

Document downloaded from the institutional repository of the University of Alcala: <u>http://dspace.uah.es/dspace/</u>

This is a peer reviewed version of the following article:

Ratcliffe, S., et al., 2016, "Modes of functional biodiversity control on tree productivity across the European continent", *Global Ecology and Biogeography*, vol. 25, no. 3, pp. 251-262.

Which has been published in final form at <u>http://dx.doi.org/10.1111/geb.12406</u>

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

© 2015 Wiley

# (Article begins on next page)



This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Global Ecology and Biogeography A Journal of Macroecology

## Modes of functional biodiversity control on tree productivity across the European continent

| Journal:                      | Global Ecology and Biogeography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | GEB-2015-0039.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Manuscript Type:              | Research Papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Complete List of Authors:     | Ratcliffe, Sophia; University of Leipzig, Institute of Biology<br>Liebergesell, Mario; University of Leipzig, Institute of Biology<br>Ruiz-Benito, Paloma; Universidad de Alcala de Henares, Departamento de<br>Ecología<br>Madrigal González4, Jaime; Universidad de Alcala de Henares,<br>Departamento de Ecología<br>Muñoz Castañeda, Jose; University of Leipzig, Institute for Theoretical<br>Physics<br>Kändler, Gerald; Forest Research Institute Baden-Wurttemberg, Biometric<br>and Computer Science<br>Lehtonen, Aleksi; Natural Resources Institute Finland (Luke),<br>Jokiniemenkuja 1<br>Dahlgren, Jonas; Swedish University of Agricultural Sciences, Department<br>of Forest Resource Management<br>Kattge, Jens; Max-Planck, Institute for Biogeochemistry<br>Penuelas, Josep; CREAF-CSIC, Global Ecology<br>de Zavala, Miguel; Universidad de Alcalá, Departamento de Ecología<br>Wirth, Christian; University of Leipzig, Institute of Biology |
| Keywords:                     | climatic gradient, environmental filtering, forest succession,<br>FunDivEUROPE, landscape scale, plant functional traits, tree productivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

SCHOLARONE<sup>™</sup> Manuscripts Ratcliffe et al. Comments for reviewers (GEB-2015-0039.R1)

# Modes of functional biodiversity control on tree productivity across the European continent (Ref. GEB-2015-0039.R1)

We thank the Editor in Chief and the Reviewer for their additional comments on our revised manuscript. We believe that the revised version addresses the Editor and Reviewer's concerns. We provide a point-by-point reply (indented) answering the Editor or Reviewer's comments (italics). The additional text in the revised version of the manuscript is marked in blue for easier identification. We have exceeded the word count limit (5042) with the new text; we hope that this is allowable.

## List of major changes:

- 1. We have used a different line type in Figure 2 and different point shapes in Figure 3 for each variable.
- 2. We have estimated the proportion of the variance in the data that is explained by the model.
- 3. The trait data and species pool citation lists have been moved to Appendix 1 and 2, respectively, in the main manuscript.
- 4. A section has been added to the Results for the control analyses.

## **Reply to the Editor in Chief**

In my comments on the first version of the manuscript, I mentioned the colour publication fees. Since then, it has come to my attention that the number of print copies is very, very small. The standard procedure will be to use colour on-line only, unless authors specifically want to have the figures printed in colour and to pay the colour publication charge.

It still makes sense, however, to have figures that are understandable when they are printed in black and white. For Fig. 2 and perhaps 3, could you not use different line styles as well as different colours?

We thank you for the details of the standard procedure for colour figures. Following your suggestion we have added different line styles to Figure 2 and different point shapes to Figure 3. Both figures should be understandable in black and white. Unfortunately, there is nothing we can do about Figure 3 and we will pay for this figure to be printed in colour.

I confess that my knowledge of Bayesian statistics is very limited. However, I am still bothered that there is no way to indicate whether the effects you describe are large or small relative to the unexplained variation. You added Fig. S4.6, which is useful, but it still only shows relative effects without any indication of how much variance these variables capture. IS it truly impossible to estimate this in Bayesian models? At minimum, the legend of the figure could say something about the odds ratios. No?

Following Korner-Nievergelt et al (2015) we have calculated the  $R^2$  of the model as 1 minus the residual variance divided by the variance in the data. The calculation is averaged over the posterior distribution of the predicted values. The  $R^2$  is 0.684. Not all the variance explained can be attributed to the predictors; some will be explained

Ratcliffe *et al*. Comments for reviewers (GEB-2015-0039.R1)

by the cluster and country effects.

The method for the calculation has been added to Appendix S3 under the Model fitting section, and the caption of Table S3.1 has been updated with the  $R^2$  value.

GEB has had another change of policy. Because the references to the data sources in on-line appendices are not captured by the citation indexing services (e.g., the Web of Science), please now put them in Appendices after the biosketch (e.g. Appendix 1 References for the trait data used in this study:, Appendix 2, References used to estimate species pools". These will be printed in reduced font in the main paper.

We have moved the trait data and regional species pool citations lists to Appendix 1 and 2, respectively, in the main manuscript, and reordered the sections following the author guidelines.

We have removed the text at the end of the main citation list that indicated the additional trait data and species pool citations in the Supplementary Material.

## **Reply to Referee 1**

The authors have done a fantastic job of revising the manuscript and arguing their case. I was impressed by several items.

(1) The control analysis testing a different dispersion and distance measure.

(2) The extended control analysis on the environmental drivers. Given the differences that were found between the MAT-MAP analysis and the first two PCA-axes of 19 variables in the boreal region, I would like to see a short note of this in the results section and/or discussion.

We have added a Control Analyses section to the end of the Results section (see lines 321 - 326). In addition, we have added a bit more text to the Control Analyses section of Appendix S3 describing the predicted difference in the importance of leaf nitrogen content between the different climate models.

(3) Choices in the analysis were better justified.

(4) A more refined discussion on functional identity and functional diversity I enjoyed the open-minded and diligent consideration of my comments. Well done.

Many thanks for your comments on the revised version of our manuscript.

## Reference

Korner-Nievergelt, F., Roth, T., von Felten, S., Guélat, J., Almasi, B., & Korner-Nievergelt, P. (2015). *Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan.* Academic Press.

| 2<br>3<br>4                                  | 1                    | Modes of functional biodiversity control on tree productivity across the                                                                                                                                                                                                                                                                   |
|----------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7                                  | 2                    | European continent                                                                                                                                                                                                                                                                                                                         |
| 8<br>9<br>10                                 | 3                    | Authors:                                                                                                                                                                                                                                                                                                                                   |
| 11<br>12                                     | 4                    | Sophia Ratcliffe <sup>1</sup> , Mario Liebergesell <sup>2</sup> , Paloma Ruiz-Benito <sup>3</sup> , Jaime Madrigal González <sup>4</sup> , Jose                                                                                                                                                                                            |
| 13<br>14                                     | 5                    | M. Muñoz Castañeda <sup>5</sup> , Gerald Kändler <sup>6</sup> , Aleksi Lehtonen <sup>7</sup> , Jonas Dahlgren <sup>8</sup> , Jens Kattge <sup>9</sup> ,                                                                                                                                                                                    |
| 15<br>16                                     | 6                    | Josep Peñuelas <sup>10</sup> , Miguel A. Zavala <sup>11</sup> , Christian Wirth <sup>12</sup>                                                                                                                                                                                                                                              |
| 17<br>18<br>19                               | 7<br>8               | <sup>1</sup> <u>sophia.ratcliffe@uni-leipzig.de</u> , Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig                                                                                                                                                       |
| 20<br>21<br>22                               | 9<br>10              | <sup>2</sup> <u>mario.liebergesell@uni-leipzig.de</u> , Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig                                                                                                                                                     |
| 23<br>24<br>25<br>26                         | 11<br>12<br>13<br>14 | <sup>3</sup> <u>palomaruizbenito@gmail.com</u> , Forest Ecology and Restoration Group, Department of Life<br>Sciences, University of Alcala, Science Building, Campus Universitario, 28871 Alcalá de<br>Henares, Madrid and Biological and Environmental Sciences, School of Natural Sciences,<br>University of Stirling, FK9 4LA Stirling |
| 27<br>28<br>29<br>30                         | 15<br>16<br>17       | <sup>4</sup> ecojmg@hotmail.com, Forest Ecology and Restoration Group, Department of Life<br>Sciences, University of Alcala, Science Building, Campus Universitario, 28871 Alcalá de<br>Henares, Madrid                                                                                                                                    |
| 31<br>32<br>33                               | 18<br>19             | <sup>5</sup> jose.m.munoz.castaneda@gmail.com, Institute for Theoretical Physics, University of Leipzig, Brüderstrasse. 16, 04103 Leipzig                                                                                                                                                                                                  |
| 34<br>35                                     | 20<br>21             | <sup>6</sup> gerald.kaendler@forst.bwl.de, Forest Research Institute Baden-Wurttemberg,<br>Wonnhaldestrase 4, 79100 Freiburg                                                                                                                                                                                                               |
| 36<br>37<br>38                               | 22<br>23             | <sup>7</sup> <u>aleksi.lehtonen@luke.fi</u> , Natural Resources Institute Finland (Luke), Jokiniemenkuja 1, FI-01370 Vantaa                                                                                                                                                                                                                |
| 39<br>40<br>41                               | 24<br>25             | <sup>8</sup> jonas.dahlg <u>ren@slu.se</u> , Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183 Umeå                                                                                                                                                                                                                      |
| 42<br>43<br>44                               | 26<br>27             | <sup>9</sup> ikattge@bgc-jena.mpg.de, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena                                                                                                                                                                                                                           |
| 45<br>46<br>47                               | 28<br>29             | <sup>10</sup> josep.penuelas@uab.cat, CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia and CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193 Barcelona                                                                                                                                                        |
| 48<br>49<br>50                               | 30<br>31<br>32       | <sup>11</sup> <u>madezavala@gmail.com</u> , Forest Ecology and Restoration Group, Department of Life Sciences, University of Alcala, Science Building, Campus Universitario, 28871 Alcalá de Henares, Madrid                                                                                                                               |
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 | 33<br>34<br>35<br>36 | <sup>12</sup> <u>cwirth@uni-leipzig.de</u> , Systematic Botany and Functional Biodiversity, Institute of<br>Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig and German Centre for<br>Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103<br>Leipzig                                  |

- Correspondence: Sophia Ratcliffe, Systematic Botany and Functional Biodiversity, Institute
- of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany. Email:
- sophia.ratcliffe@uni-leipzig.de. Phone: 00 49 341 9738576. Fax: 00 49 341 9738549.
- Short running-title: Functional biodiversity control on tree growth
- Keywords: climatic gradient, environmental filtering, forest succession, FunDivEUROPE,
- landscape scale, plant functional traits, tree productivity.
- Number of words in the Abstract: 287
- Number of words in main text: 5042
- Number of references: 50

#### 48 ABSTRACT

49 Aim

The relative contribution of community functional diversity and composition to ecosystem functioning is a critical question in ecology in order to enable better predictions of how ecosystems may respond to a changing climate. However there is little consensus of which modes of functional biodiversity are most important for tree growth at large spatial scales. Here we assessed the relative importance of climate, functional diversity and functional identity (i.e. the community mean values of four key functional traits) for tree growth across the European continent, spanning the northern boreal to the southern Mediterranean forests.

#### 57 Location

58 Finland, Germany, Sweden, Spain and Wallonia (Belgium)

#### 59 Methods

Using data from five European National Forest Inventories we applied a hierarchical linear
model to estimate the sensitivity of tree growth to changes in climate, functional diversity and
functional identity along a latitudinal gradient.

**Results** 

Functional diversity was weakly related to tree growth in the temperate and boreal regions and more strongly in the Mediterranean region. In the temperate region, where climate was the most important predictor, functional diversity and identity had a similar importance for tree growth. Functional identity was strongest at the latitudinal extremes of the continent, largely driven by strong changes in the importance of maximum height along the latitudinal gradient.

#### 70 Main conclusions

Functional diversity was an important driver of tree growth in the Mediterranean region, providing evidence that niche complementarity may be more important for tree growth in water-limited forests. The strong influence of functional identity at the latitudinal extremes indicates the importance of a particular trait composition for tree growth in harsh climates. Furthermore, we speculate that this functional identity signal may reflect a trait-based differentiation of successional stages rather than abiotic filtering due to water or energy

77 limitation.

#### 79 INTRODUCTION

With the increasing threat of climate and land-use change there is deepening concern that continued biodiversity loss may jeopardise key ecosystem services (Cardinale et al., 2012; Thomas *et al.*, 2013). Therefore it is becoming ever more critical to improve our understanding of the interplay between abiotic and biotic controls on ecosystem processes (Díaz et al., 2007; Hillebrand & Matthiessen, 2009), especially at scales relevant to conservation policy makers (Thomas et al., 2013; Violle et al., 2014). The functional structure of a community (i.e. the distribution and relative abundance of plant functional traits) is known to directly influence ecosystem processes (Díaz et al., 2007) and recently there have been several large-scale observational studies in forests with a focus on detecting an influence of diversity on tree productivity (e.g. Paquette & Messier, 2011; Vilà et al., 2013; Ruiz-Benito et al., 2014). However, the relative importance of functional diversity and composition for tree growth has received little attention at large spatial scales (Conti & Díaz, 2013), despite its importance for understanding how forests may respond to climate change (Violle et al., 2014).

Two central mechanisms underpin how plant functional traits can influence ecosystem processes: the niche complementarity hypothesis (Tilman, 1994) and Grime's mass ratio hypothesis (Grime, 1998). Functional diversity (FD), i.e. the dispersion of trait values in a community (Laliberté & Legendre, 2010), is hypothesised to increase the ways in which species access and utilise resources, allowing a greater resource use and niche packing in more functionally diverse communities. Evidence from natural forests for the niche complementarity hypothesis is mixed, with both positive (Paquette & Messier, 2011; Ruiz-Benito et al., 2014) and negative (Conti & Díaz, 2013) diversity effects found. Congruent with the mass ratio hypothesis, the functional identity (FI), i.e. community mean trait values (Violle et al., 2007), are hypothesised to greatly influence community-level processes. FI has

104 consistently been found to be a key component through which plant traits control 105 productivity, and is often found to be more important than the functional diversity of the 106 community (Mokany *et al.*, 2008; Conti & Díaz, 2013; but see Valencia *et al.*, 2015).

The European continent spans large gradients in climate and resource availability, from the northern boreal latitudes where productivity is primarily limited by energy (i.e. temperature and radiation; Körner 1998) to southern Mediterranean latitudes where water is the primary limiting resource (Babst et al., 2013). In the temperate mid-latitudes neither energy nor water is strongly limiting, and, as a consequence, productivity peaks there (see Fig. 1). Thus stressful climatic conditions predominate at the southern and northern extremes of the European continent but are exerted by different environmental constraints (i.e. lack of water versus a lack of energy). Along such a climatic gradient competitive interactions and abiotic filtering assembly processes act on community functional structure (Maire et al., 2012) and thus ecosystem functioning (Spasojevic & Suding, 2012).

According to Harpole & Tilman (2007) the number of resource-related niche dimensions is greater in stressful environments and more species with a particular specialisation in acquiring resources are needed to maintain productivity. We therefore expect productivity at the extremes of our latitudinal gradient to be most sensitive to functional trait diversity, as a proxy for the potential degree of niche complementarity realised by a community. Recent observational studies in forests support this view (Paquette & Messier, 2011; Jucker et al., 2014a). However, the evidence is equivocal, and other studies have found no difference in the importance of functional diversity for tree growth between regions with different productivity rates (e.g. Zhang et al., 2012; Ruiz-Benito et al., 2014). Environmental filters increase the functional similarity of species through abiotic constraints that select for particular trait expressions generally characterising the locally most productive and best adapted tree species (Wright et al., 2005; Cornwell & Ackerly, 2009). At the same time, competition between 

#### **Global Ecology and Biogeography**

species with similar resource acquisition abilities can result in community trait convergence (Mayfield & Levine, 2010; Kraft *et al.*, 2015). Given that abiotic filtering and competition occur in all biomes, we predict functional identity to be important across the entire continent but that the identity of the most influential trait may change, reflecting contrasting climate and successional niches along the latitudinal gradient (Hillebrand & Matthiessen, 2009).

Using data from five European National Forest Inventories, we investigated the relative influence of climate, functional diversity and functional identity for tree growth along a multi-biome climate gradient. We tested the following hypotheses: i) climate drives tree productivity across the entire gradient; ii) the relative importance of functional diversity for tree growth increases with resource limitation; and iii) functional identity is important for tree growth along the entire latitudinal gradient but the identity of the most important trait changes. To this end, we map the relative influence of different modes of trait influence on tree growth, elucidating the functional drivers of tree growth at a biogeographical scale (Violle *et al.*, 2014). 

#### 143 MATERIALS AND METHODS

#### 144 Inventory data

We compiled data from the National Forest Inventories (NFIs) of Finland, Germany, Spain, Sweden and Wallonia, Belgium (see a detailed description of each NFI in Appendix S1 in Supporting Information). To select comparable data from the different inventories we only included those trees that had a diameter at breast height (d.b.h) of 10 cm or more and plots with a basal area of  $4 \text{ m}^2 \text{ ha}^{-1}$  or greater in consecutive surveys. For each tree we compiled the species (nomenclature follows the Atlas Florae Europaea), exotic status (following DAISIE: http://www.europe-aliens.org, see Table S1.2 in Appendix S1), d.b.h. and status (ingrowth, survivor, dead due to natural mortality or harvesting). In each plot we calculated the basal

area of each species  $(m^2 ha^{-1})$ , mean tree d.b.h. (mm), a single annual growth estimate (as the sum of the basal area increments  $(m^2 ha^{-1} yr^{-1})$  of all surviving and ingrowth trees) and the annual natural mortality rate  $(m^2 ha^{-1} yr^{-1})$ . The plots were classified by biome (boreal, temperate or Mediterranean) following Olson *et al.* (2001), see Figs S1.1 and S1.2 in Appendix S1.

Plots in which trees had been harvested between surveys were excluded to reduce the influence of recent stand structure changes on growth rates. From the available data we excluded plots that had zero or negative growth (i.e. 154 of 39,604 plots), and selected those with less than the 99.9% upper quantile to remove outliers (Table S1.3).

#### 162 Climate data

We used the inventory plot coordinates to extract plot-level climatic variables from the WorldClim database (Hijmans *et al.*, 2005). We selected mean annual precipitation (MAP, mm) and mean annual temperature (MAT, °C) to describe the climate gradient. The variables were weakly correlated in our dataset (Spearman rank coefficient: -0.18, p < 0.001), had better predictive power than the first two axes of a PCA of 22 climatic variables (see Appendix S2), and are easily interpretable across the large latitudinal gradient of this study.

#### 169 Community functional composition

We compiled trait data from the TRY initiative (Kattge *et al.* 2011a) and additional published data sources for the 138 species in the final analysis (Table S2.2 in Appendix S2). We selected five key functional traits that are indicative of species' ecological strategies of resource acquisition and growth: maximum tree height (m); leaf nitrogen content (mg g<sup>-1</sup>); maximum tree lifespan (yrs); seed mass (mg); and wood density (g cm<sup>-3</sup>). Maximum tree height quantifies species' resource acquisition via light capture (Falster & Westoby, 2003).

#### **Global Ecology and Biogeography**

Leaf N is a key trait of the leaf economics spectrum (LES); it characterises species' resource use strategy from acquisitive, fast-growing to conservative and slow-growing (Wright *et al.*, 2004). Maximum tree lifespan reflects species' life history strategy and relates to their defensive investment (Wirth & Lichstein, 2009). Seed mass relates to seedling survival rates (Leishman et al., 2000) and species' resource use strategy and successional status. Finally, wood density relates to efficient and safe water transport and allocation to mechanical stability, correlates negatively with growth rates and mortality (Enquist *et al.*, 1999).

The functional diversity of each plot was quantified using the functional dispersion index (FDis: Laliberté & Legendre 2010) using the five traits. FDis quantifies how species in a community differ in their distance from the centre of the multi-trait functional space. Functional identity was derived as the community-weighted mean of each trait for each plot (FI<sub>mh</sub>: maximum tree height; FI<sub>ln</sub>: leaf N content; FI<sub>ls</sub>: maximum tree life span; FI<sub>sm</sub>: seed mass; FI<sub>wd</sub>: wood density). FI<sub>sm</sub> and FI<sub>wd</sub> were highly positively correlated (Spearman rank coefficient: 0.74; p < 0.001) thus FI<sub>sm</sub> was not considered further in the analysis. See Appendix S2 for full details on the functional composition estimation of the plots.

Theoretical reasoning suggests that a region with a larger species pool, and thus potential for larger trait ranges, is more likely to contain complementary species and/or species that are well adapted and thus may be more productive. Therefore the regional species pool was determined for each plot location from tree species distribution maps (see Appendix S2).

#### 195 Statistical methods

We modelled plot-level growth (m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>) using a linear model including the following predictors: mean annual temperature (MAT, °C, log +7); mean annual precipitation (MAP, mm); functional dispersion (FDis, square root transformed); and the four functional identity measures. MAT value was incremented by 7 before logging to account for negative values.

We also included four covariates: basal area (BA, m<sup>2</sup> ha<sup>-1</sup>, log); mean d.b.h. (DBH, mm, log); annual mortality rate (MR, m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>); and the species pool (SP, log). Basal area and mean tree size were included to account for stand density and developmental stage. The predictors and covariates were transformed, as indicated, to linearise relationships with the response variable. To investigate how the influence of the five biodiversity measures on tree growth varied with climate, first-order interaction terms were included between both MAT and MAP and each biodiversity measure. First-order interaction terms were also fitted between both MAT and MAP and each of the covariates. All explanatory variables were centred on 0 and scaled to 1 standard deviation to aid model interpretation.

Sample plots from the Finnish, Swedish and German NFIs are grouped in clusters, thus the nested data structure required three hierarchical levels for data from these three inventories (plot, cluster and NFI). We assumed that growth came from a lognormal distribution, such that  $G_i \sim Lognormal(\mu_i, \sigma_u)$ , where *i* is an individual plot,  $G_i$  is the plot growth (sum of the basal area increment, m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup> of all surviving and ingrowth trees),  $\mu_i$  is the expected plot growth rate and  $\sigma_u$  is the standard deviation, both on the log scale.  $\mu_i$  was modelled using the following equation:

$$\mu_{i} = \alpha_{0} + \alpha_{r} + \beta_{MAT} \cdot MAT_{i} + \beta_{MAP} \cdot MAP_{i} + \sum_{b=1}^{5} \left(\beta_{b}^{(z)} + \gamma_{b}^{(MAT)} \cdot MAT_{i} + \gamma_{b}^{(MAP)} \cdot MAP_{i}\right) Z_{bi} + \sum_{k=1}^{4} \left(\beta_{k}^{(c)} + \delta_{k}^{(MAT)} \cdot MAT_{i} + \delta_{k}^{(MAP)} \cdot MAP_{i}\right) C_{ki}$$
(1)

 where  $\alpha_0$  is the expected plot growth rate under average conditions,  $\alpha_r$  the cluster or NFI intercept,  $Z_b$  are each of the biodiversity measures (i.e. FDis and four FI measures),  $C_k$  are the four covariates (BA, DBH, MR and SP),  $\beta_{MAT}$ ,  $\beta_{MAP}$ ,  $\beta_b$  and  $\beta_k$  are the intercepts for MAT, MAP, biodiversity variable *b* and covariate *k*, respectively, and  $\gamma_b$  and  $\delta_k$  indicate interaction

terms between climate (MAT and MAP) and biodiversity variable *b* and covariate *k*,
respectively. The model was fitted in a Bayesian framework in using the 'rstan' R package
(Stan Development Team, 2013). Details of the model fitting and priors are in Appendix S3.
All analyses were performed in R version 3.0.2.

#### 225 Model evaluation

Figs S3.1a, b & c in Appendix S3 map the growth, predicted growth and the model residuals, respectively. There appears to be no strong spatial pattern in the residuals. Partial residual plots for each of the predictor variables show satisfactory linear relationships between the predictors and tree growth (Fig. S3.2). FDis was not strongly correlated with any of the FI measures (largest correlation was with  $FI_{ln}$ , Spearman rank coefficient: 0.29; p < 0.001).

#### 231 Sensitivity of plot growth to changes in climate and biodiversity

Assumptions that we made in our model (equation 1), namely that the biodiversity measures (and covariates) are dependent on climate and that these dependencies are linear, allow us to explore how the sensitivity of plot growth to changes in each biodiversity measure varies with climate and, conversely, how the sensitivity of plot growth to changes in climate is modified by the biotic conditions in each plot. As such the geographic signal comes from model interaction terms between climate and the biodiversity and covariate variables.

238 Biodiversity

For a fixed MAT-MAP combination in plot *i* the predicted sensitivity of plot growth ( $S_{bi}$ ) to changes in biodiversity measure *b* can be estimated as  $\beta_b + \gamma_b^{(MAT)} MAT_i + \gamma_b^{(MAP)} MAP_i$ , where  $\beta_b$ ,  $\gamma_b^{(MAT)}$  and  $\gamma_b^{(MAP)}$  are the mean of the posterior distribution of the coefficients of *b*, the interaction coefficient of *b* with MAT and the interaction coefficient of *b* with MAP, respectively. MAT<sub>i</sub> and MAP<sub>i</sub> are the plot-level MAT and MAP values. Thus,  $S_{bi}$  is the

predicted sensitivity of the growth of plot *i* to changes in biodiversity measure *b*, modulatedby the plot-level climate conditions.

246 Climate

247 For each plot the predicted sensitivity of plot growth to changes in MAT  $(S_{MAT})$  and MAP

 $(S_{MAP})$  can be estimated as, for MAT:

$$S_{MATi} = \beta_{MAT} + \sum_{b=1}^{5} \left( \gamma_{b}^{(MAT)} . Z_{bi} \right) + \sum_{k=1}^{4} \left( \delta_{k}^{(MAT)} . C_{ki} \right)$$
(2)

where the parameters are the same as in the full model (equation 1). Equation 2 can be used to estimate  $S_{MAP}$  by replacing MAT with MAP. This gave us the predicted sensitivity of plot growth to both climate variables, modified by the covariates and biodiversity measures.

#### 253 Relative importance calculation

#### *Climate and biodiversity*

For each plot, the relative importance of MAT, MAP, FI and FDis were calculated from their predicted sensitivities as, for example with MAT:  $|S_{MATi}| / max(|S_{MATi}|, |S_{FDisi}|, |S_{Fli}|)$ ,

where  $S_{MATi}$ ,  $S_{MAPi}$  and  $S_{FDisi}$  are the sensitivities of growth to MAT, MAP and FDis in plot *i*,

respectively, and  $S_{Fli}$  is the mean of the absolute sensitivities of the four FI measures in plot *i*.

The variable with the greatest influence on growth in a plot had a relative importance of 1.

*Biodiversity* 

In a similar vein, for each plot the relative importance of the five biodiversity measures (FDis and the four FI measures) were calculated as the ratio of the absolute value of the biodiversity sensitivity  $(|S_b|)$  and the maximum biodiversity sensitivity in the plot:  $|S_b| / max(\{$ 

 $|S_m|_{f=1,...,5}$ ). In contrast to the analysis above, where the four FI measures are treated in aggregate, here we treat each FI measure separately to quantify their relative importance. In both cases, however, the relative importance estimates are calculated from the coefficients of the same model (Table S3.1 in Appendix S3).

#### 268 Control analyses

We performed three control analyses to test the robustness of the model predictions and inferences made thereof (see Appendix S3). Specifically, we tested for: (i) the influence of climate variable selection; (ii) possible problems arising from collinearity between FI measures; and (iii) the influence of exotic tree species, which are often more productive than native species (Kawaletz *et al.*, 2013).

#### **RESULTS**

#### 275 Tree growth, climate and functional composition along the latitudinal gradient

Mean plot-level tree growth rates ranged from 0.35 and 0.37 m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup> in the Mediterranean and boreal regions, respectively, to 0.68 m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup> in the temperate mid-latitudes (Fig. 1, Fig. S3a). Average mean annual temperature (MAT) ranged from 12 °C in the Mediterranean to 2 °C in the boreal region, whilst mean annual precipitation (MAP) ranged from 596 mm in the Mediterranean to 874 mm in the temperate zone.

Mean FDis was greatest across the temperate and southern boreal regions (Fig. S4.1a in Appendix S4), despite a pronounced decline in the species pool with latitude and greater maximum FDis in the Mediterranean. Mean FI values varied across the continent except  $FI_{ls}$ , which showed no clear pattern (Fig. S4.4a).  $FI_{mh}$  was highest in temperate and lowest in Mediterranean (Fig. S4.2a).  $FI_{ln}$  was highest in temperate regions and low in both the Mediterranean and boreal regions (Fig. S4.3a). The highest values of  $FI_{wd}$  were in the low to mid-latitudes and levelled off at a mean of 0.55 g cm<sup>-3</sup> in the northern temperate and boreal
regions (Fig. S4.5a).

#### 289 Effects of stand structure, climate and functional composition on tree growth

Stand structure (BA and mean DBH) had a greater influence on growth than climate (MAT and MAP) or any of the biodiversity measures (see Table S3.1 in Appendix 3 for the mean and 95% credible intervals of the model parameters). Of the two climate variables, MAT had the strongest influence on tree growth, exceeding those of the biodiversity measures. Across the continent, tree growth was related to all of the biodiversity measures, with FI<sub>wd</sub> and FI<sub>ls</sub> having the largest effect and FI<sub>ln</sub> and FDis the smallest (Fig. S4.6 in Appendix 4). However a change in either MAT or MAP altered the relationship between growth and all of the biodiversity measures.

#### 298 Relative importance of climate and functional composition for tree growth

We compared the relative importance of the mean sensitivity of the FI measures, FDis, MAT and MAP across the latitudinal gradient (Fig. 2). The relative importance of FI was greatest at low and high latitudes; in the Mediterranean region the average sensitivity of the FI measures was more important than either MAT or MAP (0.78 compared with 0.71 and 0.59 for MAT and MAP) and in the northern boreal region it was as important as MAT (Fig. 2). The importance of FD is was highest in the Mediterranean region (0.49) and this importance rapidly declined with increasing latitude, to a very low importance in the highest latitudes (0.08).

#### 307 Relative importance of each biodiversity component for tree growth

The relative importance of each FI measure varied across the continent and none of the measures was the most important across the entire latitudinal gradient (Figs 3 & 4). The

#### **Global Ecology and Biogeography**

relative importance of FDis was constant across the Mediterranean and temperate regions (0.38 and 0.36, respectively), becoming much less important in the boreal region (0.08). Fl<sub>wd</sub> and FI<sub>ls</sub> showed similar patterns of importance; both were very important in the lower and especially mid latitudes and had a very low importance in the northern boreal region. Increasing FIwd and FIls had a negative effect on tree growth across the entire continent. At either end of the latitudinal gradient FI<sub>mh</sub> was the most important functional trait for tree growth, however the influence of FI<sub>mh</sub> on tree growth changed from positive in the lower and mid-latitudes to negative in the boreal latitudes. FI<sub>ln</sub> had the weakest effect on growth of all the FI measures; its relative importance was very low across the entire continent until the boreal latitudes where its importance exceeded that of FI<sub>wd</sub> and FI<sub>ls</sub>.

#### 320 Control Analyses

321 The control analyses were consistent with the results and interpretation from the main 322 analysis (see Appendix S3, Figs S3.3 – 6). However, the model with alternative climate 323 variables predicted a reduced importance of  $FI_{mh}$ , and no large increase in the importance of 324 FI, in the boreal region (Fig. S3.3). Nevertheless, the general patterns of trait influence on 325 tree growth were robust between the different climate models.

#### 326 DISCUSSION

We found that community functional composition was a relevant driver of tree growth across the entire European continent. Functional diversity was more important in the Mediterranean region, whilst functional identity effects were strongest at the latitudinal extremes of the continent (Fig. 4).

#### Relative importance of functional diversity and functional identity for tree growth

We found a strong climatic control on tree productivity, as evidenced by high relative importance values of mean annual temperature and mean annual precipitation in the boreal and Mediterranean biome, respectively (Fig. 2). The relative importance of functional diversity was comparable with climate in the Mediterranean region, consistent with Ruiz-Benito et al. (2014). However we did not find an increase in the importance of functional diversity with increasing climatic constraints in the boreal region, in contrast to other studies (Paquette & Messier, 2011); the importance of functional diversity declined across the temperate region from south to north and was relatively unimportant for tree growth in the boreal region (Figs 2 & 3). The concept that abiotic stress may increase the number of available resource-related niche dimensions may not be true for all sorts of adversities (Harpole & Tilman, 2007), and in this real-world scenario water stress seems to be very relevant. This is consistent with recent pan-European study that found that tree diversity promotes water use efficiency, an indication of how species compete for water belowground, only in drought prone environments (Grossiord et al., 2014).

Comparing just the relative importance of the individual biodiversity components (Figs 3 & 4), we found a similar importance of functional diversity in the Mediterranean and temperate regions (Fig. 3). The traits in our functional diversity measure (leaf N content, maximum height, maximum tree life span, seed mass and wood density) reflect species' life history, strategies of resource capture and growth (Falster & Westoby, 2003; Wright et al., 2004; Chave et al., 2009). We found that dissimilarity in life history and resource capture of coexisting trees can promote tree growth, adding to the growing evidence that complementarity effects through niche differentiation promotes productivity in certain forests (Paquette & Messier, 2011; Ruiz-Benito et al., 2014). In our study we are unable to establish the mechanisms driving the potential complementarity effect; however, complementary light use strategies (Morin et al., 2011; Jucker et al., 2014b) and root architectures (Brassard et al., 

#### **Global Ecology and Biogeography**

2013) have been linked with positive diversity effects in forests. In addition, more diverse
forests have been found to have greater stability in wood production over time (Jucker *et al.*,
2014a).

Consistent with other studies, we found functional identity to have a greater influence on productivity than functional diversity (Mokany *et al.*, 2008; Ruiz-Benito *et al.*, 2014). However, this relationship was not constant over the entire continent; the relative importance of functional identity was greater at the latitudinal extremes of the continent (Fig. 2), indicating the importance of trait identity for plant growth in harsh climates (Wright *et al.*, 2005; Spasojevic & Suding, 2012).

## 366 Identity effects point to the relevance of successional differentiation

Not only were identity effects stronger at the extreme ends of the gradient, but also the relative importance of the traits underlying the identity control changed. What are the biological underpinnings of this pattern?

In the Mediterranean biome, functional identity had a stronger influence on tree growth than climate (Fig. 2) and was primarily controlled by maximum height and wood density (relative importance c. 1) and maximum life span (relative importance c. 0.75, see Fig. 3). All else being equal, Mediterranean forests composed of species with low wood densities, large maximum heights and short maximum life spans exhibited the highest productivity. Low wood density and short maximum life span are features typical of early successional species (Bazzaz, 1979), who maximise resource acquisition and growth at the expense of chemical and structural tissue protection and longevity (Wirth & Lichstein, 2009). Succession in the Iberian Peninsula is leading to changes in the dominance of forests from gymnosperms to angiosperms (Carnicer et al., 2014). The strong influence of maximum height may also point to a successional signature because some slow-growing, late-successional species in the

Mediterranean tend to be small statured (e.g. *Quercus ilex* or *Quercus suber*; maximum height of *c*. 18 m), whilst early-successional pines are taller in stature (e.g. *Pinus halepensis, Pinus pinaster* or *Pinus pinea*; maximum height of *c*. 26 m).

The situation in the temperate biome appears to follow a similar pattern to that in the Mediterranean; forests dominated by species with low wood density and short maximum life spans, i.e. pioneer species, tend to exhibit the highest growth rates. The relative influence of maximum height decreased from south to north in temperate forests, perhaps reflecting that fast growing pioneers such as Salix caprea and Betula pendula reach shorter maximum heights than typical late successional forest species (e.g. Fagus sylvatica or Ouercus robur). A sharp change in trait control occurred towards the boreal biome; wood density and maximum life span were no longer influential and maximum height resumed a strong importance but its effect changed sign. Thus, forests with short statured species appear to have higher growth rates in the boreal region than species with greater maximum heights. Again, we postulate that this may be a successional signature because in the boreal region fast growing pioneer species (e.g. Betula pendula, Betula pubescens and Populus tremula) reach shorter maximum heights (c. 30 m) than the late successional, slower growing, conifers *Pinus* sylvestris and Picea abies (c. 40 m). Succession in boreal regions usually progresses from deciduous to coniferous species (Bergeron & Dansereau, 1993), thus from species with intermediate and high wood densities to those with low wood density, in contrast to succession in temperate and Mediterranean regions. The weakened negative effect of wood density in the boreal region is likely to be due to the narrow range of wood density values compared to the other regions (Fig. S4.7a). We found leaf nitrogen content to be relatively unimportant for tree growth in Mediterranean and temperate regions but to be one of the more important traits in the northern temperate and boreal regions (Fig. 3). There was a transition from a positive influence of leaf nitrogen content on growth in the Mediterranean

#### **Global Ecology and Biogeography**

biome to a negative effect elsewhere. This finding is unexpected, but in line with recent
studies, which have not found consistent trends in the shifts of leaf nitrogen content (and
other leaf traits) with succession (Douma *et al.*, 2012; Wilfahrt *et al.*, 2014).

In summary, the functional identity signal may reflect a trait-based differentiation of successional stages (Huston & Smith, 1987; Wirth & Lichstein, 2009; Lasky et al., 2014) rather than an environmental filter reflecting drought or energy limitation at the southern and northern climate extremes, respectively. In different regions late-successional communities may have a lower or higher growth rate depending on the particular traits of the species, driven in this study, one may speculate, by the dominant role of gymnosperms in the Mediterranean and boreal biomes. It is important to note that this analysis controls, along the entire gradient, for the structural effects of climate and forest succession with respect to basal area and tree size, thereby isolating the successional identity effects. Nevertheless, our results suggest that the successional transition from gymnosperms to angiosperms in the Mediterranean and from angiosperms to gymnosperms in the boreal regions control the functional identity effects on tree growth in these latitudes.

#### 421 Limitations

Due to the different NFI sampling methods, we used a 10 cm d.b.h. threshold for including trees in the study. This restriction is likely to have reduced the diversity of the plots, especially in the Mediterranean region where much of the diversity is in the tall shrub layer. In addition, plot size could not be standardised across the different inventories, and although we allowed for random variation between inventories, this may have led to an underrepresentation of the diversity of the boreal plots.

As with other large-scale trait analyses we were limited by the trait data available (Paquette
& Messier, 2011; Ruiz-Benito *et al.*, 2014). We selected five key traits that reflect plant life

> history strategies, however including other traits, especially root traits or traits unrelated to successional status, may provide additional insight. Our analysis ignored intraspecific trait variation and applied the same trait value to individuals of the same species across the continent. These factors are likely to have resulted in a conservative estimate of the relevance of biodiversity. Due to limited data availability, we were not able to account for other confounding factors that are known to influence tree growth, such as nutrient availability or local hydrology (Pretzsch et al., 2013) or to incorporate an estimate of the successional stage of the plots (Lasky et al., 2014).

> This analysis was undertaken on a continent with a large and long-standing impact of forest management (Bengtsson *et al.*, 2000), which is likely to leave a signature in our results. Whilst the direct influence of recent management was accounted for, indirect and long-term management effects are likely to persist. The tree species and functional composition of managed forests may differ from natural assemblies due to planting and promoting of tree species outside of their ecological niche, which could change the causal nature of species identity on tree growth.

#### 445 CONCLUSIONS

Our study contributes to the emerging field of functional biogeography (Violle et al., 2014), which explores the mechanisms underlying biogeographical patterns of biodiversity and ecosystem functioning relationships. Functional diversity was an important driver of tree growth in the Mediterranean region, providing evidence that niche complementarity may be particularly important in water-limited forests. Across the temperate region the influence of functional diversity and identity were comparable in magnitude, but were much less important than climate. The strong influence of functional identity at the latitudinal extremes of the continent indicates the importance of a particular trait composition for tree growth in Page 23 of 84

#### **Global Ecology and Biogeography**

harsh climates. We have shown how different modes of trait influence vary in their
importance for tree growth along a large latitudinal gradient, contributing to a better
understanding of the functional drivers of ecosystem functioning across the forests of Europe.

458 ACKNOWLEDGEMENTS

This research was supported by the FunDivEUROPE project, receiving funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 265171 and PCOFUND-GA-2010-267243 Plant fellows. We thank the MAGRAMA for access to the Spanish Forest Inventory, the Johann Heinrich von Thünen-Institut for access to the German National Forest Inventories, the Finnish Forest Research Institute (METLA) for making permanent sample plot data from the Finnish NFI available, the Swedish University of Agricultural Sciences for making the Swedish NFI data available, and Hugues Lecomte, from the Walloon Forest Inventory, for access to the Walloon NFI data. The study was supported by the TRY initiative on plant traits (http://www.trydb.org). The TRY initiative and database is hosted, developed and maintained at the Max Planck Institute for Biogeochemistry, Jena, Germany, TRY is/has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its program QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS "Climat, Environmement et Société" France. The authors are grateful to Martin Freiberg from Leipzig Botanical Gardens and Eric Welk from Martin Luther University, Halle, for providing tree species distribution maps and to Jens Schumacher from Friedrich Schiller University, Jena, for statistical advice. The quality of the manuscript was greatly improved by comments from the Editor in Chief David Currie, Nicolas Gross and two anonymous reviewers.

## 479 SUPPORTING INFORMATION

- 480 Appendix S1 National Forest Inventory Details
- 481 Appendix S2 Supplementary Information on Climate, Functional Composition and Species
  482 Pool Variables

Global Ecology and Biogeography

- 483 Appendix S3 Supplementary Statistical Methods
- 484 Appendix S4 Supplementary Figures

#### **BIOSKETCH**

- 487 Sophia Ratcliffe is a postdoctoral researcher based at Leipzig University in Germany. She is
- 488 interested in large-scale patterns in ecology, particularly in relation to biodiversity and
- 489 ecosystem functioning, and functional biogeography. This research is part of the
- 490 FunDivEUROPE project (<u>http://www.fundiveurope.eu</u>).
- 491 Author contributions: SR and PRB compiled the inventory data, ML and JK compiled the
- 492 trait data, SR, JMC and CW designed the analysis, SR analysed the data, and SR and CW
- 493 wrote the first draft of the manuscript, with comments from all authors.

#### **REFERENCES**

- Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M.,
  Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P. & Frank, D.
  (2013) Site- and species-specific responses of forest growth to climate across the
  European continent. *Global Ecology and Biogeography*, 22, 706–717.
- Bazzaz, F.A. (1979) The physiological ecology of plant succession. Annual Review of
   *Ecology and Systematics*, 10, 351–371.
- Bengtsson, J., Nilsson, S.G., Franc, A. & Menozzi, P. (2000) Biodiversity, disturbances,
  ecosystem function and management of European forests. *Forest Ecology and Management*, 132, 39–50.
- Bergeron, Y. & Dansereau, P.-R. (1993) Predicting the composition of Canadian southern
  boreal forest in different fire cycles. *Journal of Vegetation Science*, 4, 827–832.
- Brassard, B.W., Chen, H.Y.H., Cavard, X., Yuan, Z., Reich, P.B., Bergeron, Y. & Par, D.
  (2013) Tree species diversity increases fine root productivity through increased soil
  volume filling. *Journal of Ecology*, **101**, 210–219.
- 510 Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani,
  511 A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M.,

| 2        |             |                                                                                                       |
|----------|-------------|-------------------------------------------------------------------------------------------------------|
| 3        | 512         | Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and              |
| 4        | 513         | its impact on humanity. Nature, 486, 59-67.                                                           |
| 5<br>6   |             |                                                                                                       |
| 7        | 514         | Carnicer, J., Coll, M., Pons, X., Ninyerola, M., Vayreda, J. & Peñuelas, J. (2014) Large-scale        |
| 8        | 515         | recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest                    |
| 9        | 516         | successional advance as key regional drivers. Global Ecology and Biogeography, 23,                    |
| 10       | 517         | 371–384.                                                                                              |
| 11       |             |                                                                                                       |
| 12       | 518         | Chave, J., Coomes, D.A., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009)                  |
| 13       | 519         | Towards a worldwide wood economics spectrum. <i>Ecology Letters</i> , <b>12</b> , 351–66.             |
| 14       |             |                                                                                                       |
| 15       | 520         | Conti, G. & Díaz, S. (2013) Plant functional diversity and carbon storage - an empirical test         |
| 16       | 521         | in semi-arid forest ecosystems. Journal of Ecology, 101, 18–28.                                       |
| 17       |             |                                                                                                       |
| 18       | 522         | Cornwell, W.K. & Ackerly, D.D. (2009) Community assembly and shifts in the distribution               |
| 19       | 523         | of functional trait values across an environmental gradient in coastal California.                    |
| 20       |             | -                                                                                                     |
| 21       | 524         | Ecological Monographs, 79, 109–126.                                                                   |
| 22       |             |                                                                                                       |
| 23       | 525         | Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K. & Robson, T.M. (2007)                  |
| 24       | 526         | Incorporating plant functional diversity effects in ecosystem service assessments.                    |
| 25<br>26 | 527         | Proceedings of the National Academy of Sciences of the United States of America, 104,                 |
| 20<br>27 | 528         | 20684–9.                                                                                              |
| 28       |             |                                                                                                       |
| 29       | 529         | Douma, J.C., de Haan, M.W.A., Aerts, R., Witte, JP.M. & van Bodegom, P.M. (2012)                      |
| 30       | 530         | Succession-induced trait shifts across a wide range of NW European ecosystems are                     |
| 31       | 531         | driven by light and modulated by initial abiotic conditions. <i>Journal of Ecology</i> , <b>100</b> , |
| 32       | 532         | 366–380.                                                                                              |
| 33       | 001         |                                                                                                       |
| 34       | 533         | Enquist, B.J., West, G.B., Charnov, E.L. & Brown, J.H. (1999) Allometric scaling of                   |
| 35       | 534         | production and life-history variation in vascular plants. <i>Nature</i> , <b>401</b> , 907–911.       |
| 36       | 554         | production and me-mistory variation in vascular plants. <i>Nature</i> , <b>401</b> , 907–911.         |
| 37       | <b>5</b> 25 | Falster, D.S. & Westoby, M. (2003) Plant height and evolutionary games. <i>Trends in Ecology</i>      |
| 38       | 535         |                                                                                                       |
| 39       | 536         | & Evolution, <b>18</b> , 337–343.                                                                     |
| 40       |             |                                                                                                       |
| 41       | 537         | Grime, J.P. (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder           |
| 42       | 538         | effects. Journal of Ecology, 86, 902–910.                                                             |
| 43       |             |                                                                                                       |
| 44       | 539         | Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Chećko, E., Forrester,       |
| 45       | 540         | D.I., Dawud, S.M., Finér, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F.,                  |
| 46       | 541         | Bonal, D. & Gessler, A. (2014) Tree diversity does not always improve resistance of                   |
| 47<br>49 | 542         | forest ecosystems to drought. Proceedings of the National Academy of Sciences of the                  |
| 48<br>49 | 543         | United States of America, 1–4.                                                                        |
| 49<br>50 |             |                                                                                                       |
| 51       | 544         | Harpole, W.S. & Tilman, D. (2007) Grassland species loss resulting from reduced niche                 |
| 52       | 545         | dimension. <i>Nature</i> , <b>446</b> , 791–793.                                                      |
| 53       | 545         | $u_{111} = 151011. I (u_{1}u_{1}e_{1} + 70, 191 - 195).$                                              |
| 54       |             | Himana D.I. Company S.E. Dama I.I. Janes D.C. & Jamis A. (2005) Mar. 1:1                              |
| 55       | 546         | Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high                  |
| 56       | 547         | resolution interpolated climate surfaces for global land areas. <i>International Journal of</i>       |
| 57       | 548         | <i>Climatology</i> , <b>25</b> , 1965–1978.                                                           |
| 58       |             |                                                                                                       |
| 59       |             |                                                                                                       |

| 3<br>4<br>5         | 549<br>550        | Hillebrand, H. & Matthiessen, B. (2009) Biodiversity in a complex world: consolidation and progress in functional biodiversity research. <i>Ecology Letters</i> , <b>12</b> , 1405–19.                                                      |
|---------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6<br>7<br>8         | 551<br>552        | Huston, M.A. & Smith, T. (1987) Plant succession: life history and competition. <b>130</b> , 168–198.                                                                                                                                       |
| 9<br>10<br>11<br>12 | 553<br>554<br>555 | Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D.A. (2014a) Stabilizing effects of<br>diversity on aboveground wood production in forest ecosystems: linking patterns and<br>processes. <i>Ecology Letters</i> , <b>17</b> , 1560–1569. |
| 13<br>14            | 556               | Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F. & Coomes,                                                                                                                                                 |
| 15<br>16<br>17      | 557<br>558        | D.A. (2014b) Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. <i>Journal of Ecology</i> , <b>102</b> , 1202–1213.                                                 |
| 18<br>19            | 559<br>560        | Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E.,<br>Westoby, M., Reich, P.B., Wright, I.J., Cornelissen, J.H.C., Violle, C., Harrison, S.P.,                                                       |
| 20                  | 561               | van Bodegom, P.M., Reichstein, M., Enquist, B.J., Soudzilovskaia, N.A., Ackerly, D.D.,                                                                                                                                                      |
| 21<br>22            | 562               | Anand, M., Atkin, O., Bahn, M., Baker, T.R., Baldocchi, D., Bekker, R., Blanco, C.C.,                                                                                                                                                       |
| 22                  |                   |                                                                                                                                                                                                                                             |
| 23                  | 563               | Blonder, B., Bond, W.J., Bradstock, R., Bunker, D.E., Casanoves, F., Cavender-Bares,                                                                                                                                                        |
| 25                  | 564               | J., Chambers, J.Q., Chapin, F.S., Chave, J., Coomes, D.A., Cornwell, W.K., Craine,                                                                                                                                                          |
| 26                  | 565               | J.M., Dobrin, B.H., Duarte, L., Durka, W., Elser, J., Esser, G., Estiarte, M., Fagan, W.F.,                                                                                                                                                 |
| 27                  | 566               | Fang, J., Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H., Frank, D.,                                                                                                                                                  |
| 28                  | 567               | Freschet, G.T., Fyllas, N.M., Gallagher, R. V., Green, W. a., Gutierrez, A.G., Hickler,                                                                                                                                                     |
| 29                  | 568               | T., Higgins, S., Hodgson, J.G., Jalili, A., Jansen, S., Joly, C., Kerkhoff, A.J., Kirkup, D.,                                                                                                                                               |
| 30                  | 569               | Kitajima, K., Kleyer, M., Klotz, S., Knops, J.M.H., Kramer, K., Kühn, I., Kurokawa, H.,                                                                                                                                                     |
| 31                  | 570               | Laughlin, D.C., Lee, T.D., Leishman, M., Lens, F., Lenz, T., Lewis, S.L., Lloyd, J.,                                                                                                                                                        |
| 32                  | 571               | Llusià, J., Louault, F., Ma, S., Mahecha, M.D., Manning, P., Massad, T., Medlyn, B.,                                                                                                                                                        |
| 33                  | 572               | Messier, J., Moles, A.T., Müller, S.C., Nadrowski, K., Naeem, S., Niinemets, Ü.,                                                                                                                                                            |
| 34                  | 573               | Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V.G., Onoda, Y., Ordoñez,                                                                                                                                                       |
| 35                  | 574               | J., Overbeck, G., Ozinga, W. a., Patiño, S., Paula, S., Pausas, J.G., Peñuelas, J., Phillips,                                                                                                                                               |
| 36                  | 575               | O.L., Pillar, V., Poorter, H., Poorter, L., Poschlod, P., Prinzing, A., Proulx, R., Rammig,                                                                                                                                                 |
| 37                  | 576               | A., Reinsch, S., Reu, B., Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley,                                                                                                                                                 |
| 38                  | 577               | B., Siefert, A., Sosinski, E., Soussana, JF., Swaine, E., Swenson, N.G., Thompson, K.,                                                                                                                                                      |
| 39                  | 578               | Thornton, P., Waldram, M., Weiher, E., White, M., White, S., Wright, S.J., Yguel, B.,                                                                                                                                                       |
| 40                  | 579               | Zaehle, S., Zanne, A.E. & Wirth, C. (2011) TRY - a global database of plant traits.                                                                                                                                                         |
| 41<br>42            |                   | Global Change Biology, 17, 2905–2935.                                                                                                                                                                                                       |
| 42                  | 580               | Global Change Biology, 11, 2903–2933.                                                                                                                                                                                                       |
| 44                  | 504               |                                                                                                                                                                                                                                             |
| 45                  | 581               | Kawaletz, H., Molder, I., Zerbe, S., Annighöfer, P., Terwei, A. & Ammer, C. (2013) Exotic                                                                                                                                                   |
| 46                  | 582               | tree seedlings are much more competitive than natives but show underyielding when                                                                                                                                                           |
| 47                  | 583               | growing together. Journal of Plant Ecology, 1–11.                                                                                                                                                                                           |
| 48                  |                   |                                                                                                                                                                                                                                             |
| 49                  | 584               | Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation.                                                                                                                                               |
| 50                  | 585               | <i>Oecologia</i> , <b>115</b> , 445–459.                                                                                                                                                                                                    |
| 51                  |                   |                                                                                                                                                                                                                                             |
| 52                  | 586               | Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S. & Levine, J.M. (2015)                                                                                                                                                        |
| 53                  | 587               | Community assembly, coexistence and the environmental filtering metaphor. Functional                                                                                                                                                        |
| 54                  | 588               | Ecology, <b>29</b> , 592–599.                                                                                                                                                                                                               |
| 55                  |                   |                                                                                                                                                                                                                                             |
| 56                  | 589               | Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional                                                                                                                                                     |
| 57                  | 590               | diversity from multiple traits. <i>Ecology</i> , <b>91</b> , 299–305.                                                                                                                                                                       |
| 58<br>59            | 550               |                                                                                                                                                                                                                                             |

| 2  |     |                                                                                                |
|----|-----|------------------------------------------------------------------------------------------------|
| 3  | 591 | Lasky, J.R., Uriarte, M., Boukili, V.K., Erickson, D.L., John Kress, W. & Chazdon, R.L.        |
| 4  | 592 | (2014) The relationship between tree biodiversity and biomass dynamics changes with            |
| 5  | 593 | tropical forest succession. <i>Ecology Letters</i> , <b>17</b> , 1158–67.                      |
| 6  | 555 |                                                                                                |
| 7  | 504 | Leighman M.D. Wright I.I. Malas A.T. & Wagtahu M. (2000) The Evolution run Ecology             |
| 8  | 594 | Leishman, M.R., Wright, I.J., Moles, A.T. & Westoby, M. (2000) <i>The Evolutionary Ecology</i> |
| 9  | 595 | of Seed Size. Seeds: The Ecology of Regeneration in Plant Communities (ed. by M.               |
| 10 | 596 | Fenner), pp. 31–58. CAB International 2000.                                                    |
| 11 |     |                                                                                                |
| 12 | 597 | Maire, V., Gross, N., Börger, L., Proulx, R., Wirth, C., Pontes, L.D.S., Soussana, JF. &       |
| 13 | 598 | Louault, F. (2012) Habitat filtering and niche differentiation jointly explain species         |
| 14 | 599 | relative abundance within grassland communities along fertility and disturbance                |
| 15 | 600 | gradients. New Phytologist, <b>196</b> , 497–509.                                              |
| 16 | 000 | gradients. <i>New 1 hytologist</i> , <b>190</b> , 497–509.                                     |
| 17 | 604 |                                                                                                |
| 18 | 601 | Mayfield, M.M. & Levine, J.M. (2010) Opposing effects of competitive exclusion on the          |
| 19 | 602 | phylogenetic structure of communities. <i>Ecology Letters</i> , <b>13</b> , 1085–93.           |
| 20 |     |                                                                                                |
| 21 | 603 | Mokany, K., Ash, J. & Roxburgh, S. (2008) Functional identity is more important than           |
| 22 | 604 | diversity in influencing ecosystem processes in a temperate native grassland. Journal of       |
| 23 | 605 | <i>Ecology</i> , <b>96</b> , 884–893.                                                          |
| 24 |     |                                                                                                |
| 25 | 606 | Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. (2011) Tree species richness          |
| 26 | 607 | promotes productivity in temperate forests through strong complementarity between              |
| 27 |     |                                                                                                |
| 28 | 608 | species. Ecology Letters, 14, 1211–9.                                                          |
| 29 |     |                                                                                                |
| 30 | 609 | Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N.,               |
| 31 | 610 | Underwood, E.C., D'amico, J. a., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J.,        |
| 32 | 611 | Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. &          |
| 33 | 612 | Kassem, K.R. (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth.           |
| 34 | 613 | BioScience, 51, 933.                                                                           |
| 35 | 015 |                                                                                                |
| 36 | 614 | Paquette, A. & Messier, C. (2011) The effect of biodiversity on tree productivity: from        |
| 37 |     |                                                                                                |
| 38 | 615 | temperate to boreal forests. <i>Global Ecology and Biogeography</i> , <b>20</b> , 170–180.     |
| 39 |     |                                                                                                |
| 40 | 616 | Pretzsch, H., Bielak, K., Block, J., Bruchwald, A., Dieler, J., Ehrhart, HP., Kohnle, U.,      |
| 41 | 617 | Nagel, J., Spellmann, H., Zasada, M. & Zingg, A. (2013) Productivity of mixed versus           |
| 42 | 618 | pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European          |
| 43 | 619 | beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest            |
| 44 | 620 | Research, 132, 263–280.                                                                        |
| 45 |     |                                                                                                |
| 46 | 621 | Ruiz-Benito, P., Gómez-Aparicio, L., Paquette, A., Messier, C., Kattge, J. & Zavala, M.A.      |
| 47 |     |                                                                                                |
| 48 | 622 | (2014) Diversity increases carbon storage and tree productivity in Spanish forests.            |
| 49 | 623 | <i>Global Ecology and Biogeography</i> , <b>23</b> , 311–322.                                  |
| 50 |     |                                                                                                |
| 51 | 624 | Spasojevic, M.J. & Suding, K.N. (2012) Inferring community assembly mechanisms from            |
| 52 | 625 | functional diversity patterns: the importance of multiple assembly processes. Journal of       |
| 53 | 626 | <i>Ecology</i> , <b>100</b> , 652–661.                                                         |
| 54 |     |                                                                                                |
| 55 | 627 | Stan Development Team (2013) Stan: A C++ Library for Probability and Sampling, Version         |
| 56 | 628 | 2.5.0. URL http://mc-stan.org.                                                                 |
| 57 | 020 | 2.5.v. Oxt http://iiiv-stail.org.                                                              |
| 58 |     |                                                                                                |
| 59 |     |                                                                                                |

| 629        | Thomas, C.D., Anderson, B.J., Moilanen, A., Eigenbrod, F., Heinemeyer, A., Quaife, T.,                                                                       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 630<br>631 | Roy, D.B., Gillings, S., Armsworth, P.R. & Gaston, K.J. (2013) Reconciling biodiversity and carbon conservation. <i>Ecology Letters</i> , <b>16</b> , 39–47. |
|            |                                                                                                                                                              |
| 632        | Tilman, D. (1994) Competition and biodiversity in spatially structured habitats. <i>Ecology</i> , <b>75</b> ,                                                |
| 633        | 2 - 16.                                                                                                                                                      |
| 634        | Valencia, E., Maestre, F.T., Le Bagousse-Pinguet, Y., Quero, J.L., Tamme, R., Börger, L.,                                                                    |
| 635        | García-Gómez, M. & Gross, N. (2015) Functional diversity enhances the resistance of                                                                          |
| 636        | ecosystem multifunctionality to aridity in Mediterranean drylands. <i>New Phytologist</i> ,                                                                  |
| 637        | <b>206</b> , 660–671.                                                                                                                                        |
| 638        | Vilà, M., Carrillo-Gavilán, A., Vayreda, J., Bugmann, H., Fridman, J., Grodzki, W., Haase,                                                                   |
| 639        | J., Kunstler, G., Schelhaas, MJ. & Trasobares, A. (2013) Disentangling biodiversity                                                                          |
| 640        | and climatic determinants of wood production. <i>PloS one</i> , <b>8</b> , e53530.                                                                           |
| 641        | Violle, C., Navas, ML., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E.                                                                        |
| 642        | (2007) Let the concept of trait be functional! Oikos, 116, 882-892.                                                                                          |
| 643        | Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J. & Kattge, J. (2014) The emergence and                                                                   |
| 644        | promise of functional biogeography. PNAS, 111, 13690–13696.                                                                                                  |
| 645        | Wilfahrt, P.A., Collins, B. & White, P.S. (2014) Shifts in functional traits among tree                                                                      |
| 646        | communities across succession in eastern deciduous forests. <i>Forest Ecology and</i>                                                                        |
| 647        | Management, <b>324</b> , 179–185.                                                                                                                            |
| 648        | Wirth, C. & Lichstein, J.W. (2009) The imprint of species turnover on old-growth forest                                                                      |
| 649        | carbon balances - insights from a trait-based model of forest dynamics. Old-growth                                                                           |
| 650        | forests - Function, fate and value (ed. by C. Wirth, G. Gleixner, and M. Heimann), pp.                                                                       |
| 651        | 81–113. Springer, Berlin.                                                                                                                                    |
| 652        | Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Groom, P.K., Hikosaka, K., Lee,                                                               |
| 653        | W., Lusk, C.H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D.I. &                                                                           |
| 654        | Westoby, M. (2005) Modulation of leaf economic traits and trait relationships by                                                                             |
| 655        | climate. <i>Global Ecology and Biogeography</i> , <b>14</b> , 411–421.                                                                                       |
| 656        | Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-                                                                    |
| 657        | Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom,                                                                      |
| 658        | P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J.,                                                                     |
| 659        | Navas, ML., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L.,                                                                         |
| 660        | Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. & Villar, R.                                                                        |
| 661        | (2004) The worldwide leaf economics spectrum. Nature, 428, 821-7.                                                                                            |
| 662        | Zhang, Y., Chen, H.Y.H. & Reich, P.B. (2012) Forest productivity increases with evenness,                                                                    |
| 663        | species richness and trait variation: a global meta-analysis. <i>Journal of Ecology</i> , <b>100</b> ,                                                       |
| 664        | 742–749.                                                                                                                                                     |
| 665        |                                                                                                                                                              |
| 666        |                                                                                                                                                              |
|            |                                                                                                                                                              |

**APPENDICES** 

1

Aas, G. (1999) Systematik und Biologie einheimischer Weiden (Salix ssp.). Berichte aus der

Atkin, O.K., Schortemeyer, M., McFarlane, N. & Evans, J.R. (1999) The response of fastand slow-growing Acacia species to elevated atmospheric CO2: an analysis of the

van Bodegom, P.M., de Kanter, M., Bakker, C. & Aerts, R. (2005) Radial oxygen loss, a plastic property of dune slack plant species. *Plant and Soil*, **271**, 351–364.

van Bodegom, P.M., Sorrell, B.K., Oosthoek, A., Bakker, C. & Aerts, R. (2008) Separating the effects of partial submergence and soil oxygen demand on plant physiology.

Briemle, G., Nitsche, S. & Nitsche, L. (2002) Nutzungswertzahlen für Gefäßpflanzen des

Campbell, C., Atkinson, L., Zaragoza-Castells, J., Lundmark, M., Atkin, O.K. & Hurry, V. (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. *The New Phytologist*, **176**,

Castro-Díez, P., Puyravaud, J.P. & Cornelissen, J.H.C. (2000) Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant

anatomy and relative growth rate in seedlings of a wide range of woody plant species

Cornelissen, J.H.C. (1996) An experimental comparison of leaf decomposition rates in a wide

Cornelissen, J.H.C., Aerts, R., Cerabolini, B.E.L., Werger, M. & van der Heijden, M. (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. *Oecologia*,

Cornelissen, J.H.C., Castro-Díez, P. & Hunt, R. (1996) Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. *Journal of Ecology*, **84**,

Castro-Díez, P., Puyravaud, J.P., Cornelissen, J.H.C. & Villar-Salvador, P. (1998) Stem

range of temperate plant species and types. Journal of Ecology, 84, 573-582.

I. Kühn, and W. Durka), Bundesamt für Naturschutz, Bonn.

Grünlandes. BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38 (ed. by S. Klotz,

Bayerischen Landesanstalt für Wald und Forstwirtschaft. Band 24, S. 5–9.

underlying components of relative growth rate. Oecologia, 120, 544–554.

Appendix 1 References for the trait data used in this study

Bahn, M. (1999) ECOMONT Project Report 247-255.

species and types. Oecologia, 124, 476–486.

and types. Oecologia, 116, 57-66.

*Ecology*, **89**, 193–204.

375-89.

**129**, 611–9.

755-765.

| 2        |            |
|----------|------------|
| 3        | 667        |
| 4        |            |
| 5        | 668        |
| 6        |            |
| 7        | 660        |
| 8        | 669        |
| 9        | 670        |
| 10       |            |
| 11       | 671        |
| 12       | 672        |
| 13       | 673        |
| 14       | 075        |
| 15       |            |
| 16       | 674        |
| 17       |            |
| 18       | 675        |
|          | 676        |
| 19       | 0,0        |
| 20       | <b>677</b> |
| 21       | 677        |
| 22       | 678        |
| 23       | 679        |
| 24       |            |
| 25       | 680        |
| 26       | 681        |
| 27       |            |
| 28       | 682        |
| 29       | 683        |
| 30       |            |
| 31       | 684        |
| 32       | 685        |
| 33       | 686        |
| 34       | 687        |
| 35       | 007        |
| 35<br>36 | 600        |
| 37       | 688        |
| 38       | 689        |
| 39       | 690        |
| 40       |            |
| 41       | 691        |
| 42       | 692        |
| 43       |            |
| 44       | 693        |
| 45       |            |
| 46       | 694        |
| 40<br>47 | 695        |
| 47<br>48 |            |
| 40<br>49 | 696        |
| 49<br>50 | 697        |
| 50<br>51 |            |
|          | 698        |
| 52<br>53 |            |
|          | 699        |
| 54       | 700        |
| 55       | 701        |
| 56       |            |
| 57       |            |
| 58       |            |
| 59       |            |
| 60       |            |

| 2<br>3<br>4<br>5<br>6<br>7                                           | 702<br>703<br>704<br>705                                    | Cornelissen, J.H.C., Cerabolini, B.E.L., Castro-Díez, P., Villar-Salvador, P., Monterrat-Marti, G., Puyravaud, J.P., Maestro, M., Werger, M.J.A. & Aerts, R. (2003) Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? <i>Journal of Vegetation Science</i> , <b>14</b> , 311–322.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8<br>9<br>10<br>11<br>12<br>13                                       | 706<br>707<br>708<br>709                                    | Cornelissen, J.H.C., Perez-Harguindeguy, N., Díaz, S., Grime, J.P., Marzano, B., Cabido, M.,<br>Vendramini, F. & Cerabolini, B.E.L. (1999) Leaf structure and defence control litter<br>decomposition rate across species and life forms in regional floras on two continents.<br><i>New Phytologist</i> , 143, 191–200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14<br>15<br>16<br>17<br>18                                           | 710<br>711<br>712<br>713                                    | Cornelissen, J.H.C., Quested, H.M., Gwynn-Jones, D., Van Logtestijn, R.S.P., De Beus,<br>M.A.H., Kondratchuk, A., Callaghan, T. V. & Aerts, R. (2004) Leaf digestibility and<br>litter decomposability are related in a wide range of subarctic plant species and types.<br><i>Functional Ecology</i> , <b>18</b> , 779–786.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                   | 714<br>715<br>716<br>717<br>718<br>719<br>720               | <ul> <li>Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A., Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P.M., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V. &amp; Westoby, M. (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. <i>Ecology Letters</i>, 11, 1065–71.</li> </ul>                                                                                                                                                                      |
| 28<br>29<br>30                                                       | 721<br>722                                                  | Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. (2006) A trait-based test for habitat filtering: convex hull volume. <i>Ecology</i> , <b>87</b> , 1465–71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                         | 723<br>724<br>725<br>726<br>727<br>728                      | <ul> <li>Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., Mack, M.C., McLauchlan, K.K., Michelsen, A., Nardoto, G.B., Pardo, L.H., Penuelas, J., Reich, P.B., Schuur, E.A.G., Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M. &amp; Wright, I.J. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. <i>New Phytologist</i>, 183, 980–992.</li> </ul>                                                                                                                                                                                                                                                                           |
| 39<br>40<br>41<br>42<br>43                                           | 729<br>730<br>731                                           | Dabernig, M. (1996) Die Eukalyptuswälder Tasmaniens. Flora und Vegetation von<br>Tasmanien. Eine Einführung in das Exkursionsgebiet des Instituts für Botanik der<br>Universität Graz im November 1996 (ed. by M. Magnes and H. Mayrhofer).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54 | 732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740 | <ul> <li>Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A.,<br/>Montserrat-Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S.,<br/>Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N.,<br/>Pérez-Rontomé, M.C., Shirvany, F. a., Vendramini, F., Yazdani, S., Abbas-Azimi, R.,<br/>Bogaard, A., Boustani, S., Charles, M., Dehghan, M., Torres-Espuny, L., Falczuk, V.,<br/>Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-<br/>Martínez, M., Romo-Díez, A., Shaw, S., Siavash, B., Villar-Salvador, P. &amp; Zak, M.R.<br/>(2004) The plant traits that drive ecosystems: Evidence from three continents. <i>Journal of</i><br/><i>Vegetation Science</i>, 15, 295–304.</li> </ul> |
| 55<br>56<br>57<br>58<br>59                                           | 741<br>742                                                  | Durka, W. (2002) Phylogenie der Farn- und Blütenpflanzen Deutschlands. BIOLFLOR - Eine<br>Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 2<br>3                                                   | 743                                                  | Schriftenreihe für Vegetationskunde 38 (ed. by S. Klotz, I. Kühn, and W. Durka), pp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5                                                   | 744                                                  | 75–91. Bundesamt für Naturschutz, Bonn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6<br>7<br>8<br>9                                         | 745<br>746<br>747                                    | Fischer, M.A., Oswald, K. & Adler, W. (2008) <i>Exkursionsflora für Österreich, Liechtenstein und Südtirol. Land Oberösterreich, Biologiezentrum der Oberösterreichischen Landesmuseen</i> , Linz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10<br>11<br>12<br>13<br>14                               | 748<br>749<br>750                                    | Fitschen, J. (2007) <i>Gehölzflora. Ein Buch zum Bestimmen der in Mitteleuropa wildwachsenden und angepflanzten Bäume und Sträucher</i> , 12th edn. Quelle & Meyer Verlag, Wiebelsheim.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>16<br>17                                           | 751<br>752                                           | Fonseca, C.R., Overton, J.M., Collins, B. & Westoby, M. (2000) Shifts in trait-combinations<br>along rainfall and phosphorus gradients. <i>Journal of Ecology</i> , 88, 964–977.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18<br>19<br>20                                           | 753<br>754                                           | Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. (2010a) Evidence of the "plant economics spectrum" in a subarctic flora. <i>Journal of Ecology</i> , <b>98</b> , 362–373.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21<br>22<br>23<br>24<br>25                               | 755<br>756<br>757                                    | Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. (2010b) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? <i>The New phytologist</i> , <b>186</b> , 879–89.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 758<br>759<br>760<br>761<br>762<br>763<br>764<br>765 | <ul> <li>Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Doležal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V.P., Quested, H.M., Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, JP., Thébault, A., Vile, D. &amp; Zarovali, M.P. (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. <i>Annals of Botany</i>, 99, 967–85.</li> </ul> |
| 36<br>37<br>38<br>39<br>40                               | 766<br>767<br>768<br>769                             | Godet, JD. (2006) Holzführer - einheimische Holzarten mit Makroaufnahmen. Ulmer KG,<br>Stuttgart Autorenkollektiv, Lexikon der Holztechnik, 4. Auflage, Fachbuchverlag<br>Leipzig, Leipzig. Tech S (2011) Holzdatenbank der Professur für Holz- und<br>Faserwerkstofftechnik der Technischen Universität Dresden.                                                                                                                                                                                                                                                                                                                                                                                      |
| 41<br>42<br>43                                           | 770                                                  | Green, W.A. (2009) USDA PLANTS Compilation, version 1, 09-02-02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 44<br>45<br>46                                           | 771<br>772                                           | Han, W., Fang, J., Guo, D. & Zhang, Y. (2005) Leaf nitrogen and phosphorus stoichiometry<br>across 753 terrestrial plant species in China. <i>The New Phytologist</i> , <b>168</b> , 377–85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47<br>48<br>49<br>50<br>51                               | 773<br>774<br>775                                    | <ul> <li>He, JS., Wang, Z., Wang, X., Schmid, B., Zuo, W., Zhou, M., Zheng, C., Wang, M. &amp; Fang, J. (2006) A test of the generality of leaf trait relationships on the Tibetan Plateau. <i>The New phytologist</i>, <b>170</b>, 835–48.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 51<br>52<br>53                                           | 776                                                  | Hecker, U. (2012) Bäume und Sträucher. BLV Verlagsgesellschaft, München.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 53<br>54<br>55<br>56<br>57<br>58                         | 777                                                  | Jordano, P. (2007) FRUBASE (Version 23 Oct 2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 3<br>4<br>5<br>6                                         | 778<br>779<br>780                                    | Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. (2009) Quantifying photosynthetic capacity<br>and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models.<br><i>Global Change Biology</i> , <b>15</b> , 976–991.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>8<br>9<br>10                                        | 781<br>782<br>783                                    | Kattge, J., Ogle, K., Bönisch, G., Díaz, S., Lavorel, S., Madin, J., Nadrowski, K., Nöllert, S.,<br>Sartor, K. & Wirth, C. (2011) A generic structure for plant trait databases. <i>Methods in</i><br><i>Ecology and Evolution</i> , 2, 202–213.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11<br>12<br>13<br>14<br>15                               | 784<br>785<br>786                                    | Kerkhoff, A.J., Fagan, W.F., Elser, J.J. & Enquist, B.J. (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorous in the seed plants. <i>The American Naturalist</i> , <b>168</b> , 103–122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16<br>17<br>18                                           | 787<br>788                                           | Kirkup, D., Malcom, P., Christian, G. & Paton, A. (2005) Towards a digital Africal Flora.<br><i>Taxon</i> , <b>54</b> , 457–466.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 789<br>790<br>791<br>792<br>793<br>794<br>795<br>796 | <ul> <li>Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M.,<br/>Poschlod, P., van Groenendael, J.M., Klimeš, L., Klimešová, J., Klotz, S., Rusch, G.M.,<br/>Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P.,<br/>Götzenberger, L., Hodgson, J.G., Jackel, AK., Kühn, I., Kunzmann, D., Ozinga, W.A.,<br/>Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H.J., Tackenberg, O.,<br/>Wilmann, B., Cornelissen, J.H.C., Eriksson, O., Garnier, E. &amp; Peco, B. (2008) The<br/>LEDA Traitbase: a database of life-history traits of the Northwest European flora.<br/><i>Journal of Ecology</i>, 96, 1266–1274.</li> </ul> |
| 29<br>30<br>31<br>32<br>33                               | 797<br>798<br>799                                    | Klotz, S., Kühn, I. & Durka, W. (2002) <i>BIOLFLOR – Eine Datenbank zu biologisch-<br/>ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38</i> , Bundesamt für Naturschutz, Bonn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34<br>35<br>36<br>37<br>38                               | 800<br>801<br>802<br>803                             | Krumbiegel, A. (2002) Morphologie der vegetativen Organe (außer Blätter). BIOLFLOR -<br>Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in<br>Deutschland. Schriftenreihe für Vegetationskunde 38 (ed. by S. Klotz, I. Kühn, and W.<br>Durka), pp. 93–118. Bonn.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 39<br>40<br>41<br>42                                     | 804<br>805                                           | Kühn, I., Durka, W. & Klotz, S. (2004) BiolFlor — a new plant-trait database as a tool for plant invasion ecology. <i>Diversity and Distributions</i> , <b>10</b> , 363–365.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43<br>44<br>45<br>46                                     | 806<br>807<br>808                                    | Laughlin, D.C., Leppert, J.J., Moore, M.M. & Sieg, C.H. (2010) A multi-trait test of the leaf-<br>height-seed plant strategy scheme with 133 species from a pine forest flora. <i>Functional</i><br><i>Ecology</i> , 24, 493–501.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 47<br>48<br>49<br>50                                     | 809<br>810<br>811                                    | Loveys, B.R., Atkinson, L.J., Sherlock, D.J., Roberts, R.L., Fitter, A.H. & Atkin, O.K. (2003)<br>Thermal acclimation of leaf and root respiration: an investigation comparing inherently<br>fast- and slow-growing plant species. <i>Global Change Biology</i> , <b>9</b> , 895–910.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51<br>52<br>53<br>54<br>55                               | 812<br>813<br>814                                    | McDonald, P.G., Fonseca, C.R., Overton, J.M. & Westoby, M. (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? <i>Functional Ecology</i> , <b>17</b> , 50–57.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 56<br>57<br>58<br>59<br>60                               | 815<br>816                                           | Medlyn, B.E., Badeck, F., de Pury, D.G.G., Barton, C.V.M., Broadmeadow, M., Ceulemans, R., de Angelis, P., Forstreuter, M., Jack, M.E., Kellomaki, S., Laitat, E., Marek, M.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 2<br>3<br>4<br>5<br>6<br>7                         | 817<br>818<br>819<br>820        | Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Robernitz, P., Wang, K. & Jarvis, P.G. (1999) Effects of elevated [CO2] on photosynthesis in European forest species : a meta-analysis of model parameters. <i>Plant, Cell and Environment</i> , <b>10</b> , 1475–1495.                                                                                                                                                                    |
|----------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8<br>9<br>10                                       | 821<br>822                      | Moles, A.T. & Westoby, M. (2004) Seedling survival and seed size: a synthesis of the literature. <i>Journal of Ecology</i> , <b>92</b> , 372–383.                                                                                                                                                                                                                                                                                                                           |
| 11<br>12<br>13<br>14                               | 823<br>824                      | Niinemets, Ü. (2001) Global-scale climatic controls of lead dry mass per Area, density, and thickness in trees and shrubs. <i>Ecology</i> , <b>82</b> , 453–469.                                                                                                                                                                                                                                                                                                            |
| 15<br>16<br>17<br>18                               | 825<br>826<br>827               | Ogaya, R. & Peñuelas, J. (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. <i>Environmental and Experimental Botany</i> , <b>50</b> , 137–148.                                                                                                                                                                                                                                            |
| 19<br>20<br>21                                     | 828<br>829                      | Ogaya, R. & Peñuelas, J. (2006) Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. <i>Biologia Plantarum</i> , <b>50</b> , 373–382.                                                                                                                                                                                                                                                                                                           |
| 22<br>23<br>24<br>25<br>26                         | 830<br>831<br>832               | Ordoñez, J.C., van Bodegom, P.M., Witte, JP.M., Bartholomeus, R.P., van Dobben, H.F. & Aerts, R. (2010) Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. <i>Ecology</i> , <b>91</b> , 3218–3228.                                                                                                                                                                                                                                 |
| 27<br>28<br>29<br>30                               | 833<br>834<br>835               | Ordonez, J.C., van Bodegom, P.M. & Witte, J.P.M. (2010) Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? <i>American Naturalist</i> , <b>175</b> , 225–239.                                                                                                                                                                                                                                                         |
| 31<br>32<br>33<br>34<br>35<br>36                   | 836<br>837<br>838<br>839        | Otto, B. (2002) Merkmale von Samen, Früchten, generativen Germinulen und generativen<br>Diasporen. BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der<br>Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38 (ed. by S. Klotz,<br>I. Kühn, and W. Durka), pp. 177–196. Bundesamt für Naturschutz, Bonn.                                                                                                                                    |
| 37<br>38<br>39<br>40<br>41<br>42<br>43             | 840<br>841<br>842<br>843<br>844 | <ul> <li>Pakeman, R.J., Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Doležal, J., Eriksson, O., Freitas, H., Golodets, C., Kigel, J., Kleyer, M., Lepš, J., Meier, T., Papadimitriou, M., Papanastasis, V.P., Quested, H.M., Quétier, F., Rusch, G., Sternberg, M., Theau, JP., Thébault, A. &amp; Vile, D. (2008) Impact of abundance weighting on the response of seed traits to climate and land use. <i>Journal of Ecology</i>, 96, 355–366.</li> </ul> |
| 44<br>45<br>46<br>47<br>48                         | 845<br>846<br>847<br>848        | Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, C., Lloret, F., Buhk, C., Ojeda, F.,<br>Luna, B., Moreno, J.M., Rodrigo, A., Espelta, J.M., Palacio, S., Fernandez-Santos, B.,<br>Fernandes, P.M. & Pausas, J.G. (2009) Fire-related traits for plant species of the<br>Mediterranean Basin. <i>Ecology</i> , <b>90</b> , p. 1420.                                                                                                                                     |
| 49<br>50<br>51<br>52                               | 849<br>850                      | Paula, S. & Pausas, J.G. (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. <i>Journal of Ecology</i> , <b>96</b> , 543–552.                                                                                                                                                                                                                                                                                                 |
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 851<br>852<br>853<br>854        | Peñuelas, J., Sardans, J., Llusià, J., Owen, S.M., Carnicer, J., Giambelluca, T.W., Rezende,<br>E.L., Waite, M. & Niinemets, Ü. (2010a) Faster returns on "leaf economics" and<br>different biogeochemical niche in invasive compared with native plant species. <i>Global<br/>Change Biology</i> , 16, 2171–2185.                                                                                                                                                          |

| 2<br>3<br>4<br>5<br>6            | 855<br>856<br>857        | Peñuelas, J., Sardans, J., Llusia, J., Owen, S.M., Silva, J. & Niinemets, U. (2010b) Higher<br>allocation to low cost chemical defenses in invasive species of Hawaii. <i>Journal of</i><br><i>Chemical Ecology</i> , <b>36</b> , 1255–70.                                                                                                     |
|----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>8<br>9<br>10                | 858<br>859<br>860        | Preston, K.A., Cornwell, W.K. & Denoyer, J.L. (2006) Wood density and vessel traits as<br>distinct correlates of ecological strategy in 51 California coast range angiosperms. <i>The</i><br><i>New phytologist</i> , <b>170</b> , 807–18.                                                                                                     |
| 11<br>12<br>13<br>14<br>15<br>16 | 861<br>862<br>863<br>864 | <ul> <li>Quested, H.M., Cornelissen, H., Press, M.C., Callaghan, T. V., Aerts, R., Trosien, F.,<br/>Riemann, P., Gwynn-Jones, D., Kondratchuk, A. &amp; Jonasson, S.E. (2003)</li> <li>Decomposition of sub-artic plants with differing nitrogen economies: a functional role<br/>for hemiparasites. <i>Ecology</i>, 84, 3209–3221.</li> </ul> |
| 17<br>18<br>19                   | 865<br>866               | Reich, P.B., Oleksyn, J. & Wright, I.J. (2009) Leaf phosphorus influences the photosynthesis-<br>nitrogen relation: a cross-biome analysis of 314 species. <i>Oecologia</i> , <b>160</b> , 207–12.                                                                                                                                             |
| 20<br>21<br>22<br>23<br>24       | 867<br>868<br>869        | <ul> <li>Reich, P.B., Tjoelker, M.G., Pregitzer, K.S., Wright, I.J., Oleksyn, J. &amp; Machado, JL. (2008) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. <i>Ecology letters</i>, 11, 793–801.</li> </ul>                                                                                                |
| 25<br>26<br>27                   | 870<br>871               | Roloff, A., Weisgerber, H., Lang, U. & Stimm, B. (1994) Enzyklopädie der Holzgewächse:<br>Handbuch und Atlas der Dendrologie, Wiley-VCH Verlag, Weinheim.                                                                                                                                                                                      |
| 28<br>29<br>30                   | 872<br>873               | Royal Botanical Gardens Kew (2008) Seed Information Database (SID). Version 7.1.<br>Available from: http://data.kew.org/sid/.                                                                                                                                                                                                                  |
| 31<br>32<br>33<br>34<br>35       | 874<br>875<br>876        | Schütt, P., Schuck, H.J. & Stimm, B. (2002) Lexikon der Baum- und Straucharten. Das<br>Standardwerk der Forstbotanik. Morphologie, Pathologie, Ökologie und Systematik<br>wichtiger Baum- und Straucharten, Nikol, Hamburg.                                                                                                                    |
| 36<br>37                         | 877                      | Seifert, A. (1971) Gärtnern, Ackern - ohne Gift, Biederstein Verlag, München.                                                                                                                                                                                                                                                                  |
| 38<br>39<br>40                   | 878<br>879               | USDA (2011) The PLANTS Database. National Plant Data Team, Greensboro, NC 27401-<br>4901 USA.                                                                                                                                                                                                                                                  |
| 41<br>42<br>43<br>44<br>45       | 880<br>881<br>882        | Vorreiter, L. (1949) Holztechnologisches Handbuch. Holzdatenbank der Professur für Holz-<br>und Faserwerkstofftechnik der Technischen Universität Dresden. 1.Band, Verlag Georg<br>Fromme & Co., Wien.                                                                                                                                         |
| 46<br>47                         | 883                      | Wächtershäuser, C. & Trageser, C. Das Alter der Bäume.                                                                                                                                                                                                                                                                                         |
| 48<br>49                         | 884                      | Wagenführ, R. & Scheiber, C. (1985) Holzatlas, 2nd edn. VEB Fachbuchverlag, Leipzig:                                                                                                                                                                                                                                                           |
| 50<br>51<br>52<br>53<br>54       | 885<br>886<br>887        | Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. & Cavender-<br>Bares, J. (2010) Phylogenetic community structure in Minnesota oak savanna is<br>influenced by spatial extent and environmental variation. <i>Ecography</i> , <b>33</b> , 565–577.                                                                    |
| 55<br>56<br>57<br>58<br>59<br>60 | 888<br>889               | <ul><li>Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, W., Rottmar, K., Tappeiner, U. &amp; Cernusca, A. (1999) Inter-specific variation of the biochemical limitation to</li></ul>                                                                                                                                               |

| 890<br>891        | photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. <i>Plant, Cell and Environment</i> , <b>22</b> , 1281–1296.                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 892<br>893<br>894 | Wright, I.J., Reich, P.B., Atkin, O.K., Lusk, C.H., Tjoelker, M.G. & Westoby, M. (2006)<br>Irradiance, temperature and rainfall influence leaf dark respiration in woody plants:<br>evidence from comparisons across 20 sites. <i>The New phytologist</i> , <b>169</b> , 309–19.                                                                                                                                              |
| 895<br>896<br>897 | Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller,<br>R.B., Swenson, N.G., Wiemann, M.C. & Chave, J. (2009) Data from: Towards a<br>worldwide wood economics spectrum. Dryad Digital Repository.                                                                                                                                                                                       |
| 898               |                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 899               | Appendix 2 References used to estimate regional species pools                                                                                                                                                                                                                                                                                                                                                                 |
| 900<br>901<br>902 | Aizpuru I., Carreras J., de Francisco M., Feliú J., Galera A. & Soto M. (2002) Estudio de la flora vascular amenazada de los arenales de la Comunidad Autónoma del País Vasco, pp 111.                                                                                                                                                                                                                                        |
| 903<br>904        | Anderberg A. and Anderberg AL., Den virtuella floran, available at:<br>http://linnaeus.nrm.se/flora/welcome.html.                                                                                                                                                                                                                                                                                                             |
| 905<br>906        | Artportalen (2012) Reporting System for Vascular Plants and Fungi. Available at:<br>http://www.artportalen.se.                                                                                                                                                                                                                                                                                                                |
| 907<br>908        | Benkert, D., Fukarek, F. & Korsch, H. (1996) Verbreitungsatlas der Farn- und Blütenpflanzen Ostdeutschland. Fischer, Jena. pp. 615.                                                                                                                                                                                                                                                                                           |
| 909               | Bolos, O., & Vigo, J. (1995) Flora dels Paisos Catalans, Vol. 3. Editorial Barcino, Barcelona.                                                                                                                                                                                                                                                                                                                                |
| 910<br>911        | Bundesamt für Naturschutz (BfN), FloraWeb - Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands, available at: http://www.floraweb.de/index.html.                                                                                                                                                                                                                                                         |
| 912<br>913        | de Càceres M., Quadrada R., Moreno J. & Martí D., Departament de Biologia Vegetal (U.B.),<br>Biodiversity Bank of Catalonia, available at: http://biodiver.bio.ub.es/biocat/index.jsp.                                                                                                                                                                                                                                        |
| 914               | Carlos A., Anthos. Spanish plants information system, available at: http://www.anthos.es/.                                                                                                                                                                                                                                                                                                                                    |
| 915<br>916        | Catálogo florístico de la provincia de Soria (2000) Available at<br>http://www.jolube.net/mapas/mapas.htm.                                                                                                                                                                                                                                                                                                                    |
| 917<br>918        | Generalitat Valenciana, Conselleria de Infraestructuras, Territorio y Medio Ambient, Banko de Datos Biodiversitat Comunidad Valenciana, available at: http://bdb.cth.gva.es.                                                                                                                                                                                                                                                  |
| 919<br>920        | Government of the Principality of Asturias, available at:<br>http://www.asturias.es/portal/site/medioambiente.                                                                                                                                                                                                                                                                                                                |
| 921<br>922        | Haeupler, H. & Schonfelder, P. (1988) <i>Atlas der Farn- und Blütenpflanzen der Bundesrepublik Deutschland</i> . Ulmer, Stuttgart. pp 768.                                                                                                                                                                                                                                                                                    |
|                   | <ul> <li>891</li> <li>892</li> <li>893</li> <li>894</li> <li>895</li> <li>896</li> <li>897</li> <li>898</li> <li>899</li> <li>900</li> <li>901</li> <li>902</li> <li>903</li> <li>904</li> <li>905</li> <li>906</li> <li>907</li> <li>908</li> <li>909</li> <li>910</li> <li>911</li> <li>912</li> <li>913</li> <li>914</li> <li>915</li> <li>916</li> <li>917</li> <li>918</li> <li>919</li> <li>920</li> <li>921</li> </ul> |

| 923<br>924        | Haeupler, H., Jagel, A., Schumacher, W. (2003) Verbreitungsatlas der Farn- und<br>Blütenpflanzen in Nordrhein- Westfalen. pp 616.                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 925<br>926        | INPN (2012) Inventaire National du Patrimoine Naturel. Available at:<br>http://inpn.mnhn.fr/accueil/index?lg=en.                                                                                                                                            |
| 927<br>928<br>929 | Jalas, J. & Suominen, J. (1972-1994) <i>Atlas Florae Europaeae: Distribution of Vascular Plants in Europe</i> . The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, Finland.                                     |
| 930<br>931        | Kasviatlas (2012). Atlas of the Vascular Flora of Finland. Available at:<br>http://www.luomus.fi/kasviatlas.                                                                                                                                                |
| 932<br>933        | Lang, W. & Wolff, P. (1993) Flora der Pfalz. Verbreitungsatlas der Farn- und Blütenpflanzen für die Pfalz und ihre Randgebiete. Speyer. pp 444.                                                                                                             |
| 934<br>935        | Meusel H., Jäger, E.J., Weinert, (1965) Vergleichende Chorologie der zentraleuropaischen<br>Flora. Band. 1. Fischer, Jena.                                                                                                                                  |
| 936<br>937        | Meusel, H. & Jäger, E.J. (1992) Vergleichende Chorologie der zentraleuropaischen Flora.<br>Band. 3. Gustav Fischer Verlag Stuttgart New York.                                                                                                               |
| 938<br>939        | Meusel, H., Jäger, E.J., Rauschert, S., Weinert, E. (1978) Vergleichende Chorologie der zentraleuropaischen Flora. Part. 2 (maps and references). Fischer, Jena.                                                                                            |
| 940<br>941        | Observatoire de la Faune, de la Flore et des Habitats (OFFH), La biodiversité en Wallonie, available at: http://biodiversite.wallonie.be/fr/atlas-permanent.html?IDC=807.                                                                                   |
| 942<br>943<br>944 | Palacios González M.J., Vázquez Pardo F.M., Sánchez García A., Muñoz Barco P. &<br>Gutiérrez Esteban M. (2010) <i>Catálogo regional de especies vegetales amenazadas de</i><br><i>Extremadura</i> . Colección Medio Ambiente, Junta de Extremadura, pp 448. |
| 945<br>946        | Raabe, E. W., Dierssen, K., & Mierwald, U. (1987). Atlas der Flora Schleswig-Holsteins und Hamburgs. Wachholtz, Neumunster, pp 654.                                                                                                                         |
| 947<br>948        | Sáenz J.A.A., Benito Ayuso J., García-López J.M. & Sanz G.M. (2006) Atlas de la Flora<br>Vascular Silvestre de Burgos. Junta de Castilla y León, Caja rural de Burgos, pp 924.                                                                              |
| 949<br>950        | Sauer, E. (1993) <i>Die Gefäßflanzen des Saarlandes</i> . Aus Natur und Landschaft, Sonderband 5, Saarbrucken, pp 708.                                                                                                                                      |
| 951<br>952        | Schonfelder, P. & Bresinsky, A. (1990) Verbreitungsatlas der Farn- und Blutenpflanzen Bayerns. Ulmer, Stuttgart, pp 752.                                                                                                                                    |
| 953<br>954<br>955 | Schumacher, W., Düll-Wunder, B., & für Landwirtschaftliche Botanik, I. (1996). <i>Atlas der Farn- und Blütenpflanzen des Rheinlandes</i> . Landwirtschaftliche Fak. der Rheinischen Friedrich-Wilhelms-Univ., Dekanat. Bonn.                                |
| 956               |                                                                                                                                                                                                                                                             |
|                   |                                                                                                                                                                                                                                                             |

#### **Global Ecology and Biogeography**

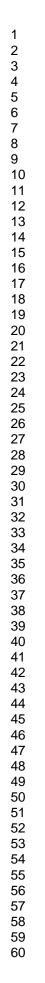
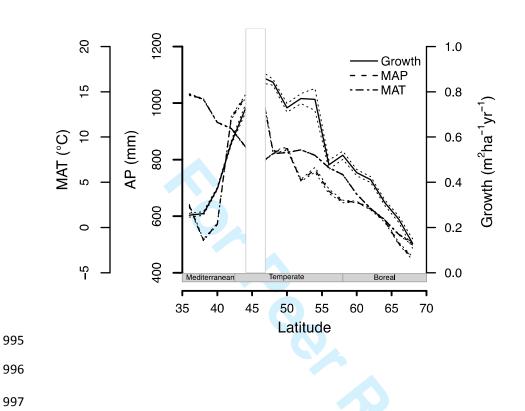

| 957 FIGU | IRE LEGENDS |
|----------|-------------|
|----------|-------------|

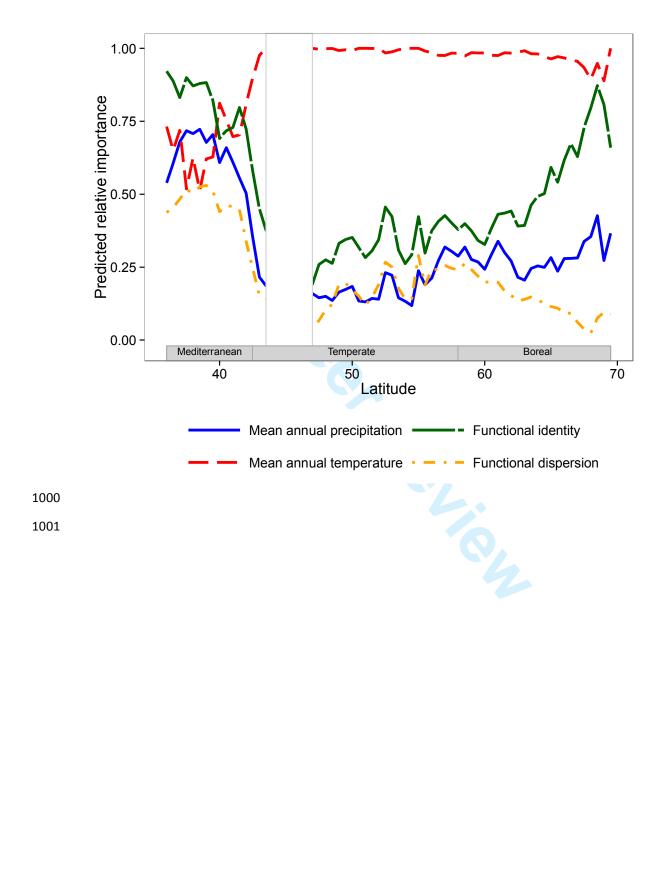
Figure 1. Climate gradients of mean annual temperature (MAT, °C) and mean annual
precipitation (MAP, mm) across the latitudinal gradient covered by the National Forest
Inventory plots. Mean plot basal area growth (Growth, m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>). Dotted lines indicate
95% confidence intervals. The white section depicts missing data. Values were calculated at a
2° latitude spatial resolution.

Figure 2. Predicted relative importance of mean annual precipitation, mean annual temperature, functional identity (aggregated effect of the community mean value of the four functional traits selected) and functional dispersion for tree growth. The sensitivity of plot growth to changes in each variable was estimated from the hierarchical linear model; the variable with the greatest influence in the plot has a relative importance of 1 and the other variables are scaled accordingly. Values are aggregated at  $0.5^{\circ}$  latitude thus the average relative importance of each predictor is shown. White section depicts missing data. A version with confidence bands is given in Appendix 4, Fig. S4.7. 

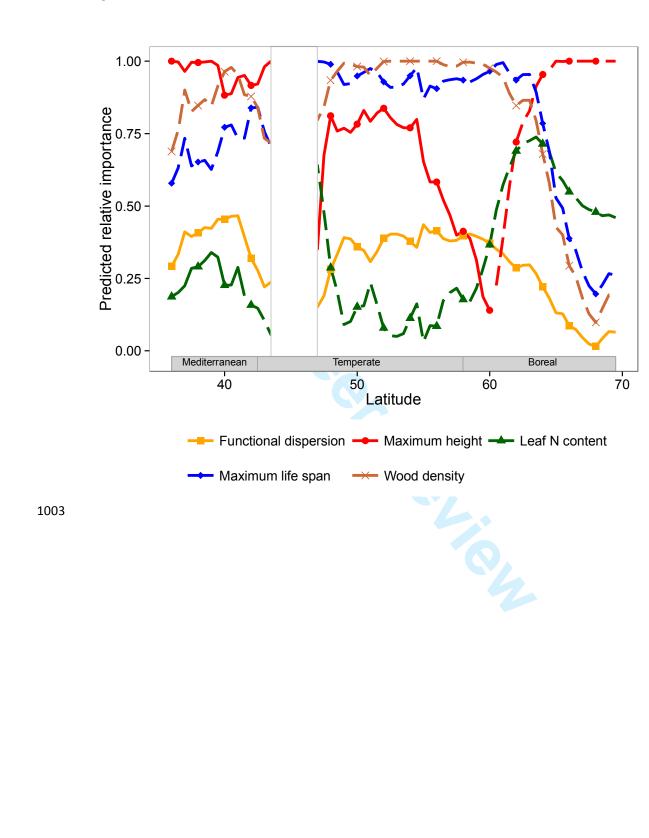
Figure 3. Predicted relative importance of five components of functional biodiversity (functional dispersion and the community weighted mean of four functional traits) for tree growth. The sensitivity of plot growth to changes in each component was estimated from the hierarchical linear model; the biodiversity component with the greatest influence in the plot has a relative importance of 1 and the other measures are scaled accordingly. Values are aggregated at  $0.5^{\circ}$  latitude thus the average relative importance of each predictor is shown. Solid lines indicate a positive influence of the biodiversity measure on plot growth, whilst dashed lines indicate a negative influence. White section depicts missing data. A version with confidence bands is given in Appendix 4, Fig. S4.8. 


Figure 4. Predicted relative importance of a) FDis (functional diversity; red), FI<sub>ln</sub> (community-weighted mean (CWM) leaf N mass (mg<sup>-1</sup>g); green) and FI<sub>wd</sub> (CWM wood density (g cm<sup>-3</sup>); blue); b) FI<sub>mh</sub> (CWM maximum height (m); red), FI<sub>ln</sub> (CWM leaf N mass (mg g<sup>-1</sup>); green) and FI<sub>wd</sub> (CWM wood density (g cm<sup>-3</sup>); blue), for tree growth. The sensitivity of plot growth to changes in each biodiversity component was estimated from a hierarchical linear model using spatial maps of mean annual temperature and mean annual precipitation at spatial resolution of 1 km<sup>2</sup>; the biodiversity measure with the largest effect size in the grid has a relative importance of 1 and the other two measures are scaled accordingly. The RGB cube illustrates how the colour gradient reflects the changes in relative importance of the biodiversity component, such that areas of white indicate an equal importance of all three measures. The arrows indicate an increasing relative importance. 

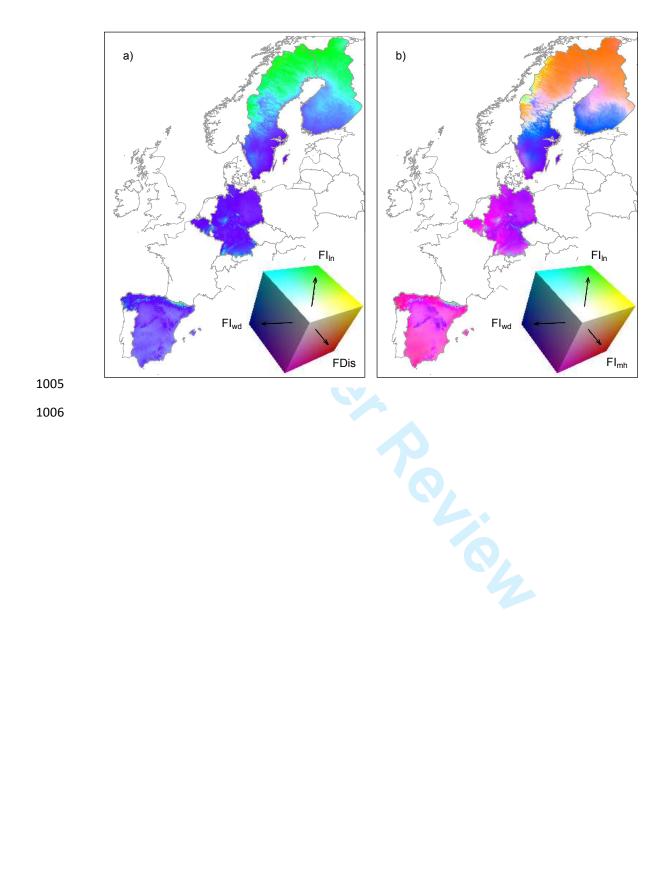



994 Figure 1.

993


**FIGURES** 




999 Figure 2.



1002 Figure 3.



1004 Figure 4.



# Supporting Information Appendix S1

# **National Forest Inventory Details**

We compiled data from the National Forest Inventories (NFIs) of Finland, Germany, Spain, Sweden and Wallonia, Belgium. Table S1.1 provides a summary of each NFI sampling design. To select comparable data from the different inventories we only included those trees that had a diameter at breast height (d.b.h) of 10 cm or more and plots with a basal area of 4  $m^2$  ha<sup>-1</sup> or greater in consecutive surveys. This resulted in 39554 plots with 138 species.

| Table S1.1. Summary of | of the individual | National Forest | Inventory sampling d | lesigns |
|------------------------|-------------------|-----------------|----------------------|---------|
|                        |                   |                 |                      |         |

|                             | Finland                                                                                | Germany                                                                                                 | Spain                                          | Sweden                                                                                                            | Wallonia                                   |
|-----------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Survey dates                | Subset of NFI 8:                                                                       | BWI 1 (1986-                                                                                            | SFI 2 (1986-                                   | Inventories 2005-                                                                                                 | Inventories 1994-2003                      |
|                             | 1985-1986 and 1995                                                                     | 1990) and BWI 2<br>(2001-2002)                                                                          | 1996) and SFI 3<br>(1997-2007)                 | 2007 and 2008-<br>2010                                                                                            | and 2008-2011                              |
| Sample plot<br>design       | Cluster design,<br>number and grid size<br>depend on location,<br>see text for details | Cluster design, 4<br>subplots. Grid<br>size depends on<br>region. Standard<br>grid size is 4 by 4<br>km | 1 km by 1 km grid<br>of single sample<br>plots | Cluster design,<br>number and grid<br>size depend on<br>region. Tract size is<br>between 300-1800<br>m in length. | 1 km by 0.5 km grid of single sample plots |
| Sample tree survey design   | Variable radius                                                                        | Angle-count                                                                                             | Variable radius                                | Variable radius                                                                                                   | Variable radius                            |
| Plot size (m <sup>2</sup> ) | 100, 300                                                                               | BAF 4 m <sup>2</sup> ha <sup>-1</sup>                                                                   | 79, 315, 707,<br>1964                          | 38, 314                                                                                                           | 63, 254, 1017                              |
| Minimum tree                | 1                                                                                      | 10 BWI1                                                                                                 | 7.5                                            | 4                                                                                                                 | 6.4                                        |
| DBH (cm)                    |                                                                                        | 7 BWI2                                                                                                  |                                                |                                                                                                                   |                                            |

# Finland

The Finnish data is from a subset of NFI8 from a network of permanent sample plots established to follow changes in forest vegetation. We were given data from two surveys: 1985 to 1986 and 1995. The sample plots are in a systematic grid across the country (Mäkipää & Heikkinen, 2003; Tomppo & Tuimainen, 2010), are located on forest land and form a regular network of clusters. The size of the grid and the number of plots within each cluster depends on the location. In Southern Finland the grid is 16 by 16 km square and there are four plots in each cluster, at 400 m intervals. In Northern Finland the grid is a 24 by 32 km rectangle with three plots per cluster, at 600 m intervals.

The plot size depends on the diameter at breast height (d.b.h.) of the sample trees; trees < 10.5 cm d.b.h. the plot size is 100 m<sup>2</sup>, >10.5 cm d.b.h. the plot size is 300 m<sup>2</sup>. The plots are in intensively managed forests, where suppressed trees are thinned.

## Germany

We received data from the first two German NFIs. The first inventory (BWI1) was surveyed between 1986 and 1990 (undertaken in West Germany only) and the second (BWI2) between 2001 and 2002. The mean survey period was 12 years.

The German NFI is based on a systematic rectangular grid, the dimensions of which are determined by the Federal State; the standard size is 4 by 4 km and it is intensified in some States to either 2.83 by 2.83 km or 2 by 2 km (Polley *et al.*, 2010). In each grid square is a quadratic tract of 150 m in length. Each corner of the tract has a sample plot and the tracts are surveyed if at least one of the corners is in forest.

Trees with a minimum d.b.h. of 10 cm, in BWI1, and 7 cm, in BWI2, were surveyed based on callipered angle count sampling using a basal area factor (BAF) of  $4 \text{ m}^2 \text{ ha}^{-1}$ .

#### Spain

We used data from the permanent sample plots of the second (NF12) and third (NFI3) Spanish NFIs. NFI2 was surveyed between 1986 and 1996 and NFI3 between 1997 and 2007, with a mean survey period of 10 years. The sample plots of the Spanish NFI are on a systematic 1 km<sup>2</sup> grid in forested areas of the country, and are not grouped in tracts but simply one plot in each grid square (Villaescusa & Diaz, 1998; Villanueva, 2005).

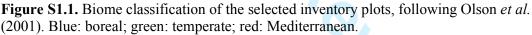
The Spanish NFI used a variable radius plot size depending on the d.b.h. of the sample trees; each plot has four nested subplots of 5, 10, 15 and 25 m radius and the minimum d.b.h. for a tree to be recorded within a subplot is 7.5 cm, 12.5 cm, 22.5 cm and 42.4 cm, respectively.

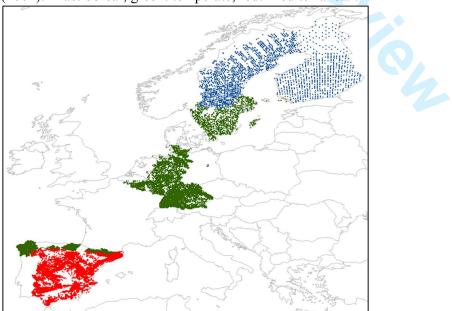
#### Sweden

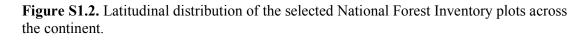
We received data from the permanent sample tracts of the Swedish NFI. The inventory uses a randomly planned regular sampling grid and includes about 4,500 permanent tracts, each surveyed every five years (Axelsson *et al.* 2010). Plots in the first census were surveyed between 2003 and 2005 and plots in the second census were surveyed between 2008 and

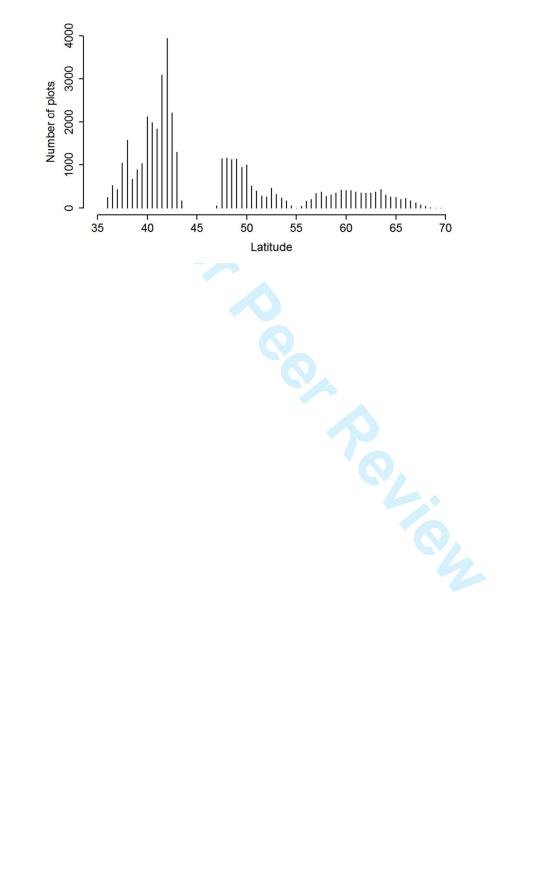
#### **Global Ecology and Biogeography**

Appendix S1


2010. The tracts are rectangular and have different dimensions depending on the location within the country. Each tract has between 4 and 8 circular sample plots.


Trees greater than 1.3 m high are sampled in two different plot sizes depending on the d.b.h. of the tree: 40-99 mm d.b.h.: 3.5 m radius; and greater than 100 mm d.b.h.: 10 m radius.


# Wallonia


The Walloon NFI follows a systematic non-stratified sampling methodology on a 1 km by 0.5 km grid (Rondeux *et al.* 2010). One circular sampling plot is located within each grid intersection. Areas are sampled if the area of land is greater than 0.1 ha and has at least 10% covered by a forest canopy (trees must be able to reach a minimum of 5 m). Plots in the first census were surveyed between 1994 and 2003 and plots in the second census were surveyed between 2008 and 2011.

The inventory employs a variable plot size depending on the circumference of the tree: Trees with a circumference between 20-69 cm: 4.5 m radius; 70-119 cm: 9 m radius; and greater than 120 cm: 18 m radius.









**Table S1.2.** List of species names and families following, where possible, the nomenclature of *Atlas Florae Europaea*. NFI indicates which inventory the species was present in and the exotic status of the species is given where the species was found in the particular NFI (DE: Germany; ES: Spain; FI: Finland; SW: Sweden; and WA: Wallonia).

| Name                                          | Family           | NFI            | Exotic |
|-----------------------------------------------|------------------|----------------|--------|
| Abies alba Mill.                              | Pinaceae         | DE, ES, WA     |        |
| Abies grandis (D.Don) Lindl.                  | Pinaceae         | DE, WA         | DE, WA |
| Abies pinsapo Boiss.                          | Pinaceae         | ES             |        |
| Abies procera Rehder                          | Pinaceae         | DE             | DE     |
| Abies spp.                                    | Pinaceae         | DE, SW         |        |
| Acacia dealbata Link                          | Leguminosae      | ES             | ES     |
| Acacia melanoxylon R.Br.                      | Leguminosae      | ES             | ES     |
| Acacia spp.                                   | Leguminosae      | ES             | ES     |
| Acer campestre L.                             | Aceraceae        | DE, ES, WA     |        |
| Acer monspessulanum L.                        | Aceraceae        | DE, ES         |        |
| Acer negundo L.                               | Aceraceae        | DE, ES         | DE, ES |
| Acer opalus Mill.                             | Aceraceae        | ES             |        |
| Acer platanoides L.                           | Aceraceae        | DE, ES, SW, WA | ES     |
| Acer pseudoplatanus L.                        | Aceraceae        | DE, ES, SW, WA |        |
| Aesculus hippocastanum L.                     | Hippocastanaceae | DE, WA         | DE, WA |
| Ailanthus altissima (Mill.) Swingle           | Simaroubacae     | ES             | ES     |
| Alnus glutinosa (L.) Gaertn.                  | Betulaceae       | DE, ES, SW, WA |        |
| Alnus incana (L.) Moench                      | Betulaceae       | DE, FI, SW, WA |        |
| Alnus spp.                                    | Betulaceae       | FI             |        |
| Alnus viridis (Chaix) DC.                     | Betulaceae       | DE             |        |
| Arbutus unedo L.                              | Ericaceae        | ES             |        |
| Betula pendula Roth                           | Betulaceae       | DE, ES, FI, SW |        |
| Betula pubescens Ehrh.                        | Betulaceae       | DE, FI, SW     |        |
| <i>Betula</i> spp.                            | Betulaceae       | ES, SW, WA     |        |
| Buxus sempervirens L.                         | Buxaceae         | ES             |        |
| <i>Carpinus betulus</i> L.                    | Betulaceae       | DE, ES, SW, WA |        |
| Castanea sativa Mill.                         | Fagaceae         | DE, ES, WA     |        |
| Cedrus atlantica (Endl.) Carrière             | Pinaceae         | ES             | ES     |
| Cedrus deodara (D.Don) G.Don                  | Pinaceae         | ES             | ES     |
| Cedrus libani A.Rich.                         | Pinaceae         | ES             | ES     |
| <i>Celtis australis</i> L.                    | Ulmaceae         | ES             |        |
| Ceratonia siliqua L.                          | Leguminosae      | ES             |        |
| Chamaecyparis lawsoniana (A.Murray bis) Parl. | Cupressaceae     | DE, ES         | DE, ES |
| Corylus avellana L.                           | Betulaceae       | ES             |        |
| Crataegus laciniata Ucria                     | Rosaceae         | ES             |        |
| Crataegus monogyna Jacq.                      | Rosaceae         | ES             |        |
| Crataegus spp.                                | Rosaceae         | ES, WA         |        |
| Cupressus arizonica Greene                    | Cupressaceae     | ES             | ES     |
| Cupressus lusitanica Mill.                    | Cupressaceae     | ES             | ES     |
| Cupressus macrocarpa Hartw.                   | Cupressaceae     | ES             | ES     |
| Cupressus sempervirens L.                     | Cupressaceae     | ES             | ES     |

# **Global Ecology and Biogeography**

# Appendix S1

| Name                                                   | Family        | NFI                   | Exotic       |
|--------------------------------------------------------|---------------|-----------------------|--------------|
| Eucalyptus camaldulensis Dehnh.                        | Myrtaceae     | ES                    | ES           |
| Eucalyptus globulus Labill.                            | Myrtaceae     | ES                    | ES           |
| Eucalyptus gomphocephalus DC.                          | Myrtaceae     | ES                    | ES           |
| <i>Eucalyptus nitens</i> (H.Deane & Maiden)<br>Maiden  | Myrtaceae     | ES                    | ES           |
| Eucalyptus viminalis Labill.                           | Myrtaceae     | ES                    | ES           |
| Euonymus europaeus L.                                  | Celastraceae  | ES                    |              |
| Fagus sylvatica L.                                     | Fagaceae      | DE, ES, SW, WA        |              |
| Frangula alnus Mill.                                   | Rhamnaceae    | DE, ES                |              |
| Fraxinus americana L.                                  | Oleaceae      | DE                    |              |
| Fraxinus angustifolia Vahl                             | Oleaceae      | ES                    |              |
| Fraxinus excelsior L.                                  | Oleaceae      | DE, ES, SW, WA        |              |
| Fraxinus ornus L.                                      | Oleaceae      | ES                    |              |
| Ilex aquifolium L.                                     | Aquifoliaceae | DE, ES                |              |
| Juglans regia L.                                       | Juglandaceae  | DE, ES, WA            | DE, ES<br>WA |
| Juniperus communis L.                                  | Cupressaceae  | ES                    |              |
| Juniperus oxycedrus L.                                 | Cupressaceae  | ES                    |              |
| Juniperus phoenicea L.                                 | Cupressaceae  | ES                    |              |
| Juniperus spp.                                         | Cupressaceae  | DE, FI                |              |
| Juniperus thurifera L.                                 | Cupressaceae  | ES                    |              |
| Larix decidua Mill.                                    | Pinaceae      | DE, ES                | ES           |
| <i>Larix kaempferi</i> (Lamb.) Carrière sec.<br>Franco | Pinaceae      | DE, ES                | DE, ES       |
| Larix spp.                                             | Pinaceae      | DE, ES, SW, WA        |              |
| Laurus nobilis L.                                      | Lauraceae     | ES                    |              |
| Malus sylvestris Mill.                                 | Rosaceae      | DE, ES                |              |
| <i>Morus alba</i> L.                                   | Moraceae      | DE, ES                |              |
| Olea europaea L.                                       | Oleaceae      | ES                    |              |
| Phillyrea latifolia L.                                 | Oleaceae      | ES                    |              |
| Picea abies (L.) H.Karst.                              | Pinaceae      | DE, ES, FI, SW,<br>WA | ES           |
| Picea omorika (Panc\$Kic\$A) Purk.                     | Pinaceae      | DE                    |              |
| Picea pungens Engelm.                                  | Pinaceae      | DE                    | DE           |
| Picea sitchensis (Bong.) Carrière                      | Pinaceae      | DE, WA                | DE, W.       |
| Picea spp.                                             | Pinaceae      | DE, SW                |              |
| Pinus canariensis Sweet ex Spreng.                     | Pinaceae      | ES                    |              |
| Pinus contorta Douglas ex Loudon                       | Pinaceae      | DE, SW                | DE, SV       |
| Pinus halepensis Mill.                                 | Pinaceae      | DE                    |              |
| Pinus mugo Turra                                       | Pinaceae      | DE, SW                |              |
| Pinus nigra J.F.Arnold                                 | Pinaceae      | DE, ES                |              |
| Pinus pinaster Aiton                                   | Pinaceae      | ES                    |              |
| Pinus pinea L.                                         | Pinaceae      | ES                    |              |
| Pinus ponderosa Douglas ex P.Lawson & C.Lawson         | Pinaceae      | DE                    | DE           |
| Pinus radiata D.Don                                    | Pinaceae      | ES                    | ES           |
| Pinus spp.                                             | Pinaceae      | DE, SW                |              |
| <i>Pinus strobus</i> L.                                | Pinaceae      | DE                    | DE           |

### **Global Ecology and Biogeography**

Appendix S1

| Name                                  | Family         | NFI                   | Exotic        |
|---------------------------------------|----------------|-----------------------|---------------|
| Pinus sylvestris L.                   | Pinaceae       | DE, ES, FI, SW,<br>WA |               |
| Pinus uncinata Mill. ex Mirb.         | Pinaceae       | ES                    |               |
| Pistacia terebinthus L.               | Anacardiaceae  | ES                    |               |
| Platanus hispanica Ten.               | Platanaceae    | ES                    |               |
| Populus alba L.                       | Salicaceae     | DE, ES                |               |
| Populus balsamifera Brayshaw          | Salicaceae     | DE                    | DE            |
| Populus nigra L.                      | Salicaceae     | DE, ES                |               |
| Populus spp.                          | Salicaceae     | DE, WA                |               |
| Populus tremula L.                    | Salicaceae     | DE, ES, FI, SW,<br>WA |               |
| Populus x canadensis Moench           | Salicaceae     | DE, ES                | DE, ES        |
| Prunus avium L.                       | Rosaceae       | DE, ES, SW, WA        |               |
| Prunus lusitanica L.                  | Rosaceae       | ES                    |               |
| Prunus padus L.                       | Rosaceae       | DE, ES                |               |
| Prunus serotina Ehrh.                 | Rosaceae       | DE                    | DE            |
| Prunus spinosa L.                     | Rosaceae       | ES                    |               |
| Prunus spp.                           | Rosaceae       | ES, WA                |               |
| Pseudotsuga menziesii (Mirb.) Franco  | Pinaceae       | DE, ES, WA            | DE, ES,<br>WA |
| Pyrus spp.                            | Rosaceae       | DE, ES                |               |
| Quercus canariensis Willd.            | Fagaceae       | DE                    |               |
| Quercus faginea Lam.                  | Fagaceae       | DE                    |               |
| Quercus ilex L.                       | Fagaceae       | DE                    |               |
| Quercus palustris Münchh.             | Fagaceae       | DE                    | DE            |
| Quercus petraea (Matt.) Liebl.        | Fagaceae       | DE, ES                |               |
| Quercus pubescens Willd. (Q. Humilis) | Fagaceae       | DE                    |               |
| Quercus pyrenaica Willd.              | Fagaceae       | DE                    |               |
| Quercus robur L.                      | Fagaceae       | DE, ES                |               |
| Quercus rubra L.                      | Fagaceae       | DE, ES, WA            | DE, ES,<br>WA |
| Quercus spp.                          | Fagaceae       | DE, ES, SW, WA        |               |
| Quercus suber L.                      | Fagaceae       | ES                    |               |
| Rhamnus alaternus L.                  | Rhamnaceae     | ES                    |               |
| Robinia pseudacacia L.                | Leguminosae    | DE, ES, WA            | DE, ES,<br>WA |
| Salix alba L.                         | Salicaceae     | ES                    |               |
| Salix atrocinerea Brot.               | Salicaceae     | ES                    |               |
| Salix caprea L.                       | Salicaceae     | DE, ES, SW, WA        |               |
| Salix elaeagnos Scop.                 | Salicaceae     | ES                    |               |
| Salix fragilis L.                     | Salicaceae     | ES                    |               |
| Salix spp.                            | Salicaceae     | DE, ES, FI, WA        |               |
| Sambucus nigra L.                     | Caprifoliaceae | ES                    |               |
| Sambucus racemosa L.                  | Caprifoliaceae | ES                    |               |
| Sorbus aria (L.) Crantz               | Rosaceae       | DE, ES                |               |
| Sorbus aucuparia L.                   | Rosaceae       | DE, ES, SW, WA        |               |
| Sorbus domestica L.                   | Rosaceae       | DE, ES                |               |
| Sorbus intermedia (Ehrh.) Pers.       | Rosaceae       | SW                    |               |

| Name                          | Family       | NFI           | Exotic |
|-------------------------------|--------------|---------------|--------|
| Sorbus spp.                   | Rosaceae     | DE, ES, FI    |        |
| Sorbus torminalis (L.) Crantz | Rosaceae     | DE, ES        |        |
| Taxus baccata L.              | Taxaceae     | DE, ES        |        |
| Thuja spp.                    | Cupressaceae | DE, ES        | DE, ES |
| Tilia cordata Mill.           | Tiliaceae    | ES            |        |
| Tilia platyphyllos Scop.      | Tiliaceae    | ES            |        |
| Tilia spp.                    | Tiliaceae    | DE, ES, SW, W | A      |
| <i>Tsuga</i> spp.             | Pinaceae     | DE, WA        | DE, WA |
| Ulmus glabra Huds.            | Ulmaceae     | ES            |        |
| Ulmus minor Mill.             | Ulmaceae     | ES            |        |
| Ulmus spp.                    | Ulmaceae     | DE, SW, WA    |        |
|                               |              |               |        |
|                               |              |               |        |
|                               |              |               |        |

**Table S1.3.** Summary statistics of the selected plots from each National Forest Inventory. BA: mean basal area (m<sup>2</sup> ha<sup>-1</sup>); DBH: mean d.b.h. (mm); MR: annual natural mortality rate (m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>); SP: species pool; FDis: functional dispersion; FI<sub>mh</sub>: CWM maximum height (m); FI<sub>ln</sub>: CWM leaf N mass (mg<sup>-1</sup> g); FI<sub>ls</sub>: CWM maximum tree life span (yr); FI<sub>wd</sub>: CWM wood density (g cm<sup>-3</sup>).

|                                                   | Spain           | Germany         | Sweden          | Finland         | Wallonia<br>(Belgium) |
|---------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|
| Number of plots                                   | 22989           | 8821            | 6083            | 1174            | 488                   |
| Growth $(m^2 ha^{-1} yr^{-1})$                    | 0.41            | 0.82            | 0.42            | 0.43            | 0.52                  |
|                                                   | (0.04 – 1.30)   | (0.18 – 1.99)   | (0.05 – 1.18)   | (0.06 – 0.99)   | (0.15 – 1.51)         |
| $BA (m^2 ha^{-1})$                                | 15.52           | 30.54           | 17.60           | 16.41           | 23.04                 |
|                                                   | (4.85 – 39.07)  | (8.00 - 62.71)  | (4.95 – 41.02)  | (5.60 – 34.08)  | (8.63 - 52.24)        |
| DBH (mm)                                          | 290.07          | 327.94          | 198.33          | 192.84          | 405.03                |
|                                                   | (146 - 618.43)  | (146 – 618.7)   | (130.3 – 351.6) | (133.7 – 306.4) | (158.3 - 638)         |
| $MR (m^2 ha^{-1} yr^{-1})$                        | 1.37            | 0.33            | 0.33            | 0.16            | 0.22                  |
|                                                   | (0.0 – 11.81)   | (0.0 - 3.44)    | (0.0 - 3.00)    | (0.0 – 1.68)    | (0.0 – 2.49)          |
| SP                                                | 62.25           | 71.22           | 33.32           | 28.68           | 71.37                 |
|                                                   | (4 - 108)       | (8 - 101)       | (8 - 53)        | (8 - 41)        | (52 - 94)             |
| Monocultures<br>(%)                               | 52.2            | 32.0            | 19.5            | 26.5            | 28.7                  |
| FDis                                              | 0.03            | 0.05            | 0.05            | 0.05            | 0.06                  |
|                                                   | (0.0 – 0.27)    | (0.0 – 0.19)    | (0.0 - 0.21)    | (0.0 – 0.14)    | (0.0 – 0.19)          |
| $\mathrm{FI}_{\mathrm{mh}}\left(\mathrm{m} ight)$ | 30.08           | 40.48           | 35.32           | 35.32           | 32.02                 |
|                                                   | (18.67 – 40.25) | (25.00 – 56.54) | (22.76 - 50)    | (20.07 - 50)    | (21.51 – 50)          |
| $FI_{ln} (mg g^{-1})$                             | 13.54           | 17.57           | 14.80           | 14.67           | 19.35                 |
|                                                   | (10.04 – 23.1)  | (12.44 – 26.92) | (12.44 – 24.25) | (12.44 – 23.87) | (12.44 – 25.0)        |
| FI <sub>ls</sub> (yr)                             | 473.39          | 479.79          | 430.97          | 437.61          | 428.84                |
|                                                   | (2 - 1000)      | (120 - 800)     | (126 - 600)     | (155 - 600)     | (138 - 581)           |
| $FI_{wd} (g cm^{-3})$                             | 0.65            | 0.55            | 0.51            | 0.51            | 0.69                  |
|                                                   | (0.48 – 0.9)    | (0.44 – 0.72)   | (0.44 – 0.60)   | (0.44 – 0.56)   | (0.44 – 0.86)         |

For species pool (SP) and functional diversity (FDis) the mean and range (maximum and minimum) are given. For all the other variables the mean and 2.5 and 97.5 percentiles are presented.

# References

- Axelsson, A.-L., Ståhl, G., Söderberg, U., Petersson, H., Fridman, J. & Lundström, A.
  (2010). Sweden. In: Natl. For. Invent. Pathways Common Report. (eds. Tomppo, E., Gschwantner, T., Lawrence, M. & McRoberts, R.E.). Springer, pp. 541–553.
- Mäkipää, R. & Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. J. Veg. Sci., 14, 497–508.
- Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'amico, J. A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. & Kassem, K.R. (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51, 933.
- Polley, H., Schmitz, F., Hennig, P. & Kroiher, F. (2010). Germany. In: Natl. For. Invent. Pathways Common Report. (eds. Tomppo, E., Gschwantner, T., Lawrence, M. & McRoberts, R.E.). Springer, pp. 223–243.
- Rondeux, J., Sanchez, C. & Latte, N. (2010). Belgium (Walloon Region). In: Natl. For.
  Invent. Pathways Common Report. (eds. Tomppo, E., Gschwantner, T., Lawrence, M. & McRoberts, R.E.). Springer, pp. 73–87.
- Tomppo, E. & Tuomainen, T. (2010). Finland. In: Natl. For. Invent. Pathways Common Report. (eds. Tomppo, E., Gschwantner, T., Lawrence, M. & McRoberts, R.E.). Springer, pp. 185–206.
- Villaescusa, R. & Diaz, R. (1998). Segundo Inventario Forestal Nacional (1986-1996), Spain. Ministerio de Medio Ambiente, ICONA, Madrid.
- Villanueva, J.A. (2005). Tercer Inventario Forestal Nacional (1997-2007), Spain. Ministerio de Medio Ambiente, ICONA, Madrid.

#### **Global Ecology and Biogeography**

Appendix S2

# Supporting Information Appendix S2 Climate, Functional Composition and Species Pool Variables

# **Climate variable selection**

We used the inventory plot coordinates to extract plot-level climatic variables from the WorldClim database (Hijmans *et al.*, 2005) and potential evapotranspiration (PET; mm yr<sup>-1</sup>) and an aridity index (MAP / PET, where MAP is mean annual precipitation) from CGIAR-CSI (Trabucco & Zomer, 2009). WorldClim database includes 19 climatic variables based on temperature and precipitation over the period 1950-2000, including seasonal variability indices. In addition, we calculated a water availability index (WAI) as the proportion of water available with respect to water climate demand (i.e. WAI = (MAP - PET) / PET).

Rather than perform a length model selection process testing each climate variable, we performed a dimension reduction using a principal component analysis (PCA) on all 22 climate variables, to determine which variables best represent the climate data cloud. The first axis accounted for 52.25% of the variation in the climate data and the second axis 26.53%. PET and WAI both loaded strongly to the first axis (0.97 and 0.93, respectively) and temperature seasonality (standard deviation of yearly MAT values) loaded strongly on the second axis (0.91). MAT and MAP also loaded strongly to the two PCA axes (0.85 and 0.73, respectively).

The model (equation 1 in the manuscript) was refitted replacing MAT and MAP in the equation with:

- 1. the scores of the first two PCA axes;
- 2. PET and temperature seasonality;
- 3. WAI and temperature seasonality.

The deviance information criterion (DIC) values for each model are listed in Table S2.1, where the model with the smallest DIC is considered a better model fit, based on the number of parameters in the model and the model fit (Spiegelhalter *et al.*, 2002). We included the WAI and temperature seasonality model because PET and temperature seasonality were moderately correlated (Spearman rank coefficient = -0.35), which is not ideal, and WAI and TS were not correlated (Spearman rank coefficient = -0.004). MAT and MAP were weakly correlated (Spearman rank coefficient: -0.18, p < 0.001).

**Table S2.1.** Comparison of growth models based on DIC parameterised using different climate variables. Climate variables are MAT (mean annual temperature; °C), MAP (mean annual precipitation; mm), PCA1 (first axis of the PCA), PCA2 (second axis of the PCA), PET (potential evapotranspiration; mm), and temperature seasonality (standard deviation of yearly MAT values). Deviance Information Criterion (DIC) and  $\Delta$ DIC are shown.

| Climate variables               | DIC       | ΔDIC   |
|---------------------------------|-----------|--------|
| MAT and MAP                     | -29361.72 | 0.00   |
| PCA1 and PCA2                   | -29316.62 | 45.10  |
| PET and temperature seasonality | -28980.64 | 381.08 |
| WAI and temperature seasonality | -28890.31 | 471.41 |

MAT and MAP were selected as the climate variables due to their better predictive power (by DIC comparison) and parsimony over the first two PCA axes of the 22 climate variables.

# References

- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965–1978.
- Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. (2002) Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64, 583–639.
- Trabucco, A. & Zomer, R.J. (2009) Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database.

# Table S2.2. References for the trait data used in the study

The trait matrix, for the 138 species in the final analysis, was 87% complete. We increased this to 94% by computing genus-level means. Genus-level trait values were taken as the average values of the available species. Plots with species groups such as 'other conifers' were excluded. The reference list is given in Appendix 1 of the main manuscript.

| Reference                   | Accessed | Leaf N | Maximum |                   | Seed mass | Wood   |
|-----------------------------|----------|--------|---------|-------------------|-----------|--------|
|                             | from TRY |        | height  | tree life span    |           | densit |
| Aas 1999                    |          |        |         | Х                 |           |        |
| Atkin et al. 1999           | Yes      | Х      |         |                   |           |        |
| Bahn 1999                   | Yes      | Х      |         |                   |           |        |
| Briemle et al. 2002         | Yes      |        |         |                   | Х         |        |
| Campbell et al. 2007        | Yes      | Х      |         |                   |           |        |
| Castro-Díez et al. 1998     | Yes      | Х      | Х       |                   | Х         | Х      |
| Castro-Díez et al. 2000     | Yes      | Х      | Х       |                   | Х         | Х      |
| Chave et al. 2009           | Yes      |        |         |                   |           | Х      |
| Cornelissen 1996            | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornelissen et al. 1996     | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornelissen et al. 1999     | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornelissen et al. 2001     | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornelissen et al. 2003     | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornelissen et al. 2004     | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornwell et al. 2006        | Yes      | Х      | Х       |                   | Х         | Х      |
| Cornwell et al. 2008        | Yes      | Х      | Х       |                   | Х         | Х      |
| Craine et al. 2009          | Yes      | Х      |         |                   |           |        |
| Dabernig 1996               |          |        |         | Х                 |           |        |
| Díaz et al. 2004            | Yes      | X      | Х       |                   | Х         | Х      |
| Durka 2002                  | Yes      |        |         |                   | Х         |        |
| Fischer et al. 2008         |          |        |         | Х                 |           |        |
| Fitschen 2007               |          |        | Х       | Х                 |           |        |
| Fonseca et al. 2000         | Yes      | Х      | Х       |                   |           |        |
| Freschet et al. 2010a       | Yes      | X      |         |                   |           |        |
| Freschet et al. 2010b       | Yes      | Х      |         |                   |           |        |
| Garnier et al. 2007         | Yes      | Х      |         |                   | Х         |        |
| Godet 2006                  |          |        |         |                   |           | Х      |
| Green 2009                  | Yes      |        |         |                   | Х         |        |
| Han et al. 2005             | Yes      | Х      |         |                   |           |        |
| He et al. 2006              | Yes      | Х      |         |                   |           |        |
| Hecker 2012                 |          |        |         | X                 |           |        |
| Jordano 2007                |          |        |         |                   | Х         |        |
| Kattge et al. 2009          | Yes      | Х      |         |                   |           |        |
| Kattge et al. 2011a         | Yes      | X      | Х       |                   | х         |        |
| Kattge <i>et al.</i> 2011b  |          |        | X       | Х                 | X         | Х      |
| Kerkhoff et al. 2006        | Yes      | Х      |         |                   |           |        |
| Kirkup et al. 2005          | Yes      |        | Х       |                   |           |        |
| Kleyer et al. 2008          | Yes      |        | X       |                   | Х         | Х      |
| Klotz <i>et al.</i> 2002    | Yes      |        |         |                   | X         |        |
| Krumbiegel 2002             | Yes      |        |         |                   | X         |        |
| Kühn et al. 2004            | Yes      |        |         |                   | X         |        |
| Laughlin <i>et al.</i> 2010 | Yes      | Х      | Х       |                   | X         |        |
| Loveys et al. 2003          | Yes      | X      |         |                   |           |        |
| McDonald <i>et al.</i> 2003 | Yes      | X      | Х       |                   |           |        |
| Medlyn <i>et al.</i> 1999   | Yes      | X      |         |                   |           |        |
| Moles <i>et al.</i> 2004    | Yes      | 21     | Х       | Х                 | Х         |        |
| Niinemets 2001              | Yes      | Х      | 1       | <i>7</i> <b>1</b> | 23        |        |
| Ogaya & Peñuelas 2003       | Yes      | X      | Х       |                   |           | х      |
| Ogaya & Peñuelas 2005       | Yes      | X      | X       |                   |           | Х      |
|                             |          | X      | X       |                   |           | л<br>Х |
| Ordoñez et al. 2010a        | Yes      | Λ      | Λ       |                   |           | Λ      |

#### **Global Ecology and Biogeography**

Appendix S2

| Ordoñez et al. 2010b        | Yes | Х | Х |   |   | 2 |
|-----------------------------|-----|---|---|---|---|---|
| Otto 2002                   | Yes |   |   |   | Х |   |
| Pakeman et al. 2008         | Yes | Х |   |   | Х |   |
| Paula et al. 2009           | Yes |   | Х |   | Х |   |
| Paula & Pausas 2008         | Yes |   |   |   | Х |   |
| Peñuelas et al. 2010a       | Yes | Х | Х |   |   | 2 |
| Peñuelas et al. 2010b       | Yes | Х | Х |   |   | 2 |
| Preston et al. 2006         | Yes | Х | Х |   | Х | 2 |
| Quested et al. 2003         | Yes | Х | Х |   | Х | 2 |
| Reich et al. 2008           | Yes | Х |   |   |   | 2 |
| Reich et al. 2009           | Yes | Х |   |   |   | 2 |
| Roloff et al. 1994          |     |   |   | Х |   | 2 |
| Royal Botanical Gardens Kew | Yes |   |   |   | Х |   |
| 2008                        |     |   |   |   |   |   |
| Schütt et al. 2002          |     |   | Х | Х |   |   |
| Seifert 1971                |     |   |   | Х |   |   |
| USDA, NRCS 2011             |     |   | Х |   |   |   |
| van Bodegom et al. 2005     | Yes | Х |   |   |   |   |
| van Bodegom et al. 2008     | Yes | Х |   |   |   |   |
| Vorreiter 1949              |     |   |   |   |   | 2 |
| Wächtershäuser & Trageser   |     |   |   |   | Х |   |
| 2011                        |     |   |   |   |   |   |
| Wagenführ & Scheiber 1985   |     |   |   |   | Х |   |
| Willis et al. 2010          | Yes | Х |   |   |   | 2 |
| Wirth & Lichstein 2009      | Yes |   | Х | Х |   |   |
| Wohlfahrt et al. 1999       | Yes | Х |   |   |   |   |
| Wright et al. 2004          | Yes | Х | Х |   |   |   |
| Wright et al. 2006          | Yes | X | Х |   |   |   |
| Zanne et al. 2009           |     |   |   |   |   | 2 |

Yes X

Appendix S2

## **Functional Composition Estimation**

The functional diversity of each plot was quantified using the functional dispersion index (FDis) of Laliberté & Legendre (2010) using the five traits selected and weighted by their relative abundance: maximum tree height (m); leaf nitrogen content (mg  $g^{-1}$ ); maximum tree lifespan (yrs); seed mass (mg); and wood density (g cm<sup>-3</sup>)).

Due to the very low species richness of the plots we were limited in the choice of functional diversity indices available to use. The FDis can be calculated for communities with two or more singular species, i.e. species that differ in one or more traits. It is also possible with Rao's quadratic entropy (Botta-Dukát, 2005). Other functional diversity indices such functional divergence (Mason *et al.*, 2005) and functional evenness were not possible to calculate for a large number of the plots in our dataset, where the number of traits exceed the number of species in the plot. Both FDis and Rao's Q include elements of evenness and divergence (Mason *et al.*, 2013), which together have been shown to be important for estimating complementarity in communities.

We used the Gower distance matrix, rather than a Euclidean matrix, even though the traits are all continuous, because the Gower distance matrix is more stable against missing values (Pavoine *et al.*, 2009) of which there were 6% in the trait matrix. The trait variables were transformed (either log or square root) following Botta-Dukát (2005) and Pavoine *et al.* (2009), to ensure that where the distribution of traits is highly skewed extreme values do not exert a greater effect.

The functional identity was derived as the community-weighted mean of each trait for each plot (FI<sub>mh</sub>: maximum tree height; FI<sub>ln</sub>: leaf N content; FI<sub>ls</sub>: maximum tree life span; FI<sub>sm</sub>: seed mass; FI<sub>wd</sub>: wood density). FDis and FI were calculated using the 'FD' package in R (Laliberté & Shipley, 2011). FI<sub>sm</sub> and FI<sub>wd</sub> were highly positively correlated (Spearman rank coefficient: 0.74; p < 0.001) thus FI<sub>sm</sub> was not considered further in the analysis.

#### References

De Bello, F., Carmona, C.P., Mason, N.W.H., Sebastià, M.-T. & Lepš, J. (2012) Which trait dissimilarity for functional diversity: trait means or trait overlap? *Journal of Vegetation Science*, 1–14.

- Botta-Dukát, Z. (2005) Rao's quadratic entropy as a measure of functional diversity based on multiple traits. *Journal of Vegetation Science*, **16**, 533–540.
- Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. *Ecology*, **91**, 299–305.
- Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. *Journal of Vegetation Science*, 24, 794–806.
- Mason, N.W.H., Mouillot, D., Lee, W.G. & Wilson, J.B. (2005) Functional richness, functional evenness and functional divergence : the primary components of functional diversity. *Oikos*, **1**, 112–118.
- Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. *Oikos*, **118**, 391–402.
- Laliberté, E. & Shipley, B. (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology.



# **Species Pool Estimation**

The species pool was estimated from tree species distribution maps. The distribution maps were provided by Martin Freiberg from the Botanical Gardens, Leipzig and Erik Welk from the Botanical Gardens, Halle, and compiled for the FunDivEUROPE project (http://www.fundiveurope.eu) by Mario Liebergesell at 5 arc minute resolution. Nomenclature follows the Atlas Florae Europaea.

The reference list for the tree species distribution maps is given in Appendix 2 in the main manuscript.

# Supporting Information Appendix S3 Supplementary Statistical Methods

# Model fitting and prior information

For data from Finland, Sweden and Germany the random intercepts ( $\alpha_r$ ) were cluster-level intercepts ( $\alpha_{cluster}$ ) modelled from a normal distribution, such that

 $\alpha_{cluster} \sim Normal(\alpha_{nfi}, \sigma_{cluster})$ 

where  $\alpha_{nfi}$  is the NFI-level mean growth and  $\sigma_{cluster}$  the cluster-level s.d.. For the data from Spain and Wallonia the random intercepts  $(\alpha_r)$  were NFI-level intercepts  $(\alpha_{nfi})$ . The NFIlevel intercepts  $(\alpha_{nfi})$ , from all five inventories, were modelled such that:

$$\alpha_{nfi} \sim Normal(0, \sigma_{nfi})$$

where  $\sigma_{nfi}$  is the standard deviation.

We tested for model convergence by running three chains with different starting values and checked the Rhat statistic, where a value of <1.1 indicates convergence (Gelman *et al.*, 2004). The following priors were used:

$$\alpha_0, \alpha_{cluster}, \alpha_{nfi}, \beta_{1-29} \sim Normal(0, 10)$$

 $\sigma_{\mu}, \sigma_{cluster}, \sigma_{nfi} \sim Uniform(0, 1)$ 

Convergence took between 250 and 500 iterations; we ran the model for 500 iterations of warm up and an additional 10,000 iterations for sampling. Samples were taken every 10 iterations. The Deviance information criterion (DIC) was calculated as the model fit statistic following (Spiegelhalter *et al.*, 2002). A simple model was tested that only included an nfilevel random intercept (no cluster-level) but the DIC comparison indicated that the more complex model was justified ( $\Delta$ DIC > 1000). A more complicated model was also tested allowing a different  $\sigma_{cluster}$  for Finland, Germany and Sweden but  $\sigma_{cluster}$  parameters did not converge.

The proportion of the variance in plot-level growth explained by the final model was estimated as 1 minus the residual variance divided by the variance in the data. The calculation was averaged over the posterior distribution of the predicted values (Korner-Nievergelt *et al.*, 2015).

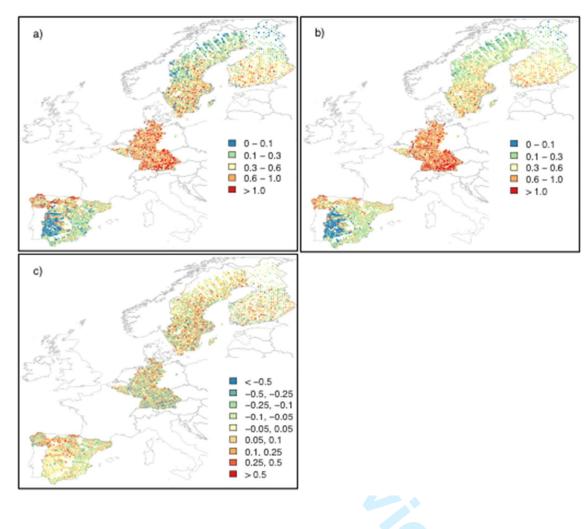
# References

- Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2004) *Bayesian Data Analysis*, Second edi. Chapman and Hall/CRC, Boca Raton, Florida, USA.
- Korner-Nievergelt, F., Roth, T., von Felten, S., Guélat, J., Almasi, B., & Korner-Nievergelt, P. (2015). *Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan.* Academic Press.
- Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. (2002) Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64, 583–639.

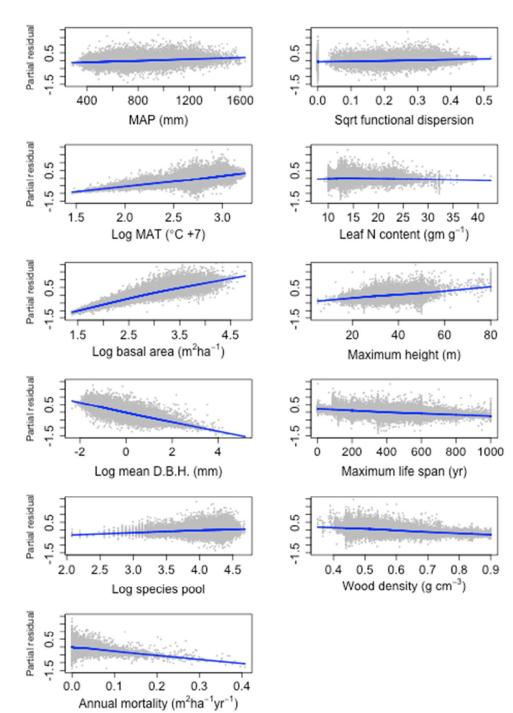
# **Model Evaluation**

**Table S3.1.** Mean and 95% credible intervals of the posterior distribution of the model parameters. The model predicts plot-level growth rate  $(m^2 ha^{-1} yr^{-1})$  depending on structural, climatic and biodiversity variables. Predictor variables were centred on 0 and scaled to 1 standard deviation. The proportion of the variance in plot-level growth explained by the final model was 0.684. Not all of the variance explained can be attributed to the predictors; some will be explained by the cluster and country effects. \*

| Variable              | Model                |        |        |        |  |
|-----------------------|----------------------|--------|--------|--------|--|
|                       | coefficient          | Mean   | 2.5 %  | 97.5 % |  |
|                       | $\alpha_0$           | -0.911 | -1.07  | -0.802 |  |
| MAT                   | β <sub>MAT</sub>     | 0.205  | 0.191  | 0.217  |  |
| МАР                   | β <sub>AP</sub>      | 0.067  | 0.060  | 0.074  |  |
| BA                    | $\beta_1^{(c)}$      | 0.490  | 0.484  | 0.496  |  |
| OBH                   | $\beta_2^{(c)}$      | -0.314 | -0.320 | -0.308 |  |
| ЛR                    | $\beta_3^{(c)}$      | -0.074 | -0.082 | -0.066 |  |
| Р                     | $\beta_4^{(c)}$      | 0.064  | 0.054  | 0.074  |  |
| Dis                   | $\beta_1^{(z)}$      | 0.054  | 0.049  | 0.060  |  |
| I <sub>wd</sub>       | $\beta_2^{(z)}$      | -0.134 | -0.145 | -0.123 |  |
| I <sub>mh</sub>       | $\beta_3^{(z)}$      | 0.113  | 0.106  | 0.120  |  |
| Ils                   | ${\beta_4}^{(z)}$    | -0.120 | -0.130 | -0.111 |  |
| I <sub>ln</sub>       | $\beta_5^{(z)}$      | -0.001 | -0.007 | 0.008  |  |
| A x MAT               | $\delta_1^{(MAT)}$   | 0.014  | 0.007  | 0.020  |  |
| BH x MAT              | ${\delta_2}^{(MAT)}$ | 0.048  | 0.041  | 0.056  |  |
| R x MAT               | $\delta_3^{(MAT)}$   | 0.028  | 0.018  | 0.036  |  |
| P x MAT               | $\delta_4^{(MAT)}$   | -0.010 | -0.016 | -0.004 |  |
| A x MAP               | $\delta_1^{(AP)}$    | -0.037 | -0.043 | -0.031 |  |
| BH x MAP              | ${\delta_2}^{(AP)}$  | 0.010  | 0.004  | 0.015  |  |
| R x MAP               | $\delta_3^{(AP)}$    | -0.014 | -0.017 | -0.010 |  |
| P x AP                | ${\delta_4}^{(AP)}$  | 0.013  | 0.004  | 0.022  |  |
| FDis x MAT            | $\gamma_1^{(MAT)}$   | 0.017  | 0.010  | 0.023  |  |
| Dis x MAP             | $\gamma_1^{(AP)}$    | -0.013 | -0.018 | -0.008 |  |
| I <sub>wd</sub> x MAT | $\gamma_2^{(MAT)}$   | -0.028 | -0.042 | -0.015 |  |
| I <sub>wd</sub> x MAP | $\gamma_2^{(AP)}$    | 0.007  | 0.0002 | 0.015  |  |
| I <sub>mh</sub> x MAT | $\gamma_3^{(MAT)}$   | 0.096  | 0.087  | 0.103  |  |
| I <sub>mh</sub> x MAP | $\gamma_2^{(AP)}$    | 0.011  | 0.005  | 0.017  |  |
| I <sub>ls</sub> x MAT | $\gamma_4^{(MAT)}$   | -0.014 | -0.025 | -0.002 |  |
| Ils x MAP             | $\gamma_4^{(AP)}$    | -0.008 | -0.015 | -0.001 |  |
| I <sub>ln</sub> x MAT | $\gamma_5^{(MAT)}$   | 0.040  | 0.031  | 0.050  |  |
| I <sub>ln</sub> x MAP | $\gamma_5^{(AP)}$    | -0.024 | -0.031 | -0.018 |  |
|                       | $\sigma_{\mu}$       | 0.451  | 0.447  | 0.454  |  |
|                       | $\sigma_{cluster}$   | 0.223  | 0.212  | 0.233  |  |
|                       | $\sigma_{\rm nfi}$   | 0.171  | 0.089  | 0.277  |  |


\* MAT: mean annual temperature (°C, log+7); MAP: mean annual precipitation (mm); BA: mean basal area (m<sup>2</sup> ha<sup>-1</sup>, log); DBH: mean d.b.h. (mm, log); MR: annual natural mortality rate (m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>);

#### **Global Ecology and Biogeography**


Appendix S3

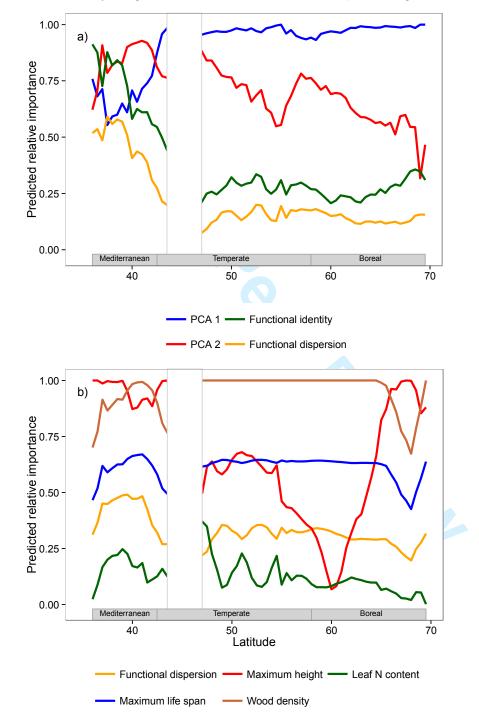
SP: regional species pool (log); FDis: functional dispersion (sqrt);  $FI_{wd}$ : CWM wood density (g<sup>-1</sup> cm<sup>3</sup>);  $FI_{mh}$ : CWM maximum height (m);  $FI_{ls}$ : CWM maximum tree life span (yr);  $FI_{ln}$ : CWM leaf N mass (mg<sup>-1</sup> g);  $\alpha_0$ : expected plot growth rate under average conditions (log scale);  $\sigma_{\mu}$ : residual standard deviation (log scale);  $\sigma_{cluster}$ : cluster-level standard deviation (log scale);  $\sigma_{nfi}$ : inventory-level standard deviation (log scale);  $\alpha_r$  has not been included in the table for brevity as there are 8493 cluster values estimated in the model.

**Figure S3.1.** Growth  $(m^2 ha^{-1} yr^{-1})$  (a); predicted growth  $(m^2 ha^{-1} yr^{-1})$  (b); and the model residuals  $(m^2 ha^{-1} yr^{-1})$  (c) in each inventory plot.

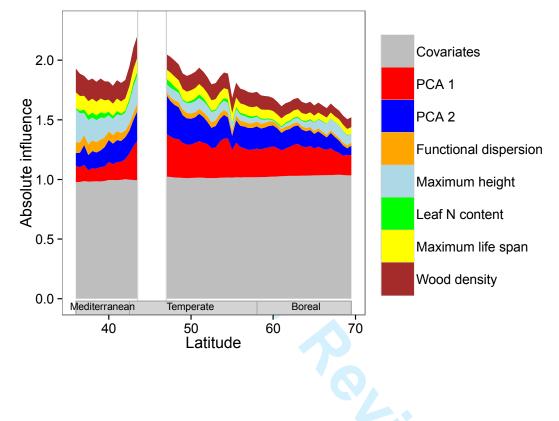


**Figure S3.2.** Partial residual plots for each predictor in the full model. The partial residual was calculated in each plot (*i*) as *residual*<sub>i</sub> +  $\beta_i X_i$ , where *residual*<sub>i</sub> is the residual for plot *i*,  $\beta_i$  is the mean of the posterior distribution of predictor *X* and *X*<sub>i</sub> is the value of predictor *X* in plot *i*. The blue line is the lowess smoothing line. The plots illustrate the relationship between each of the predictor variables and tree growth once all the other predictors have been accounted for in the model and they are useful to identify non-linear relationships. In each case, after appropriate transformations, no large deviations from linear relationships were observed and the linear approximations justified.




#### **Control Analyses**

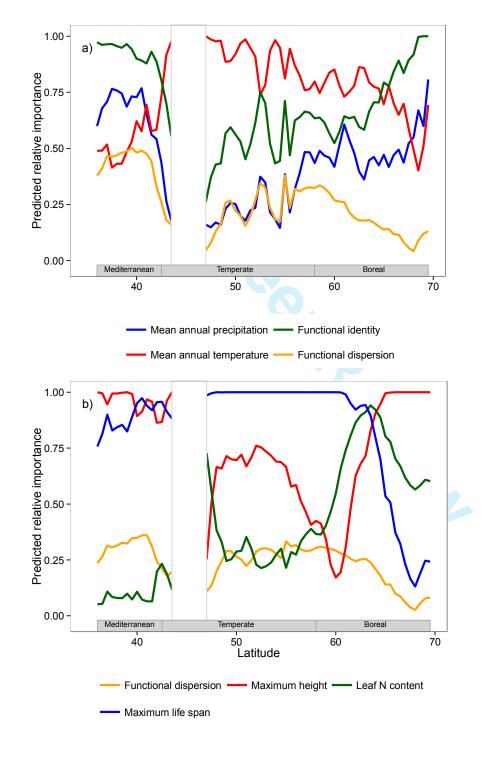
We performed three additional control analyses to test the robustness of the model predictions and inferences made thereof. Specifically, we tested for: (i) the influence of climate variable selection; (ii) possible problems arising from collinearity between the functional identity measures; and (iii) the influence of exotic tree species, which are often more productive than native species (Kawaletz *et al.*, 2013).


# Influence of climate variable selection

As a further sensitivity study we repeated the analysis where the climate variables (mean annual temperature and mean annual precipitation) were replaced by the scores of the first two axes of a PCA analysis of 22 climate variables (see Appendix S2). The patterns are robust in the Mediterranean and temperate regions (Fig S3.3a & b); however the PCA model does not predict a large increase in the importance of functional identity in the boreal region (Fig S3.3b). The reason is because the PCA model does not predict such a drastic increase in the relative importance of FI<sub>mh</sub> in the boreal region as the MAT-MAP model (Figs S3.3b and S3.4). In addition, the PCA model does not predict an increase in the importance of FI<sub>in</sub> in the boreal region. With this in mind, we treat our findings in the boreal region with caution.

 **Figure S3.3.** a) Predicted relative importance of climate, represented by two PCA axes (PCA 1 and PCA 2) of 22 climate variables, functional identity (aggregated effect of the community mean value of four functional traits) and functional dispersion for tree growth. b) Predicted relative importance of five components of functional biodiversity (functional dispersion and the community weighted mean of four functional traits) for tree growth.

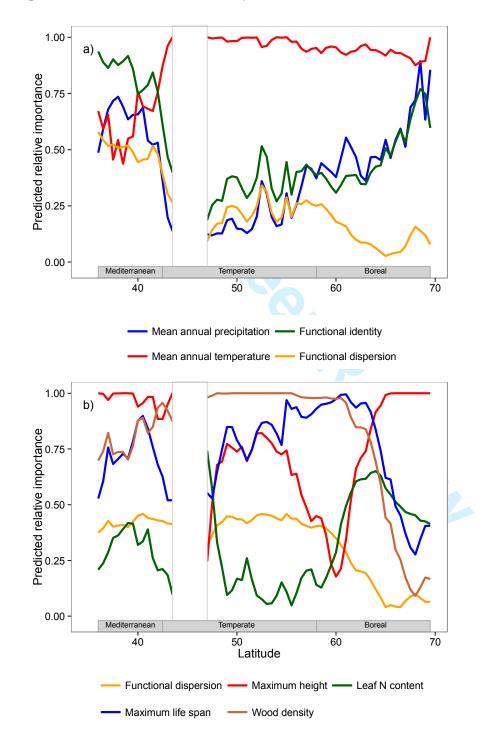



**Figure S3.4.** The absolute influence of each predictor on plot-level tree growth  $(m^2 ha^{-1} yr^{-1})$  across the continent. The predictors are: the first PCA axis (PCA 1); second PCA axis (PCA 2); functional dispersion; community-weighted mean (CWM) maximum height; CWM leaf N content; CWM maximum life span; and CWM wood density. The covariates (plot basal area  $(m^2 ha^{-1})$ , mean tree size (mm), species pool and natural mortality rate  $(m^2 ha^{-1} yr^{-1})$  have been group together in grey and labeled covariates.



# Influence of multicollinearity

We found that the importance of  $FI_{wd}$  and  $FI_{ls}$  for tree growth changed in concert across the continent (Fig. 3). Given that their FI values were moderately correlated (Spearman rank coefficient = 0.5; p < 0.001) and in order to separate their individual influences, the analysis was repeated excluding  $FI_{wd}$  from the model. The general patterns of importance of the predictors left in the model remained the same across the continent (Fig S3.5a & b).

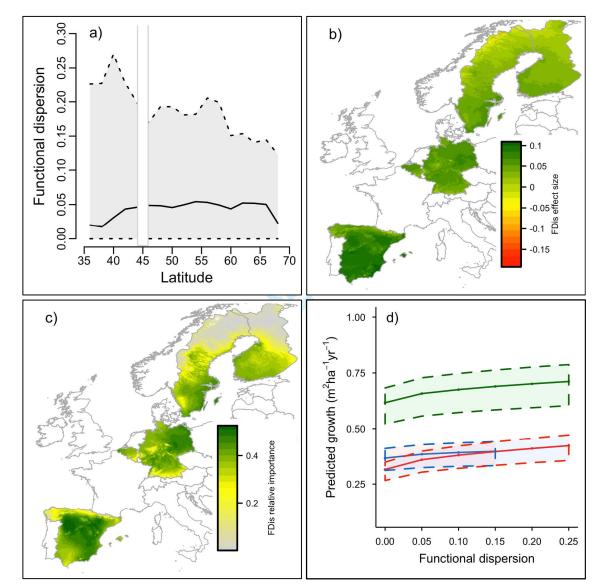

**Figure S3.5.** a) Predicted relative importance of mean annual temperature, mean annual precipitation, functional identity variables (aggregated effect of the community mean value of three functional traits) and functional dispersion for tree growth; b) Predicted relative importance of four biodiversity measures (functional dispersion and the community weighted mean of three functional traits). The community weighted mean of wood density was excluded from the model.



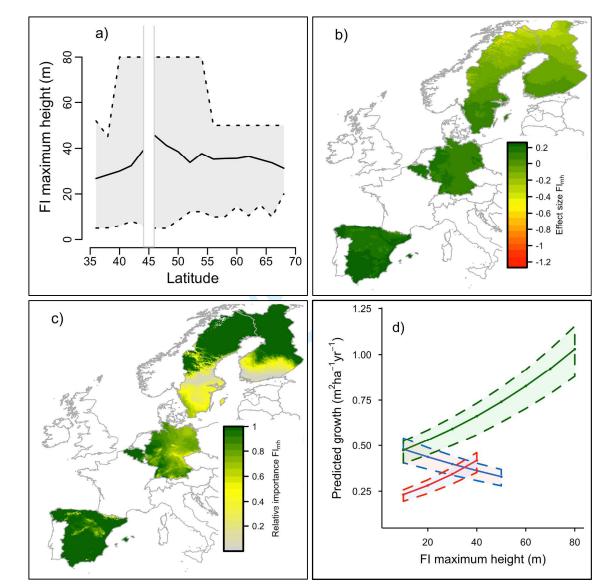
# Influence of exotic tree species

Exotic tree species are often more productive than native species (Kawaletz *et al.*, 2013). To ensure that dominance of exotic species did not influence the results, we repeated the analysis excluding plots with greater than 80% basal area of non-native species. The general patterns of importance across the continent remained the same (Fig S3.6a & b).

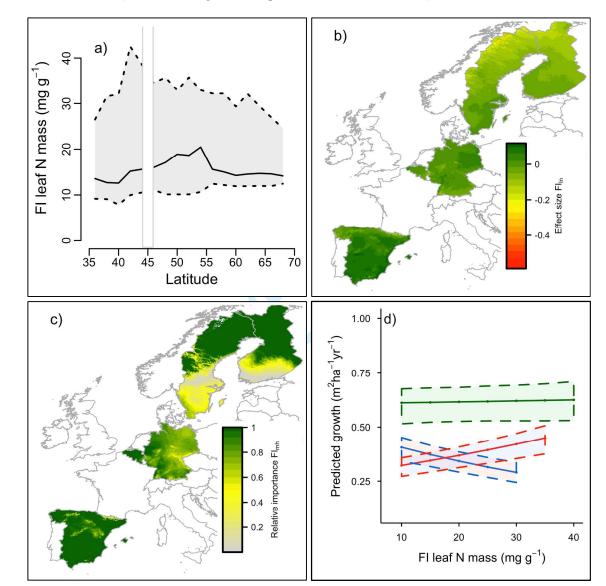
**Figure S3.6.** a) Predicted relative importance of mean annual precipitation, mean annual temperature, functional identity (aggregated effect of the community mean value of four functional traits) and functional dispersion; b) Predicted relative importance of five components of functional biodiversity (functional dispersion and the community weighted mean of four functional traits). Plots with greater than 80% basal area of non-native tree species were excluded from the analysis.



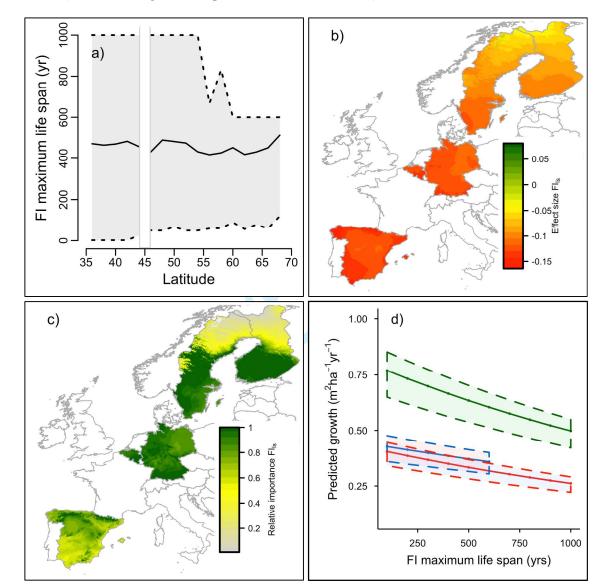

## References


Kawaletz, H., Molder, I., Zerbe, S., Annighöfer, P., Terwei, A. & Ammer, C. (2013) Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. *Journal of Plant Ecology*, 1–11.

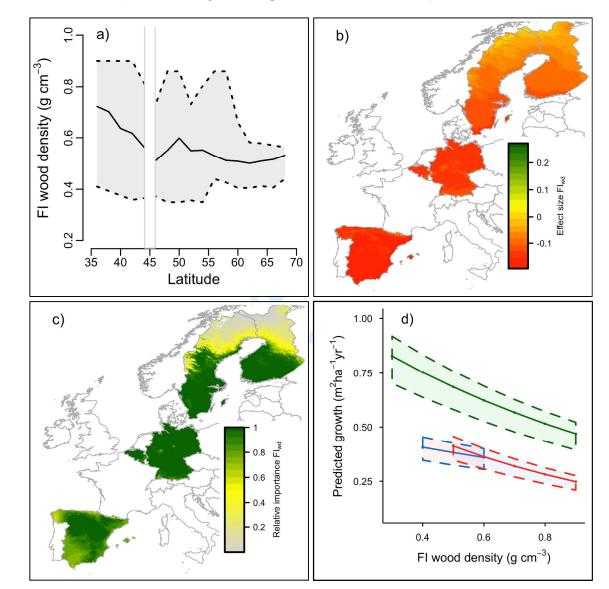
## **Supporting Information Appendix S4 Supplementary Figures**


**Figure S4.1.** Mean and range of functional dispersion (FDis) across the continent at  $2^{\circ}$  resolution (a); the predicted effect size (b); and the relative importance (c) of functional dispersion for tree growth; and the predicted growth (m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>) by functional dispersion in the three biomes (d). When calculating the predicted growth, predictor variables were kept at their mean values for each biome (blue: boreal; green: temperate; red: Mediterranean).

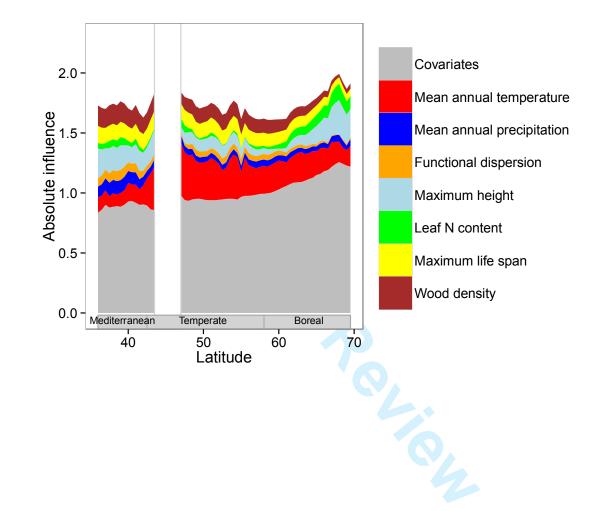



**Figure S4.2.** Mean and range of community weighted mean of maximum height ( $FI_{mh}$ ) across the continent at 2° resolution (a); the predicted effect size (b); and the predicted relative importance (c) of  $FI_{mh}$  for tree growth; and the predicted growth ( $m^2 ha^{-1} yr^{-1}$ ) by  $FI_{mh}$  in the three biomes (d). When calculating the predicted growth all predictor variables were kept at their mean value for each biome (blue: boreal; green: temperate; red: Mediterranean).



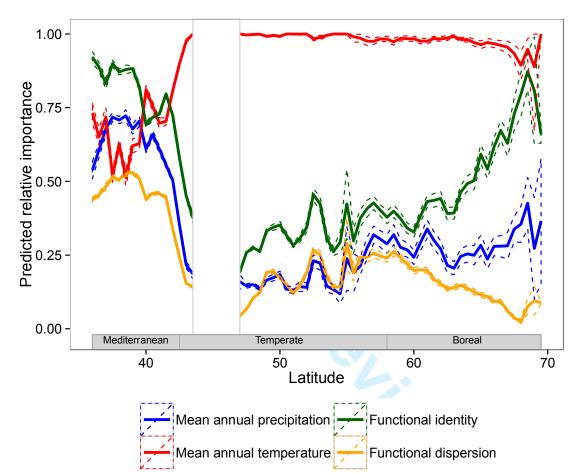

**Figure S4.3.** Mean and range of community weighted mean leaf N (FI<sub>ln</sub>) across the continent at 2° resolution (a); the predicted effect size (b); and the predicted relative importance (c) of FI<sub>ln</sub> for tree growth; and the predicted growth ( $m^2 ha^{-1} yr^{-1}$ ) by FI<sub>ln</sub> in the three biomes (d). When calculating the predicted growth all predictor variables were kept at their mean value for each biome (blue: boreal; green: temperate; red: Mediterranean).



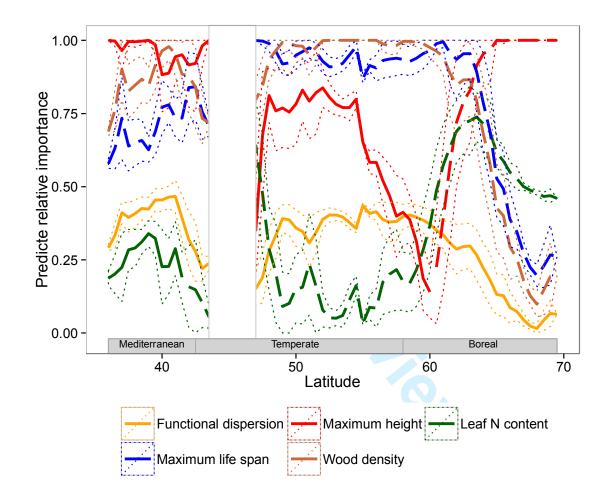

**Figure S4.4.** Mean and range of community weighted mean maximum life span (FI<sub>ls</sub>) across the continent at 2° resolution (a) and the predicted relative importance (b) of FI<sub>ls</sub> for tree growth; and the predicted growth ( $m^2 ha^{-1} yr^{-1}$ ) by FI<sub>ls</sub> in the three biomes (c). When calculating the predicted growth all predictor variables were kept at their mean values for each biome (blue: boreal; green: temperate; red: Mediterranean).

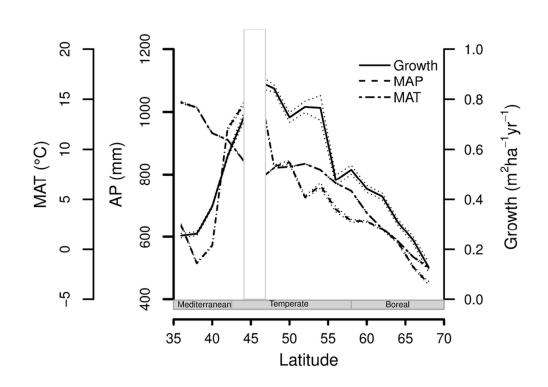


**Figure S4.5.** Mean and range of community weighted mean wood density ( $FI_{wd}$ ) across the continent at 2° resolution (a); the predicted effect size (b); and the relative importance (c) of  $FI_{wd}$  for tree growth; and the predicted growth (m<sup>2</sup> ha<sup>-1</sup> yr<sup>-1</sup>) by  $FI_{wd}$  in the three biomes (d). When calculating the predicted growth all predictor variables were kept at their mean value for each biome (blue: boreal; green: temperate; red: Mediterranean).

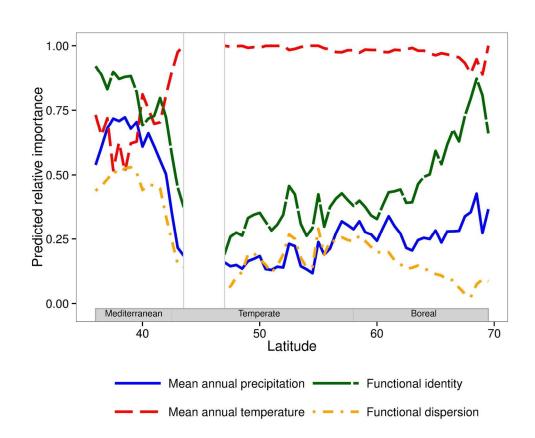



**Figure S4.6.** The absolute influence of each predictor on plot-level tree growth ( $m^2 ha^{-1} yr^{-1}$ ) across the continent. The predictors are: annual mean temperature; mean annual precipitation; functional dispersion; community-weighted mean (CWM) maximum height; CWM leaf N content; CWM maximum life span; and CWM wood density. The covariates (plot basal area ( $m^2 ha^{-1}$ ), mean tree size (mm), species pool and natural mortality rate ( $m^2 ha^{-1} yr^{-1}$ ) have been group together in grey and labeled covariates. The white panel indicates missing values. The data is aggregated at 1° latitude.



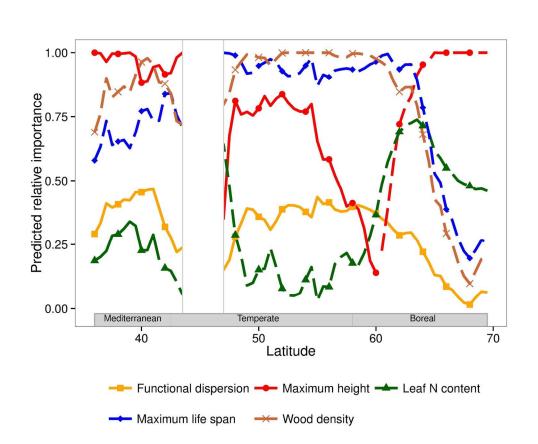


## **Global Ecology and Biogeography**

**Figure S4.7.** Predicted mean relative importance (solid lines) and 95% confidence intervals (dotted lines) of mean annual precipitation, mean annual temperature, functional identity (aggregated effect of the community mean value of the four functional traits selected) and functional dispersion for tree growth. The sensitivity of plot growth to changes in each variable was estimated from the hierarchical linear model; the variable with the greatest influence in the plot has a relative importance of 1 and the other variables are scaled accordingly. Values are aggregated at  $0.5^{\circ}$  latitude thus the average relative importance of each predictor is shown. The white section depicts missing data.



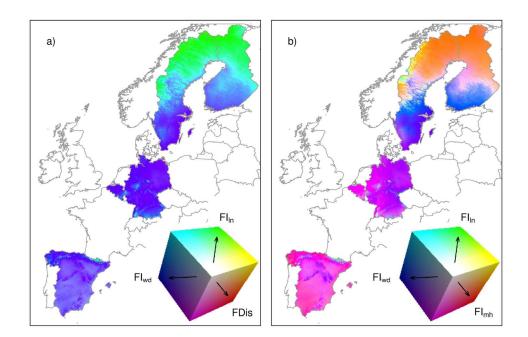

**Figure S4.8.** Mean predicted relative importance (solid and dashed lines) and 95% confidence intervals (dotted lines) of five components of functional biodiversity (functional dispersion and the community weighted mean of four functional traits) for tree growth. The sensitivity of plot growth to changes in each variable was estimated from a hierarchical linear model; the biodiversity measure with the greatest influence in the plot has a relative importance of 1 and the other measures are scaled accordingly. Values are aggregated at 0.5<sup>0</sup> latitude thus the average relative importance of each predictor is shown. Solid lines indicate a positive influence of the biodiversity measure on plot growth, whilst dashed lines indicate a negative influence. The white section depicts missing data.






Climate gradients of mean annual temperature (MAT, <sup>0</sup>C) and mean annual precipitation (MAP, mm) across the latitudinal gradient covered by the National Forest Inventory plots. Mean plot basal area growth (Growth, m2 ha-1 yr-1). Dotted lines indicate 95% confidence intervals. The white section depicts missing data. Values were calculated at a 2° latitude spatial resolution. 88x62mm (300 x 300 DPI)




Predicted relative importance of mean annual precipitation, mean annual temperature, functional identity (aggregated effect of the community mean value of the four functional traits selected) and functional dispersion for tree growth. The sensitivity of plot growth to changes in each variable was estimated from the hierarchical linear model; the variable with the greatest influence in the plot has a relative importance of 1 and the other variables are scaled accordingly. Values are aggregated at 0.5<sup>o</sup> latitude thus the average relative importance of each predictor is shown. White section depicts missing data. A version with confidence bands is given in Appendix 4, Fig. S4.7.

152x130mm (300 x 300 DPI)



Predicted relative importance of five components of functional biodiversity (functional dispersion and the community weighted mean of four functional traits) for tree growth. The sensitivity of plot growth to changes in each component was estimated from the hierarchical linear model; the biodiversity component with the greatest influence in the plot has a relative importance of 1 and the other measures are scaled accordingly. Values are aggregated at 0.5° latitude thus the average relative importance of each predictor is shown. Solid lines indicate a positive influence of the biodiversity measure on plot growth, whilst dashed lines indicate a negative influence. White section depicts missing data. A version with confidence bands is given in Appendix 4, Fig. S4.8.

152x130mm (300 x 300 DPI)



Predicted relative importance of a) FDis (functional diversity; red), FIIn (community-weighted mean (CWM) leaf N mass (mg-1 g); green) and FIwd (CWM wood density (g cm-3); blue); b) FImh (CWM maximum height (m); red), FIIn (CWM leaf N mass (mg g-1); green) and FIwd (CWM wood density (g cm-3); blue), for tree growth. The sensitivity of plot growth to changes in each biodiversity component was estimated from a hierarchical linear model using spatial maps of mean annual temperature and mean annual precipitation at spatial resolution of 1 km2; the biodiversity measure with the largest effect size in the grid has a relative importance of 1 and the other two measures are scaled accordingly. The RGB cube illustrates how the colour gradient reflects the changes in relative importance of the biodiversity component, such that areas of white indicate an equal importance of all three measures. The arrows indicate an increasing relative importance.

177x113mm (300 x 300 DPI)