N-Azinylypyridinium N-Aminides: An Approach to Pyrazolopyridines via an Intramolecular Radical Pathway

Araceli Nuñez, Aránzazu García de Viedma, Valentín Martínez-Barrasa, Carolina Burgos, Julio Alvarez-Builla
Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
Fax +34(91)885468; E-mail: julio.alvarez@uan.es
Received 3 May 2002

Abstract: Intramolecular radical arylation, under thermal conditions, to a π-deficient pyridinium, linked to a π-excessive 2-azinylammonopyridine moiety is described. The method allows a new entry to pyrazolo[1,5-a]pyridine nucleus.

Key words: aminides, pyrazolopyridines, intramolecular radical reactions, ylides

The generation and subsequent reactions of aryl radicals, derived from aryl halides using tri-n-butyltin hydride (Bu3SnH) and azobisisobutyronitrile (AIBN) is now well documented, and several syntheses, based on aryl radical cyclisations have been reported.\(^1\) Few examples of heteroaryl radicals are known, and presumably they would behave similarly to aryl radicals, since the lone electron would be in an orbital orthogonal to the aromatic π-system and hence, its nature (π-excessive or π-deficient) should have little or no effect on the reactivity of such radicals.\(^2\) Particular attention has been devoted to pyridyl radicals; both Snieckus\(^3\) and Nadir\(^4\) have reported pyridyl radical cyclisations. Harrowven\(^5\) has published some papers, which include pyridyl radical cyclisations and aryl radical cyclisations onto pyridines. Jones\(^6\) has disclosed the use of radicals derived from 3-bromopyridine and the extension of this chemistry to pyridinium radicals.\(^7\) However, to the best of our knowledge, pyrazinyl radical cyclisations have not been reported before.

On the other hand, alkylation of heteroaromatic bases via a radical pathway is an useful synthetic method with a broad potential. Radical alkylation onto heteroaromatic systems, under oxidative conditions, were initially studied by Minisci's group,\(^8\) but more recently, Minisci and co-workers\(^9\) and Togo and co-workers\(^10\) have reported intramolecular radical arylation onto heteroaromatic substrates by alkyl halides, using tris(trimethylsilyl)isiline (TTMS3) as mediator of the radical process. These authors have shown that the heterocyclic ring needs to bear a positive charge for successful attack by the nucleophilic carbon radicals.

The first example of intramolecular radical addition to quaternized pyridinium salts was described by Murphy and co-workers\(^11\) who exploited the non oxidative chemistry of Bu3SnH. Although alkylations of aromatic and heteroaromatic compounds, via an ipso substitution radical mechanism are known,\(^12\) to our knowledge, only one method of arylation of quaternized heteroaryl substrates has been published. In this case, a pyridinium radical was added onto another aromatic nucleus, with subsequent rearomatization of the aryl ring.\(^7\)

Scheme 1

In the course of our studies on the reactivity of heteroaryl-stabilized cyclocondensation ylides [i.e. pyridinium N-(2'-azinyl)aminides 1, (Scheme 1)],\(^13\) we attempted the intramolecular arylation of ylide 1, through the radical 2. We expected to obtain the bipyridine 3, by a reaction pathway involving a 5-exo-trig cyclisation, and then, rupture of N-N bond, as previously described.\(^13\) To our surprise, product 3 was not detected, and only reduction compounds 4 and cyclisation products 5 were observed, the last ones corresponding either to dipyrindol[1,2-b; 3',2'-d]pyrazole nucleus (compounds 5a-c, Y=CH) or pyridol[1',2': 2,3']pyrazole[5,4-b]pyrazine derivatives (compounds 5d-f, Y=N), obtained from ylides 1c,d or 1e,f, respectively (Scheme 1). The reaction could follow a similar course to those postulated by Murphy\(^11\) to generate the final product. For the dipyrindopyrazole nucleus, only few examples, obtained by alternative ways, are known.\(^13\) The preparation of the unsubstituted nucleus, however, (compound 5h, Z=H) has not been reported to date. No references have been found for the pyrazino derivatives (compounds...
As indicated in Scheme 1 and the Table, the dipyrindopyrazole 5a was satisfactorily obtained by slow dropwise addition, by a syringe pump, of a solution of TTMSS and AIBN in a mixture of dry benzene/acetonitrile, to a dispersion, at 80 °C, of potassium carbonate and the halogenated amine 1c in dry acetonitrile (entry 1, Method A). The reaction did not go to completion when only 1 equivalent of each TTMSS and AIBN were employed (entry 2, Method B), as previously reported. When the reaction was carried out in the absence of potassium carbonate, poor yields of pyrazolo[1,5-a]pyridine 5a were observed, and the direct reduction of amine 1c (to give 4a) appeared as the main process (entry 3, Method C). Although several reaction mechanisms could explain this transformation, we suggest what appears as the simplest pathway, involving a 5-exolendo-trig cyclisation, as described in Scheme 2, which agrees with the role of potassium carbonate and with the production of arylated compound 5 during the reaction process.

When the reaction was carried out in benzene and the starting amide has an additional bromine (e.g. N-aminides 1d and 1f, entries 4, 5 and 8, 9 respectively) a concomitant phenylation was observed. However, when the reaction was performed in THF/acetonitrile (entry 6, Method D), only poor yields of the cyclised compounds were obtained, probably due to abstraction from the solvent. In similar manner, amides 1e,f reacted using Method A, to afford pyridopyrazolepyrazine derivatives 5d f (entries 7-9, Table).

Preparation of starting amides 1a,b (Scheme 3) has been previously described from 2,4-dinitrophenyl pyridinium chloride and the corresponding 2-heteroaryl hydrazine, producing the corresponding hydrazones. Then, cyclisation in acetic acid and treatment with potassium carbonate provides the stable amides 1a,b in good yields. Halogenation of 1a under very mild conditions, with N-chlorosuccinimide (NCS), provides the chloro derivative 8a, which was halogenated again by treatment with N-bromosuccinimide (NBS), yielding the dichloro derivative 1c (Z = Cl, Method E, Scheme 3). When this process was carried out using a two molar excess of NBS, the dibromoamidine 1d was obtained in one step (Z = Br, Method F, Scheme 3). In a similar way, halogenation of amine 1b yielded the halo derivatives 1e,f.

In conclusion, it has been shown that it is possible to generate the pyrazolepyridine nucleus from N-azinylpyridinium N-aminides through a radical pathway, using TTMSS/AIBN under thermal conditions. Further experiments are in progress to extend the process as a general methodology to other azine derivatives.
Scheme 3

Acknowledgement

We acknowledge support of this work by the Comisión Interministerial de Ciencia y Tecnología (CICYT, project 2FD97-1248), Universidad de Alcalá, (project UAH2002/026) and the Comunidad de Madrid for a grant to one of us (A.G.V).

References

(15) Typical Procedure, Method A: 3-Chloro-dipyrroli[1,2-b:3'2'-dipyrazole 5a: A solution of tris(trimethylsilyl)amine (TTMSS) (0.149 g or 0.6 mmol) and AIBN (0.099 g, 0.6 mmol) in 6 mL of dry benzene was diluted with 14 mL of dry acetonitrile. The resulting solution was added dropwise by a syringe pump during 16 h, to a dispersion of potassium carbonate (0.083 g, 0.6 mmol) and the amine 1c (0.062 g, 0.3 mmol) in 50 mL of dry acetonitrile, stirred at 80°C (bath temperature), under an atmosphere of dry argon. After being stirred at the same temperature until 24 h, full consumption of 1c was observed (TLC analysis). The reaction mixture was allowed to warm to r.t. and distilled water (5 mL) was added. The organic extracts were dried (Na2SO4) and concentrated in vacuo, providing a crude product that was purified by flash chromatography (silica gel, ethyl acetate/hexane (1:1) (Rf = 0.3). Yellow solid (0.034 g, 56% yield, toluene, mp = 212–214°C). 1H NMR (300 MHz, CDCl3); δ = 8.87 (1d, 1H, J = 6.9, 1.2 and 1.1 Hz), 8.89 (d, 1H, J = 2.4 Hz), 8.39 (d, 1H, J = 2.4 Hz), 8.11 (dd, 1H, J = 2.4 Hz), 8.5, 1.4 and 1.1 Hz), 7.51 (dd, 1H, J = 8.5, 7.3 and 1.2 Hz), 7.33 (dd, 1H, J = 7.3, 6.9 and 1.4 Hz). 13C NMR (75 MHz, CDCl3); δ = 157.7, 152.2, 146.5, 134.4, 129.0, 127.7, 124.0, 122.8, 118.5, 117.8. IR (KBr): 2922, 1706, 1641, 1437 cm⁻¹, MS (Cl): m/z = 204, 206 ([M⁺] + 1, 100, 32). EIMS HR: calculated for C28H25 ClN4, [M⁺] 523.0246. Found: 520.2040.
(17) Potassium carbonate could abstract a proton from the substituted dihydropyridine radical 6 (Scheme 2), to form the radical 7, that would be converted in the arylated compound 5 (see ref. 16c). In the absence of potassium carbonate, dihydropyridine radical 6 did not evolve to 5, and only decomposition products and N-N reduction compounds were observed.

Typical Procedure, Method E: Pyridinium N-(3-bromo-5-chloropyrazin-2-yl)amine 1e: To a solution of pyridinium (N-(2-pyrazinyl)amine 1b (0.172 g, 1 mmol)}
in dry dichloromethane (5 mL) stirred at 0 °C was added dropwise a solution of N-chlorosuccinimide (NCS) (0.160 g, 1.2 mmol) in dry dichloromethane (10 mL). The reaction mixture was stirred for 1 h at the same temperature, allowed to warm up to r.t. and stirring for a further 24 h. The solvent was evaporated and the residue was purified by flash chromatography (silicagel, ethanol, (Rf = 0.25)) to yield 0.149 g (72%) of pyridinium N-(5'-chloropyrazin-2'-yl)aminide 8b: Yellow solid (ethyl acetate, mp = 158–161 °C). 1H NMR (300 MHz, CD3OD): δ = 8.76 (dd, 2 H, J = 5.7 and 1.3 Hz), 8.13 (tt, 1 H, J = 8.2 and 1.3 Hz), 7.86 (dd, 2 H, J = 8.2 and 5.7 Hz), 7.62 (dt, 1 H, J = 1.4 Hz), 7.60 (dd, 1 H, J = 1.4 Hz). 13C NMR (75 MHz, CD3OD): δ = 160.8, 145.0, 140.3, 139.5, 135.4, 132.1, 128.7. Anal. Calcd for C16H13ClN3: C, 52.31; H, 3.69; N, 27.31. Found: C, 52.32; H, 3.69; N, 27.31. To a solution of pyridinium N-(5'-chloropyrazin-2'-yl)aminide 8b (0.206 g, 1 mmol) in dry dichloromethane (5 mL) stirred at r.t., was added dropwise a solution of N-bromosuccinimide (NBS) (0.214 g, 1.2 mmol) in dry dichloromethane (10 mL). The reaction mixture was stirred until 24 h at the same temperature, the solvent was evaporated and the residue was purified by flash chromatography (silicagel, ethanol (Rf = 0.75)) to yield 0.231 g (81%) of pyridinium N-(3'-bromo-5'-chloropyrazin-2'-yl)aminide 1e: Yellow-orange solid (ethyl acetate, mp = 203–205 °C). 1H NMR (300 MHz, CD3OD): δ = 8.70 (dd, 2 H, J = 6.9 and 1.4 Hz), 8.25 (tt, 1 H, J = 7.8 and 1.4 Hz), 7.93 (dd, 2 H, J = 7.8 and 6.9 Hz), 7.60 (s, 1 H). 13C NMR (75 MHz, CD3OD): δ = 158.4, 146.2, 141.4, 139.6, 130.8, 129.0, 126.0. Anal. Calcd for C16H13BrClN3: C, 37.86; H, 2.12; N, 19.62. Found: C, 38.01; H, 2.43; N, 19.31.