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Abstract—Chaos-based communications systems have
shown to be of potential interest in some kinds of dispersive
channels. In this paper we analyze the behavior of a class
of chaos-based coded modulations (CCM’s) in channels with
time-invariant intersymbol interference (ISI). We use theISI
distance spectrum of the CCM’s to calculte bounds for the
bit error rate (BER), and we provide the analytical condition
a CCM has to comply to stand a limited quantity of ISI. We
explain also the effect of the main modelling parameter of
this class of chaos-based systems, and we show that the
dynamics of the underlying chaotic map is in each case the
main factor to account for the final performance. The results
show that CCM systems are of potential interest in this kind
of distorting environment.

Index Terms—Chaos, Intersymbol interference, Modula-
tion coding, Error analysis

I. I NTRODUCTION

The possibility of using chaotic signals to carry infor-
mation was first considered in 1993 [1]. This aroused a big
deal of work on chaotic communications, which became
a hot topic in both nonlinear science and engineering.
The interest in chaotic communications was due to the
foreseen good properties of the chaotic signals in the
fields of secure systems or broadband multiple access
systems. In the case of secure systems, one could take
advantage of the uncorrelation and unpredictability of the
chaotic signals to build encryption algorithms. These are
the same properties desirable for the spread sequences
of a code division multiple access (CDMA) system. On
the other hand, chaotic modulations and channel encoders
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derived from chaotic systems attracted much attention,
but the interest on this kind of chaotic communications
dropped somewhat due to the bad performance of the
systems proposed so far. In fact, they did not outperform
other usual coded communication schemes, and they did
not have even better performance than uncoded systems
[2]–[5].

However, in later times and in some contexts we
have witnessed the arising of some proposals with good
performance as compared with classical communication
systems [6]. Other recent proposals in the field make use
of the fact that chaos based systems can be good for
secure communications [7], [8]. This has reopened the
trend of looking for efficient chaotic systems included in
classical schemes where the potentiality of chaos in the
channel could be properly exploited. Some chaos-based
modulation systems working at the waveform level have
already shown to be of potential use in multipath fading
channels [9]. Other kind of chaos-based systems working
at the coding level [10]–[12] have shown to provide good
results in multiuser channels. It has been also shown
that communications based on high dimensional chaotic
systems and belief propagation decoding can offer an
excellent performance characterized with thresholds [13].

Finally, some recent works stress the fact that, using
chaos-based developments working jointly at the wave-
form and the coding level, it is possible to build multi-
dimensional chaos-based coded modulations (CCM’s) or
concatenated systems based upon bad performing chaos-
based coded modulations that, when employed in additive
white Gaussian noise (AWGN) channels, can reach bit
error rates (BER) comparable with other standard systems
of similar complexity [6], [14]–[17]. Following one of this
promising threads, recent studies have pointed out that
chaos-based modulations working at this joint waveform
and coding level can be of potential interest in frequency-
non selective fading channels [18]. The key to this success
resides in joining the fields of digital communications
and chaos theory under a common framework. This
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makes possible the use of well known tools from the
communications field in the evaluation and design tasks
of chaos-based systems [17], [19]. Nevertheless, current
literature lacks a thorough study showing what kind of
channels could better match the properties of these CCM
systems, since almost all the work has focused on pure
AWGN or on multipath fading channels. On the other
side, it is supposed that chaos-based signals in the channel
should be appropriate in dispersive environments.

According to all this, in this article we address the
task of showing that simple CCM systems that may
perform worse than the most simple uncoded modula-
tion in AWGN, can behave substantially better when
the channel includes ISI. Thus, the chaotic signal can
reveal its potential interest in broadband communications
over frequency-selective time-invariant dispersive chan-
nels. We also derive bounds on the bit error probability
and show that they can be tight enough to give reason of
the behavior of this kind of systems. These principles can
be easily extended to the whole kind of chaotic systems
based on coded modulation, and help in the design and
evaluation tasks, especially the condition we will establish
for the existence of an error floor.

The comparison with a related standard trellis coded
modulation (TCM) system [20] shows that CCM systems
can keep the good properties of coded modulated signals
in ISI channels. Note that our aim is not to provide
methods to combat ISI impairment, but to show how
CCM behave in this kind of channels and under what
conditions they can be robust face to a limited level of
ISI degradation. This impairment can easily appear in
cable and radio systems due to the filters included at
the transmitter side in order to comply with the band
restrictions, or at the receiver side to reject off-band
interferences [21]. Equalization is not always mandatory
depending on the restrictions provided and on the margins
available, so that in some systems it is to be expected a
certain degree of controlled ISI.

The article is structured as follows. In Section II, the
communications system model and the channel model are
described with the needed detail. Section III is devoted to
the calculation of the BER bounds. Section IV explains
the effect of one of the key parameters of these systems.
In Section V, we depict the simulation results together
with the corresponding bounds. Section VI is devoted to
the conclusions.

II. SYSTEM DESCRIPTION

Chaos
coded

modulator

SISO

decoder

bn yn r n

nn

xn pn bn

Channel
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h
θ

Fig. 1. Block diagram of the communications system.

In Fig. 1 we can see the scheme of the chaos-based
communications system. The chaos-based coded modula-
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Fig. 2. Maps for the CCM systems. The continuous line corresponds
to f0(·); the dotted line, tof1(·). (a) mTM (continuous line: TM); (b)
mBSM (continuous line: BSM).

tion (CCM) system accepts as input an identically and
independently distributed (i.i.d.) bit sequencebn ∈ {0, 1},
and it produces a chaos-based coded modulated sequence
by means of a system relying on switched chaotic maps
driven by small perturbations [6], following equations:

zn = f(zn−1, bn) + bn · 2−Q,

xn = g(zn) = 2zn − 1, (1)

where f (·, 0) = f0(·) and f (·, 1) = f1(·) are chaotic
maps that leave the interval[0, 1] invariant. They are
piecewise linear maps with slope±2 wherever it is
defined. The natural numberQ is a quantization factor
that indicates the number of bits used to representzn (and
thusxn). Note that the small perturbation manifests itself
afterQ− 1 iterations. It has been shown that this kind of
encoder leaves the setSQ = {i · 2−Q|i = 0, · · · , 2Q − 1}
of 2Q points invariant [6], so that, when taking as initial
condition a value within this set (e.g.z0 = 0), zn can only
take values fromSQ. In this way, we get a quantized
chaotic sequence over2Q possible values that can be
described as a trellis encoded sequence, with a state
given by a shift register ofQ positions and two possible
transitions determined by the input bitbn.

We shall consider the following pairs of mapsf0(·) and
f1(·):

1) Bernoulli shift map (BSM),

f0(z) = f1(z) = 2z mod 1. (2)

2) Tent map (TM),

f0(z) = f1(z) =

{

2z 0 ≤ z < 1

2

2− 2z 1

2
≤ z ≤ 1

. (3)

3) The BSM and a shifted version of the same (multi-
Bernoulli shift map, mBSM),

f0(z) = 2z mod 1, (4)

f1(z) =







2z + 1

2
0 ≤ z < 1

4

2z − 1

2

1

4
≤ z < 1

2

2z − 3

2

3

4
≤ z ≤ 1

. (5)

4) The tent map and a shifted version of the same
(multi-tent map, mTM),

f0(z) =

{

2z 0 ≤ z < 1

2

2− 2z 1

2
≤ z ≤ 1

, (6)
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f1(z) =















2z + 1

2
0 ≤ z < 1

4

2z − 1

2

1

4
≤ z < 1

2
3

2
− 2z 1

2
≤ z < 3

4
5

2
− 2z 3

4
≤ z ≤ 1

. (7)

In Fig. 2 we have depicted the corresponding maps.
As stated, these CCM systems, when restricted toSQ,
allow an equivalent representation in terms of atrellis
encoder[22], closely related to a trellis coded modulation
(TCM) system [6]. In Fig. 3, for example, we can see the
equivalent trellis encoder structure for the mTM CCM.

R=1n
r1 r2 r3

n
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Q−2
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Q

Fig. 3. Finite-state encoding structure for the mTM CCM.

The channel is an ISI channel with AWGN [21]. In
digital communications, ISI impairment can easily appear
due to the filters included at the transmitter side in
order to comply with band restrictions, or at the receiver
side to reject off-band interferences. As shown in Fig.
1, the ISI model consists in a linear filter with finite
impulse responseh = (h−N , · · · , hN ), normalized to
‖h‖2 =

∑N

m=−N |hm|2 = 1, so that it does not affect
the signal power at the receiver. The AWGN process
adds independent Gaussian samplesnn with meanη = 0
and powerσ2. We have considered two possible impulse
responses: for low ISI, and for moderate ISI. These
impulse responses are shown in Fig. 4, and they have
N = 7 coefficients. The parameter used to compare the
degree of ISI is the ratio of signal power to interference
power at the receiver, SIR =h2

0/(‖h‖
2 − h2

0) [21]. For
low ISI we have SIR=14.84 dB, and for moderate ISI,
SIR=8.88 dB.

Due to the trellis coded nature of this chaos-based
signal, the receiver can be designed to decode the se-
quence usingmaximum likelihood(ML) or maximum a
posteriori (MAP) sequence decoding algorithms. In this
case, we have used a known MAP soft-input soft-output
(SISO) decoder adapted to the decoding of this kind of
chaotic sequences in AWGN channels [23], [24]. This
SISO decoder, which has the advantage of allowing easy
concatenation, is used here without any equalization, and
thus it is simply based on the channel metrics of the
AWGN case. Recall that we are interested in the effect of
ISI in this kind of chaos-based coded modulations.

The SISO takes as input a blockr of M received
samples,

rn = yn + nn =

N
∑

m=−N

hmxm+n + nn, (8)

n = 0, · · · ,M − 1,
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Fig. 4. Coefficients for the ISI FIR filters; ’o’: low ISI; ’*’:moderate
ISI.

and produceslog probability ratios

pn = log

(

P (bn = 1|r)

P (bn = 0|r)

)

, (9)

which, when compared with the thresholdθ = 0, generate
the decoded sequenceb̂n (see Fig. 1).

III. PERFORMANCE ANALYSIS

0

1

2

3

4

6

7

5

Error loop without ISI
Error loop with ISI

Fig. 5. Examples of minimal length error loops for the cases without
ISI and with low ISI in the trellis representation of a BSM CCMwith
Q = 3. Continuous lines: transitions given by input bit0. Dashed lines:
transitions given by input bit1.

To establish comparisons with the performance of the
chaos coded modulated systems, we will also take into
account the case of uncoded binary phase shift keying
(BPSK) over the same channel. The theoretical BER of
BPSK in the ISI channel can be easily calculated ifN is
not large [25]. With respect to the chaos coded modulated
sequence, since thea priori probabilities for bits1 and
0 are the same, MAP decoding will be equivalent to
ML decoding and the pairwise error probability can be
calculated as follows. There will be an error event when,
having sent the chaos coded sequencex, the decoder
chooses a sequencex′ 6= x, where both sequences diverge
at time m and eventually merge again afterL steps in
the trellis. Sequencesx andx′ are thus related through a
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binary error evente = b ⊗ b
′ containing an error loop

of lengthL starting at timem [26]. In the case of ML
decoding, and taking into account that the metrics of the
SISO decoder are calculated as a function of(rn − xn)

2

[23], this is equivalent to

m+L−1
∑

n=m

(rn − x′

n)
2 <

m+L−1
∑

n=m

(rn − xn)
2. (10)

After some algebra, we get

m+L−1
∑

n=m

[

(yn − x′

n)
2 − (yn − xn)

2
]

< (11)

< 2

m+L−1
∑

n=m

(xn − x′

n)
2nn.

For given x and x
′, the right hand side member of

inequality (11) is a Gaussian RV, so that the pairwise
error probability can be calculated straightforwardly as

Pe(x → x
′|x) =

1

2
erfc





√

d2
ISI

4P

Eb

N0



 , (12)

whereP = 1/3 is the power of the chaos coded modu-
lated signal1, andd2ISI is anequivalent squared Euclidean
distancein the ISI channel betweenx andx′ [27], given
by

dISI =

∑m+L−1

n=m (yn − x′

n)
2 −

∑m+L−1

n=m (yn − xn)
2

dE
.

(13)
The factord2E =

∑m+L−1

n=m (xn − x′

n)
2 is the squared

Euclidean distance between sequencesx andx′.
According to (12), the error probability will be dom-

inated for highEb/N0 by the error events leading to
minimum values ofd2ISI. The search for such error pat-
terns may be a difficult task due to the structure ofd2ISI,
since it depends on the ISI filter coefficients and on the
CCM encoding trellis. Nevertheless, in the case of low
or moderate ISI, whereyn does not differ much with
respect toxn, the most probable error events are to be
found among the error events with low loop lengthsL. In
Fig. 5 we can see two typical low length error loops for
the BSM system withQ = 3 in the case without ISI and
with low ISI. Note that, since the CCM’s are nonlinear
and they do not meet the uniform error event property
[28], the values ofd2ISI for a given binary error evente
depend on the exact values ofxn andx′

n, and not only
on e. This makes an important difference with respect to
the study of related TCM schemes under ISI impairment,
where uniform error properties and linearity properties
can be extensively exploited [27].

As exemplified in Fig. 5, there is a difference between
the typical error paths with and without ISI, which leads
to a change in the distance spectrum of the chaos-based
coded modulation. By performing some test simulations,

1In fact, this is the power whenQ → ∞ for the CCM’s proposed,
since they produce data uniformly distributed in[−1, 1]. Nevertheless,
it can be considered a good approximation for all the cases seen here.
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Fig. 6. Histogram ofd2
ISI

in the case of low ISI for the BSM CCM
with Q = 4 when the error events are of the kind described.
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Fig. 7. Histogram ofd2
ISI

in the case of low ISI for the BSM CCM
with Q = 5 when the error events are of the kind described.
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Fig. 8. Histogram ofd2
ISI

in the case of low ISI for the BSM CCM
with Q = 6 when the error events are of the kind described.
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in the case of low ISI for the mTM CCM
with Q = 5 when the error events are of the kind described.
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Fig. 10. Histogram ofd2
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in the case of moderate ISI for the BSM
CCM with Q = 5 when the error events are of the kind described.

it has been found out readily that the dominant error
events in the low or moderate ISI cases are of the
following kind as a function of the underlying map:

• For the BSM CCM, the most probable error events
are those with Hamming weightw(e) = 2, length
L = Q+ 2 and structure1, 1, (Q) 0′s.

• For the TM CCM, the most probable error events are
the same that give the minimum ofd2E . They have
lengthL = Q+ 1, Hamming weightw(e) = Q and
structure1, (Q− 2) 1′s, 1, 0.

• For the mBSM CCM, these error events are of two
kinds. The first kind is that with Hamming weight
w(e) = 1, lengthL = Q+1 and structure1, (Q) 0′s.
The second kind has Hamming weightw(e) = 2,
lengthL = Q+ 3 and structure1, 0, 1, (Q) 0′s.

• For the mTM CCM, the error events with minimum
d2ISI are the same as for the TM CCM.

As stated before, thed2ISI spectrum given by such error
events depends on the ISI coefficients and onxn andx′

n.
In Figs. 6, 7, 8, we can see the histograms of the values
of d2ISI associated to the mentioned error events in the
case of the BSM CCM with low ISI forQ = 4, 5, 6. It is
easy to verify that the number of possible sequencesxn,
x′

n related through the binary error evente that can yield
different values for

∑m+L−1

n=m (yn−x′

n)
2−

∑m+L−1

n=m (yn−
xn)

2 (and thus ford2ISI) is 24N+Q+L, so that we can
evaluate exactly the associated distance spectrum ford2ISI
whenN , Q andL are low enough. If not, it is always
possible to estimate the related histogram by taking a
significant number of samples after generating sets of
test values forxn and x′

n. Note that the spectra for the
BSM CCM with low ISI and differentQ are quite similar,
and this will lead to similar results both for the bound
and for the BER results. We will see the reason for this
insensibility toQ in the next section.

On the other side, we have depicted the histogram of
the associated distances for the mTM CCM withQ = 5
(see Fig. 9). Though there is a quantity of distances
with high values, we can see that there is a significant
concentration of low values, and, since their minimum
is lower than in the cases of the BSM CCM seen, we
can foresee worse BER results with the mTM CCM
than with the BSM CCM. We will verify this in Section
V. In Fig. 10, we have depicted the histogram for the
BSM CCM with Q = 5 and moderate ISI. As could be
expected, the distance spectrum broadens and we witness
the appearance of distance values lower than the minimum
attained in the case with low ISI, so that, accordingly, we
will see in Section V how the bound and the BER will
exhibit a corresponding degradation.

As verified throughout the last plots, in the cases
considered here the values ofN , Q andL are not high
and the evaluation of all the possible values ofd2ISI for the
mentioned binary error events is feasible. LetDe denote
the set of all suchd2ISI values for a given CCM, a given
ISI FIR filter and the corresponding most probable binary
error event, and letD denote the number of elements in
De. Then, taking into account the expression for the error
event probability (12), an average bound on the bit error
probability can be calculated as [29]

Pb ≈
w

2D

∑

d2

ISI
∈De

erfc





√

d2
ISI

4P

Eb

N0



 , (14)

wherew is the Hamming weight of the dominant binary
error evente (i.e.: 2 in the case of the BSM CCM, andQ
in the case of the TM and mTM CCM’s). In the mBSM
CCM case, we have two possible error events and we have
to average over the two contributions, one withw = 1 and
the other withw = 2.

Nevertheless, we will verify that this bound does not
always give reason of the bit error probability behavior,
even if the binary error events actually happening are of
the kind mentioned. In fact, we will verify the appearance
of an error floor, which can be explained looking into the
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expression (11). If the differences(xn−x′

n)
2 are not high,

and depending on the filter coefficients, there could exist
the possibility that the right hand side of inequality (11)
becomes negligible, specially whenEb/N0 is higher than
a threshold value (which, for fixed signal powerP , means
a vanishing value of the noise powerσ2). In this situation,
inequality (11) becomes

m+L−1
∑

n=m

(yn − x′

n)
2 <

m+L−1
∑

n=m

(yn − xn)
2. (15)

For a given set of filter coefficientsh, let us denote asBe

the number of pairs of sequencesx, x′ related through
the binary error evente that meet inequality (15). Since
there is a total of24N+Q+L possible different values for
∑m+L−1

n=m (yn−x′

n)
2−

∑m+L−1

n=m (yn−xn)
2 whenx andx′

are linked by a single error evente of the kinds stated, and
since the relatedx sequences occur with equal probability
for i.i.d. bn data, then the error floor associated with the
binary error evente can be estimated as

Pbfloor ≈
wBe

24N+Q+L
, (16)

wherew takes the mentioned values depending on the
CCM kind and its dominant binary error event. Again,
this calculation requires a limited value for4N +Q+L,
but there is always the possibility to bound this error floor
by generating a sufficient number of test data. Note also
that, for the mBSM CCM, there are two error eventse and
we should average over their corresponding contributions.

IV. EFFECT OF QUANTIZATION PARAMETERQ

We have witnessed through Figs. 6, 7 and 8 a relative
insensibility toQ in the distance spectrum of the BSM
CCM under low ISI. According to what was seen in
previous section, the distance spectra exhibit a larger
quantity of values whenQ grows, but they seem to
keep the same shape, the same minimum and maximum
values and the same structure. This has led us to foresee
similar behaviors in point of BER, which in fact we will
verify through simulation. But what is the reason for such
insensibility?

First of all, let us focus on the BSM CCM without ISI.
We see in Fig. 5 that the minimal error loop has length
L = Q+1, and it corresponds to an error pattern of weight
1, with structuree = (10 · · ·0). Assuming that the bit on
error isb′m and the correct value isbm, and according to
equations (1) and (2), the correctzm sequence and the
incorrectz′m sequence start to diverge when

zm = 2zm−1 mod 1 + bm · 2−Q, (17)

z′m = 2zm−1 mod 1 + b′m · 2−Q, (18)

and their square difference in terms of thexn and x′

n

sequences is

(xm − x′

m)
2
= 4 (zm − z′m)

2
= 4 · 4−Q = 4−Q+1, (19)

where we have made use of the fact that|bm − b′m| =
1. Since the rest of input bitsbm+1, bm+2, · · · take the

same values for both branches of the loop, the next square
differences will only have to account for the effect ofbm
and b′m. Due to the expanding nature of the BSM map,
in zm+1 andz′m+1 the bitsbm and b′m will be weighted
by 2−Q+1, so that the new square difference will be

(

xm+1 − x′

m+1

)2
= 4 · 4−Q+1 = 4−Q+2. (20)

Before the paths merge again in the loop, the last value for
the square differences different from0 will be associated
with output symbolszm+L−2 andz′m+L−2, so that

(

xm+L−2 − x′

m+L−2

)2
= 4 · 4−Q+L−2 = 1. (21)

Note that for the BSM CCM, this sequence of square
differences associated to the error loop do not depend
on the starting and ending states nor on thebn input
values. This is not in general the case, and with the rest of
CCM’s these factors would have to be taken into account
to calculate the spectrum of distances associated to their
respective minimal error loops in the case without ISI.
Note that the distance given by the mentioned error loop
in the BSM CCM is

Q
∑

j=1

4−Q+j =
4

3

(

1−
1

4Q

)

. (22)

Though drawn for the BSM CCM, we have seen a
general property for all the kind of CCM’s based on
expanding maps with slope±2: the partial square differ-
ences which contribute to the square distance associated
to a given error loop have starting values weighted by
4−Q+1. The values of the subsequent differences from this
value and on will depend on the given underlying map,
the starting state of the loop and the input bit sequence,
but they will be weighted in general by a factor4−Q+j

growing from4−Q+1 to a maximum value. Therefore, a
growingQ will have a vanishing effect on the calculations,
since4−Q+1 diminishes very fast withQ, and that is why
the behavior of any of these BSM CCM’s in AWGN will
be almost the same from a minimumQ value and on.

With respect to the ISI channel, we have seen in the
previous section that the calculations of the ISI distances
involve also accounting for other kind of error loops
through the trellis (different to the ones typical for a
pure AWGN channel), but they will exhibit the same
property: increasingQ and correspondingly the error loop
length will have a limited effect in the final values from
a minimumQ value and on. That is why we can say that
the properties of these CCM’s in the ISI channel depend
mainly on the underlying map and not on the parameter
Q which we introduced as an ad hoc development in
order to build practical coded modulation schemes with
an equivalent trellis representation.

V. SIMULATION RESULTS

In Figs. 11 and 12 we can see the simulation results and
the bounds for the several CCM’s proposed under low and
moderate ISI, respectively. We show also the theoretical
bit error probability of BPSK in the same channels for
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Fig. 11. Simulation results and bounds for AWGN and low ISI. Bounds
are depicted with thin continuous lines. The performance ofBPSK over
the same ISI channel is depicted with a dotted line. The performance of
the test TCM system is depicted with thick continuous lines,both for
AWGN only (left) and for low ISI (right).
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Fig. 12. Simulation results and bounds for AWGN and moderateISI.
Bounds are depicted with thin continuous lines. The performance of
BPSK over the same ISI channel is depicted with a dotted line.The
performance of the test TCM system is depicted with thick continuous
lines, both for AWGN only (left) and for moderate ISI (right). All the
cases are forQ = 5.

comparison [25]. We have depicted also the simulation
results for a conventionalR = 1 bit/symbol TCM scheme
consisting on a constraint lengthν = 5 encoder with
generator polynomials06 and 23 and quadrature phase
shift keying (QPSK) modulation [29]. It is a rotationally
invariant system suitable for dispersive channels. All the
simulations have been run with data blocks ofM = 10000

5 6 7 8 9 10 11 12 13 14

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 
BSM, Q=4
BSM, Q=5
BSM, Q=6
BSM, Q=7

Q=4

Q=5,6,7

Fig. 13. Simulation results and bounds for low ISI in the caseof
the BSM CCM with differentQ values. The bounds are depicted with
continuous lines.

bits and the BER results were recorded for100 frames on
error.

As stated for the CCM systems, in some of the cases the
performance is dominated by condition (11) and the BER
tends to zero asEb/N0 grows, while in other cases the
mentioned error floor given by condition (15) is dominant
for high signal to noise ratios. In low ISI, the TM CCM
is severely affected by ISI impairment, while the rest
of systems exhibit low or moderate losses. It is very
significant that the mTM CCM comes next inEb/N0 loss
in comparison with the AWGN channel, while the systems
based on the Bernoulli shift map behave quantitatively and
qualitatively better. When we have moderate ISI, however,
only the BSM CCM is robust enough, keeping a steady
coding gain with respect to the uncoded BPSK case, and
the performance of the rest of CCM’s degrades a lot,
showing a high error floor and no coding gain. Note that
in all the cases the corresponding bounds drawn from (14)
and (16) are very tight and explain the BER behavior for
high signal to noise ratios.

With respect to the conventional TCM system under
low ISI, we can see that the loss inEb/N0 for a same
BER of around10−7 is similar to the loss in the case
of the mBSM CCM, and slightly higher compared to the
loss for the BSM CCM, while the mTM CCM is clearly
worse (see the double arrows in Fig. 11). In the case of
moderate ISI (see Fig. 12, double arrows), the BSM CCM
outperforms the TCM system in point ofEb/N0 loss. This
gives a interesting hint of how this kind of chaos-based
systems could exploit both the foreseen good properties of
chaos in the channel and the already known possibilities
of coded modulations in dispersive environments.

The cases leading to error floors are typical cases where
equalization is absolutely mandatory [30]. The results
obtained stress the fact that, if condition (15) is met with
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a given CCM for some low loop length error event in the
ISI channel, then the BER tends fast to an error floor for
growingEb/N0. In absence of equalization, this provides
a design criterion for chaos-based coded modulations in
situations where a low degree of unequalized ISI is to
be expected. Note also how the systems based on chaotic
maps with poor performing abilities in AWGN (due to its
poor distance spectrum, like the TM CCM [31]) also lead
to bad results in ISI.

In Fig. 13, we show the results and bounds in low
ISI for the BSM CCM with different quantization levels.
From a value ofQ = 4 and on, the behavior is the same,
and the simulation results and the bounds are practically
the same forQ = 5, 6, 7. Thus, we verify that what was
said in previous section about the negligible effect ofQ
is in fact true so long as it has a value larger than a
minimum. In this case, this minimum value isQ = 4.
This insensibility with respect toQ is a desirable feature
in chaos-based coded modulations, because the encoding
and decoding complexity can be kept low enough without
degrading the performance, while the dynamics of the
caseQ → ∞ can be considered for evaluation and design
purposes when necessary.

VI. CONCLUSIONS

In this article we have analyzed the possibility to draw
bounds for the bit error probability of a class of chaos-
based coded modulations face to a limited amount of ISI.
We have seen that, using the device of the ISI distance
spectrum for a limited amount of possible error events, we
can calculate simple bounds which are tight enough for
high signal-to-noise ratios. By means of some examples,
we have shown that chaos-based coded modulations of
this kind can keep the good properties of coded modu-
lations in dispersive environments [22]. We have as well
verified the conditions for the appearance of error floors
even in the presence of low ISI, and this provides a useful
and interesting tool for design and evaluation tasks of
related chaos-based coded modulations.

Moreover, we have analyzed the effect of the quan-
tization parameterQ on the final performance of the
related systems, and we have seen that, so long as this
parameter takes a value larger than a minimum of4,
the behavior of the chaos-based coded modulation is in
practice the same as for the ideal case withQ → ∞.
This links the performance results to the dynamics of
the underlying map and gives a useful insight into chaos-
based communications. At the same time, this allows the
desing of practical systems withQ as low as possible
for bounded encoding and decoding complexity. All this
opens a promising way for chaos-based communications
since, as the principles shown here are directly applicable
to the whole kind of chaos-based systems described by a
trellis, they can help to cast a theoretical ground for new
and successful developments in dispersive channels.
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