
Universidad de Alcalá
Escuela Politécnica Superior

Máster Universitario en Ingeniería Industrial

Trabajo Fin de Máster

Multi-Modal Interface for offline Robot Programming

Autor: Álvaro García Morcillo

Tutores: Ignacio Bravo Muñoz y José Luis Martínez Lastra

2018

UNIVERSIDAD DE ALCALÁ
ESCUELA POLITÉCNICA SUPERIOR

Máster Universitario en Ingeniería Industrial

Trabajo Fin de Máster

Multi-Modal Interface for offline Robot Programming

Autor: Álvaro García Morcillo
Trabajo realizado en: Tampere University of Technology
País: Finlandia
Tutor: Ignacio Bravo Muñoz
Cotutor: José Luis Martínez Lastra

TRIBUNAL:

Presidente: Felipe Espinosa Zapata

Vocal 1o: Iván García Daza

Vocal 2o: Ignacio Bravo Muñóz

FECHA: 12 de Septiembre de 2018

To all the friends I have made here in Tampere, even thou I have spent more time with
this work than you guys. . .

A todos mis amigos de España, esos amores con esas almas tan grandes que a pesar de
decirles que tendrían que haber estudiao les admiro un montón. . .

A mis padres y mi familia, que después de esto posiblemente tengamos que separarnos
durante largos periodos. . .

Acknowledgements

This thesis has been made during an Erasmus grant at Tampere University of Technology, and will also
serve as Final Master Work (TFM) for the Master Degree in Industrial Engineering at the University of
Alcalá de Henares.

I hope this work will serve as a base for future students here at FAST-Lab so the many hours spent
on it become fruitful.

I want to thank Professor Lastra for welcoming me to Fast-Lab, and the rest of the lab members for
showing interest in this thesis and telling me how cool it looks.

vii

Resumen

Este trabajo presenta una propuesta para mejorar al programación de robots fuera de línea usando
métodos de entrada basados en habilidades humanas naturales. La propuesta se enfoca en enseñar
operaciones básicas de ensamblaje y manipulación, utilizando un par de robots industriales en un entorno
de simulación ya existente y se dispone para ser mejorado en trabajos futuros, los cuales también se
proponen en este trabajo.

Con el fin de desarrollar esta propuesta y teniendo en cuenta los recursos disponibles, se ha desarrollado
un Add-In para el programa de simulación y programación fuera de línea Robot Studio. Este Add-In
combina pose humana, una interfaz gráfica de usuario y opcionalmente habla para enseñar al robot una
secuencia de objetivos junto con el entorno de simulación para automáticamente generar instrucciones.

Dos diferentes tipos de sensores, Kinect y Leap Motion Sensor han sido evaluados en base a referencias
para seleccionar el más adecuado para la implementación de este trabajo.

Las ejecuciones de las instrucciones programadas han sido evaluadas en simulación.

Palabras clave: Interfaz multimodal, Programación fuera de línea, Sensor Leap Motion, Robot
Studio, Reconocimiento de voz.

Abstract

This thesis presents an approach for improving robot offline programming using input methods based on
the human natural skills. The approach is focused to teach basic assembly and manipulation operations
using a pair of industrial robots in an existing simulation environment and is meant to be improved in
future works, that are also proposed in this thesis.

In order to develop this approach, and regarding the available resources, an Add-In for the simulation
and offline programming software RobotStudio was developed. This Add-In combines human pose, a
graphical user interface and optionally speech to teach the robot a sequence of targets, along with the
simulation environment, to automatically generate instructions.

Two different kinds of sensors, Kinect and Leap Motion Sensor have been evaluated based on references
in order to select the most suitable one for the implementation of this work.

The executions of the programmed instructions have been evaluated in simulation.

Keywords: Multi-Modal Interface, Offline programming, Leap Motion Sensor, Robot Studio, Speech
Recognition.

Contents

Resumen ix

Abstract xi

Contents xiii

List of Figures xv

List of Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Justification . 2

1.3 Problem Statement and Research Questions . 2

1.4 Scope . 3

1.5 Limitations . 3

1.6 Objectives . 4

1.7 Outline . 4

2 Literature Review 5

2.1 Human-Robot Interaction . 5

2.1.1 Human-Robot Interaction for controlling . 5

2.1.2 Human-Robot Interaction for programming . 6

2.2 Multi-Modal Interfaces . 8

2.3 Summary of the review . 9

3 Proposal for a Multi-Modal interface in an off-line programming environment 11

3.1 Description of the proposal . 11

3.2 Tests . 13

xiv CONTENTS

4 Implementation 17

4.1 Environment . 20

4.2 Design and implementation of the GUI . 21

4.3 Configuration of the environment for the interaction . 22

4.3.1 Station requirements for minimum use . 22

4.3.2 Smart Component for tools and Station Logic . 22

4.3.3 Defining pieces . 23

4.4 Motion Sensing Input to RobotStudio Data . 28

4.5 Robots Movement . 32

4.5.1 State Machine . 32

4.5.2 Visualization and movement process . 33

4.6 Speech Recognition . 38

4.7 Generation of instructions . 39

5 Results and Analysis 43

5.1 Review of limitations . 43

6 Conclusions 45

6.1 Open issues . 45

6.2 Future Works . 45

Bibliography 47

A UML Class Diagram 49

B XML Code Documentation 53

List of Figures

2.1 K. Ishii et al.’ Robot Control using Laser Gestures . 6

2.2 Pérez and Julie content of the objects knowledge base. 8

2.3 Mocan et al.’ Multimodal interface framework. 9

2.4 I/O Modes. 10

3.1 Structure of the proposal. 13

3.2 Snap-fit insertion. 14

3.3 Bayonet insertion. 14

3.4 Rubik cube manipulation. 15

3.5 Robotic cell. 15

3.6 Testing environment. 16

4.1 RS while in the Add-In tab. 18

4.2 General overview of the interface internal operation. 19

4.3 GUI of the Add-In. 22

4.4 How to add robots to the station. 24

4.5 How to add a controller containing both robots. 25

4.6 Gripper child smart components. 25

4.7 Gripper smart components design. 26

4.8 Steps for configuring a piece. 27

4.9 Captures of the sensor readings. 29

4.10 Icons of left hand poses. 29

4.11 Leap Motion Sensor axes. 30

4.12 Flowchart of the Leap Motion Sensor Input Mode. 31

4.13 State machine for each hand. 33

4.14 Visualization example. 35

4.15 Alignment state feedback. 36

4.16 Speech Recognizer structure. 39

4.17 Flowchart of the target recording. 42

xvi LIST OF FIGURES

6.1 RobotStudio compatibility with VR headsets. 46

A.1 UML class diagram, upper part. 50

A.2 UML class diagram, lower part. 51

List of Acronyms

API Application Programming Interface.
AR Augmented Reality.

DOF Degrees of freedom.

GUI Graphical User Interface.

HRI Human-Robot Interaction.

I/O Input/Output.

MMI Multi-Modal Interaction.

RS Robot Studio.

SDK Software Development Kit.

VR Virtual Reality.

Chapter 1

Introduction

1.1 Motivation

In this section we will give some reasons that motivate the work developed, answering the question:

"Why Multi-Modal Interface for Offline Robot Programming ?"

For years, we have seen many sci-fi movies where robots interact with people and following their
commands in a very natural way, in some others we have seen how not autonomous robots are controlled
imitating the user moves and, nowadays, industrial robots still lack artificial intelligence.

To program industrial robots, the programmer can use a virtual environment and teach them the
tasks they need to do by showing them targets, making them follow a path with that targets and some
parameters; and transforming that paths into code along with other instructions that read data from
inputs and sets data to outputs; there is also the opportunity to teach the real robot in other ways.

Some implementations of controlling robots by imitation have been implemented these last years [1–3].

If a robot can imitate a person, a person would be able to easily teach a robot, however, robot
movements have something we do not have, high precision.

Movements of humans are always done in a closed loop, we move our articulations, we see them
through our eyes and we correct the position, robots otherwise can do many tasks with high precision
not sensing anything, but needing a correct calibration; a lack of sensors will, of course, make a robot
less flexible, an industrial robot with no sensors can only work in assembly lines where the pieces are
positioned in a known, precise way.

Assuming that our robot does not have any sensor and it must be working most of the time, how can
we program it to do certain tasks?

Using an offline environment, we can simulate pieces and robots, then we can sense the pieces and
tell a virtual robot to handle it, anyway, to tell a robot to handle a piece requires a sensor to sense us,
but in this case it will be connected to a computer, not to a robot.

Robot manipulators are also known as robot arms, and we humans have arms, two of them, then it
is likely to teach two arms how to do an operation. Many research with artificial intelligence has been
made with non-industrial robots to reach what it is written in the first paragraph of this motivation,
but industrial robot manipulators are not receiving that treatment as much as mobile robots or assisting
robots, in other words, industrial robot manipulators are not being treated in the human-robot interaction
field as much as other types of robots.

2 Chapter 1. Introduction

Then, this thesis will focus on programming robot tasks using a multi-modal interface, making them
imitate our movements and being able to command them with our voice somehow. In other words, we
will apply human-virtual robot interaction in order to program them.

1.2 Justification

The motivation given for this thesis can be justified regarding both non-recent and more recent research,
this way, the motivation can be proved to have potential interest in some research directions that are still
of interest nowadays:

1. Making a task easier has always been beneficial in many disciplines. Automation requires a pro-
gramming process that can be made easier and more intuitive. Even since 2007, the robot control
development importance has been highlighted, specially in an industrial perspective, Brogårdh
outlined the sensor-based human-robot interfaces for intuitive robot programming as a research
direction [4].

2. The industry has evolved since its origin through three industrial revolutions, in 2013, the fourth one
was announced. Nowadays, the so known Industry 4.0 has raised the complexity of the procedures
inside the automated production systems. As highlighted by Wittenberg, this rising of complexity
also raises the need for more intuitive interfaces. Moreover, the virtual commissioning along with
the on-field commissioning of systems, takes the work from the field to the office, helping to save
time [5].

3. Robots installed in factories usually require specialized human resources to take care of the mainte-
nance, calibration, and programming. In small and medium enterprises, there are high parametriza-
tion and reconfiguration needs, requiring specialized staff to deal with robot systems [6]. To intro-
duce robotics in small companies, achieving easier ways to deal with robots may ease their use and
reduce the human resources costs and the availability of operators.

4. Interaction with robots in alternative or more natural ways has been repeatedly researched focusing
more on assistive or mobility robots [7–11], however, there is also related research focusing robot
manipulators [1–3,12–16]. Some of these works focus on robot control [1,2,12] rather than in robot
programming [3,13–16]. None of these approaches integrate its work in a well-known off-line robot
simulation and programming software, such as Robot Studio (RS). Within these references, only
the most recent focus on collaborative manipulators [3, 15].

5. Integrating an interface which introduces new input modes to an already existing programming
environment can make easier to combine the new modes with the already existing ones.

6. According to the 2016 article [13], literature about Multi-Modal Interaction is still scarce, then the
thesis topic is suitable.

1.3 Problem Statement and Research Questions

Robotics in the industry is still challenging for the SME’s decision on rather invest in it or not. The
return on investment gets worse when a business has to face the costs of specialized staff to reprogram
and reconfigure tasks in a robotic system. Therefore, new programming interfaces for making robot

1.4 Scope 3

programming easier and more intuitive are required for saving time and avoiding the need for specialized
staff, nowadays it is still being researched.

Given the previously exposed problem, an approach for programming robots in a multi-modal way
can be interesting, as well as to ease future works on this complex task where the literature is still
scarce. Regarding the interaction modes proposed, hand pose imitation and speech along with traditional
Graphical User Interface (GUI) input/output methods, the following research questions are prompted:

• How can an input method such as the hands pose can be decided to be interpreted or not, avoiding
additional inputs?

• How can the hands’ poses and speech can be combined to achieve a better functionality?
• How can we translate our actions given these input modes into code or instructions?
• What sensors or devices can make the interaction with the robot more precise, flexible or intuitive?

1.4 Scope

The implementation of the proposed approach has been developed based on a real robotic cell installed
at FAST-Lab in the Tampere University of Technology. This cell includes two ABB IRB140 robot
manipulators. The material available has both inspired and limited the implementation developed.

The implementation can be used for ABB robots programming, using the simulation and offline
programming environment RS, up to two robots can be programmed at the same time.

Human-motion sensing will be used to extract 3D information and discrete poses.

Regarding the speech recognition, the interface may need the en-US speech recognition package for
Windows. Speech recognized commands allow the user to activate some buttons of the GUI for the robots
in order to gain precision or to open and close the grippers.

The virtual station used has already modeled a robotic ABB cell, with a pair of IRB120 robot
manipulators and it has been configured to hold two robot tasks in the same virtual controller, there
is also the same RS Smart Component for both grippers (Two Smart Components of the same type),
anyway, users may create their own Smart Components and use their own grippers in their simulations.

The pieces that have been assembled using the developed interface have their models imported to the
used RS station, other models can be imported to new stations.

The interface is meant to program some assembly and manipulation basic operations.

The method used for this thesis implementation does not use artificial intelligence.

1.5 Limitations

Limitations of this thesis work are exposed here, not as a result of the development but as intended
limitations.

• The proposal is only applicable to off-line robot programming environments which allow Add-Ins.

• The Add-In is only compatible with RS, and it is only compatible with Windows.

• The implementation is only compatible with the Leap motion sensor as human-motion input device.

• The implementation does not consider sensors installed in robots or collision detection.

4 Chapter 1. Introduction

• Targets will be manually generated in RS by the user by using the human-motion data.

• Automatic code generation is limited to automatic instructions generation in RS, using the targets
defined by human-motion data.

• Virtual robots tools will only imitate the hand positions when these are closed.

• The points to be reached by the robots have to be taught one by one, there is no artificial intelligence
generating targets automatically, the targets will be recorded when opening the hands instead.

1.6 Objectives

Now that the reasons for this thesis have been given, we define some objectives we want to achieve. It is
important to highlight that the implementation of this work is also meant to be a base for possible future
works on it.

• Sense some motion of the human body to be used as an input for the robot programming along
with voice commands.

• Being able to represent that input in a virtual environment, at the same time that the user works
with it.

• Get a flexible interface that allows the user to make some configuration and allows to teach two
robots.

• Possibility to restrict some movements to do some precise movements a human could not easily
achieve.

• Keep the code of the project as structured and readable as possible and document it to ease future
works.

• Being able to program movement, Input/Output (I/O) and synchronization instructions.

1.7 Outline

Now a summary of the contents of this thesis is given.

Chapter 2, analyses related work in different topics related to this work as well as their relation to it.
Chapter 3 presents the theoric proposal of this thesis as well as the tests to be done for it. Chapter 4
Makes a description of the implementation of the proposal used to make the tests. chapter 5 makes a
review of the behavior of the program as well as the executions of the programmed tasks.

Finally, chapter 6 presents the conclusions of this work, summarizing the results and issues, as well
as exposing future works.

Chapter 2

Literature Review

In this chapter, some related works will be summarized, classifying them into sub-topics and finally, some
conclusions of the reviews will be presented. The sub-topics are prompted as follows:

1. Human-Robot Interaction.

(a) Human-Robot Interaction for controlling.

(b) Human-Robot Interaction for programming.

2. Multi-Modal Interfaces.

2.1 Human-Robot Interaction

The Human-Robot interaction is commonly referred as Human-Robot Interaction (HRI) by researchers.
It is a multidisciplinary field with different contributions such as artificial intelligence, robotics, and social
sciences.

2.1.1 Human-Robot Interaction for controlling

The HRI is typically known as interacting with a robot to make it do some task. Several methods for
achieving a successful interaction have been researched for better and more natural ways to interact with
them. Starting from 2005, we introduce the gesture-based interface in [17] for a robot competition, with
this interface, the user can control a fighter robot by reading the user movements with a camera that
simply process the skin color of the user and extract the fists and head features. The interface recognizes
the gesture corresponding to the user’s pose, generating a robot command to move it in a similar way.
In this case, we have seen an interface which transforms pose into gesture and gesture into a command.

It is also important how the robot gives the user information, in 2007, [18] presents a Networked,
Multi-sensored environment for controlling a mobile robot. A PDA is used as the interface device with
the robot, being able to see the robot location through it and giving commands to it. In this case, the
interface used does not turn natural movement to commands but enables the user to better understand
the robot point of view.

Later, in 2009, a brain-robot interface is presented in [19] for controlling a robot arm. This kind of
interfaces still have many limitations, and the related research is destined to people with severe disabilities.
The interface allowed the user to control each degree of freedom of a robot at a time, still with an error

6 Chapter 2. Literature Review

Figure 2.1: K. Ishii et al.’ Robot Control using Laser Gestures

percentage to be reduced. These brain-robot interfaces require a specialized knowledge out of the scope
of this thesis.

In the same year, another device for interfacing a robot such as a laser pointer has been used in [7].
The laser point is sensed by a camera and two additional cameras track the robot and objects in the
environment using visual-based tags. The system recognizes laser stroke gestures such as lasso and stroke
gestures for object selection and commands, an example is given in Figure 2.1 [7, Fig. 1], additionally,
the laser pointer incorporates additional buttons used for canceling movement. For visual feedback, a
projector located in the ceiling is used, it displays the trace of the laser point on the floor. This system
allows to control a robot in a comfortable way but the system environment is complex and it is limited
to a place where the environment is built.

Five years later, in 2014, [1] addresses the problem of mapping a human arm motion to a robot
arm. A motion capture suit senses the movement of the entire arm and the end-effector trajectories are
reconstructed from the human hand. The article denotes the importance of replicating the human body
motion to transfer knowledge and experience to a robot. The system operates at real time. In this case,
the control is made by imitation, being more natural than in previous approaches.

The next year, a manipulation system based on tablet PC has been designed in [12]. Generating a
virtual ray from the tablet given its inclination and calculating the collision with a virtual environment,
the interface is designed using Unity and generates visual feedback. In this approach a virtual environment
can be found along with a real system.

In a similar way than [1], we can find another case of imitation in [2], this time imitating the hand
and ignoring the rest of the arm, offering again a natural input of data, only controlling the position
of the end-effector. It uses an Inertial Measurement Unit along with a Kinect camera and two Kalman
filters for both position and orientation. The 3D camera locates the hand and the IMU measures its
orientation. An over-damping method is finally used to soften the hand movement and avoid undesirable
movements, disabling the movement if a violent move is done by the user. This approach will be similar
to ours regarding the hand pose imitation, but this one is oriented to directly control a manipulator.

The last imitation case we will talk about [20] is done with a cheap human-motion sensor, this is
the Leap Motion Sensor whose software allows the programmer to easily obtain parameters of the hand
such as position, and orientation, of hands and its fingers. In this approach, they transform position and
orientation of the hand into position and orientation of the end-effector of the robot.

2.1.2 Human-Robot Interaction for programming

Although human-robot interaction is more focused on robot controlling, many articles for programming
them have been reviewed since it will be the main goal of our approach.

In 2014, the article [16] offers an additional review about human-robot interaction and proposes an
Augmented Reality (AR)-based interface for HRI. It highlights that the industrial robots have a low level

2.1 Human-Robot Interaction 7

of autonomy, being designed for repetitious tasks in structured environments, later denoting how robots
are increasingly found in SME’s environments where a direct interaction between operators and robots
is commonly needed. It also reviews new methods that have been reported by new research efforts in
HRI such as Multi-Modal Interaction (MMI), programming by demonstration, AR and Virtual Reality
(VR). The article proposal of AR-based interface combines a physical environment with virtual entities,
along with the robot model, a cube marked with vision tags is used as interaction device. The interface
is developed for path-planning. It is important to add that new AR devices models have been released
more recently.

In the next year, [14] denotes that there is little experience on Teaching by Demonstration in industrial
use cases despite of many research done in this field. This article proposes to manually specify what action
to apply and teach by using gestures the relevant action parameter, removing the uncertainty of what
action to perform. The concept of transformable robots is defined as those robots capable of solving a
variety of tasks by using a certain level of cognitive capabilities. Many related works are mentioned, we
denote that it makes references to some works focused on offline programming by using CAD models.
The robot used in this approach is focused on industrial applications. Some predefined objects with QR
codes are located on the experimental scenario and a GUI is used to specify the steps to follow when
teaching an action to the robot, a set of five gestures is used, not only tasks can be taught, they can
also be executed, even while teaching them. This approach contemplates the principal goal of making
programming more intuitive and flexible, to be able to also control a robot to perform a wide set of
different tasks while working in a natural way.

Recently, on 2017, an interface for off-line teaching collaborative robots is introduced in [3]. It
mentions that the ways humans can interact with robots have still much room for improvement. This
approach uses the ABB’s collaborative robot IRB 14000 (YuMi), and it focuses in assembly tasks. The
first teaching step is to manually specify the type of task to be performed, e.g. folding or insertion,
models of the pieces have to be uploaded. The uploaded pieces are identified in the work environment
and a RGBD camera records the demonstration by the user. The next step extracts key frames of the
operation, with the possibility to manually modify or add information to them. After this phase, gripper
fingertips on a 3D model are automatically generated depending on the pieces dimensions. Finally, in
the training phase, the taught assembly can be simulated or executed. This approach achieves a natural
demonstration with the robot by replicating the steps done by the user while assembling a set of pieces.

In the same year we find a proposal that also uses a dual-arm robot and extracts keyframes, addition-
ally, it uses a set of geometric constraints [15], in this case, it is applied to manipulation tasks instead of
assembly ones. A constraint used in this proposal is to compare the three rotational degrees of freedom
of the end-effector to those of an object, an orientation constraint is created if a close difference is found,
this is similar to the snapping feature found in CAD design programs. Then if this constraint is present
in two consecutive keyframes, the move-in-line constraint is also applied. It uses a knowledge base for
motions as seen in Figure 2.2 [15, Fig. 3]. This proposal uses a GUI for teaching, not other methods
based on human motion or speech.

8 Chapter 2. Literature Review

Figure 2.2: Pérez and Julie content of the objects knowledge base.

2.2 Multi-Modal Interfaces

When different kinds of communication channels are found in an interaction we can talk about Multi-
modal Interaction.

The goal of effective interaction between user and robot assistant makes it essential to provide a number
of broadly utilizable and potentially redundant communication channels.[21] Regarding the last citation,
MMI will be necessary to achieve an effective HRI.

Most of the works found are focused on assistive robots rather than manipulators or robots meant
for industrial applications, in 2012 [8] combines speech and gestures recognized through a Kinect camera
to interact with a robo-receptionist. It also highlights that priming (or long-term interaction) is an
important consideration for robotic systems.

More recently in 2016 [13] presents a framework for an industrial robot, introducing nowadays robots
as difficult to program for end users as well as typically unaffordable for SME’s. It also speaks about
current off-line programming software problems for robots whose tasks need frequent changes, what is
commonly found in SME’s. They exemplify the effectiveness of MMI by combining hand gestures from a
sensed glove to operate a gripper, text programming from a computer, and a GUI, illustrated in Figure 2.3
[13, Fig. 2], the work is under development.

2.3 Summary of the review 9

Figure 2.3: Mocan et al.’ Multimodal interface framework.

2.3 Summary of the review

The most recent approaches found in this review achieve alternative ways to program robots than those
used in many industrial cases. SME’s interest for implementing robotics but the flexibility and repro-
gramming issues are a main concern on most of cases.

Many of the human-robot interaction techniques extract gestures from the human pose, some others
extract the tridimensional information such as positions or rotations, it is typical to use the Kinect camera
as the main sensor for this task, the use of alternate or additional devices such as pointers can make the
development of the interaction easier, making detection easier and more robust, not necessarily reducing
intuitiveness since humans are used to this kind of tools.

The last articles reviewed for HRI for programming denoted the importance of using CAD models
in off-line interaction with virtual robots, these models are supposed to be the same as the pieces to be
manufactured, and therefore those models should be available for the enterprise manufacturing them.

It is also mentioned how much effort is academic research given to HRI while it is rarely found in
industrial practices, therefore an interest for these methods should be awaken in robot manufacturers for
adapting their off-line programming environments facilitating HRI and flexible programming using their
programs.

Regarding MMI, many I/O methods have been used for HRI, combining them can improve robustness
or reliability, as well as compensate the weak points of each other, using many different devices may also
raise the need for an standard for MMI, many of the possible I/O methods that could be combined for a
Multi-modal interaction are gathered in Figure 2.4.

10 Chapter 2. Literature Review

Vision on computer

screens

Voice information

Keyboards

3D Vision

Force, Temperature, etc.

Feedback Mouse, track-balls, joysticks

Voice

commands

Touchscreens

Gestures

Eye movement

Robot Operator

Virtual/Augmented

reality devices

Operator Robot

Figure 2.4: I/O Modes. A mixture of modes, even potentially redundant, can improve intuitiveness of
the interaction.

Chapter 3

Proposal for a Multi-Modal interface
in an off-line programming
environment

3.1 Description of the proposal

After the literature review, proposals based in implementing computer vision or automatic learning
algorithms will be discarded in favor of achieving a programming method capable of imitating positions
a human gives to a not specific robot, this way we ensure the scope of this thesis to do not mean a work
overload.

Similarly as done in [13], a proposal for MMI interaction for robot programming will be given. In
our case, focused on industrial robots, we propose improving an existing off-line programming
environment by adding other interaction modes.

The MMI should implement a base GUI, to be added to the current off-line programming environ-
ment, allowing to select and/or configure which elements in the virtual environment will be commanded.
In addition, some configuration features of the instructions and/or code generation can be added into the
GUI. Additionally, the GUI can generate higher level commands than those allowed by the environment
to ease its use.

Each additional interaction mode should implement a GUI ribbon added to the off-line
programming environment GUI along with the GUIs of other modes. Each mode can include its own
configuration in the GUI or other options as constraints for the data they offer.

The reason for implementing configuration in GUI is contradictory with the intuitiveness that a
MMI is meant to achieve but as previously remarked, literature about MMI is still scarce [13], therefore
further investigation should be done for erasing the need of configurations, anyway, the most appropriate
configuration can be used by default.

Additionally, each input mode should be able to interact with the GUI, as well as with the
elements incorporated in the virtual environment of the off-line programming environment, as pieces and
robots.

As proposed in [15], CAD constraints will also be considered for this proposal as transforms in
the virtual pieces of the environment. These transforms can be used to directly position a gripper to a

12Chapter 3. Proposal for a Multi-Modal interface in an off-line programming environment

piece, a held piece to another piece, to align a gripper to a piece, etc... The concept of keyframes is also
used, in our proposal, keyframes will be created given a specific command, automating their generation
to improve intuitiveness is not implemented in this thesis.

Regarding motion-based input modes, our proposal is not to use a gesture-based input but a pose
based instead, meaning that the position and orientation of parts of the human body can be taken into
account instead of only discrete gesture commands. This specific proposal is meant to achieve a robot-
human imitation, directing further research to improve how robots can perform complex operations that
humans can do on their own.

Additionally, to pose input modes, some gestures can be recognized with the same mode, they can
either execute certain commands or to constrain the input data in function of the virtual environment
(Pieces, Robots), like constraining the movement aligning the robot to an element or moving robots
keeping their distance between end-effectors.

Regarding speech-based input modes, our proposal is to use speech for giving discrete commands,
even being able to interact with other modes configuration or constraints on their inputs. This mode has
a great potential and can be later improved with CAD information of the pieces to be manipulated or
assembled, this way it is possible to give very high-level commands to robots. Anyway, our proposal is
limited regarding speech, and only some simple commands will be implemented.

Given that the proposal aims for integrating modes into an existing off-line programming environment,
there should exist an API for such environment. The API might use its own data formats for position,
orientation, and 3D information of imported CAD models. For each input mode interacting with these
elements, the data must be adapted to the same type as the one the environment uses.

Adding interaction modes to an existing off-line programming environment is possible by generating
Add-Ins, if some input modes are meant to be fused they should be incorporated in the same Add-In.

A graphic summarizing the proposal can be found in Figure 3.1.

3.2 Tests 13

Off-line programming environment

GUI for Multi-Modal interaction

Input mode Output mode

Output deviceInput device

Filtering and
compatibilization of data

Interpretation of data

Data Event

FilteredUnfiltered

Configuration

Visualization of
Robotic system

Feedback Actions

Visualization data

Configuration

Virtual
Robotic
System

Virtual Input device

State

Generation
of

Targets &
Instructions

State

Command

Virtual elements of
layout

GUI for specific
input mode

GUI for specific
output mode

Compatibilization of data

Interpretation of data

Virtual elements of
layout

Modify

Figure 3.1: Structure of the proposal.

3.2 Tests

The tests to be performed consist on programming procedures for a pair of robot manipulators, the
execution of both procedures should be sucessful and therefore synchronized. The generated procedures
will be RS instructions and they will be mainly generated by the additional input modes and the interface.

The next types of operations will be tested:

• Pick and place.
• Insertion using snap-fit (see Figure 3.2).
• Insertion using a bayonet mount (see Figure 3.3).
• Manipulation of an articulable piece such as a Rubik cube (see Figure 3.4).

Results of the tests are discussed at Chapter 6.

A virtual station has been prepared to test an implementation of the proposal.

The virtual station used for testing belongs to one of the robotic ABB cells of FAST-Lab at Tampere
University of Technology that can be seen at Figure 3.5. The final look of the virtual station has been
adapted for this work and it is the same as in Figure 3.6, this environment simulates a table with some

14Chapter 3. Proposal for a Multi-Modal interface in an off-line programming environment

Figure 3.2: Snap-fit insertion.

Figure 3.3: Bayonet insertion.

pieces located in designated places. In the center, it is located a thrash bin, which is supposed to cross
the table.

3.2 Tests 15

Figure 3.4: Rubik cube manipulation.

Figure 3.5: Robotic cell. The virtual model of this cell will be used for developing and testing the
interface.

16Chapter 3. Proposal for a Multi-Modal interface in an off-line programming environment

Figure 3.6: Testing environment used for making the programs using the interface.

Chapter 4

Implementation

In this chapter, the developed implementation of the proposal will be exposed in detail. The details of
the environments can be found summarized in section 4.1.

Two input modes are incorporated to the interface, one of them is speech recognition, which will use
the default audio input device of the computer, for this the Microsoft Speech Platform SDK 11. The
other mode segments the hands of the user through a motion sensing device, the device chosen is the
Leap Motion Sensor, its C# SDK is also used.

The proposed interface incorporates a GUI allowing to make some basic configuration as well as
constraining the input from the motion sensing device to be used, enabling speech recognition or interact
with the tools of the robots in the RS station, the GUI also provides additional output for the operator
about the speech recognition and the hands pose segmentation, as well as their rotation and position in
the equivalent virtual station.

The interface allows to jog up to two robots with the hands and specify targets in the station, as well
as precisely align to objects in the station given their frame in order to make precise movements. The
interface requires Smart Components in the station to provide all the output it can offer, the required
configuration before using the interface will be detailed ahead.

A functionality to automatically generate path procedures, including synchronization points and out-
put commands for tool action is also added.

It is important to highlight that more multi-modality is achieved when combining the input modes
offered by this interface with the interaction modes already provided by RS.

The look of the RS software along with the proposed Add-In is shown in Figure 4.1.

About how the interface internally works, a general overview of the data flow can be seen in Figure 4.2,
this one is just an orientative graph, a UML class diagram of the Add-In new classes can be found in
Appendix A.

18 Chapter 4. Implementation

Figure 4.1: RS while in the Add-In tab. A preliminary look of the station can be seen

19

Robot Studio

Multi-Modal Interface

Visualization

Station

Virtual Controller

Task 1

Tool

Task 2

Task n

Leap Motion Sensor
New Frame Event

GUI

Left Task

Right Task

Filter
Constrains

Motion Recorder

Hands

Left Right

State Machines

Workobject

Targets

Procedures

Target
Calculation

Speech Recognized
Event

Layout

Part 1

Part 2

Part n

Gripper
Commands

Tasks

Visualizers

Figure 4.2: General overview of the interface internal operation. This is just an indicative graph.

20 Chapter 4. Implementation

4.1 Environment

In the next lines, a justification for the choice of the components to develop the implementation is given,
as well as a summary of the environment.

In order to command specific positions in space with a non-classical input mode, the position of a
hand in space could be useful for the robot and natural for a human, some kind of positioning sensor will
be required, but some devices like the Kinect camera, the Leap Motion Sensor or the controllers used in
VR devices can already give this detection.

Regarding the available material, in the case of human-motion sensors, we dispose of a Kinect camera
and a Leap Motion Sensor. We can find a brief comparison between both of them below.

Whilst Leap Motion is more suitable for computer input due to its closer range, and it also has higher
precision [22], we choose this device instead of the Kinect camera. Moreover, Leap Motion has several
Application Programming Interfaces (APIs):

• JavaScript
• Unity
• C#
• C++
• Java
• Python
• Objective-C

Additionally, the Leap Motion documentation explains how to configure Microsoft Visual Studio to
compile a program using their dynamic library.

In the case of off-line programming environments, we dispose of a Robot Studio license and the model
of an existing station. RS is a specialized off-line programming environment for industrial robots and
ABB also makes available an SDK for developers.

The Developer Kit offered for free by ABB contains the next SDK’s:

• RobotStudio SDK: Allows the development of custom applications or Add-Ins to add new features
to RobotStudio.

• PC SDK: Allows the creation of customized operator interfaces for an ABB robot controller over
a network as independent applications.

• Robot Web Services: Exposes different APIs APIs facilitating platform independent and lan-
guage communication with the robot controller.

• FlexPendant SDK: Allows the development of custom applications for the FlexPendant. Limited
support.

On the one hand, choosing the PC SDK would require developing an interface from scratch, on the
other hand, the RS SDK offers us a well-known interface and allows us to add modes to the already
existing ones of the off-line environment.

As the RS SDK only supports C#. We should use the C# programming language and the respective
Leap Motion API. This high-level language is easy to use and disposes of the .NET framework widely
used in Windows applications. RS is only available for Windows and needs the Microsoft Visual Studio

4.2 Design and implementation of the GUI 21

software to use its code templates. The documentation offers additional guidance in the configuration of
the environment, as this is the most supported IDE that Microsoft supports, it is a good choice.

Finally, in the case of speech recognition, given that we are going to use the .NET framework, which
also allows language interoperability, a good choice for speech recognition is the Microsoft Speech Platform
SDK 11, which can be installed in addition to the .NET framework.

To summarize, the Add-In will be programmed using the RS SDK in the Visual Studio IDE along with
the .NET framework, adding it the Microsoft Speech Platform SDK 11 and the en-US speech recognition
package. The Leap Motion SDK for the Leap Motion Sensor is also required. The Add-In will be
executed, debugged and tested executing it in RS. Everything will be programmed in C#. As devices, a
laptop with an embedded microphone and the Leap Motion Sensor will be used.

4.2 Design and implementation of the GUI

The GUI that implements the interface is shown in Figure 4.3.

The buttons of the Add-In GUI, as well as their icons, can dynamically change, depending on speech
input or the filtered data from the Leap Motion Sensor, these changes will be explained later along the
remaining sections of this chapter.

Now we will explain the function of each button:

• Speech Recognition: This button enables and disables the speech recognition, it can be clicked
anytime.

• Hand Control: This button enables when to consider the input given by the Leap Motion Sensor
or not, it can be clicked anytime but depending on many factors it may not activate and instead of
it, it will prompt a message asking for additional configuration actions.

• Allow Translation: This button constrains the position of the manipulator’s tool in space, mean-
ing that it can be translated depending on the position of the user’s hands, it is useful when a
precise turning with no translation must be performed.

• Allow Rotation: This button constrains the rotation of the manipulator’s tool, it works in the
same way that Allow Translation but with the rotations of the hands instead of their location.
Clicking this button will activate pitch, yaw, and roll of the tool or disable all of them.

• Allow Pitch (Roll, Yaw): Each of these three checkboxes can be independently activated, when
all are unchecked the allow rotation button will also be unchecked if at least one of these is checked,
the Allow Rotation button will also be checked.

• Add Leap Frame: This button aids configuration of the station, first, it will check if there is a
frame in the station called LeapFrame, if not, it will create a new one, in any case, it will prompt the
user to align the frame axes correctly so they correspond to the Leap Motion Sensor location, the
frame will correspond to the frame of a virtual Leap Motion Sensor in the station, more information
about this can be found in section 4.4.

• Close Left (Right) Gripper: By clicking it the gripper attached to the robot will open or close,
it requires a smart component as a tool and to configure a station logic.

• Select Left (Right) Task: Each button displays a combobox to select among the tasks in the
station to tell the interface which manipulator is going to be moved with the left or right hand.
Moreover, they will indicate their own robot alignment state since the RS API does not implement
indicators.

• Left (Right) Hand: These buttons serve just as indications, their image will change depending
on the detected hand pose, more information can be found on section 4.4.

22 Chapter 4. Implementation

Figure 4.3: GUI of the Add-In. A checked button and disabled buttons are visualized

• Relative Position: This button is intended to constrain the relative position between the tools of
both manipulators, but it is not implemented yet.

• Start: Starts the motion recorder, as well as it creates a new procedure in both tasks named by a
timestamp, targets recorded with the interface will be chained in a path procedure, as well as in a
vector with additional alignment information about this, check section 4.5.

• Stop: Stops the motion recorder, new targets recorded will not chain to the path procedure that
was being programmed.

• Copy code to clipboard: Intended to copy the RAPID code for both tasks to the clipboard once
the motion recorder is stopped, it is not implemented yet.

4.3 Configuration of the environment for the interaction

4.3.1 Station requirements for minimum use

In order to use the Add-In, it requires an RS station, containing a controller with two robots in it, it can
be easily done by following these steps in the RS GUI:

1. In a new RS station, import two robots of your choice from ABB library, as in Figure 4.4.
2. Position them as wanted using the RS GUI.
3. Create a new Robot system from layout, as in Figure 4.5. Give it a name and select the RobotWare

package of your choice. Finally, select the mechanisms to be included in the controller.

Additionally, to use hand input, a LeapMotionFrame must be included, this serves as a virtual Leap
Motion Sensor in the virtual station. The Add-In GUI can be used for placing it, the corresponding
button will generate the frame and give instructions to the user on how to position the frame. If the
frame is not well positioned, the user will figure it out by moving the hand and checking that the hand
movement does not correspond with the movement in the RS station.

Finally, it is required to select a task for each hand using the buttons for selecting tasks, both tasks
must be selected, in case there is only one robot to be programmed, the same task can be assigned for
both hands, then, it does not matter what hand to use.

This minimum configuration allows the user to use the hand inputs, record movement and use the
speech for constraining hand inputs. It does not allow automatic generation of synchronization points or
to simulate how pieces are attached during the recording process of the interface.

In case there is a robot with less than 6 Degrees of freedom (DOF), some of the GUI constraints need
to be applied, so the hand rotation does not make it impossible for the robot to reach it.

4.3.2 Smart Component for tools and Station Logic

To use more features of the interface, specially commanding and recording tool actions, the tools attached
to each robot must be Smart Components. Using a Smart Component as a tool allows it to, for example,

4.3 Configuration of the environment for the interaction 23

attach pieces of the station to it.

In order to program assembly or manipulation operations, it is necessary for the Add-In to know when
a piece is being attached to the robot or detached. It is also needed some way to leave a piece attached
to the other robot gripper when it is detached by one robot and the other is still holding it, in other
words, when both robots were holding a piece.

An example of Smart Component for a parallel mechanical friction gripper with two fingers with a
unique signal for closing and opening is given, it senses if it also senses if it is opened or closed, Figure 4.6
gathers all the child components of the gripper and Figure 4.7 represent the logic these components
follow.

The Add-In functionalities should work correctly as long as the user configures a Smart Component
capable of attaching, detaching, and giving the attached piece of a robot to the other with some logic.

The input and output signals of the Smart Component also need to be configured to be matched to
inputs and outputs of the Add-In. For this, the Add-In helps the user by automatically generating the
inputs or outputs it requires in the RS station.

The Add-In generates inputs CloseLeft, CloseRight and CheckGrippers, and the outputs IsClosedLeft
and IsClosedRight in the station logic, these I/O must be linked to the tools in a logic way, additional
components can be added to the station if the user Smart Components I/O do not correspond to the I/O
generated by the Add-In, for example, to invert a boolean value or set/reset a signal. An analogy for
vacuum grippers can be also done from mechanical ones, the closure can be understood as suction.

The use of these I/O created by the Add-In is to be able to connect the GUI buttons for tool
commanding to the tools in the station, therefore it serves for simulating the pieces movement when
programming a task with the Multi-modal interface.

4.3.3 Defining pieces

In order to define a piece and to use the align feature that the developed interface implements, it is not
enough to just import a CAD geometry in RS.

Unfortunately, RS does not allow to define some frames into a piece, only attaching frames of the
station to them, this issue is not consistent with the RS SDK API, which gives access to a collection of
frames in each graphic component, there is not, at least intuitive, way to add frames to a Part in RS.

There is a way to define a frame for the part, it is defining its local origin, that local origin orientation
is going to be used for alignments, for this, the piece must be configured as follows:

1. Create an empty part as in figure 4.8a.
2. Link it your CAD geometry as in figure 4.8b, a file browser will appear.
3. Edit its local origin in order to do it, do as in figure 4.8c, making its rotation to be the same as the

tool, as visualized in figure 4.8d.

24 Chapter 4. Implementation

Figure 4.4: How to add robots to the station, using the RS GUI and their library.

4.3 Configuration of the environment for the interaction 25

Figure 4.5: How to add a controller containing both robots, more tasks can be later included if needed.

Figure 4.6: Gripper child components. Each of these components works as a function block in the
Smart Component design, it also includes the gripper mechanism.

26 Chapter 4. Implementation

Figure 4.7: Gripper smart components design. Connections between the components and their
properties define the behaviour of the gripper with the rest of the station.

4.3 Configuration of the environment for the interaction 27

(a) Creating an empty part. (b) Linking the CAD geometry.

(c) Editing the local origin. (d) Tool aligned to local origin of the piece.

Figure 4.8: Steps for configuring a piece.

28 Chapter 4. Implementation

4.4 Motion Sensing Input to RobotStudio Data

The Leap Motion Sensor is an inexpensive and small plug and play device. The manufacturer offers a
developer SDK for it in their webpage. The sensor incorporates two cameras and three infrared LEDs
and has a software embedded to make a segmentation of the hands.

Their API is simple and easy to use, it provides an event that will be triggered each time a new pair
of camera frames has been processed, and this event is the one to be attended if it has been specified to
attend it in the GUI, sample images taken from their program Leap Motion Visualizer are displayed on
Figure 4.9.

The information to be extracted from the hand will be the next:

• Translation vector of the hand palm.
• Unitary vectors of the palm direction and the palm normal.
• Determine whether the hand is a left or a right one.
• Determine whether the hand is in one of these poses:

– Opened.
– Closed.
– Making the thumb up sign.
– None of the mentioned.

All the features mentioned above can be easily obtained using the API. The frame data has to be
interpreted and it will also be filtered, the steps to follow are shown below:

1. Check the number of hands in the frame if zero or more than two ignore the frame.
2. Determine which fingers are extended to get the hand pose.
3. Discard the hand if there are fingers extended making a non-implemented gesture.
4. Filter the palm position, the palm direction, the palm normal and its pose with a low-pass filter

along with n − 1 previous samples, regarding if the hand is the left or the right one.

The low-pass filter helps to stabilize the value of these features, avoiding noise in the detection, it
just consists on calculating the mean value of n samples, for the translation vector of the palm and its
direction vectors, for these last ones, the value of the summatory of the vector will be normalized instead
of divided by n.

In the case of the hand pose filtering, the last n samples have to be the same in order to change to a
new pose, meaning that fast changes of pose or momentary misdetections will be ignored, instead of them
the last valid pose will be considered, when the hand is not found in the frame there is an exception, the
filtered pose will automatically be set as Gone.

In order to give feedback to the user, each time that the filtered position changes an event is raised
to refresh an indicator in the GUI, the image varies depending on the filtered hand pose, the icons used
for this visual feedback are shown in Figure 4.10, note that the thumb up pose will be really pointing
horizontally, if not, the thumb will not be seen by the sensor.

Coordinates of the hand will be obtained referred to the Leap Motion Sensor frame; since now,
understand frame as XYZ axes, not as a camera frame; this frame is defined by default, as seen in
Figure 4.11.

In order to refer the values given by the sensor to the RS station, we will add a frame to the station
using the GUI, giving instructions to the user on how to direct its axes in the virtual robot cell.

4.4 Motion Sensing Input to RobotStudio Data 29

(a) Opened hands. (b) Closed and "thumb up" hand.

(c) Misdetection when hands are put together.

Figure 4.9: Captures of the sensor readings. Different situations are displayed.

(a) Icon of opened
hand pose.

(b) Icon of closed
hand pose.

(c) Icon of hand in
the thumb "up" pose.

(d) Icon of unknown
hand pose or not
detected hand.

Figure 4.10: Icons of left hand poses. One icon for each hand will be displayed in the interface, they will
be horizontally flipped for the right hand

30 Chapter 4. Implementation

Figure 4.11: Leap Motion Sensor axes. Values given by the sensor are referred to these axes.

Currently, the interface does not implement a sensibility parameter for the hand pose reading, meaning
that the same amount of movement of the real hands will be transmitted to the RS virtual station.

The operation to refer the vectors ~V to the world frame coordinates, given the transform L of the
sensor frame is shown in equation 4.1.

~VO = L−1 ~VL (4.1)

Finally, when values are filtered, the output data of the filter is transformed to the data types used
by RS, as well as the raw data used as input for the filter.

To summarize, the filtering process along with the consecutive process of commanding and visualiza-
tion that will be explained in section 4.5 is depicted as a flowchart in Figure 4.12.

4.4 Motion Sensing Input to RobotStudio Data 31

Filtering and

Compatibilization of data

Interpretation of data

(For each hand)

Command

Input device
Event

Sensor Data

Any thread

filtering?

Filter

And refer to RS

Station

EndYes

No

Leap Motion

Frame

Calculate target

transform

Iterate the state

machine

State of

poses

Keep position &

Visualize

destination &

reachability

Jog robot to

target position

Visualize if not

possible

GUI

Constraints

Alignment

data

Visualize Imitate

Show opened

End

Any thread

commanding?

No

EndYes

Figure 4.12: Flowchart of the Leap Motion Sensor Input Mode. Interpretation stage is done for each
hand, with different state machines. Feedback sent to the GUI is excluded in this representation.

32 Chapter 4. Implementation

4.5 Robots Movement

Now that we have positioned the user hands on the virtual station, some feedback has to be given to
the user as well as determine whether to use that position to move the robots or not and how to record
data for the desired program. The process is briefly summarized along with the filtering in Figure 4.12,
excluding data generation.

4.5.1 State Machine

In order to make easier what to do with the extracted hands information a state machine has been
implemented, not only the positions of the hands will be important but also how a pose is changed to
another. The same state machine class will be used to create two objects for each hand, so they will run
independently from each other. Transitions for the state machine are retrieved from the filtered pose and
the unfiltered pose, also called instant pose of the hand.

The main states will be named as follows, their explanation is also given:

• Show opened hand: The hand was not found in the filtered pose that in this case equals the instant
one.

• Opened: The hand was found as opened in the instant pose.
• Closed: The hand was found as closed in the filtered pose, meaning that a closed hand cannot be
directly used.

• Align: This is a boolean flag rather than a state, each time a rising edge of thumb up pose is read
from the filter output it will be toggled, more information is about this is given later.

As it can be seen, the machine jumps to the opened state with an instant pose, this is done because
when preceded by a filtered closed state an event to record the current position will be launched and
while opening/closing the hand, the rotation and position read by the sensor tends to vary more than
usual.

As well as each one of the state machines is associated with their respective hand, the reference of the
corresponding task (robot) selected with the GUI will be associated with the same state machine object.

Different actions will be done with opened or closed states, an opened state will visualize if a position
is reachable by the robot while a closed state will perform movement to the target position of the hand
in the station, as long as it is possible to make it, more information about visualization and movement is
given in section4.5.

The state machine also does special actions when some transitions are given:

• From Closed to Opened: An event is raised, this event is used to record the target corresponding
to the current position of the robot if the motion recorder is active, see section 4.7.

• From Opened to Closed: Raises an event, but no handler has been implemented for it.
• Point pulse: A rising edge of a filtered pose of thumb up, reads the robot current position to find
an object in the virtual station to align with.

The state machine graph for each of the hands is represented in Figure 4.13.

4.5 Robots Movement 33

4.5.2 Visualization and movement process

After filtering and iterating the state machine, depending on the machine state and the readings from
the sensor, actions may be performed in the elements of the virtual RS station. The end of using a state
machine allows the user to have some control avoiding involuntary behaviors. The movement provoked
by the user’s hand on the robots is called imitation, and it will work as follows:

Opened state: A big RS frame will be displayed on the station to give the user feedback of its
position. In addition, the frame will be linked with an arrow to the robot’s tool end-effector, the color of
the line will be green if the position is reachable with any configuration and red otherwise. The colors of
the frame axes will follow the color code used in RS, RGB for XYZ, red for X, green for Y and blue for
Z. The coordinate system is dextro-rotatory.

SHOW
OPENED

VISUALIZE

IMITATE

Not aligned

Aligned

Point pulsePoint pulse

Any

Store geometry
reference to align

with

Hand
opened

Hand
closed

Attemp to move
robot

Visualize target
transform

Figure 4.13: State machine for each hand. Lightning symbols represent triggered events.

Closed state: In case we show the sensor an opened hand and given the visual feedback we close
it, we will drag the corresponding manipulator to the target position, a different approach where opening
and closing the hands would have opened and closed the grippers instead of controlling when to move or
not the robots could have been done, but this action has been relieved to the GUI or the speech because
the precision needed for successful manipulation is not easily achieved by the sensor. An example of this
display and the moved robot is given in Figure 4.14.

Alignment state: A parallel state that is combined with the previous one, this state makes the
robot or the target frame visualization to be constrained to the Z-axis of the frame of a piece in the
station. Making a thumb up pose with the hand will enable or disable this mode, it provides more
precision to engage a piece with a gripper and also to align both manipulators when each of them is
holding a piece. When this state is enabled the corresponding task button of the GUI will incorporate

34 Chapter 4. Implementation

a chain. Additionally, the visualization will show a dark cyan line between the target position and the
aligned piece. The difference of icons and the visualization of the alignment can be seen in Figure 4.15.

Now that the visualization feedback regarding the movement of the robots has been explained, how
this movement is calculated and executed is going to be explained. First, the states of the state machine
are read, the difference between an opened state and a closed state is just the robot movement as explained
before.

For making a movement we need to know the active work object of the RS task and the active tool
data. If any options are available they can be changed manually using the RS GUI, the Add-In does not
implement other ways to do it.

In the first place, it is necessary to calculate the target destination. Along with the filtered sensor
data, we add some constraints specified in the GUI, these ones can constraint the translation and the
rotation of the manipulator tool, we can detail the calculations of each type of movements.

Rotation matrix of the hand is extracted given its palm normal and its palm direction. There is an
analogy between the hand and the gripper. When closing a hand with all its fingers pointing to the same
direction a piece can be taken from parallel faces, palm direction will be the translation axis of the gripper
fingers. Then, the palm normal will be the direction which a gripper approaches a piece. As specified in
the gripper axes requisites in section 4.3, in this case, Z-axis is the palm normal ~N , Y-axis is the palm
direction ~D and the remaining X-axis is the common perpendicular, ~D × ~N fulfilling the dextro-rotatory
system criteria.

• In aligned state:

– Translation is allowed: In case the translation is allowed, we calculate the target frame
translation as the nearest point to the hand of the Z-axis of the piece which the robot is aligned
with. So it becomes a "closest distance point to line" problem, in this case, we calculate the
point of the line which makes the distance lower. Being ~V the translation vector of the hand,
~P the translation vector of the piece to align with and ~Rz its Z-axis direction, we calculate
the closest point to the line translation ~T as in equation 4.2.

– Translation is not allowed: In this case, it does not mean that the robot won’t move,
actually, the robot will be positioned aligned to the piece but the hand translation will be
ignored. Equation 4.2 can also be applied but changing the hand translation for the end-
effector translation.

– Rotation is allowed: In case we allow rotation we will use the hand rotation instead of the
one of the target piece. Roll, yaw, and pitch can be independently constrained or not. For the
calculation, we take the Euler XYZ angles of the hand rotation as well as those from the piece.
Roll corresponds to the Z-axis of the tool, yaw with Y and pitch with X. In case the rotation
is constrained, the target frame corresponding Euler angle will be fixed to the piece’s one, if
not, it will imitate the hand’s one. These Euler XYZ angles are directly extracted using the
RS API.

– Rotation is not allowed: If all rotations are constrained we will directly copy the piece
rotation to the target frame, this would be the best option to pick or place a piece.

• In not aligned state:

– Translation is allowed: Translation of the target frame equals the translation of the hand.
– Translation is not allowed: Translation of the target frame equals the current translation

of the end-effector.

4.5 Robots Movement 35

(a) Visualization of a destination with an opened hand.

(b) Robot moved to a destination with closed hand, the robot moves as long as the hand is closed.

Figure 4.14: Visualization example.

36 Chapter 4. Implementation

(a) Not aligned. (b) Aligned.

(c) Visualization of alignment.

Figure 4.15: Alignment state feedback. The icon will change whenever the target frames are aligned to
a piece. A dark cyan line is added to the aligned piece.

4.5 Robots Movement 37

– Rotation is allowed: As explained in the same case for the aligned state, if unconstrained,
Euler angles of hand rotation will be applied to the target frame.

– Rotation is not allowed: Otherwise, the current angle of the end-effector will remain in the
target frame.

Finally the target frame T , which is defined in world coordinates, needs to be referred to the active
workobject of the RS task, being its frame Wobj , the conversion is done as in equation 4.3.

~T = (~V − ~P) − ((~V − ~P) · ~Rz) ◦ ~Rz. (4.2)

TW obj = Wobj
−1T. (4.3)

Now that the target frame has been calculated, the reachability of the position needs to be checked.
Because of this, the RS SDK API provides methods for calculating it on an asynchronous and a fast way.
In order for these methods to work, an RS target needs to be built and added to the task. This RS target
requires the creation of an RS RobTarget, containing information of the transform. Later, it is required
to add the RS RobTarget the task data declarations. Finally, an RS Target is created combining the
RobTarget and the active WorkObject of the RS task, this target needs to be added to the task.

When a target is added to a task in RS it will appear in the "Path&Targets" tab and in the RS GUI,
with the API we can specify the target to be invisible and do not interfere with other visualizations.

The before-mentioned target procedure is necessary to do not make the reachability checking and
movement functions of the RS API to fail internally. This issue is not specified in the ABB official API
documentation.

Another procedure consisting on calculating the inverse kinematics of the task mechanism has been
tested before solving the before-mentioned problem, however, this method did not take in consideration
all the possible configurations that can be used to reach a point, highly limiting the reachability and
resulting in a cumbersome procedure to move the arms.

To check reachability and to command the movement, which is instantly performed as a "jump to
pose" operation, the API uses asynchronous methods which allow the GUI to be refreshed in parallel.

After the movement is performed, the previously added target is erased from the task and the task
data declarations, how targets are recorded will be explained later.

The actions to be done with this target are the next ones:

• Target position is not reachable: A red line between the end-effector and the target frame is
displayed.

• Target position is reachable:

– State is opened hand: A green line between the end-effector and the target frame is dis-
played.

– State is closed hand: Robot will move its end-effector to the target frame.

Additionally, all the performed movements can be undone and redone using the RS GUI, it must be
specified in the code of the Add-In what changes in the station are being considered in an undo step.

38 Chapter 4. Implementation

4.6 Speech Recognition

Speech Recognition has been added to the Add-In as another input mode but this is not the most focused
of the modes. Although speech recognition is a powerful tool that allows implementing very high-level
commands, in our case it is mainly used to allow the user to virtually press the buttons in the interface
or execute an alignment to a piece.

The Microsoft Speech Platform SDK 11 has been used to implement the recognition in this thesis.
The en-US speech recognizer must be installed in Windows in order to be able to use this feature, it can
be easily downloaded from the Windows configuration.

All the speech commands that can be given are shown below:

• Allow translation.
• Allow rotation.
• Allow roll.
• Allow pitch.
• Allow yaw.
• Open left gripper.
• Open right gripper.
• Close left gripper.
• Close right gripper.
• Align left to name of piece.
• Align right to name of piece.
• Misalign.

From the speech commands mentioned above, most of them just make the same action as press-
ing an interface button, for the ones which press the gripper-related buttons, the corresponding action
(Open/Close) desired must be mentioned.

Finally, the alignment-related commands make the alignment as if it would be done by the corre-
sponding hand gesture but choosing which piece to align with instead of the closest piece. If the piece
name is somehow readable, it can be recognized.

In order to build speech commands, some grammars must be built for the recognizer, appending
words or choices of words. An example of choice is all the different commands that have the "Allow" word
prepended. The structure of the speech recognizer is depicted in Figure 4.16.

In this implementation case, a unique speech recognizer with a set of grammars is initialized at once,
the speech recognition can also be a process where a recognizer with certain grammars activate others after
recognizing certain commands, this way, a more than one step recognition could have been implemented.

To conclude about speech recognition it is important to highlight that the used language is not the
same as the author’s native one, it has been checked that the pronunciation of the words drastically
affects the success of a recognition. Moreover, the speech recognizer can be trained using the Windows
speech recognition voice training.

4.7 Generation of instructions 39

Close

Open

Left

Right

Name of part 1

Name of part 2

Name of part n

Align

Misalign

Translation

Rotation

Roll

Pitch

Yaw

Allow

to

GripperLeft

Right

Figure 4.16: Speech Recognizer structure.

4.7 Generation of instructions

At this point it has been explained how the robots are moved using the Leap Motion Sensor and the RS
tasks defined in the station, in order for these actions to aid programming, events will be activated to
request recording orders from the state machine and the speech recognizer as explained before.

The motion recorder object developed for generating RS instructions will not only record Move in-
structions given their targets, it will use the alignment information when a target is requested to be
recorded to find out if the path to be done needs to follow a joint or linear trajectory. It also will record
instructions for activating outputs for controlling both grippers of the robots and figure out when the
movements of the manipulators need synchronization points.

The motion recorder will store the reference to both left and right robot tasks in order to be able to
create synchronization instructions, a boolean flag determines if it is recording or not.

Starting the recorder:
When the motion recorder is started using the GUI, it adds two path procedures to each RS tasks,

these are named with a character for each task, L for left, and R for right, and a time-stamp giving the day
of the year (from 1 to 366), the local hour, minute and second. For example, if start recording is pressed
on 3rd of February at 13:22:08, the path procedure for the left task will be named like PathL_34_132208.

40 Chapter 4. Implementation

Additionally, the CheckGrippers signals will be pulsed to refresh the actual state of the grippers, just in
case if some changes have been done in simulation.

Recording actions:
The recorder provides methods for adding targets and gripper actions. In the case of gripper

actions, we consider grippers that can be commanded to be opened or closed but it is not possible to know
when these actions are already performed, therefore we consider waiting one second after each action is
done.

As before-mentioned, when a closed hand moving a robot is opened it will launch an event, this event
is used to record a target. To avoid recording a movement, the user can either press undo or take the
hand out of sight of the sensor.

When the recorder is told to add a gripper order (close or open), it generates three RS instructions,
first a SetDO followed by a SetDO and another WaitTime instruction. The first one is used to wait until
the robot has completed its previous movement, otherwise, the signal will be executed when the robot
is not yet positioned. The second one changes the corresponding output signal to command the gripper,
in the implementation it uses the name of our signals, these cannot be configured before-hand. Finally,
the third one gives time for the grippers to open and close since no real sensor is used to tell us when
they finish to open or close. More configuration options for specifying the name of the Virtual controller
signal to be changed could be added in minor changes of future works. The generated instructions are
added to their corresponding path procedure.

Gripper orders are recorded clicking in the Add-In GUI to open/close them, or via speech, the reasons
why it was not implemented by making a gesture with the hand is that the Leap Motion Sensor
lacks confidence on this kind of detections, mainly because of it only tracks the hands from a single point
of view.

When the recorder is told to add a target order, the alignment parameter will also be needed,
this one tells if the target was ordered to be recorded while the manipulator was aligned to a piece or
not. Alignment information is added as an attribute to the target, an attribute consists of key-string and
value.

Knowing that this Add-In is oriented to assembly and manipulation, some rules can be abstracted to
automatically determine when to synchronize the movement of the robots or not, as well as to follow a
linear trajectory or not.

The steps for generating a new Move instruction given the target to be recorded are detailed
as follows, additionally, Figure 4.17 complements the explanation with other details:

1. Add the target of the current task pose to the task, the same naming procedure followed
for paths will be applied for targets, but adding an extra number in case more than one is recorded
in a second.

2. Determine whether the Move instruction needs to be done as joint or linear:

The Add-In does not use any path planner or collision avoidance algorithm, instead, when program-
ming a task, the user must considerate what keyframes will be needed. In the case of engaging
a piece with a gripper, it must first be set over the piece, then approached and closed to take the
piece.

The alignment feature helps the user to locate the end-effectors in suitable positions, then a target
recorded with alignment which its previous one was also recorded with alignment will need to be
reached making a linear trajectory. In addition to the previous condition, when two consecutive

4.7 Generation of instructions 41

aligned targets have different piece targets, the linear trajectory will not be needed, therefore a
joint trajectory will be performed in that case.

3. Determine when a Move instruction needs to be preceded by a synchronization point:

As it has been explained until now, the Add-In is meant to program collaborative manipulators,
up to two of them can be programmed, but their movements would need some kind of synchroniza-
tion. Both arms will need to be synchronized when the pieces they are manipulating are going to
be assembled or they both manipulate the same piece.

In order to establish when this synchronization is needed, one of the conditions needed is that
the movement to be done is linear, linear movements are needed to approach a piece, as explained
before, or taking it from where it was deposited. When the manipulator is aligned to a piece held
by the other manipulator, before that movement, a synchronization point has to be inserted in both
tasks procedures to ensure that the recorded movements of the other manipulator are already done.

The first synchronization to start manipulation of a piece, or the first assembly operation
between two pieces is met. But more synchronization points are needed during manipulation or
finishing it.

After the first synchronization point, each time a different manipulator starts performing an
action a synchronization point must be added. Once none of the manipulators are aligned to the
others piece, the manipulation is finished and no more synchronization points are added.

4. Create the synchronization instructions for both procedures if necessary and the move instruc-
tion.

If there are errors during recording, the last instructions can be undone, this undoes the instruc-
tions in the task and therefore in the RS GUI, thanks to embedding the alignment information into the
target, this information is also handled. The recorder does not store extra information that cannot be
located somehow in the RS GUI.

The motion recorder is not implemented to allow redo operations while recording, besides, using
both hands at a time is not recommended because although seeming more intuitive, precision alignments
make it more cumbersome to try to command both manipulators at the same time.

Stopping the motion recorder:
Once the recording finishes, the recorder can be stopped using the GUI, each instruction generated is

automatically stored in the corresponding task procedure and can be seen with the GUI. If no instructions
have been added to a path procedure it is deleted.

Additionally, data declarations of variables and persistent data needed for the synchronization are
added to both tasks. For this, a task list with both tasks is added to each task. Iterating through all
the synchronization instructions added creates synchronization variables. After synchronizing, these data
declarations are automatically added to the RAPID code as follows:

PERS tasks task_list{2}:=[["T_ROB1"],["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

After recording a program:
The programmed procedure can be tested using the RS GUI and synchronized to RAPID as

classically done in RS. If there are instructions not generated as expected, or targets that would require
modification, they can be easily tuned using the RS GUI until the procedure behaves as expected.
Moreover, the configurations of the target can be optimized using the auto-configuration wizard.

42 Chapter 4. Implementation

Event

Task

position,

tool and

Wobj data

Create robTarget

End

Recording?

Yes

No End

Is reachable? No

Add robTarget to the task data declarations, create target ,add

alignment attributes and add target to the task

Yes

Last target

aligned to

 the same

piece

than this?

Yes
Motion type is

Linear
No

Motion type is

Joint

Aligned and no

piece handled yet?

Assign piece as

the handled one

Yes

Synchro counter

 > 0?

Set synchro flag,

increase counter,

set synchro reset

flag

Yes

Aligned

to the piece handled

by the other

robot?

Set synchro flag,

increase counter

Yes

No

Synchro flag?

No

Add WaitSyncTask

Instruction with counter value, reset

counter if synchro reset flag

Yes

Add the correspondent Move

instruction

No

Figure 4.17: Flowchart of the target recording. Flags are reset on every order.

Chapter 5

Results and Analysis

In order to be able to program the procedures exposed in section 1.6, the trial and error methodology has
been followed until the programming of all the task could have been achieved. Some videos have been
recorded to demonstrate how the Add-In works.

The results obtained with this implementation are qualitatively described since the result is the
implementation itself and how it works, no survey has been done to test the interface, given that the
complexity of this work it is still difficult to use.

Regarding its utility for jogging robots, the interface works as it could be expected, the visualization
fluently follows the position given by the user unless the CPU is overloaded with other processes such as
screen video recording.

In the case of the snap-fit insertion task, no singular problem can be found.

In the case of the bayonet mount, making an alignment to the piece holded by the other robot can
make a "rotation problem" after assembling, meaning that if the manipulator is aligned to the piece which
is attached to the piece holded by the robot, it will change its position each time the robot tries to align
to it. This singularity happens because the manipulator is moving the piece it wants to align with in
every movement, anyway it does not mean a big problem while programming.

In the case of the Rubik cube manipulation, since it is simulated as a single piece, the programming
processed resulted significantly non-intuitive, and the visual feedback confusing. It would be necessary
to model the Rubik cube as a mechanism to be able to program its manipulation in a good way, this
last step has not been performed and the implementation does not regard handling pieces behaving as
mechanisms.

It has been checked that it is better to continue programming if a mistake has been done in the process
instead of undoing the last actions, the undo command is implemented in a way that the synchronization
correctness can be lost.

5.1 Review of limitations

In this section, the limitations found during the implementation development are explained, limitations
have affected both easiness of the implementation development as well as the quality of the implementa-
tion.

Regarding the use of the Leap Motion Sensor, its limitations mainly affect the implementation quality:

44 Chapter 5. Results and Analysis

• Occasionally, a left hand may be confused with a right hand.
• The rotation of the palm becomes less precise as the palm normal is not pointing to the camera of
the sensor.

• When both hands are being used at the same time, keeping them close to each other may cause the
detection to fail completely.

• When the palm looks upwards, the sensor is more likely to understand that it is a palm facing
downwards instead.

• Discerning rotation becomes more difficult while the hand is closed.
• Gesture recognition is not available in the last release of the Software Development Kit (SDK)

Limitations found in RS and RS SDK made more difficult the development of the interface:

• Examples for using the RS SDK are limited to simple tasks.
• While using the Add-In tab, the Path&Targets menu is not visible.
• Bad use of the SDK may trigger internal errors on the API whose error text messages do not give
a hint of the real problem.

• Assistance found in ABB forums is limited, and is not as wide as, for example, .NET one.
• The way that the attachment information is stored on RS (in the station instead of in each object)
makes difficult to discern what object is holding each robot, making the programming flexibility of
the Add-In more limited.

Final limitations of the interface created:

• The interface only allows to align the robots to a single frame per piece, in other words, it is not
possible to align the position of the robot to different places of a big piece.

• The points to be reached by the robots have to be teached one by one, there is no artificial intelligence
generating targets automatically, the targets will be recorded when opening the hands instead.

• This last limitation makes the programming much less intuitive.
• Configuration and use of an appropriate smart component are necessary to use all the functionalities.

Chapter 6

Conclusions

The proposal of this thesis has been proved to be both limitated and aided by the capabilities of the
off-line programming environment it is added in, in this case, on the one hand, RobotStudio aids the
implementation by generating instructions instead of directly code, errors done during the programming
process can be easily edited and visualized. On the other hand, the modeling capabilities of RobotStudio
make difficult to make an implementation based on the information that can be extracted from a virtual
piece.

The developed implementation can either be used for jogging or automatic code generation. Even if
the automatic generation of commands does not result as expected it is easier to edit instructions than
generating them from scratch.

6.1 Open issues

The complexity of this work has meant to finish with some open issues not solved yet.

In order to program an assembly operation, the programming procedure needs to be done at once, if
not, the synchronization instructions won’t be automatically generated.

The speech recognition has been implemented in English, instead of the author native language
Spanish, it has been checked that a correct pronunciation while commanding is essential to obtain the
expected behavior. There is a significant presence of false positives, false negatives and mistakes between
commands.

The speech recognition can require opening the program as administrator depending on the permis-
sions used when installing it.

Detection of the handled piece for synchronization is made based on the first target with alignment
recorded instead of the actual piece attached to the robot, meaning that no mistaken targets can be
recorded before aligning to the piece that is going to be manipulated.

After a while using the hand control, the Add-In starts becoming slower.

Data declarations regarding synchronization cannot be visualized in the RS tasks.

6.2 Future Works

The implementation of this Add-In can serve as a base for future works.

46 Chapter 6. Conclusions

Figure 6.1: RobotStudio compatibility with VR headsets.

Improvement of the filter:

The implemented low-pass filter is quite simple, some other methods like an extended Kalman filter,
or other ways to discern the hand pose instead of relying in the Leap Motion API high-level functions
can be implemented to make the rest of the Add-In more precise and powerful. Moreover, some kind of
logic filtering like a delay of the input data regarding position but no delay on pose could maintain a
more stable position when opening the hand for recording.

Improvement by adding a complex algorithm or artificial intelligence:

The target of Multi-modal interfaces is making interaction more intuitive, in this case, programming.
Our implementation has been limited to teaching key-frames or key-targets and generating instructions
with them automatically.

A goal to accomplish in the future would be to automatically generate this targets along with the
instructions by showing the software a set of positions, commands, movements of the hands or any other
input mode and use all the possible information of the virtual station to generate the teached program in
an optimal way, and using the aperture of the hands as a closing/opening input command, not needing
any constraint.

For this work, the motion recorder should be re-implemented and the state machines would not be
necessary.

Giving a "programming aid" focus:

The development of this interface was mainly focused on automating instructions generation but
multi-modes can also offer assistance to make programming easier without directly programming. More
functions could be aided by using gestures as inputs to execute commands easing traditional programming
in RS.

Implementation of more I/O modes:

Of the many possible ways of interaction, one of the most popular could be the virtual or augmented
reality. These devices commonly include controllers which can be located in the 3D space with high
precision. This controllers have many buttons that can be used to implement a set of commands, like the
alignment used in this thesis implementation and activation or deactivation of tools. These devices also
can visualize a virtual environment surrounding the user. This mode could be implemented in RS, it has
compatibility with VR devices as the Oculus Rift and HTC Vive headsets as can be seen in Figure 6.1.

Bibliography

[1] F. Ficuciello, A. Romano, V. Lippiello, L. Villani, and B. Siciliano, Human Motion Mapping to
a Robot Arm with Redundancy Resolution. Cham: Springer International Publishing, 2014, pp.
193–201. [Online]. Available: https://doi.org/10.1007/978-3-319-06698-1_21

[2] G. Du, Y. Lei, H. Shao, Z. Xie, and P. Zhang, “A human–robot interface using particle filter,
kalman filter, and over-damping method,” Intelligent Service Robotics, vol. 9, no. 4, pp. 323–332,
Oct 2016. [Online]. Available: https://doi.org/10.1007/s11370-016-0202-9

[3] C. Papadopoulos, I. Mariolis, A. Topalidou-Kyniazopoulou, G. Piperagkas, D. Ioannidis, and
D. Tzovaras, An Advanced Human-Robot Interaction Interface for Teaching Collaborative Robots
New Assembly Tasks. Cham: Springer International Publishing, 2017, pp. 180–190. [Online].
Available: https://doi.org/10.1007/978-3-319-66471-2_20

[4] T. Brogårdh, “Present and future robot control development?an industrial perspective,”
Annual Reviews in Control, vol. 31, no. 1, pp. 69 – 79, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1367578807000077

[5] C. Wittenberg, “Cause the trend industry 4.0 in the automated industry to new requirements on
user interfaces?” in Human-Computer Interaction: Users and Contexts, M. Kurosu, Ed. Cham:
Springer International Publishing, 2015, pp. 238–245.

[6] Interface Devices and Systems. Boston, MA: Springer US, 2007, pp. 173–223. [Online]. Available:
https://doi.org/10.1007/978-0-387-23326-0_4

[7] K. Ishii, S. Zhao, M. Inami, T. Igarashi, and M. Imai, Designing Laser Gesture Interface for Robot
Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 479–492. [Online]. Available:
https://doi.org/10.1007/978-3-642-03658-3_52

[8] T. Kollar, A. Vedantham, C. Sobel, C. Chang, V. Perera, and M. Veloso, A Multi-modal Approach
for Natural Human-Robot Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
458–467. [Online]. Available: https://doi.org/10.1007/978-3-642-34103-8_46

[9] J. G. Victores, F. R. Cañadillas, S. Morante, A. Jardón, and C. Balaguer, Assistive Robot
Multi-modal Interaction with Augmented 3D Vision and Dialogue. Cham: Springer International
Publishing, 2014, pp. 209–217. [Online]. Available: https://doi.org/10.1007/978-3-319-03413-3_15

[10] N. Rudigkeit, M. Gebhard, and A. Gräser, A Novel Interface for Intuitive Control of Assistive
Robots Based on Inertial Measurement Units. Cham: Springer International Publishing, 2016, pp.
137–146. [Online]. Available: https://doi.org/10.1007/978-3-319-26345-8_12

[11] E. Tamura, Y. Yamashita, Y. Ho, E. Sato-Shimokawara, and T. Yamaguchi, Robot Control
Interface System Using Glasses-Type Wearable Devices. Cham: Springer International Publishing,
2016, pp. 247–256. [Online]. Available: https://doi.org/10.1007/978-3-319-43518-3_24

https://doi.org/10.1007/978-3-319-06698-1_21
https://doi.org/10.1007/s11370-016-0202-9
https://doi.org/10.1007/978-3-319-66471-2_20
http://www.sciencedirect.com/science/article/pii/S1367578807000077
https://doi.org/10.1007/978-0-387-23326-0_4
https://doi.org/10.1007/978-3-642-03658-3_52
https://doi.org/10.1007/978-3-642-34103-8_46
https://doi.org/10.1007/978-3-319-03413-3_15
https://doi.org/10.1007/978-3-319-26345-8_12
https://doi.org/10.1007/978-3-319-43518-3_24

48 BIBLIOGRAPHY

[12] Y.-H. Su, C.-C. Hsiao, and K.-Y. Young, Manipulation System Design for Industrial Robot
Manipulators Based on Tablet PC. Cham: Springer International Publishing, 2015, pp. 27–36.
[Online]. Available: https://doi.org/10.1007/978-3-319-22876-1_3

[13] B. Mocan, M. Fulea, and S. Brad, Designing a Multimodal Human-Robot Interaction Interface
for an Industrial Robot. Cham: Springer International Publishing, 2016, pp. 255–263. [Online].
Available: https://doi.org/10.1007/978-3-319-21290-6_26

[14] M. R. Pedersen and V. Krüger, “Gesture-based extraction of robot skill parameters for intuitive
robot programming,” Journal of Intelligent & Robotic Systems, vol. 80, no. 1, pp. 149–163, Dec
2015. [Online]. Available: https://doi.org/10.1007/s10846-015-0219-x

[15] C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric constraints from demonstrations for
multi-step manipulation in shared autonomy,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), May 2017, pp. 4058–4065.

[16] H. C. Fang, S. K. Ong, and A. Y. C. Nee, “A novel augmented reality-based interface for robot
path planning,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 8,
no. 1, pp. 33–42, Feb 2014. [Online]. Available: https://doi.org/10.1007/s12008-013-0191-2

[17] H. S. Park, E. Y. Kim, and H. J. Kim, Robot Competition Using Gesture Based Interface.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 131–133. [Online]. Available:
https://doi.org/10.1007/11504894_20

[18] H.-G. Lee, Y.-G. Kim, H.-D. Lee, J.-H. Kim, and G.-T. Park, Human Interface for the Robot Control
in Networked and Multi-sensored Environment. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 928–935. [Online]. Available: https://doi.org/10.1007/978-3-540-73281-5_101

[19] E. Iáñez, M. C. Furió, J. M. Azorín, J. A. Huizzi, and E. Fernández, Brain-Robot Interface
for Controlling a Remote Robot Arm. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
353–361. [Online]. Available: https://doi.org/10.1007/978-3-642-02267-8_38

[20] P. González, A. Brumovsky, and M. Anigstein. (2015, April) Implementación de un control
gestual para robots. [Online]. Available: http://www.secyt.frba.utn.edu.ar/gia/trabajosviiijar/jar8_
submission_12.pdf

[21] P. D. E. Prassler, D. A. Stopp, M. Hägele, I. Iossifidis, D. G. Lawitzky, D. G. Grunwald,
and P. D.-I. R. Dillmann, 1 Multi-modal Robot Interfaces. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 5–7. [Online]. Available: https://doi.org/10.1007/978-3-540-31509-4_1

[22] D. Walter. (2014, April) Product comparison ? kinect and leap motion. [Online]. Available:
http://ashlandtech.org/2014/04/02/product-comparison-kinect-and-leap-motion/

https://doi.org/10.1007/978-3-319-22876-1_3
https://doi.org/10.1007/978-3-319-21290-6_26
https://doi.org/10.1007/s10846-015-0219-x
https://doi.org/10.1007/s12008-013-0191-2
https://doi.org/10.1007/11504894_20
https://doi.org/10.1007/978-3-540-73281-5_101
https://doi.org/10.1007/978-3-642-02267-8_38
http://www.secyt.frba.utn.edu.ar/gia/trabajosviiijar/jar8_submission_12.pdf
http://www.secyt.frba.utn.edu.ar/gia/trabajosviiijar/jar8_submission_12.pdf
https://doi.org/10.1007/978-3-540-31509-4_1
http://ashlandtech.org/2014/04/02/product-comparison-kinect-and-leap-motion/

Appendix A

UML Class Diagram

50 Appendix A. UML Class Diagram

MMIClass

-buttonCopyCode:CommandBarButton
-buttonHand:CommandBarButton
-buttonMic:CommandBarButton
-buttonLeapFrame:CommandBarButton
-buttonTranslate:CommandBarButton
-buttonRotate:CommandBarButton
-buttonRoll:CommandBarButton
-buttonPitch:CommandBarButton
-buttonYaw:CommandBarButton
-buttonGripperLeft:CommandBarButton
-buttonGripperRight:CommandBarButton
-buttonStart:CommandBarButton
-buttonStop:CommandBarButton
-comboBoxLeftArm:CommandBarComboBox
-comboBoxRightArm:CommandBarComboBox
-station:Stations.Station
-controller:Leap.Controller
-filter:Filter
-ignoreFilter:ThreadIgnorer
-ignoreHandler:ThreadIgnorer
-indicatorLeftHand:CommandBarButton
-indicatorRightHand:CommandBarButton
-leapMotionFrame:Stations.Frame
-leftTask:RsTask
-rightTask:RsTask
-leftVisualizer:GraphicVisualizer
-rightVisualizer:GraphicVisualizer
-sre:SpeechRecognitionEngine
-stateMachineLeft:StateMachine
-stateMachineRight:StateMachine

Filter

StateMachine

+alignment:Alignment
+inputRobot:RsTask
+curState:StateMachine.StateName
+OpenedHandEvent:EventHandler
+ClosedHandEvent:EventHandler
+GoneHandEvent:EventHandler
-pointingBefore:bool
-pointPulse:bool
-robotButton:CommandBarButton

-framePoseL:Pose
-framePoseR:Pose
-currFiltPoseL:Pose
-currFiltPoseR:Pose
-fingerL:Leap.Finger
-fingerR:Leap.Finger
-frameIn:Leap:Frame
-frameOut:Leap:FrameAndPoseLeap
-handL:Leap.Hand
-handR:Leap.Hand
-posesL:Queue<Pose>
-posesR:Queue<Pose>
-palmDirectionsL:Queue<Leap.Vector>
-palmDirectionsR:Queue<Leap.Vector>
-palmNormalsL:Queue<Leap.Vector>
-palmNormalsR:Queue<Leap.Vector>
-pointDirectionsL:Queue<Leap.Vector>
-pointDirectionsR:Queue<Leap.Vector>
-positionsL:Queue<Leap.Vector>
-positionsR:Queue<Leap.Vector>

+StateMachine()
+OnHandGone():void
+OnHandOpened():void
+OnHandClosed():void
+OnHandPointing():void
+OnAlignFromSpeech():void
+OnMisalignFromSpeech():void
+Iterate():StateName

+NewInput():int
+GetFrameFilteredLeapFormat:FrameAndPoseLeap
+GetFrameFilteredRsFormat:FrameAndPoseRs
+FilterAll()
-PoseFiltering():Pose
-AnglesFiltering():Vector
-PositionFiltering():Vector
-FloatFiltering():Vector

+AddInMain():void
-ButtonCopyCode_ExecuteCommand:void
-ButtonGripperLeft_ExecuteCommand:void
-ButtonGripperRight_ExecuteCommand:void
-ButtonHand_ExecuteCommand:void
-ButtonLeapFrame_ExecuteCommand:void
-ButtonMic_ExecuteCommand:void
-ButtonRotate_ExecuteCommand:void
-ButtonStart_ExecuteCommand:void
-ButtonStop_ExecuteCommand:void
-ButtonTranslate_ExecuteCommand:void
-CalculateTargetGMatrix:Matrix4
-CancelSpeechRecognition():void
-ComboBox_DropDownCommand():void
-ComboBox_SelectionChangedCommand():void
+ImitateHandAsync():Task
+InitializeSpeechRecognition:void
-NewFrameHandlerAsync():void
-OnLeftAlignmentChanged():void
OnPoseChanged():void
OnRightAlignmentChanged():void
OnSpeechRecognized():void
Project_ActiveProjectChanged():void
-StartSpeechRecognition():void
-Station_IOSignalValueChanged():void
-UndoContext_Undone():void

<<Enumeration>>

Pose

+CLOSED
+GONE
+OPENED
+POINTING

<<Enumeration>>

StateName

+Imitate
+Visualize
+ShowOpenedHand

1

2

<<uses>>

<<uses>>

Figure A.1: UML class diagram. Classes of the RS, Leap Motion and .NET APIs have been omitted, as
well as some unused methods or fields.

51

MotionRecorder

-recording:bool
-leftTask:RsTask
-rightTask:RsTask
-currentPathL:RsPathProcedure
-currentPathR:RsPathProcedure
-handlingLeft:GraphicComponent
-handlingRight:GraphicComponent
-lastTargetLeft:RsTarget
-lastTargetRight:RsTarget
-synchroCounter:uint
-synchroCounterMax:uint

GraphicVisualizer

-station:Stations.Station
-graphicFrame:TemporaryGraphic
-graphicLine:TemporaryGraphic
-graphicLineToPiece:TemporaryGraphic

ThreadIgnorer

-count:int
-maxCount:int
+ThreadIgnorer()
+ProtectCodeStart():bool
+ProtectCodeEnd():void

+IsRecording()
+MotionRecorder()
+StartRecording()
+StopRecording()
+AddGripperOrderOnExternalEvent()
+AddTargetOrderOnExternalEvent()

+GraphicVisualizer()
+EraseGraphic():void
+VisualizeFrame():void

HandAndPoseLeap

+filtPose:Pose
+instantPose:Pose
+palmDirection:Leap.Vector
+palmNormal:Leap.Vector
+position:Leap.Vector

HandAndPoseRs

+filtPose:Pose
+instantPose:Pose
+palmDirection:Vector3
+palmNormal:Vector3
+position:Vector3
+Rotation:Matrix3

FrameAndPoseLeap

+left:HandAndPoseLeap
+right:HandAndPoseleap

FrameAndPoseRs

+left:HandAndPoseRs
+right:HandAndPoseRs

Alignment

+targetComponent:GraphicComponent
-align:bool
-targetMatrix:Matrix4

RecordGripperOrderEventArgs

+isClosingOrder:bool
+task:RsTask

RecordTargetOrderEventArgs

+alignment:Alignment
+task:RsTask

+Align:bool

2 2

1

2

2

<<creates>>

<<creates>><<creates>>

<<receives>>

1

<<receives>>

<<creates>>

Figure A.2: UML class diagram, lower part. Classes of the RS, Leap Motion and .NET APIs have been
omitted, as well as some unused methods or fields.

Appendix B

XML Code Documentation

This code XML documentation can be visualized in XML visualizers, it includes all the code that was
left in the final implementation including unused fields or methods.

Listing B.1: Code XML documentation
1 <?xml version=" 1 .0 " ?>
2 <doc>
3 <assembly>
4 <name>Mult iModal Inter face</name>
5 </ assembly>
6 <members>
7 <member name="T:MMI . MMIClass ">
8 <summary>
9 Main c l a s s o f the Add−In

10 </summary>
11 </member>
12 <member name="F:MMI . MMIClass . s r e ">
13 <summary>
14 Speech r e c o g n i z e r f o r the Add−In speech commands
15 </summary>
16 </member>
17 <member name="F:MMI . MMIClass . sreYesNo ">
18 <summary>
19 Speech r e c o g n i z e r f o r Yes/No acknowledge commands
20 </summary>
21 </member>
22 <member name="M:MMI. MMIClass . I n i t i a l i z e S p e e c h R e c o g n i t i o n ">
23 <summary>
24 I n i t i a l i z e s the speech r e c o g n i t i o n , c o n f i g u r i n g the r e c o g n i z e r s and the

grammars f o r commands . But does not s t a r t the r e c o g n i t i o n
25 </summary>
26 </member>
27 <member name="M:MMI. MMIClass . StartSpeechRecogn i t ion ">
28 <summary>
29 S t a r t s the r e c o g n i z e r so the user can s t a r t speaking to the computer
30 </summary>
31 </member>
32 <member name="M:MMI. MMIClass . OnSpeechRecognized (System . Object , System . Speech .

Recogni t ion . SpeechRecognizedEventArgs) ">
33 <summary>
34 The event handler f o r g e n e r a l r e c o g n i t i o n
35 </summary>

54 Appendix B. XML Code Documentation

36 <param name=" sender "> Not used </param>
37 <param name=" e "> Contains in fo rmat ion about the r ecogn i z ed speech </param

>
38 </member>
39 <member name="M:MMI. MMIClass . OnSpeechHypothesized (System . Object , System . Speech

. Recogni t ion . SpeechHypothesizedEventArgs) ">
40 <summary>
41 The event handler f o r debugging recogn i z ed speech hypotheses
42 </summary>
43 <param name=" sender "> Not used </param>
44 <param name=" e "> Contains in fo rmat ion about the hypothes ized speech </

param>
45 </member>
46 <member name="M:MMI. MMIClass . OnYesNoRecognized (System . Object , System . Speech .

Recogni t ion . SpeechRecognizedEventArgs) ">
47 <summary>
48 The event handler f o r yes /no r e c o g n i t i o n
49 </summary>
50 <param name=" sender "> Not used </param>
51 <param name=" e "> Contains in fo rmat ion about the r ecogn i z ed speech </param

>
52 </member>
53 <member name="F:MMI . MMIClass . l e f t V i s u a l i z e r ">
54 <summary>
55 Object f o r v i s u a l i z i n g the l e f t robot d e s t i n a t i o n t a r g e t and r e a c h a b i l i t y

.
56 </summary>
57 </member>
58 <member name="F:MMI . MMIClass . r i g h t V i s u a l i z e r ">
59 <summary>
60 Object f o r v i s u a l i z i n g the r i g h t robot d e s t i n a t i o n t a r g e t and

r e a c h a b i l i t y .
61 </summary>
62 </member>
63 <member name="M:MMI. MMIClass . ButtonMic_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
64 <summary>
65 Handler f o r c l i c k i n g the microphone button , s t a r t s or c a n c e l s the speech

r e c o g n i t i o n .
66 </summary>
67 <param name=" sender "> Not used . </param>
68 <param name=" e "> Not used . </param>
69 </member>
70 <member name="M:MMI. MMIClass . ButtonHand_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
71 <summary>
72 Handler f o r c l i c k i n g the Hand c o n t r o l button , i n i t i a l i z e s everyth ing

needed f o r read ing hands or prompts i f some c o n f i g u r a t i o n i s s t i l l
mis s ing .

73 </summary>
74 <param name=" sender "> Not used . </param>
75 <param name=" e "> Not used . </param>
76 </member>
77 <member name="M:MMI. MMIClass . ButtonTranslate_ExecuteCommand (System . Object ,ABB

. Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
78 <summary>
79 Handler f o r c l i c k i n g the Allow t r a n s l a t i o n button , a l l ow s t r a n s l a t i o n or

not .
80 </summary>

55

81 <param name=" sender "> Not used . </param>
82 <param name=" e "> Not used . </param>
83 </member>
84 <member name="M:MMI. MMIClass . ButtonRotate_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
85 <summary>
86 Handler f o r c l i c k i n g the Allow r o t a t i o n / p i t ch /yaw/ r o l l buttons , the

r o t a t i o n i s d i s a b l e d i f every s u b r o t a t i o n i s d i sab led ,
87 and i t i s enabled i f any s u b r o t a t i o n i s enabled .
88 </summary>
89 <param name=" sender "> Used to check what button has been c l i c k e d . </param

>
90 <param name=" e "> Not used . </param>
91 </member>
92 <member name="M:MMI. MMIClass . ButtonLeapFrame_ExecuteCommand (System . Object ,ABB

. Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
93 <summary>
94 Handler f o r c l i c k i n g the Add Leap Frame button , i f the Leap frame does

not e x i s t i t c r e a t e s a new one and prompts how to p o s i t i o n i t , i f i t
does e x i s t s i t prompts how to p o s i t i o n i t .

95 </summary>
96 <param name=" sender "> Not used . </param>
97 <param name=" e "> Not used . </param>
98 </member>
99 <member name="M:MMI. MMIClass . ButtonGripperLeft_ExecuteCommand (System . Object ,

ABB. Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
100 <summary>
101 Handler f o r the Le f t g r i p p e r button , t o g g l e s the Clo seLe f t g r i p p e r s i g n a l

va lue .
102 </summary>
103 <param name=" sender "> Just takes the r e f e r n c e o f the button . </param>
104 <param name=" e "> Not used . </param>
105 </member>
106 <member name="M:MMI. MMIClass . ButtonGripperRight_ExecuteCommand (System . Object ,

ABB. Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
107 <summary>
108 Handler f o r the Right g r i p p e r button , t o g g l e s the CloseRight g r i p p e r

s t a t i o n s i g n a l va lue .
109 </summary>
110 <param name=" sender "> Just takes the r e f e r e n c e o f the button . </param>
111 <param name=" e "> Not used . </param>
112 </member>
113 <member name="M:MMI. MMIClass . ButtonStart_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
114 <summary>
115 S t a r t s the motionRecorder so a new path procedure i s c r ea ted and a c t i o n s

performed with hands or g r i p p e r commands w i l l be recorded .
116 </summary>
117 <param name=" sender "> Just takes the r e f e r e n c e o f the button . </param>
118 <param name=" e "> Not used . </param>
119 </member>
120 <member name="M:MMI. MMIClass . ButtonStop_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
121 <summary>
122 Handler f o r c l i c k i n g the button stop . Stops the motionRecorder , so s tops

r e c o r d i n g a c t i o n s and stops us ing the same path procedure .
123 </summary>
124 <param name=" sender "> Just takes the r e f e r e n c e o f the button . </param>
125 <param name=" e "> Not used . </param>

56 Appendix B. XML Code Documentation

126 </member>
127 <member name="M:MMI. MMIClass . ButtonCopyCode_ExecuteCommand (System . Object ,ABB.

Robot ics . RobotStudio . Environment . ExecuteCommandEventArgs) ">
128 <summary>
129 Handler f o r c l i c k i n g the copy code to c l i p b o a r d button . Not implemented

yet .
130 </summary>
131 <param name=" sender "></param>
132 <param name=" e "></param>
133 </member>
134 <member name="M:MMI. MMIClass . ComboBox_DropDownCommand(System . Object , System .

EventArgs) ">
135 <summary>
136 Handler f o r c l i c k i n g the S e l e c t l e f t / r i g h t task buttons . Searchs f o r

t a s k s in the s t a t i o n and add them as items o f the dropbox .
137 </summary>
138 <param name=" sender "> Just takes the r e f e r e n c e o f the button .</param>
139 <param name=" e "> Not used .</param>
140 </member>
141 <member name="M:MMI. MMIClass . ComboBox_SelectionChangedCommand (System . Object ,

System . EventArgs) ">
142 <summary>
143 Handler f o r c l i c k i n g a s e l e c t i o n o f the combobox f o r s e l e c t i n g Le f t / Right

task . Changes the capt ion o f the comboBox with the s e l e c t e d task .
144 </summary>
145 <param name=" sender ">Takes the r e f e r e n c e o f the comboBox . Allows to know

which combobox are we us ing .</param>
146 <param name=" e "> Not used .</param>
147 </member>
148 <member name="F:MMI . MMIClass . s t a t i o n ">
149 <summary>
150 Reference to the a c t i v e s t a t i o n o f RS, that conta in s everyth ing the user

can see in the RS GUI (mechanisms , parts , t a s k s) .
151 </summary>
152 </member>
153 <member name="F:MMI . MMIClass . l e f t T a s k ">
154 <summary>
155 Reference to the l e f t task f o r the MM contro l , to be as s i gned when

s e l e c t e d with the Add−In GUI .
156 </summary>
157 </member>
158 <member name="F:MMI . MMIClass . r ightTask ">
159 <summary>
160 Reference to the r i g h t task f o r the MM contro l , to be as s i gned when

s e l e c t e d with the Add−In GUI .
161 </summary>
162 </member>
163 <member name="F:MMI . MMIClass . leapMotionFrame ">
164 <summary>
165 Frame o f the v i r t u a l Leap Motion Sensor to be ubicated in the v i r t u a l

s t a t i o n .
166 </summary>
167 </member>
168 <member name="F:MMI . MMIClass . f i l t e r ">
169 <summary>
170 F i l t e r f o r the l eap Motion Sensor .
171 </summary>
172 </member>
173 <member name="F:MMI . MMIClass . s tateMachineLef t ">

57

174 <summary>
175 State Machine f o r the l e f t arm .
176 </summary>
177 </member>
178 <member name="F:MMI . MMIClass . stateMachineRight ">
179 <summary>
180 State Machine f o r the r i g h t arm .
181 </summary>
182 </member>
183 <member name="F:MMI . MMIClass . motionRecorder ">
184 <summary>
185 Recorder o f commands g iven by the hand c o n t r o l or some speech commands ,
186 r e c o r d s g r i p p e r a c t i o n s and t a r g e t s g iven the hands p o s i t i o n s ,
187 automat i ca l l y gene ra t ing path procedures .
188 </summary>
189 </member>
190 <member name="F:MMI . MMIClass . c o n t r o l l e r ">
191 <summary>
192 C o n t r o l l e r o f the Leap Motion Sensor .
193 </summary>
194 </member>
195 <member name="M:MMI. MMIClass . AddinMain ">
196 <summary>
197 Entry po int o f the MultiModal i n t e r f a c e Add−In . The GUI i s c r ea ted as

w e l l as event hand le r s are a s s i gned .
198 </summary>
199 </member>
200 <member name="M:MMI. MMIClass . Project_ActiveProjectChanged (System . Object ,

System . EventArgs) ">
201 <summary>
202 Event handler that a s s i g n s the s t a t i o n , c r e a t e s the Add−In I /O and

a s s i g n s some event hand le r s depending on the cur rent p r o j e c t .
203 </summary>
204 <param name=" sender "> Object sending the event , not used </param>
205 <param name=" e "> Arguments sent by the o b j e c t sending the event , not used

</param>
206 </member>
207 <member name="M:MMI. MMIClass . UndoContext_Undone (System . Object , System .

EventArgs) ">
208 <summary>
209 This d e l e g a t e i s meant to be executed whenever we do or undo , check ing

how the s t a t e o f the buttons should be c o r r e c t e d
210 </summary>
211 <param name=" sender "> Not used </param>
212 <param name=" e "> Not used </param>
213 </member>
214 <member name="M:MMI. MMIClass . Station_IOSignalValueChanged (System . Object ,ABB.

Robot ics . RobotStudio . S t a t i o n s . IOSignalChangedEventArgs) ">
215 <summary>
216 This d e l e g a t e i s meant to be executed whenever a s t a t i o n I /O s i g n a l has

changed i t s va lue . Re f r e she s the s t a t e o f the g r i p p e r buttons
whenever CheckGrippersSignal changes .

217 </summary>
218 <param name=" sender "></param>
219 <param name=" e "></param>
220 </member>
221 <member name="F:MMI . MMIClass . i g n o r e F i l t e r ">
222 <summary>
223 Object f o r not execut ing a p i e c e o f code twice and l e a v i n g the the method

58 Appendix B. XML Code Documentation

i n s t e a d o f wa i t ing .
224 </summary>
225 </member>
226 <member name="F:MMI . MMIClass . ignoreHandler ">
227 <summary>
228 Object f o r not execut ing a p i e c e o f code twice and l e a v i n g the the method

i n s t e a d o f wa i t ing .
229 </summary>
230 </member>
231 <member name="M:MMI. MMIClass . OnPoseChanged (System . Object , System .

ComponentModel . PropertyChangedEventArgs) ">
232 <summary>
233 Handler f o r property change o f the f i l t e r , executed whenever a f i l t e r e d

hand pose changes
234 </summary>
235 </member>
236 <member name="M:MMI. MMIClass . OnLeftAlignmentChanged (System . Object , System .

ComponentModel . PropertyChangedEventArgs) ">
237 <summary>
238 Handler f o r changing the al ignment s t a t e o f l e f t robot . Changes the image

o f the l e f t robot .
239 </summary>
240 <param name=" sender "> A boolean i n d i c a t i n g the al ignment s t a t e .</param>
241 <param name=" e "> Not used .</param>
242 </member>
243 <member name="M:MMI. MMIClass . OnRightAlignmentChanged (System . Object , System .

ComponentModel . PropertyChangedEventArgs) ">
244 <summary>
245 Handler f o r changing the al ignment s t a t e o f r i g h t robot . Changes the

image o f the r i g h t robot .
246 </summary>
247 <param name=" sender "> A boolean i n d i c a t i n g the al ignment s t a t e .</param>
248 <param name=" e "> Not used .</param>
249 </member>
250 <member name="M:MMI. MMIClass . NewFrameHandlerAsync (System . Object , Leap .

FrameEventArgs) ">
251 <summary>
252 Handler f o r a c t i o n s to be done with a new Leap Motion Frame .
253 </summary>
254 <param name=" sender "></param>
255 <param name=" e "></param>
256 </member>
257 <member name="M:MMI. MMIClass . ImitateHandAsync (ABB. Robot ics . Math . Matrix4 ,ABB.

Robot ics . RobotStudio . S t a t i o n s . RsTask ,MMI. Graph icVi sua l i z e r ,MMI. Alignment ,
System . Boolean) ">

258 <summary>
259 ImitateArmAsync i m i t a t e s the p o s i t i o n o f your hands in the s imulator ,

a l l ow in g movement without grabbing gesture , t h i s method
260 cannot be s a f e f o r d i r e c t c o n t r o l o f the robot and r e q u i r e s o r i e n t i n g and

p o s i t i o n i n g the l eap motion frame .
261 Choose e i t h e r t h i s f u n c t i o n or MoveArmAsync i n s t e a d
262 </summary>
263 <param name=" targetGMatrix "> The d e s t i n a t i o n g l o b a l matrix . </param>
264 <param name=" task "> The task o f the cor re spond ing robot </param>
265 <param name=" graphVis "> The corre spond ing v i s u a l i z e r </param>
266 <param name=" al ignment "> The al ignment s t a t e and data </param>
267 <param name="move"> True i f the arm needs to be moved</param>
268 <r e t u r n s></ r e t u r n s>
269 </member>

59

270 <member name="M:MMI. MMIClass . CalculateTargetGMatrix (MMI. HandAndPoseRs ,ABB.
Robot ics . RobotStudio . S t a t i o n s . RsTask ,MMI. Alignment) ">

271 <summary>
272 CalculateTargetGMatrix r e t u r n s the matrix that r e p r e s e n t s the hand

p o s i t i o n seen by the Leap Motion senso r in the world c o o r d i n a t e s o f
the RsStat ion .

273 </summary>
274 <param name=" hand "> The hand to be c a l c u l a t e d . </param>
275 <param name=" task "> The corre spond ing task . </param>
276 <param name=" al ignment "> The al ignment data . </param>
277 <r e t u r n s>A g l o b a l matrix with the t a r g e t trans form . </ r e t u r n s>
278 </member>
279 <member name="T:MMI . MotionRecorder ">
280 <summary>
281 This c l a s s a l l ow s to record the c o n s e c u t i v e t a r g e t s c r ea ted by the

MultiModal I n t e r f a c e Add−In
282 </summary>
283 </member>
284 <member name="M:MMI. MotionRecorder .# c t o r (ABB. Robot ics . RobotStudio . S t a t i o n s .

RsTask ,ABB. Robot ics . RobotStudio . S t a t i o n s . RsTask) ">
285 <summary>
286 Constructor needs the robots s p e c i f i e d to a l low to record both o f them

p o s i t i o n s
287 </summary>
288 <param name=" l e f tRobot "></param>
289 <param name=" rightRobot "></param>
290 </member>
291 <member name="P:MMI . MotionRecorder . I sRecord ing ">
292 <summary>
293 Getter to obta in the r e c o r d i n g f i e l d , meaning i t i s read−only
294 </summary>
295 </member>
296 <member name="M:MMI. MotionRecorder . StartRecord ing ">
297 <summary>
298 I n i t i a l i z e s the motion recorder , p u l s e s the CheckGrippers s i g n a l to

r e f r e s h the s t a t e o f g r i p p e r s in the Add−In GUI and c r e a t e s the paths
to be recorded f o r both ta s k s

299 </summary>
300 </member>
301 <member name="M:MMI. MotionRecorder . StopRecording ">
302 <summary>
303 Stops the motion recorder , f i n i s h e s the recorded paths , e r a s e s a path i f

empty , adds the data d e c l a r a t i o n s r e l a t e d to s y n c h r o n i z a t i o n i f
nece s sa ry

304 </summary>
305 </member>
306 <member name="M:MMI. MotionRecorder . AddGripperOrderOnExternalEvent (ABB.

Robot ics . RobotStudio . Environment . CommandBarButton ,MMI.
RecordGripperOrderEventArgs) ">

307 <summary>
308 Adds g r i p p e r i n s t r u c t i o n s to the environment i f the motion r e c o r d e r i s

r e c o r d i n g
309 </summary>
310 <param name=" sender "> Not used </param>
311 <param name=" e "> Event args conta in ing the task to add the i n s t r u c t i o n s

to and whether i t i s a c l o s i n g order or not </param>
312 </member>
313 <member name="M:MMI. MotionRecorder . AddTargetOrderOnExternalEvent (System .

Object , System . EventArgs) ">

60 Appendix B. XML Code Documentation

314 <summary>
315

316 </summary>
317 <param name=" sender "> Object sending the event which t r i g g e r s t h i s method

</param>
318 <param name=" e "> Event args conta in ing the in fo rmat ion neccesary , o f the

type RecordTargetOrderEventArgs </param>
319 </member>
320 <member name="T:MMI . ThreadIgnorer ">
321 <summary>
322 Class f o r l e a v i n g methods i f another thread i s a l r eady in a given p i e c e

o f code .
323 </summary>
324 </member>
325 <member name="F:MMI . ThreadIgnorer . count ">
326 <summary>
327 Number o f threads which s t a r t e d p r o t e c t i n g code us ing t h i s o b j e c t .
328 </summary>
329 </member>
330 <member name="F:MMI . ThreadIgnorer . maxCount ">
331 <summary>
332 Maximum number o f threads which can ente r a protec t ed zone i n s t e a d o f

l e a v i n g the cur rent method .
333 </summary>
334 </member>
335 <member name="M:MMI. ThreadIgnorer .# c t o r (System . Int32 , System . Int32) ">
336 <summary>
337 Constructor o f the thread i g n o r e r .
338 </summary>
339 <param name=" i n i t i a l I n s i d e "> I n i t i a l number o f threads i n s i d e cons ide r ed .

</param>
340 <param name=" maxInside "> Maximum number o f threads a l lowed in a

p r o t e c t i o n .</param>
341 </member>
342 <member name="M:MMI. ThreadIgnorer . ProtectCodeEnd ">
343 <summary>
344 S p e c i f y the end o f the p i e c e o f code to p r o t e c t
345 </summary>
346 </member>
347 <member name="M:MMI. ThreadIgnorer . ProtectCodeStart ">
348 <summary>
349 S p e c i f y the begg in ing o f the p i e c e o f code to p r o t e c t
350 </summary>
351 </member>
352 <member name="T:MMI . Gr a ph i c V i s ua l i z e r ">
353 <summary>
354 Class f o r v i s u a l i z i n g s p e c i f i c temporary graph i c s in the RS V i s u a l i z a t i o n

o f the s t a t i o n .
355 </summary>
356 </member>
357 <member name="F:MMI . G ra ph i cV i s ua l i z e r . g raph icL ine ">
358 <summary>
359 Graphics f o r l i n e and frame and l i n e to p i e c e in case o f al ignment .
360 </summary>
361 </member>
362 <member name="F:MMI . G ra ph i cV i s ua l i z e r . graphicFrame ">
363 <summary>
364 Graphics f o r l i n e and frame and l i n e to p i e c e in case o f al ignment .
365 </summary>

61

366 </member>
367 <member name="F:MMI . G ra ph i cV i s ua l i z e r . graphicLineToPiece ">
368 <summary>
369 Graphics f o r l i n e and frame and l i n e to p i e c e in case o f al ignment .
370 </summary>
371 </member>
372 <member name="F:MMI . G ra ph i cV i s ua l i z e r . s t a t i o n ">
373 <summary>
374 Stat i on r e f e r e n c e .
375 </summary>
376 </member>
377 <member name="M:MMI. G ra p h i cV i su a l i z e r .# c t o r (ABB. Robot ics . RobotStudio . S t a t i o n s

. S ta t i on) ">
378 <summary>
379 Constructor , needs the s t a t i o n r e f e r e n c e .
380 </summary>
381 <param name=" s t a t i o n "> Stat i on r e f e r e n c e .</param>
382 </member>
383 <member name="M:MMI. G ra p h i cV i su a l i z e r . EraseGraphic ">
384 <summary>
385 Dele t e s the g raph i c s i f they a l r eady e x i s t
386 </summary>
387 </member>
388 <member name="M:MMI. G ra p h i cV i su a l i z e r . EraseGraphic (System . Object , System .

EventArgs) ">
389 <summary>
390 Dele t e s the g raph i c s i f they a l r eady e x i s t , can handle events
391 </summary>
392 <param name=" sender "> Object sending the event , not used </param>
393 <param name=" e "> Event arguments , not used</param>
394 </member>
395 <member name="M:MMI. G ra p h i cV i su a l i z e r . Visual izeFrame (ABB. Robot ics . Math .

Vector3 ,ABB. Robot ics . Math . Matrix4 , System . Double , System . Double , System .
Double , System . Drawing . Color ,MMI. Alignment) ">

396 <summary>
397 Draws a new p a i r o f l i n e −frame graph i c s .
398 </summary>
399 <param name=" from "> Where the l i n e s t a r t s . </param>
400 <param name=" to "> Where the l i n e ends and the frame i s l o c a t e d . </param>
401 <param name=" s i z e "> S i z e o f the frame . </param>
402 <param name=" l ineWidth "> Width o f the l i n e . </param>
403 <param name=" frameWidth "> Width o f the frame l i n e s . </param>
404 <param name=" c o l o r "> Color o f the l i n e . </param>
405 <param name=" al ignment "> Alignment s t a t e and data</param>
406 </member>
407 <member name="T:MMI . RecordGripperOrderEventArgs ">
408 <summary>
409 EventArgs that w i l l be sent from g r i p p e r buttons , conta in ing whether i t

i s commanded to c l o s e or open them .
410 </summary>
411 </member>
412 <member name="F:MMI . RecordGripperOrderEventArgs . task ">
413 <summary>
414 Task corre spond ing to the g r i p p e r order .
415 </summary>
416 </member>
417 <member name="F:MMI . RecordGripperOrderEventArgs . i sC lo s ingOrder ">
418 <summary>
419 S p e c i f i e s i f i sC lo s ingOrder with 1 , 0 otherwi se .

62 Appendix B. XML Code Documentation

420 </summary>
421 </member>
422 <member name="M:MMI. RecordGripperOrderEventArgs .# c t o r (ABB. Robot ics .

RobotStudio . S t a t i o n s . RsTask , System . Boolean) ">
423 <summary>
424 Constructor f o r RecordGripperOrderEventArgs .
425 </summary>
426 <param name=" task "> Task corre spond ing to the g r i p p e r order . </param>
427 <param name=" i sC lo s ingOrder "> S p e c i f i e s i f i sC lo s ingOrder with 1 , 0

otherwi se . </param>
428 </member>
429 <member name="T:MMI . RecordTargetOrderEventArgs ">
430 <summary>
431 Event args sent by the s t a t e machine f o r t a r g e t record ing ,
432 i n c l u d e s task sending the event and al ignment data
433 </summary>
434 </member>
435 <member name="F:MMI . RecordTargetOrderEventArgs . task ">
436 <summary>
437 Task sending the event
438 </summary>
439 </member>
440 <member name="F:MMI . RecordTargetOrderEventArgs . a l ignment ">
441 <summary>
442 Alignment data
443 </summary>
444 </member>
445 <member name="M:MMI. RecordTargetOrderEventArgs .# c t o r (ABB. Robot ics . RobotStudio

. S t a t i o n s . RsTask ,MMI. Alignment) ">
446 <summary>
447 Constructor o f the event args
448 </summary>
449 <param name=" task "> Task sending the event </param>
450 <param name=" al ignment "> Alignment data </param>
451 </member>
452 <member name="T:MMI . Alignment ">
453 <summary>
454 Class conta in ing al ignment data
455 </summary>
456 </member>
457 <member name="E:MMI . Alignment . PropertyChanged ">
458 <summary>
459 Event handler f o r sending events each time the al ignment changes
460 </summary>
461 </member>
462 <member name="F:MMI . Alignment . targetComponent ">
463 <summary>
464 Target part o f the al ignment
465 </summary>
466 </member>
467 <member name="P:MMI . Alignment . TargetOr ientat ion ">
468 <summary>
469 Property to get the o b j e c t o r i e n t a t i o n , the same as the part o r i e n t a t i o n
470 </summary>
471 </member>
472 <member name="P:MMI . Alignment . ObjectTrans lat ion ">
473 <summary>
474 Property to get the o b j e c t t r a n s l a t i o n
475 </summary>

63

476 </member>
477 <member name="P:MMI . Alignment . Al ign ">
478 <summary>
479 Property to get i f the s t a t e i s a l igned , and s e t i t invok ing the a l i g n

change when nece s sa ry
480 </summary>
481 </member>
482 <member name="M:MMI. Alignment.# c t o r (System . Boolean ,ABB. Robot ics . Math . Matrix4)

">
483 <summary>
484 Constructor o f the Alignment c l a s s
485 </summary>
486 <param name=" doAlign "> Align or not </param>
487 <param name=" targetMatr ix "> TargetMatrix o f where to a l i g n </param>
488 </member>
489 <member name="T:MMI . StateMachine ">
490 <summary>
491 This s t a t e machine c l a s s a l l o ws to monitor the s t a t e s dr iven by the pose

o f the hand and when a l l i g n m e n t s commands are g iven by po i n t i ng with
a hand

492 </summary>
493 </member>
494 <member name="F:MMI . StateMachine . OpenedHandEvent ">
495 <summary>
496 Event hand le r s f o r when the hand opens , c l o s e s or d i sappear s
497 </summary>
498 </member>
499 <member name="F:MMI . StateMachine . ClosedHandEvent ">
500 <summary>
501 Event hand le r s f o r when the hand opens , c l o s e s or d i sappear s
502 </summary>
503 </member>
504 <member name="F:MMI . StateMachine . GoneHandEvent ">
505 <summary>
506 Event hand le r s f o r when the hand opens , c l o s e s or d i sappear s
507 </summary>
508 </member>
509 <member name="F:MMI . StateMachine . inputRobot ">
510 <summary>
511 Task o f the robot that t h i s s t a t e machine commands
512 </summary>
513 </member>
514 <member name="F:MMI . StateMachine . al ignment ">
515 <summary>
516 Alignment s t a t e and data o f the s t a t e machine
517 </summary>
518 </member>
519 <member name="F:MMI . StateMachine . curState ">
520 <summary>
521 Current s t a t e o f the s t a t e machine
522 </summary>
523 </member>
524 <member name="T:MMI . StateMachine . StateName ">
525 <summary>
526 Enumerated s t a t e s names
527 </summary>
528 </member>
529 <member name="F:MMI . StateMachine . StateName . ShowOpenedHand ">
530 <summary>

64 Appendix B. XML Code Documentation

531 When hand i s not located , i t must be shown opened b e f o r e movement
532 </summary>
533 </member>
534 <member name="F:MMI . StateMachine . StateName . V i s u a l i z e ">
535 <summary>
536 When shown opened , only v i s u a l i z a t i o n
537 </summary>
538 </member>
539 <member name="F:MMI . StateMachine . StateName . Imi tate ">
540 <summary>
541 When f i n a l l y c losed , the re i s movement
542 </summary>
543 </member>
544 <member name="M:MMI. StateMachine .# c t o r (ABB. Robot ics . RobotStudio . S t a t i o n s .

RsTask ,ABB. Robot ics . RobotStudio . Environment . CommandBarComboBox) ">
545 <summary>
546 Constructor o f the s t a t e machine
547 </summary>
548 <param name=" inputRobot "> Task o f the robot to command </param>
549 <param name=" buttonToChangeImg "> Button o f the i n t e r f a c e f o r debugging

s t a t e </param>
550 </member>
551 <member name="M:MMI. StateMachine . OnHandGone">
552 <summary>
553 Method to be executed when hand disappears , invok ing an event
554 </summary>
555 </member>
556 <member name="M:MMI. StateMachine . OnHandOpened">
557 <summary>
558 Method to be executed when hand opens , invok ing an event
559 </summary>
560 </member>
561 <member name="M:MMI. StateMachine . OnHandClosed (MMI. HandAndPoseRs ,ABB. Robot ics .

RobotStudio . S t a t i o n s . RsTask) ">
562 <summary>
563 Method to be executed when hand c l o s e s , invok ing an event
564 </summary>
565 <param name=" hand "></param>
566 <param name=" robot "></param>
567 </member>
568 <member name="M:MMI. StateMachine . OnHandPointing (ABB. Robot ics . RobotStudio .

S t a t i o n s . RsTask ,ABB. Robot ics . Math . Matrix4) ">
569 <summary>
570 This method s e a r c h e s along geometr i e s in the s t a t i o n around the end

e f f e c t o r and t r i e s to a l i g n i t to the n e a r e s t geometry frame .
571 There fore the robot e n t e r s a s t a t e where i t should be a l i g n i n g to the

a x i s o f that o b j e c t .
572 Point ing w i l l switch between a l i g n or d e a l i g n the robot to the o b j e c t .
573 </summary>
574 </member>
575 <member name="M:MMI. StateMachine . OnAlignFromSpeech (System . S t r i n g) ">
576 <summary>
577 Method to be executed when an al ignment to an s p e c i f i c p i e c e i s requested

, i n s t e a d o f f i n d i n g the n e a r e s t one .
578 </summary>
579 <param name=" pieceName "> s t r i n o f the part as i t appears in the RS GUI .</

param>
580 </member>
581 <member name="M:MMI. StateMachine . OnMisalignFromSpeech ">

65

582 <summary>
583 Method f o r una l i gn ing the arm from speech , d i r e c t l y s e t s al ignment . Al ign

to f a l s e , meaning that the re i s no al ignment
584 </summary>
585 </member>
586 <member name="M:MMI. StateMachine . I t e r a t e (MMI. HandAndPoseRs ,ABB. Robot ics . Math .

Matrix4) ">
587 <summary>
588 I t e r a t e s accord ing to hand pose , jumping through s t a t e s
589 </summary>
590 <param name=" inputHand "> HandAndPose in RS format </param>
591 <param name=" targetGMatrix "> Global matrix o f the hand p o s i t i o n in RS </

param>
592 <r e t u r n s></ r e t u r n s>
593 </member>
594 <member name="T:MMI . Pose ">
595 <summary>
596 Enumerated type f o r hand poses
597 </summary>
598 </member>
599 <member name="F:MMI . Pose .GONE">
600 <summary>
601 Tag meaning that the hand i s not in the frame or no c o n d i t i o n o f the

other tags i s found
602 </summary>
603 </member>
604 <member name="F:MMI . Pose .CLOSED">
605 <summary>
606 Tag meaning that the hand has no f i n g e r extended
607 </summary>
608 </member>
609 <member name="F:MMI . Pose .POINTING">
610 <summary>
611 Tag meaning that the thumb i s extended
612 </summary>
613 </member>
614 <member name="F:MMI . Pose .OPENED">
615 <summary>
616 Tag meaning that the hand has a l l the f i n g e r s extended
617 </summary>
618 </member>
619 <member name="T:MMI . HandAndPoseLeap ">
620 <summary>
621 Class f o r s t r u c t u r i n g the data o f the Leap motion hand .
622 </summary>
623 </member>
624 <member name="F:MMI . HandAndPoseLeap . p o s i t i o n ">
625 <summary>
626 P o s i t i o n o f the hand in the 3D space (X,Y, Z) tak ing as r e f e r e n c e the Leap

Motion Sensor and i t s axes
627 </summary>
628 </member>
629 <member name="F:MMI . HandAndPoseLeap . palmNormal ">
630 <summary>
631 D i r e c t i o n o f the un i ta ry normal vec to r from the hand palm tak ing as

r e f e r e n c e the Leap Motion Sensor and i t s axes
632 </summary>
633 </member>
634 <member name="F:MMI . HandAndPoseLeap . palmDirect ion ">

66 Appendix B. XML Code Documentation

635 <summary>
636 D i r e c t i o n o f the un i ta ry vec to r p a r a l l e l to the palm d i r e c t i o n , po i n t ing

to the c e n t e r part o f the f i n g e r s , tak ing as r e f e r e n c e the Leap
Motion Sensor and i t s axes

637 </summary>
638 </member>
639 <member name="F:MMI . HandAndPoseLeap . po intDir ">
640 <summary>
641 D i r e c t i o n o f the extended f i n g e r i f the hand i s po int ing , as un i ta ry

vector , tak ing as r e f e r e n c e the Leap Motion Sensor and i t s axes
642 </summary>
643 </member>
644 <member name="F:MMI . HandAndPoseLeap . f i l t P o s e ">
645 <summary>
646 F i l t e r e d pose
647 </summary>
648 </member>
649 <member name="F:MMI . HandAndPoseLeap . in s tantPose ">
650 <summary>
651 Raw pose found in t h i s frame
652 </summary>
653 </member>
654 <member name="M:MMI. HandAndPoseLeap.# c t o r ">
655 <summary>
656 Constructor o f the c l a s s i n i t i a l i z i n g empty v e c t o r s and GONE poses
657 </summary>
658 </member>
659 <member name="M:MMI. HandAndPoseLeap.# c t o r (Leap . Vector , Leap . Vector , Leap . Vector

, Leap . Vector ,MMI. Pose ,MMI. Pose) ">
660 <summary>
661 Constructor o f the c l a s s , i n i t i a l i z i n g the i n t e r n a l va lue s with g iven

va lues
662 </summary>
663 <param name=" p o s i t i o n "> P o s i t i o n o f the hand in the 3D space (X,Y, Z)

tak ing as r e f e r e n c e the Leap Motion Sensor and i t s axes </param>
664 <param name=" palmNormal "> D i r e c t i o n o f the un i ta ry normal vec to r from the

hand palm , tak ing as r e f e r e n c e the Leap Motion Sensor and i t s axes <
/param>

665 <param name=" palmDirect ion ">D i r e c t i o n o f the un i tary vec to r p a r a l l e l to
the palm d i r e c t i o n , po i n t i ng to the c e n t e r part o f the f i n g e r s ,
tak ing as r e f e r e n c e the Leap Motion Sensor and i t s axes </param>

666 <param name=" po intDir "> D i r e c t i o n o f the extended f i n g e r i f the hand i s
po int ing , as un i ta ry vector , tak ing as r e f e r e n c e the Leap Motion
Sensor and i t s axes </param>

667 <param name=" f i l t P o s e "> F i l t e r e d pose </param>
668 <param name=" ins tantPose "> Raw pose found in t h i s frame </param>
669 </member>
670 <member name="T:MMI . HandAndPoseRs ">
671 <summary>
672 Class f o r s t r u c t u r i n g the data o f the Leap Motion hand , with the data

types supported by the RS methods .
673 </summary>
674 </member>
675 <member name="F:MMI . HandAndPoseRs . p o s i t i o n ">
676 <summary>
677 P o s i t i o n o f the hand in the 3D space (X,Y, Z) with c o o r d i n a t e s transformed

to the RS world accord ing to the LeapMotion frame l o c a t e d in the
s t a t i o n

678 </summary>

67

679 </member>
680 <member name="F:MMI . HandAndPoseRs . palmNormal ">
681 <summary>
682 D i r e c t i o n o f the un i ta ry normal vec to r from the hand palm , transformed to

the RS world accord ing to the LeapMotion frame l o c a t e d in the
s t a t i o n

683 </summary>
684 </member>
685 <member name="F:MMI . HandAndPoseRs . palmDirect ion ">
686 <summary>
687 D i r e c t i o n o f the un i ta ry vec to r p a r a l l e l to the palm d i r e c t i o n , po i n t ing

to the c e n t e r part o f the f i n g e r s , transformed to the RS world
accord ing to the LeapMotion frame l o c a t e d in the s t a t i o n

688 </summary>
689 </member>
690 <member name="F:MMI . HandAndPoseRs . po intDir ">
691 <summary>
692 D i r e c t i o n o f the extended f i n g e r i f the hand i s po int ing , as un i ta ry

vector , transformed to the RS world accord ing to the LeapMotion frame
l o c a t e d in the s t a t i o n

693 </summary>
694 </member>
695 <member name="F:MMI . HandAndPoseRs . f i l t P o s e ">
696 <summary>
697 F i l t e r e d pose
698 </summary>
699 </member>
700 <member name="F:MMI . HandAndPoseRs . in s tantPose ">
701 <summary>
702 Raw pose found in t h i s frame
703 </summary>
704 </member>
705 <member name="M:MMI. HandAndPoseRs.# c t o r ">
706 <summary>
707 Constructor o f the c l a s s i n i t i a l i z i n g empty v e c t o r s and GONE poses
708 </summary>
709 </member>
710 <member name="M:MMI. HandAndPoseRs.# c t o r (ABB. Robot ics . Math . Vector3 ,ABB.

Robot ics . Math . Vector3 ,ABB. Robot ics . Math . Vector3 ,ABB. Robot ics . Math . Vector3
,MMI. Pose ,MMI. Pose) ">

711 <summary>
712 Constructor o f the c l a s s , i n i t i a l i z i n g the i n t e r n a l va lue s with g iven

va lues
713 </summary>
714 <param name=" p o s i t i o n "> P o s i t i o n o f the hand in the 3D space (X,Y, Z)

transformed to the RS world accord ing to the LeapMotion frame l o c a t e d
in the s t a t i o n </param>

715 <param name=" palmNormal "> D i r e c t i o n o f the un i ta ry normal vec to r from the
hand palm , transformed to the RS world accord ing to the LeapMotion

frame l o c a t e d in the s t a t i o n </param>
716 <param name=" palmDirect ion ">D i r e c t i o n o f the un i tary vec to r p a r a l l e l to

the palm d i r e c t i o n , po i n t i ng to the c e n t e r part o f the f i n g e r s ,
transformed to the RS world accord ing to the LeapMotion frame l o c a t e d

in the s t a t i o n </param>
717 <param name=" po intDir "> D i r e c t i o n o f the extended f i n g e r i f the hand i s

po int ing , as un i ta ry vector , transformed to the RS world accord ing to
the LeapMotion frame l o c a t e d in the s t a t i o n </param>

718 <param name=" f i l t P o s e "> F i l t e r e d pose </param>
719 <param name=" ins tantPose "> Raw pose found in t h i s frame </param>

68 Appendix B. XML Code Documentation

720 </member>
721 <member name="P:MMI . HandAndPoseRs . Rotation ">
722 <summary>
723 HandRotation: Gets the r o t a t i o n matrix o f the hand based on i t s f i e l d s

data
724 </summary>
725 </member>
726 <member name="T:MMI . FrameAndPoseLeap ">
727 <summary>
728 A c l a s s conta in ing the p a i r o f hands
729 </summary>
730 </member>
731 <member name="F:MMI . FrameAndPoseLeap . l e f t ">
732 <summary>
733 Le f t hand data
734 </summary>
735 </member>
736 <member name="F:MMI . FrameAndPoseLeap . r i g h t ">
737 <summary>
738 Right hand data
739 </summary>
740 </member>
741 <member name="T:MMI . FrameAndPoseRs ">
742 <summary>
743 A c l a s s conta in ing the p a i r o f hands in RS format .
744 </summary>
745 </member>
746 <member name="F:MMI . FrameAndPoseRs . l e f t ">
747 <summary>
748 Le f t hand data
749 </summary>
750 </member>
751 <member name="F:MMI . FrameAndPoseRs . r i g h t ">
752 <summary>
753 Right hand data
754 </summary>
755 </member>
756 <member name="F:MMI . FrameAndPoseRs . bothPoint ing ">
757 <summary>
758 Boolean r e s e r v e d f o r f u t u r e use .
759 </summary>
760 </member>
761 <member name="T:MMI . F i l t e r ">
762 <summary>
763 F i l t e r c l a s s , implements the INoti fyPropertyChanged f o r n o t i f y i n g changes

in pose
764 </summary>
765 </member>
766 <member name="E:MMI . F i l t e r . PropertyChanged ">
767 <summary>
768 Event f o r change o f a property .
769 </summary>
770 </member>
771 <member name="T:MMI . F i l t e r . F loa tToFi l t e r ">
772 <summary>
773 Enum f o r s p e c i f y i n g what value to f i l t e r
774 </summary>
775 </member>
776 <member name="F:MMI . F i l t e r .POSE_DEQUE_SIZE">

69

777 <summary>
778 Number o f frames f o r pose f i l t e r i n g .
779 </summary>
780 </member>
781 <member name="F:MMI . F i l t e r .POSITION_DEQUE_SIZE">
782 <summary>
783 Number o f frames f o r p o s i t i o n f i l t e r i n g .
784 </summary>
785 </member>
786 <member name="F:MMI . F i l t e r .PALMNORMAL_DEQUE_SIZE">
787 <summary>
788 Number o f frames f o r palm normal f i l t e r i n g .
789 </summary>
790 </member>
791 <member name="F:MMI . F i l t e r .PALMDIRECTION_DEQUE_SIZE">
792 <summary>
793 Number o f frames f o r palm d i r e c t i o n f i l t e r i n g .
794 </summary>
795 </member>
796 <member name="F:MMI . F i l t e r .POINTDIRECTION_DEQUE_SIZE">
797 <summary>
798 Number o f frames f o r d i r e c t i o n o f the po in t in g f i n g e r f i l t e r i n g , not used

in the implementation .
799 </summary>
800 </member>
801 <member name="P:MMI . F i l t e r . CurrFi ltPoseL ">
802 <summary>
803 Property f o r the cur rent f i l t e r e d pose o f the l e f t hand
804 </summary>
805 </member>
806 <member name="P:MMI . F i l t e r . CurrFiltPoseR ">
807 <summary>
808 Property f o r the cur rent f i l t e r e d pose o f the r i g h t hand
809 </summary>
810 </member>
811 <member name="M:MMI. F i l t e r . NewInput (Leap . Frame) ">
812 <summary>
813 Sets the frame to f i l t e r , i f the r e i s no frame in the f i l t e r , f i l t e r i n g

methods w i l l r e turn i n v a l i d data , use t h i s method with each new frame
, i f not the l a s t added frame

814 w i l l have more weight .
815 </summary>
816 <param name=" frame "> Leap Motion Frame from the senso r . </param>
817 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok . </ r e t u r n s>
818 </member>
819 <member name="M:MMI. F i l t e r . GetFrameFilteredLeapFormat ">
820 <summary>
821 Returns the f i l t e r e d frame data with the data format o f Leap Motion
822 </summary>
823 </member>
824 <member name="M:MMI. F i l t e r . GetFrameFilteredRsFormat (ABB. Robot ics . RobotStudio .

S t a t i o n s . Transform) ">
825 <summary>
826 Returns the f i l t e r e d frame data with the data format o f Robot Studio .

Needs the Leap Motion frame added to the RS s t a t i o n
827 </summary>
828 <param name=" leapFrameInRs "> The trans form o f the l eap motion frame

r e q u i r e d in the RS s t a t i o n </param>
829 </member>

70 Appendix B. XML Code Documentation

830 <member name="M:MMI. F i l t e r . F i l t e r A l l ">
831 <summary>
832 Executes a l l the other f i l t e r methods
833 note that execut ing a f i l t e r i n g method more than once w i l l add more

weight to the
834 cur rent input frame
835 </summary>
836 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok </ r e t u r n s>
837 </member>
838 <member name="M:MMI. F i l t e r . F i l t e r L e f t ">
839 <summary>
840 F i l t e r s l e f t hand .
841 </summary>
842 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok </ r e t u r n s>
843 </member>
844 <member name="M:MMI. F i l t e r . F i l t e r R i g h t ">
845 <summary>
846 F i l t e r s r i g h t hand .
847 </summary>
848 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok </ r e t u r n s>
849 </member>
850 <member name="M:MMI. F i l t e r . F i l t e r P o s e s ">
851 <summary>
852 F i l t e r poses o f both hands .
853 </summary>
854 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok </ r e t u r n s>
855 </member>
856 <member name="M:MMI. F i l t e r . F i l t e r P o i n t D i r e c t i o n s ">
857 <summary>
858 F i l t e r s the po int d i r e c t i o n o f both hands
859 </summary>
860 <r e t u r n s> 0 i f e r ro r , 1 i f eve ryth ing i s Ok </ r e t u r n s>
861 </member>
862 <member name="M:MMI. F i l t e r . F i l t e r P a l m P o s i t i o n s ">
863 <summary>
864 F i l t e r s the s p a t i a l p o s i t i o n o f both hands (X, Y, Z)
865 (Left , Right)
866 </summary>
867 <r e t u r n s></ r e t u r n s>
868 </member>
869 <member name="M:MMI. F i l t e r . F i l t e r A n g l e s ">
870 <summary>
871 F i l t e r s the palm normal and d i r e c t i o n o f the hands
872 </summary>
873 <r e t u r n s></ r e t u r n s>
874 </member>
875 <member name="M:MMI. F i l t e r . F i l t e r P o s e L e f t ">
876 <summary>
877 F i l t e r s the l e f t pose
878 </summary>
879 <r e t u r n s> Returns 1 </ r e t u r n s>
880 </member>
881 <member name="M:MMI. F i l t e r . F i l t e rPoseR ight ">
882 <summary>
883 F i l t e r s the r i g h t pose
884 </summary>
885 <r e t u r n s> Returns 1 </ r e t u r n s>
886 </member>
887 <member name="M:MMI. F i l t e r . F i l t e r P a l m P o s i t i o n L e f t ">

71

888 <summary>
889 F i l t e r s the l e f t palm p o s i t i o n
890 </summary>
891 <r e t u r n s> Returns 1 </ r e t u r n s>
892 </member>
893 <member name="M:MMI. F i l t e r . F i l t e rPa lmPos i t i onRight ">
894 <summary>
895 F i l t e r s the r i g h t palm p o s i t i o n
896 </summary>
897 <r e t u r n s> Returns 1 </ r e t u r n s>
898 </member>
899 <member name="M:MMI. F i l t e r . F i l t e r P o i n t D i r e c t i o n L e f t ">
900 <summary>
901 F i l t e r s the l e f t po i n t i ng d i r e c t i o n o f the f i n g e r
902 </summary>
903 <r e t u r n s> Returns 1 </ r e t u r n s>
904 </member>
905 <member name="M:MMI. F i l t e r . F i l t e r P o i n t D i r e c t i o n R i g h t ">
906 <summary>
907 F i l t e r s the r i g h t p o in t in g d i r e c t i o n o f the f i n g e r
908 </summary>
909 <r e t u r n s> Returns 1 </ r e t u r n s>
910 </member>
911 <member name="M:MMI. F i l t e r . F i l t e r A n g l e s L e f t ">
912 <summary>
913 F i l t e r s the palmNormal and palmDirect ion o f the l e f t hand
914 </summary>
915 <r e t u r n s> Returns 1 </ r e t u r n s>
916 </member>
917 <member name="M:MMI. F i l t e r . F i l t e r A n g l e s R i g h t ">
918 <summary>
919 F i l t e r s the palmNormal and palmDirect ion o f the r i g h t hand
920 </summary>
921 <r e t u r n s> Returns 1 </ r e t u r n s>
922 </member>
923 <member name=" T:Mult iModal Inter face . P r o p e r t i e s . Resources ">
924 <summary>
925 A strong ly −typed r e s o u r c e c l a s s , f o r l o o k i n g up l o c a l i z e d s t r i n g s , e t c .
926 </summary>
927 </member>
928 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . ResourceManager ">
929 <summary>
930 Returns the cached ResourceManager i n s t a n c e used by t h i s c l a s s .
931 </summary>
932 </member>
933 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . Culture ">
934 <summary>
935 Overr ides the cur rent thread ’ s CurrentUICulture property f o r a l l
936 r e s o u r c e lookups us ing t h i s s t r o n g l y typed r e s o u r c e c l a s s .
937 </summary>
938 </member>
939 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . CheckGrippersSignal

">
940 <summary>
941 Looks up a l o c a l i z e d s t r i n g s i m i l a r to CheckGrippers .
942 </summary>
943 </member>
944 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

C lo s eLe f tG r ippe rS igna l ">

72 Appendix B. XML Code Documentation

945 <summary>
946 Looks up a l o c a l i z e d s t r i n g s i m i l a r to C lo seLe f t .
947 </summary>
948 </member>
949 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

C loseRightGr ipperS igna l ">
950 <summary>
951 Looks up a l o c a l i z e d s t r i n g s i m i l a r to CloseRight .
952 </summary>
953 </member>
954 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageCopy">
955 <summary>
956 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
957 </summary>
958 </member>
959 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageGoneLeft">
960 <summary>
961 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
962 </summary>
963 </member>
964 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageGoneRight">
965 <summary>
966 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
967 </summary>
968 </member>
969 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageGripperLeft ">
970 <summary>
971 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
972 </summary>
973 </member>
974 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageGripperRight">
975 <summary>
976 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
977 </summary>
978 </member>
979 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageHandClose">
980 <summary>
981 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
982 </summary>
983 </member>
984 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageHandCloseFlip">
985 <summary>
986 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
987 </summary>
988 </member>
989 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageHandOff">
990 <summary>
991 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
992 </summary>
993 </member>
994 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageHandOpen">
995 <summary>
996 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
997 </summary>
998 </member>
999 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageHandOpenFlip">

1000 <summary>
1001 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1002 </summary>

73

1003 </member>
1004 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageLeapFrame">
1005 <summary>
1006 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1007 </summary>
1008 </member>
1009 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageLeft ">
1010 <summary>
1011 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1012 </summary>
1013 </member>
1014 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageLeftAl igned">
1015 <summary>
1016 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1017 </summary>
1018 </member>
1019 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageLinked">
1020 <summary>
1021 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1022 </summary>
1023 </member>
1024 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageMicOff">
1025 <summary>
1026 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1027 </summary>
1028 </member>
1029 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageMicOn">
1030 <summary>
1031 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1032 </summary>
1033 </member>
1034 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageNoLinked">
1035 <summary>
1036 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1037 </summary>
1038 </member>
1039 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageNoRotate">
1040 <summary>
1041 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1042 </summary>
1043 </member>
1044 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageNoTranslate">
1045 <summary>
1046 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1047 </summary>
1048 </member>
1049 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imagePoint">
1050 <summary>
1051 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1052 </summary>
1053 </member>
1054 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imagePointFl ip">
1055 <summary>
1056 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1057 </summary>
1058 </member>
1059 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageRight">
1060 <summary>
1061 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .

74 Appendix B. XML Code Documentation

1062 </summary>
1063 </member>
1064 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageRightAligned">
1065 <summary>
1066 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1067 </summary>
1068 </member>
1069 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageRotate">
1070 <summary>
1071 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1072 </summary>
1073 </member>
1074 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageStart ">
1075 <summary>
1076 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1077 </summary>
1078 </member>
1079 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageStop">
1080 <summary>
1081 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1082 </summary>
1083 </member>
1084 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . imageTrans late ">
1085 <summary>
1086 Looks up a l o c a l i z e d r e s o u r c e o f type System . Drawing . Bitmap .
1087 </summary>
1088 </member>
1089 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

I s C l o s e d L e f t G r i p p e r S i g n a l ">
1090 <summary>
1091 Looks up a l o c a l i z e d s t r i n g s i m i l a r to I s C l o s e d L e f t .
1092 </summary>
1093 </member>
1094 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

I sC losedRightGr ipperS igna l ">
1095 <summary>
1096 Looks up a l o c a l i z e d s t r i n g s i m i l a r to I sClosedRight .
1097 </summary>
1098 </member>
1099 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . LeapFrameName">
1100 <summary>
1101 Looks up a l o c a l i z e d s t r i n g s i m i l a r to LeapFrame .
1102 </summary>
1103 </member>
1104 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepCloseGripperLeft">
1105 <summary>
1106 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Close Le f t Gripper .
1107 </summary>
1108 </member>
1109 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepCloseGripperRight">
1110 <summary>
1111 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Close Right Gripper .
1112 </summary>
1113 </member>
1114 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . UndoStepLeapFrame">
1115 <summary>
1116 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Leap Frame .

75

1117 </summary>
1118 </member>
1119 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources . UndoStepMovement">
1120 <summary>
1121 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Movement .
1122 </summary>
1123 </member>
1124 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepOpenGripperLeft">
1125 <summary>
1126 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Open Le f t Gripper .
1127 </summary>
1128 </member>
1129 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepOpenGripperRight">
1130 <summary>
1131 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Open Right Gripper .
1132 </summary>
1133 </member>
1134 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepRecordMovement">
1135 <summary>
1136 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Record Movement .
1137 </summary>
1138 </member>
1139 <member name=" P:Mult iModal Inter face . P r o p e r t i e s . Resources .

UndoStepStartRecording">
1140 <summary>
1141 Looks up a l o c a l i z e d s t r i n g s i m i l a r to Star t Recording .
1142 </summary>
1143 </member>
1144 </members>
1145 </doc>

Universidad de Alcalá
Escuela Politécnica Superior

Universidad
de Alcalá

	Resumen
	Abstract
	Contents
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Justification
	1.3 Problem Statement and Research Questions
	1.4 Scope
	1.5 Limitations
	1.6 Objectives
	1.7 Outline

	2 Literature Review
	2.1 Human-Robot Interaction
	2.1.1 Human-Robot Interaction for controlling
	2.1.2 Human-Robot Interaction for programming

	2.2 Multi-Modal Interfaces
	2.3 Summary of the review

	3 Proposal for a Multi-Modal interface in an off-line programming environment
	3.1 Description of the proposal
	3.2 Tests

	4 Implementation
	4.1 Environment
	4.2 Design and implementation of the GUI
	4.3 Configuration of the environment for the interaction
	4.3.1 Station requirements for minimum use
	4.3.2 Smart Component for tools and Station Logic
	4.3.3 Defining pieces

	4.4 Motion Sensing Input to RobotStudio Data
	4.5 Robots Movement
	4.5.1 State Machine
	4.5.2 Visualization and movement process

	4.6 Speech Recognition
	4.7 Generation of instructions

	5 Results and Analysis
	5.1 Review of limitations

	6 Conclusions
	6.1 Open issues
	6.2 Future Works

	Bibliography
	A UML Class Diagram
	B XML Code Documentation

