variables. The less significant 

variables and first to be removed were smoking (p=0.677) and smoking adjusted to age 

(smoking-age, p=0.733) 
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The remaining variables after regression analysis were considered predictors of C3 

complement concentrations. The regression analysis finished when all the variables 

included in the maximum model reached statistical significance (p≤0.05), excluding age 

and gender as fixed variables (table 5.42).  

 

Predictive factors of C3 complement concentrations by co-linearity diagnosis 

Dependable variable: C3 

 

Unstandardized 

Coefficients 

Standard 

Coef. 

t Sig. 

95.0% CI Interval for B 

B Std. Error Beta Lower B. Upper B. 

Age -0.19 0.1 -0.11 -1.94 0.05 -0.39 0.00 

Gender -1.95 2.62 -0.04 -0.74 0.46 -7.12 3.20 

CRP 2.06 0.66 0.15 3.12 0.00 0.76 3.36 

HTG 14.34 3.01 0.24 4.76 0.00 8.41 20.27 

HTA 8.70 2.81 0.16 3.10 0.00 3.18 14.22 

Hyperglycaemia 6.35 3.02 0.12 2.10 0.04 0.41 12.29 

Waist 9.14 2.86 0.16 3.20 0.00 3.51 14.76 

HOMA 2.39 0.90 0.15 2.67 0.01 0.63 4.15 

High LDLc 4.90 2.49 0.09 1.97 0.05 0.01 9.79 

  

Table 5.42: Final results of the multivariate linear correlation model. Inflammation 

(CRP), MetS criteria (HTG, HBP, FG and waist) and IR (HOMA) were the predictor 

variables of the 32% variance of the C3 complement. 

 

Some confounding factors, such as hyperglycaemia, and HOMA, were predictive of the 

C3 levels. However, the most significant covariates for C3 were hypertriglyceridemia 

(p<0.001), waist, hypertension, and CRP (p=0.002) in our multivariate linear model.  

 

The predictive value of hypercholesterolemia in the C3 model turned out to be 

borderline significance (p=0.050). Age (p=0.52) and gender (p=0.456) remained not 

statistically significant to predict C3 values in the final outcome measure model. 

Together, those variables could explain more than 32% of the variance of C3 levels 

(R2=0.316).  

 

Patients with vascular inflammation (higher CRP levels), insulin resistance (higher 

HOMA results) and/or fulfilling MetS criteria, such as central obesity (waist), HBP or 

hypertriglyceridemia will have higher C3 complement levels with equal age and gender. 
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6. Discussion 

 

 

In this observational cross-sectional study, representative of population from Madrid 

referred to secondary cardiometabolic care, the majority of our population was 

metabolically unhealthy, as expected for a cardiometabolic unit, where 49.7% suffered 

from incomplete MetS and 35% from MetS, while the prevalence of the MetS in Spain 

for adults was 31% according to DARIOS study [218]. Furthermore, hypertension 

(65%) and hyperglycaemia (42%) resulted as the most prevalent pathologies when we 

analysed individually the constitutive factors of MetS. This finding was contrary to 

expectations in literature where central obesity plays the main role [219]. 

 

Our study demonstrated that circulating C3 strongly predicts the cluster of MetS (Adult 

Treatment Panel III–defined) independently of the MetS components. In previous 

research in South Asians but not in Caucasians, C3 levels were found to be 

independently associated with MetS [220]. In preceding studies that did not fully adjust 

for the MetS components, C3 was found to be a predictor of complete MetS [68, 221, 

222]. 

 

The presence of each MetS criteria was strongly associated to higher concentrations of 

C3 complement individually in our population. So, the degree of obesity, high levels of 

triglycerides, low HDL, hypertensive and hyperglycaemic status, were foreseen by C3 

level variations.  These findings were not previously known and we considered them 

particularly relevant. Thus, these new insights indicate that complement cascade 

activation would be within the first physiologic alterations leading to MetS 

independently of its aetiology as pre-diabetic and cardiovascular condition.  

 

Besides this, the C3 complement values increased proportionally to the number of 

MetS criteria. This is the first documented study in which C3 complement predicted the 

number of MetS criteria. Even more reassuringly, the association between C3 levels 

and ATP-III criteria was almost linear. Adding extra evidence, the percentage of 

patients positive for all the factors increased in parallel to increment of the quartiles and 

there were no patients presenting five MetS constitutive criteria in the first C3 quartile 

and most of the MetS factors-free or metabolically healthy patients were situated in the 
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first C3 complement quartiles. Thus, C3 concentrations would be able to be considered 

a predictor of MetS and stratification by number of MetS criteria. 

 

Even more interesting, there was a change in the slope inclination between two and 

three criteria met.  Levels of C3 complement, although higher for three criteria, were 

similar. This fact made us consider the possible arbitrary threshold of three criteria for 

MetS diagnosis, not sustained in clinical evidence.  This fact has already been 

described by Lemieux in relation to the hypertriglyceridaemic waist [223]. However this 

slope has not been described for other combination of MetS components and it should 

call expert‟s attention for further MetS actualisations. Moreover, the graph correlating 

C3 complement means and cardiovascular risk also changed the inclination of the 

slope between moderate and high risk, as explained later in the text. If we can simplify 

MetS diagnosis, through equal risk, we will be able to benefit a larger number of 

patients with preventive strategies.  

 

The association between obesity, general obesity and central obesity with C3 values 

was confirmed in this study by four ways: firstly quantitatively, correlating values of BMI 

and waist size with C3 high concentrations; secondly qualitatively, associating 

diagnosis of overweight and obesity by BMI thresholds and central obesity by WHO 

cut-off points for Caucasians with high levels of C3 complement; thirdly, there was 

statistical correlation between BMI and central obesity with C3 complement quartiles; 

fourthly, waist as one of the variables remaining as predictor of C3 values variability by 

multivariate analysis as will be shown below. The central role of C3 in obesity-induce 

inflammation has been described in the literature according to general obesity [224, 

225] but not stratified by central obesity and C3 quartiles. 

 

Carrying on with the firm association between C3 levels and MetS, hyperglycaemic 

diagnosis showed a significant correlation with high C3 concentrations. To confirm this 

fact we also tested the relationship between C3 measurements and glycated 

haemoglobin (A1c) determinations in our population. Both variables reinforced a 

positive linear correlation. This positive association was emphasised when C3 

complement quartiles were crossed with the diagnosis of hyperglycaemia MetS 

criterion that showed a linear distribution.   

 

Low HDLc MetS criterion was also associated with C3 complement levels and this 

distribution was even more significant when C3 complement quartiles were crossed. As 



C3 convertase as a novel biomarker of cardiovascular pathology, insulin resistance and endothelial dysfunction  

151 

 

expected due to its inverse correlation to cardiovascular risk broadly accepted, HDLc 

were also negatively correlated to C3 concentrations. With this correlation we 

confirmed the negative association between HDLc, cardiovascular protector, and C3 

complement levels already described in the literature [222, 226]. 

 

The readings of diastolic and systolic blood pressure also counterpartyed C3 

concentrations in plasma as seen previously in the literature [227]. Besides this, the 

diagnosis of hypertension as a qualitative variable demonstrated parallel correlation 

with the C3 quartiles, with high C3 complement concentrations being a predictor of 

hypertension in our study. When C3 complement quartiles were crossed the correlation 

was stronger with hypertension MetS criterion than with single hypertension readings, 

but both were statistically significant. We preferred the qualitative than the quantitative 

hypertension variable because the blood pressure values could be distorted in treated 

patients and removing treatments is considered an ethical limitation in our study. 

 

 Qualitatively, hypertriglyceridemia diagnosis represented the most robust interrelation 

with C3 values in our study. Moreover, both diagnosis of hypertriglyceridemia, 

triglycerides plasma levels and hypertriglyceridemia MetS criterion, showed an 

increasing parallel correlation when C3 complement quartiles were crossed. Ultimately, 

hypertriglyceridemia was the most influential factor determining C3 complement values 

according to multivariate analysis as explained below. Along these lines, C3 

complement would be a predictor of hypertriglyceridemia [228, 229].  

 

Following the thread, we mention the two often forgotten important companions of the 

MetS. Firstly hyperuricemia [19], which has been a long term accompanist of obesity 

and secondly hyperglycaemia. Hyperuricemia has been found to predict the 

development of both obesity and T2DM [230]. Furthermore, it has been described 

hyperuricemia association with MetS in multiple papers [231, 232], but the association 

between C3 complement and uric acid has not been further investigated. The results of 

this study showed an intense association between both variables, linear distribution by 

numbers, strong association with hyperuricemia diagnosis and reinforcing proportional 

distributions along quartiles, an association not previously demonstrated in the 

literature.  

On the other hand, raised levels of ferritin have been found relevant to central obesity 

and metabolically obese normal weight individuals, hypertension, dyslipidaemia and 

MetS in several studies of Western populations [233].  In our study, high values of 
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ferritin were strongly associated with high values of C3 complement. Meanwhile the 

correlation of hyperferritinemia diagnosis and C3 complement was not significant 

because of the inference effect of phlebotomies in our population.  

 

One of the key features of our study was represented by the fact that levels of 

complement C3 were independent of non-modifiable factors, such as age and gender 

when we correlated quantitatively and by C3 quartiles. Therefore, none of the previous 

findings analysed above in this discussion can be attributed to these factors. This 

correlation was checked with C3 concentrations and with the population distributed per 

quartile. However, a slight influence between age factor and C3 levels showed as a 

tendency but not significant association in the scatter diagram between the values of 

both variables. This impact of age in the C3 concentrations behaviour was definitely 

discarded in the multivariate analysis mentioned below.  

 

Finally within the MetS entity, the association with Insulin Resistance (IR) was proven 

with a strong positive correlation of C3 plasma levels and C3 quartiles with HOMA 

values, influencing all of the above unlike age and gender [144, 224, 234]. This strong 

link between HOMA and C3 convertase activity independent of non-modifiable factors 

has been fully supported by statistical evidence in our study by association between 

HOMA and C3 concentrations, C3 quartiles, diagnosis of insulin resistance and as 

bidirectional predictive factor of C3 concentrations with multiple regression analysis at 

the end of our statistical analysis, this original finding was not found in the literature 

 

Cardiovascular risk factors not included among the MetS components and their 

association with C3 will be considered below prior to analysing the cardiovascular risk, 

named LDLc, smoking habit, Lp(a) and Hcy. 

 

In our study, LDLc levels were also strongly correlated with C3 complement levels, a 

finding not demonstrated for the general population in the literature [8], which has been 

only previously demonstrated in familiar hypercholesterolemia [9, 10].  As with the 

obesity-LDLc relationship [235],  the possible correlation of LDLc with C3 via VLDLc, 

which belongs to MetS as a broadly accepted component [236], and 

hypertriglyceridemia,  is not excluded. Only small dense LDLc, instead of total LDLc, 

are considered as part of the MetS and were not measured in this study which also 

comprised treated patients [237, 238].  
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With respect to smoking habit and C3, the inverse association represented an 

unexpected finding, as also happened previously in the literature in the negative 

association between tobacco and Alzheimer‟s and other examples [239, 240], but can 

be explained because  the smokers group was significantly younger than that of non-

smokers and ex-smokers. We proved in this study that in our population tobacco 

consumption was influenced by age. When adjusted to age, smoking habit did not 

show a correlation with C3 complement.  Despite this, we can not obviate that tobacco 

consumption can activate the complement alternative pathway in vitro by modifying the 

third component of complement [241]. 

 

As a mention of the cardiovascular risk factors not associated to MetS but emerging 

factors, lipoprotein(a) and homocystein have been related to cardiovascular pathology 

[193, 242]. None of them showed association with C3 concentrations in our study 

population. Therefore our study confirmed in humans the correlation findings previously 

found in rabbits, where crossed inmuno-electrophoresis analysis indicated that Lp(a) 

apo(a) portion retarded the migration of C3b in complement activated serum, but had 

no effects on complement C3 activation[243, 244]. 

 

  

With the above results at hand, regarding the correlation of C3 with MetS and LDLc, a 

statistically significant correspondence between C3 concentrations and cardiovascular 

risk levels calculated by REGICOR formula did not surprise us, with the C3 levels being 

higher for high cardiovascular risk patients than for low risk subjects.  Moreover, 

reinforcing this close association, a robust interrelationship was found between C3 

concentrations and cardiovascular risk scales, C3 levels and REGICOR treated as a 

numerical variable and C3 complement quartiles and REGICOR values. 

 

The relationship between cardiovascular risk measure by Framingham score was 

previously described in the literature [245-247] and C3 was established as a 

cardiovascular risk associate in both cross-sectional and in longitudinal studies in the 

CODAM study [248],  but there are no previous publications correlating C3 complement 

levels with REGICOR, just suggested in a medical conference abstract written by 

ourselves [249]. With this research we confirm our previous suspicion and the 

hypothesis of this paper associating C3 levels with REGICOR CV score.  
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The Framingham risk and REGICOR cardiovascular risk scores predict development 

only of cardiovascular disease whereas the presence of the MetS, which has been also 

correlated to C3 complement, predicts both diabetes and cardiovascular disease. 

Subsequently, C3 convertase can become a cardiometabolic biomarker of both 

pathologies. 

 

A step further, C3 convertase was also associated with the more complex idea of 

cardiometabolic syndrome (CMS), an amplified version of MetS, as explained in the 

knowledge review chapter. Thus, active components like inflammation (CRP, 

fibrinogen) and metaflammation (adipokines), oxidative stress and endothelial 

dysfunction are included in the complex CMS equation.  

 

Inflammation in the cardiometabolic syndrome (CMS), where its low-grade 

inflammation is led by the CRP and followed by Lysosomal phospholipase A2 (LPLA2) 

[250], amyloid protein a (SAA: serum amiloide A) [251] and fibrinogen [252] 

participated, is continued by metaflammation (in Greek: μετά, along with), that should 

also be added to this process. This metabolic triggered inflammation has been 

described as a process of neighbourhood (highly vascularised abdominal fat) and a 

process of distance (intestinal dysbacteriosis, periodontal disease) [253]. 

Metaflammation would amplify the basic inflammation which characterises the 

atherothrombotic disease [254]. 

 

As a first finding, we showed a close relationship between C3 and C-reactive protein 

levels in our population sample. The cardiovascular chronic inflammatory status was 

established according to the threshold of CRP resulting from the JUPITER study [255, 

256]. Both, inflammatory status diagnosis and CRP numerical values were heavily 

correlated to C3 complement levels. Moreover, CRPhs increased its values in parallel 

with the C3 complement levels according to the behaviour of its means along the C3 

complement quartiles. Thus, high sensitivity CRP showed a firm correlation to the C3 

complement levels divided in segments and C3 convertase activity became a solid 

predictor of inflammatory status in our population. This strong association confirms the 

central role of C3 convertase in the inflammation process as seen in the literature [257, 

258].  

 

The intense relationship between fibrinogen, the other evaluated inflammatory marker, 

and C3 complement levels and quartiles has been demonstrated in our population. 

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi2n7r35OHSAhXGDcAKHYRHAIgQFggaMAA&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F16880524&usg=AFQjCNEGbyzl6mAZ9LIlwC8hphkntnzXNA&sig2=1dP9V8A87c-y95b94AyDMQ&bvm=bv.149760088,d.ZGg
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Fibrinogen has proaggregant properties besides its role as an inflammatory marker, 

thence, C3 convertase activity may represent a barometer of the pro-coagulant state 

degree in our population plasma, not previously found in the literature. 

 

A step further, we looked for the links of C3 with metaflammation related to highly 

vascularised abdominal fat tissue actively participating in the low-grade inflammation 

involving the vascular endothelium [94, 259].  Consequently, adipose tissue is now 

considered a dynamic endocrine organ that releases adipokines. Multiple adipokines 

are involved in this complex process [89, 253, 260-263], from all of them we measured 

two pairs, pro-inflammatory adopokines (TNF-α and IL-6) and anti-inflammatory 

adipokines (adiponectin and IL-10). In our study it was mandatory to further examine 

the possible interrelation between both activities, pro and anti-inflammatory, and C3 

levels. As an expected result of its recognised protective role, adiponectin was clearly 

inversely correlated with C3 complement concentrations in our population by direct 

correlation and distributed into quartiles. Adiponectin is considered a protective 

cytokine produced in healthy adipose tissue and its levels decline in inflammation and 

oxidative stress. There are a scarce number of publications correlating C3 convertase 

with adiponectin in population subgroups [235, 264, 265]. Together, these results may 

partly contribute to explain the role of adiponectin linking obesity with atherosclerosis, 

as a dependent dose-response of this hormone and C3 complement concentration. 

Likewise, IL-10 concentrations, another protective adipokine,  resulted borderline 

inversely correlated to C3 plasmatic levels. Although this marginal correlation could not 

be confirmed by quartiles distribution, it represents a new input in the cardiometabolic 

literature where the correlation between IL-10 and C3 levels only has been confirmed 

in vitro studies in acute inflammation [266-268] 

 

On the opposite side, IL-6 y la TNF-alpha behaved in the expected direction. Both 

cytokines values grew in parallel with C3 values, contrarily to the protective adipokines 

previously observed, although only IL-6 reached statistical signification. Thus, IL-6 pro-

inflammatory marker levels were correlated positively with C3 convertase values in our 

study. Recently, it was demonstrated that complement C3 (C3) synthesis can be up-

regulated by pro-inflammatory cytokines, such as IL-6, but the authors were not able to 

relate C3 levels with IL-6 [245]. IL-6/C3 association was demonstrated in burned 

patients with classical acute inflammation, correlating both variables levels with the 

severity of injury and development of infection [269]. In the same manner, these 

parameters could be used in metaflammation to measure the severity of vascular injury 
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and prediction of CV risk. Unfortunately, tumoral necrosis factor (TNF-α) levels were 

only quantified in a small random subgroup of 90 subjects following the same direction 

although the scarce number of results did not demonstrate a correlation with C3 

values. Platel and al. suggested in vitro the possible action of TNF-α as u-regulator of 

C3 production in a dose-dependent manner but it has been not confirmed in vivo [270]. 

 

On the grounds of the aforementioned low-grade inflammation, our results showed that 

C3 complement circulatory concentration levels were a useful inflammatory and 

metaflammatory measurer. This finding alone would deserve further studies, in vivo 

and in vitro, specifically designed to clarify if there is also a physiologic interaction on 

top of its biomarker action. This physiologic interaction should be understood as active 

participation and interaction in the low-grade inflammation which characterises the 

atherothrombotic vascular disease from early stages.   

 

Inflammation and metaflammation form along with endothelial dysfunction and 

oxidative stress a pathogenic triad of great vascular impact [94]. After the analysis of 

the results obtained with pro and anti-inflammatory adipokines and with CRP, we 

continued evaluating the C3 interaction with biomarkers of endothelial dysfunction and 

oxidative stress. 

 

Within the endothelial markers, we have chosen the most liable ones, which are 

represented by VCAM, tPA and PAI-1. VCAM-1 ligand is expressed in endothelial cells 

after cytokines stimulation and plays an important role in the recruitment of 

mononuclear leukocytes to inflammatory sites in vivo [271]. Endothelial dysfunction 

leads to rapid induction of VCAM-1 expression and increased monocyte adhesion. The 

significant association between both variables in our research, VCAM-1 and C3, 

reaffirms our initial hypothesis of C3 convertase as a marker of endothelial damage. 

Even more interesting, C3a activates the phosphorylation of protein kinases (MAPK) 

and induces the up-regulation of vascular cell adhesion molecule 1 (VCAM-1) and 

intercellular cell adhesion molecule 1 (ICAM-1) [272]. Therefore, as a destructive 

endothelial cascade C3 convertase up-regulates VCAM-1, which promotes cellular 

adhesion, endothelial and vascular damage. In contempt of this logical thinking, the 

correlation of these two proteins with endothelial damage is in short supply in the 

literature. This finding about the VCAM-1 is considered of enormous interest by us 

because of contrary findings in the literature about its relationship with the C3 as 
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endothelial dysfunction marker and also causative entity, with potential to amplify all 

the CMS cascade. 

 

In our study, despite of the small number of subjects tested the correlation between 

plasminogen activator inhibitor-1 (PAI-1), not only as an adipokine but as an excellent 

endothelial marker [19], and C3 complement was strongly significant. Raised PAI-1 is 

responsible for hypofibrinolysis in specific diseases, and it has been specifically 

described in MetS and diabetes [273]. This down-regulation of fibrinolysis and pro-

aggregating factors, such as raised Von Willebrand factor (fvW) in endothelial 

dysfunction, leads to a prothrombotic state responsible of a high percentage of 

cardiovascular events. Even more interesting, today we know that PAI-1 also promotes 

formation of endothelial microparticles and reduces transmembrane asymmetry of 

phospholipids increasing in vitro thrombin generation [274]. 

 

As the PAI-1, tPA levels were also strongly correlated with C3 complement values. tPA 

is a serine protease secreted by the endothelial cell and considered the quintessential 

fibrinolytic factor,  which binds to fibrin and converts the inactive plasminogen into 

plasmin, widely considered standard of care in acute ischemic stroke [275]. Recently it 

has been demonstrated that tPA activates the classic complement pathway from C3 to 

terminal components [144]. Moreover, tPA is produced and released from endothelial 

cells and is responsible for the removal of intravascular fibrin deposits coordinated with 

the complement cascade [276]. tPA and PAI-1 activate the complement cascade but 

only the tPA activates the kinin system in plasma [268].  

 

C3 can represent a marker of both factors, tPA and PAI-1, and the final balance 

between both of them will decide the resulting status whether anti-thrombotic or pro-

thrombotic in relation to haemostasis. Because of the dual association of C3 with both 

of them, C3 would assume a neutral role.  

 

Entering more into detail of the analysed markers, the association between tPA and 

VCAM- 1 with C3 quartiles showed a significant association, meanwhile C3 quartiles 

and PAI-1values showed a borderline positive correlation. 

 

As the third axis of the vascular triad, inflammation, endothelial dysfunction and 

oxidative stress, oxidative stress joined the party, although in our study it appeared as 

borderline signification. So, oxidative stress is a key feature in atherogenesis, involved 
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in the whole process from endothelial dysfunction to atheromatic plaque formation and 

rupture. In this direction, disturbances in the normal redox state of cells can cause toxic 

effects through the production of peroxides and free radicals that damage all 

components of the endothelial cell and represent the earliest stage of the endothelial 

dysfunction [277, 278]. As a byproduct of lipid peroxidation, TBARS (Thiobarbituric acid 

reactive substance) has been considered a marker of oxidative stress and the TBARS 

assay has been applied in clinical studies linking oxidative stress response with 

cardiovascular risk. Although TBARS levels showed marginal association with C3 

complement values, the small sample analysed indicated that we pointed in the right 

direction [279]. There is no available literature correlating both variables and further 

studies should be designed to establish the specific role of C3 in oxidative stress as 

predictor, marker or participant factor. 

 

Total antioxidant capacity in human plasma (TAC) is a useful technique to evaluate 

individual responses to antioxidant treatment, but with low liability within a population 

context [280, 281], as occurred in our study that then explained our no statistically 

significant result.  

 

As a final statistical test in this research, in order to distinguish between the relations of 

C3 complement (dependant variable) with others independent variables, we used the 

multivariable analysis technique. This tool evaluated the strength of associations 

between age, gender, various components of the MetS, inflammation, insulin 

resistance, cardiovascular risk and C3 complement.  With the final multivariate analysis 

we initially explained the 35% of the variability of the C3 complement dependant 

variable in our sample population. With this statistical tool we simultaneously analysed 

multiple independent variables, those previously found significantly associated with C3 

and measured in all the non-exogenous insulin dependent subjects in the study, with 

our dependent variable, C3 complement quartiles, using matrix correlational algebra. 

Although C3 complement was previously defined in our study independent from the 

non-modifiable factors age and gender, they both remained in our multivariable model 

of regression analysis on purpose to dismiss any possible cofounding in the 

association assessment with other modifiable variables in this study [218].  

 

The resulted cluster of most influential variables in their multivariable interrelationship 

with C3 complement was hypertriglyceridemia in first place followed by hypertension, 

CRP, waist, insulin resistance (HOMA) and hyperglycaemia in descending order 

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjvp-T8ue7SAhXFvBQKHcVhBPkQFggwMAM&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0422763813002495&usg=AFQjCNEN0CeVCZZg0rG5l47d4Hee5JtUMw&sig2=E_EhNskh4qwQouJBqIjMgg&bvm=bv.150475504,d.d24
https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjvp-T8ue7SAhXFvBQKHcVhBPkQFggwMAM&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0422763813002495&usg=AFQjCNEN0CeVCZZg0rG5l47d4Hee5JtUMw&sig2=E_EhNskh4qwQouJBqIjMgg&bvm=bv.150475504,d.d24
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according to signification, independently of age and gender. The factor analysis yielded 

this cluster of six variables that alone accounted for almost 34% of the total C3 

complement variance. Thus, HOMA can have an influence but does not explain all the 

findings related to MetS, CMS and C3. 

 

Our study provided to triglycerides the leading role as factor with the biggest impact 

over C3 levels and deserves an additional comment. The role of triglycerides in 

cardiometabolic pathology grew in the last two decades since the overexpression 

receptors for VLDL (VLDLr) by unhealthy endothelium is known [19]. These receptors 

are present in small amounts in the healthy endothelium to play a key role in three 

actions: a) LPL stimulation, an enzyme of endothelial origin that is essential in the 

metabolism of triglycerides [282]. b) PAI-1 expression, as endothelial synthesis 

product, that in physiological amounts plays a determining role in haemostatic control 

but which excess leads to hypofibrinolytic status [283].  c) VLDLr, besides its action 

recognising VLDL, is intrinsically a potent endogenous inhibitor that negatively 

regulates the angiogenic properties of RVECs (retinal vascular endothelial cells). 

Therefore, the VLDLR activates RVECs and significantly enhances angiogenesis in 

vivo and in vitro [284]. Its three beneficial actions at endothelium are achieved with low 

degrees of expression. Ideally, the organism, in the presence of hypertriglyceridemia, 

would be able to overexpress VLDLr at the liver level to improve the plasma clearance 

of VLDL. Thus, VLDLr overexpression would indirectly reduce the rate of plasma LDLc 

(formed in the bloodstream itself from VLDL by the CEPT, cholesterol ester transfer 

protein) [285]. Unfortunately, this overexpression at hepatic level is only possible 

through genetic therapies [286]. Contrarily, the overexpression of VLDLr in MetS and 

diabetes occurs at vascular level and participates in endothelial dysfunction as Saban-

Ruiz et al. described. From all the above in respect to VLDLr, there is an association 

described in the literature between overexpressed VLDLr in presence on high 

triglycerides and PAI levels, because of the main role of hypretrygliceridemina in our 

study this relationship acquires a bigger dimension.  

 

As a final comment related to hypertriglyceridaemia, I would like to stress the 

importance of its association with C3 complement that should be a factor taken into 

account for treatment purposes. Hypertryglyceridaemia has recently been forgotten in 

clinical practice guidelines and in daily practice by doctors in general. These results 

made us recommended to measure C3 plasma concentrations in Hypertriglyceridemic 

patients. Doing so we would be aware of the importance of the high levels of 
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triglycerides effects and treat in consequence. The treatment of hypertriglyceridemia 

seems more justified when taking into account its relation with VLDLr and PAI-1 as 

described above. 

 

Summarising our research, C convertase value goes beyond its role as cardiovascular 

risk predictor and our most interesting results described C3 complement as predictor of 

classical MetS, insulin resistance and newer Cardiometabolic Syndrome (CMS) with 

insulin resistance swinging between both syndromes.  

 

In relation to MetS the robust relation with each of the criteria and the proportional 

relation to the number of criteria called our attention and made us to consider the 

presence two MetS criteria enough to initiate preventive treatment strategies. In this 

direction, based on these findings, subgroups of incomplete MetS patients with higher 

C3 complement values may be identified that are at a disproportionally high risk of 

developing insulin resistance and cardiovascular disease, with possibly therapeutic 

consequences. Therefore, C3 convertase down-regulation may become the target for 

new biological treatments to reduce cardiovascular events directly and indirectly, but 

this final question will be answered in future specific studies designed to target C3 

convertase activity.  According to Cardiomentabolic Syndrome, C3 has demonstrated 

its role as witness of the vascular triad which comprises inflammation, endothelial 

dysfunction and possibly oxidative stress, and its role as a somehow active factor 

interacting with all of them. Future studies will provide us with the degree and 

importance of our findings. 

  

Finally, The C3 complement seems to go beyond CRP in several aspects, moreover in 

relation to MetS/CMS. None of the multiple studies performed in relation to CPR 

obtained as many relevant findings as our study. Besides this, C3 seems to have 

higher specificity than CRP, which is raised in multiple situations where C3 

complement is not.  We suggest determining both variables in Cardiometabolic Units 

until specifically designed studies compare specificity and cost-effectiveness between 

both variables.  

 

While awaiting definitive results, the simultaneous evaluation of C3 and CRP would 

provide the intrinsic value of CRP more liability and both variables, jointly analysed, 

would result in a high predictive tool as contemporary precise Cardiometabolic 

Medicine requires.  
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7. Conclusions 

1. The studied population was characterised by high prevalence of Metabolic 

Syndrome (MetS). Besides this, hypertension and hyperglycaemia were the most 

prevalent MetS criteria contrary to expectations in the literature, where central obesity 

plays the main role. These findings matched the characteristics of a population referred 

to a Cardiometabolic Risk Unit.  

2. The MetS was strongly correlated to high concentrations of C3 complement, 

meanwhile low C3 levels were associated with metabolically healthy patients free of 

MetS criteria. Furthermore, C3 complement levels in plasma increased proportionally to 

the number of diagnosed MetS criteria per subject, a finding not previously known. 

There was also a change in the slope inclination between two and three criteria, so 

levels of three criteria were similar for two and three criteria.  This fact made us to 

consider the possible arbitrary threshold of three criteria for MetS diagnosis. Besides 

this, the graph representing the relation between C3 complement and cardiovascular 

risk also changed the inclination of the slope between moderate and high risk. Both 

findings could be correlated and MetS diagnosis could be simplified to two criteria 

through equal risk. 

3. The presence of each single MetS criterion was also strongly associated with C3 

complement values and quartiles, named hypertriglyceridemia, central obesity, 

hyperglycaemia (measured by A1c), hypertension and Low-HDLc criteria individually. 

The strongest association between C3 values and MetS criteria was displayed by 

triglycerides. High levels of C3 complement were significantly correlated with high 

levels of triglycerides, hypertriglyceridemia diagnosed by cut-off point, 

hypertriglyceridemia MetS criterion and linear association between hypertriglyceridemia 

and C3 quartiles. Our study provides to hyperthiglyceridemia great impact on the 

association C3/MetS. 

4. Besides the aforementioned Metabolic Syndrome classical components, C3 

complement levels were also associated with uric acid and ferritin usually forgotten in 

the literature. 

5. Age and gender were not associated with C3 in our sample population and none of 

the previous findings in this paper can be explained by them. Any impact of age in the 

C3 concentrations behaviour was definitely discarded in the multivariate analysis. 

6. Strong positive correlation between C3 plasma levels and C3 quartiles with HOMA 

values was proven. Insulin resistance can influence but not explain all the previous 

findings. 

7. Even the LDLc (not a MetS criterion) was also correlated with C3 levels. As with the 

obesity-LDLc relationship, the possible correlation of LDLc with C3 via VLDLc is not 

excluded. 
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8. The correlation between high C3 concentrations and high cardiovascular risk 

diagnosed by REGICOR formula was statistically demonstrated between both 

variables, between numerical variables and quartiles. Therefore, C3 represented a 

cardiovascular biomarker for our population. 

 

9. Our interest went beyond C3 complement as a cardiovascular biomarker to the 

amplified version of MetS, named Cardiometabolic Syndrome (CMS). CMS sums up to 

the classic MetS criteria these three axis: inflammation and metaflammation, 

endothelial dysfunction and oxidative stress. We obtained a positive result of C3 

correlation with each one of the three interconnected axes:  

 CRP and fibrinogen values, representatives of acute inflammation, increased in 

parallel with C3 complement levels. With regard to metaflammation, the 

adipokines, behaved as expected in respect to the C3 complement: positively 

associated IL-6 and TNF-α and inversely associated IL-10 and adiponectine. 

 From the endothelial point of view, VCAM showed significant association with 

C3, a finding of important interest due to contrary results in the literature about 

the C3-VCAM association. Therefore, in our study C3 acts as endothelial 

dysfunction marker and causal agent, with potential to amplify the entire CMS 

lesional cascade. Two additional endothelial markers, tPA and PAI-1, were 

correlated in the limit of the statistical signification with C3 concentrations. On 

the other hand, a relation between overexpressed VLDLr in the CMS and the 

PAI levels has been described in the literature, but in our study reached a 

higher dimension because of the main role of hypertriglyceridemia.  

 With respect to oxidative stress, a marginal association between TBARS and 

C3 was shown. The small sample analysed showed us that we are on the right 

track. 

10. In this order, hypertriglyceridemia, CRP, HTA, waist, HOMA and hyperglycaemia 

resulted predictors of the 34% of C3 complement variability by multivariate analysis. 

HOMA, with less significance than the four cited elements, reached the end of the 

multivariate analysis to stay as an influential factor.  

11. C3 seems to go beyond CRP because none of the multiples studies performed with 

CRP in relation to MetS/CMS obtained as many relevant findings as shown in this 

study. Specifically designed studies should compare C3 and CRP cost-

effectiveness/specificity in the future. Meanwhile, we suggest the simultaneous 

evaluation of CRP and C3 determination in plasma to increase the intrinsic value 

liability of CRP as required in Cardiometabolic Medicine.  This new medicine is 

predictive, personalised and anticipative, being an integral part of the Precision 

Medicine, the medicine of the future. 
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Resumen en Español  

 

Introducción: La enfermedad aterotrombótica es la primera causa de muerte en el 

mundo occidental y su principal causa no es la hipercolesterolemia sino el Síndrome 

Metabólico. Éste ha pasado en las tres últimas décadas de ser un quinteto 

(hiperglucemia, hipertensión, hipertrigliceridemia, HDL bajo, aumento de la cintura)  a 

ser un octeto (Síndrome Cardiometabólico) donde la triada formada por la 

inflamación/metainflamación, estrés oxidativo y disfunción endotelial es esencial para 

comprender su impacto a nivel vascular. La resistencia a la insulina está en el eje de 

ambos síndromes. Desde el punto de vista inflamatorio el marcador más utilizado  ha 

sido la PCR con el inconveniente de ser altamente inespecífico y se ha puesto en 

marcha desde hace años una búsqueda de nuevos marcadores. El presente trabajo 

confirma que la C3 convertasa en sangre puede ser útil como marcador y 

posiblemente como factor patogénico, lo que, de confirmarse  lo postularía como diana 

de futuras estrategias preventivas. 

 

Objetivos: Este estudio está dirigido a analizar el comportamiento de la C3 

convertasa, enzima clave y central de la cascada de complemento, en relación con el 

riesgo cardiovascular incluyendo la disfunción endotelial, resistencia a la insulina y 

riesgo cardiovascular en pacientes derivados a medicina cardiovascular especializada.  

 

Metodologia: Fue realizado un estudio retrospectivo transversal sobre una muestra 

aleatoria de población adulta de Madrid derivada a medicina cardiometabólica 

especializada para prevención primaria de riesgo cardiovascular. La analítica 

convencional fue realizada en el laboratorio central del hospital mientras que los 

factores específicos cardiometabólicos fueron medidos en el laboratorio de la Unidad 

de Medicina Cardiometabólica y Daño Endotelial como parte de su rutina clínica. El 

riesgo cardiovascular fue calculado por la fórmula de REGICOR para población 

española. La resistencia a la  insulina fue estimada según la fórmula de HOMA en un 

grupo de pacientes no dependientes de insulina exógena. La población a estudio fue 

estratificada en cuartiles de complemento C3 y se analizó la distribución de las 

variables cardiometabólicas entre los cuartiles. El análisis de regresión multivariable 

fue utilizado para identificar predictores de la variabilidad de las concentraciones  de  

complemento C3. 

 

Resultados: Fueron seleccionados un total de n=374 sujetos (53.60±14.80 años, 

44.9% mujeres), donde el 65% fueron hipertensos, 42% hiperglucémicos y 35% 

padecían Síndrome Metabólico. Los niveles de complemento C3 fueron asociados 

con: 1. Síndrome Metabólico: diagnóstico de Síndrome Metabólico, cada uno de sus 

criterios, proporcional al número de sus criterios por paciente y con los nuevos criterios 

de síndrome metabolico (p<0.001), 2. Síndrome Cardiometabólico: inflamación (CPR y 
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fibrinógeno, p<0.001) y metainflamación (adiponectina e IL-6, p≤0.001), disfunción 

endotelial (TPA, PAI-1, p≤0.050) y el estrés oxidativo mostro tendencia (TBARS, 

p=0.084). 3. Resistencia a la insulina: el HOMA (p<0.001). 4. Factores de riesgo 

cardiovascular clásicos y con el riesgo cardiovascular calculado por REGICOR 

(p<0.001).Todas estas correlaciones fueron independientes de sexo y edad. La 

mayoría de las variables anteriores también mostraron asociación con los cuartiles de 

complemento C3. Hipertrigliceridemia ostentó el mayor impacto sobre el 

comportamiento de las concentraciones de complemento C3 según los resultados del 

análisis multivariable (p<0.001). 

 

Conclusiones: En relación con el quinteto de criterios del Síndrome Metabólico, el 

complemento C3 resultó ser predictor del diagnóstico de Síndrome Metabólico, de 

cada uno de sus criterios por separado y fue proporcional al número de criterios 

diagnosticados por paciente, describiendo un posible umbral arbitrario entre dos y tres 

criterios y sugiriendo una más temprana intervención para la prevención 

cardiovascular ante una posible igualdad de riesgo.  En relación con el octeto de 

Síndrome Cardiometabólico, el complemento C3 tambien se mostró predictor de 

inflamación, metainflamación, daño endotelial y mostró tendencia con estrés oxidativo. 

En el siguiente orden: hipertrigliceridemia, PCR, HTA, cintura, HOMA e hiperglucemia 

resultaron predictores del 34% de la variabilidad de las concentraciones de 

complemento. La asociación significativa de C3 con HOMA puede influir en los 

resultados anteriores, pero difícilmente explicaría todas las correlaciones encontradas 

en este trabajo. Este estudio sugirió que la evaluación simultanea de C3 y PCR podría 

aumentar la validez intrínseca de la PCR, como es requerido en Medicina 

Cardiometabólica precisa. 

 

Palabras clave: C3 convertasa, complemento C3, aterotrombosis, aterosclerosis, 

Síndrome Metabólico, Síndrome Cardiometabólico, resistencia a la insulina, riesgo 

cardiovascular, PCR, disfunción endotelial, inflamación, metainflamación, estrés 

oxidativo, REGICOR, HOMA, análisis multivariable. 

 

Áreas de Clasificación de la UNESCO  

 Áreas Clasificación de la UNESCO UNESCO International Nomenclature 

3207.04 Patología Cardiovascular Cardio-vascular pathology 

3207.02 Aterosclerosis Atherosclerosis 

3201.01 Patología Clínica Clinical Pathology 
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