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Abstract—Chaos-based communications systems have derived from chaotic systems attracted much attention,

shown to be of potential interest in some kinds of dispersive
channels. In this paper we analyze the behavior of a class
of chaos-based coded modulations (CCM’s) in channels with
time-invariant intersymbol interference (ISI). We use thelSI
distance spectrum of the CCM'’s to calculte bounds for the
bit error rate (BER), and we provide the analytical condition

a CCM has to comply to stand a limited quantity of ISI. We
explain also the effect of the main modelling parameter of

this class of chaos-based systems, and we show that the

dynamics of the underlying chaotic map is in each case the
main factor to account for the final performance. The results
show that CCM systems are of potential interest in this kind
of distorting environment.

Index Terms—Chaos, Intersymbol interference, Modula-
tion coding, Error analysis

I. INTRODUCTION

but the interest on this kind of chaotic communications
dropped somewhat due to the bad performance of the
systems proposed so far. In fact, they did not outperform
other usual coded communication schemes, and they did
not have even better performance than uncoded systems
[2]-[5].

However, in later times and in some contexts we
have witnessed the arising of some proposals with good
performance as compared with classical communication
systems [6]. Other recent proposals in the field make use
of the fact that chaos based systems can be good for
secure communications [7], [8]. This has reopened the
trend of looking for efficient chaotic systems included in
classical schemes where the potentiality of chaos in the
channel could be properly exploited. Some chaos-based
modulation systems working at the waveform level have

The possibility of using chaotic signals to carry infor- already shown to be of potential use in multipath fading

mation was first considered in 1993 [1]. This aroused a bighannels [9]. Other kind of chaos-based systems working
deal of work on chaotic communications, which becameat the coding level [10]-[12] have shown to provide good
a hot topic in both nonlinear science and engineeringesults in multiuser channels. It has been also shown
The interest in chaotic communications was due to théhat communications based on high dimensional chaotic
foreseen good properties of the chaotic signals in theystems and belief propagation decoding can offer an
fields of secure systems or broadband multiple accessxcellent performance characterized with thresholds.[13]
systems. In the case of secure systems, one could takeFinally, some recent works stress the fact that, using
advantage of the uncorrelation and unpredictability of theshaos-based developments working jointly at the wave-
chaotic signals to build encryption algorithms. These argorm and the coding level, it is possible to build multi-
the same properties desirable for the spread sequencg@@gnensional chaos-based coded modulations (CCM’s) or
of a code division multiple access (CDMA) system. Onconcatenated systems based upon bad performing chaos-
the other hand, chaotic modulations and channel encodepgised coded modulations that, when employed in additive

This paper is based on “Effects of Intersymbol Interfererme
Chaos-Based Modulations,” by Francisco J. Escribano, lLdipez,
and Miguel A. F. Sanjuan, which appeared in the Proceedaighe
2nd International Conference on Signals, Circuits & Systei&CS),
Hammamet, Tunisia, November 2008.
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Project PET2008-0128, by the Spanish Ministry of Industryder
Project TSI-020110-2009-103, and by Comunidad de Madrideun
Project S2009TIC-1692 (CLOUDS).
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white Gaussian noise (AWGN) channels, can reach bit
error rates (BER) comparable with other standard systems
of similar complexity [6], [14]-[17]. Following one of this
promising threads, recent studies have pointed out that
chaos-based modulations working at this joint waveform
and coding level can be of potential interest in frequency-
non selective fading channels [18]. The key to this success
resides in joining the fields of digital communications
and chaos theory under a common framework. This
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makes possible the use of well known tools from the

. . . . . . 1
communications field in the evaluation and design tasks
of chaos-based systems [17], [19]. Nevertheless, current

literature lacks a thorough study showing what kind ofz, : : z, f

channels could better match the properties of these CCM

systems, since almost all the work has focused on pure , o . .
AWGN or on multipath fading channels. On the other ° z,., . ° zZ,, t
side, it is supposed that chaos-based signals in the channel (@) (b)

should be appropriate in dispersive environments. Fio. 2. Mas for the CCM " _ ; g
H H H : : 1g. 2. aps for the systems. e continuous line coordp
According to all this, in this article we address the 7o(1); the dotted line, 1of1(-). (a) MTM (continuous fine: TM); (b)

task of showing that simple CCM systems that maymesm (continuous line: BSM).

perform worse than the most simple uncoded modula-

tion in AWGN, can behave substantially better when

the channel includes ISI. Thus, the chaotic signal caion (CCM) system accepts as input an identically and
reveal its potential interest in broadband communicationsidependently distributed.i(d.) bit sequencé,, € {0, 1},

over frequency-selective time-invariant dispersive ehanand it produces a chaos-based coded modulated sequence
nels. We also derive bounds on the bit error probabilitypy means of a system relying on switched chaotic maps
and show that they can be tight enough to give reason afriven by small perturbations [6], following equations:

the behavior of this kind of systems. These principles can 0

be easily extended to the whole kind of chaotic systems Zn = f(zn-1,00) + b - 277,

based on coded modulation, and help in the design and Tn = g(2n) =22, — 1, (1)
evaluation tasks, especially the condition we will es&tbli where f (-,0) = fo-) and f (1) = fi() are chaotic

for the existence of an error floor. that | the int 0 iant. Th
The comparison with a related standard trellis coded'2Ps that ‘eave the in er_v@, | invariant. €y are
piecewise linear maps with slopg2 wherever it is

modulation (TCM) system [20] shows that CCM systems efined. The natural numbép is a quantization factor

can keep the good properties of coded modulated signat tindicates th ber of bit dt and
in ISl channels. Note that our aim is not to provide at indicates the number of bits used to represgrian

; . thuszx,,). Note that the small perturbation manifests itself
methods to combat ISI impairment, but to show how " ; : o
b fter@Q — 1 iterations. It has been shown that this kind of

CCM behave in this kind of channels and under whaf' der | the S8 — {i.2-Ci — 0 9Q _ 1
conditions they can be robust face to a limited level ofc"COUer leaves the ss, = {i-27%)i =0, , 2% —1}

ISI degradation. This impairment can easily appear inof 2@ points invariant [6], so that, when taking as initial

cable and radio systems due to the filters included a?ondltlonavalue within th|§ set (e.go = 0), zn can oqu
ake values fromSg. In this way, we get a quantized

the transmitter side in order to comply with the band haot e inl | that b
restrictions, or at the receiver side to reject off-band120C sequence ov possible values that can be

interferences [21]. Equalization is not always mandator;fi_escr'bed as a tre_llls encodeq_sequence, with a state
depending on the restrictions provided and on the margin%'ven_ by a shift reg|ster of) p0_5|t|ons_and two possible
available, so that in some systems it is to be expected ffansitions deter_mlned by the _mput _fblt-
certain degree of controlled ISI. We shall consider the following pairs of mafig-) and

The article is structured as follows. In Section II, the f0):
communications system model and the channel model are 1) Bernoulli shift map (BSM),
described with the needed detail. Section Il is devoted to
the calculation of the BER bounds. Section IV explains fo(2) = i) = 2z mod 1. (2)
the effect of one of the key parameters of these systems.2) Tent map (TM),
In Section V, we depict the simulation results together o1
with the corresponding bounds. Section VI is devoted to - - = 2
the conclusions?. ° fol#) = A=) = { <z<1 O

3) The BSM and a shifted version of the same (multi-

Il. SYSTEM DESCRIPTION Bernoulli shift map, mBSM),
:r”————————”"””””‘: ~ f()(Z) = 2z mod 1, (4)
b, | Chaos x, | s [Yn o) siso [P % by
— | coded |7 ! p i
modulator, || N ? { | decoder £1(2) ;z N i 01 iz p i (5)
! M| He= I A
Channel % %
2z—35 3<z<1

4) The tent map and a shifted version of the same

Fig. 1. Block diagram of the communications system. .
(multi-tent map, mTM),

In Fig. 1 we can see the scheme of the chaos-based 2z 0< 2 % (©)
l<z<1
2 _—

communications system. The chaos-based coded modula- fol2) = { 2—2z

© 2010 ACADEMY PUBLISHER
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2z + % 0<z< ‘lﬁ ol ’ ’
BRIt S-S I
W& = %—22 §§z<z ot
% — 2z 2<z< 1 07
In Fig. 2 we have depicted the corresponding maps. os}

As stated, these CCM systems, when restrictedSdo
allow an equivalent representation in terms ofrallis
encodel[22], closely related to a trellis coded modulation < o4
(TCM) system [6]. In Fig. 3, for example, we can see the
equivalent trellis encoder structure for the mTM CCM.

0.3F

PR B L R

S !

Fig. 4. Coefficients for the ISI FIR filters; "0’ low ISI; *:moderate

ISI.
Fig. 3. Finite-state encoding structure for the mTM CCM. and producesog probability ratios

The channel is an ISI channel with AWGN [21]. In P =lo (M)’ (9)
digital communications, ISI impairment can easily appear P(by, =0Ir)

due to the filters included at the transmitter side in\Nhichlwhen Compared with the threshdld= 0, generate
order to comply with band restrictions, or at the receivetthe decoded sequenég (see Fig. 1).

side to reject off-band interferences. As shown in Fig.

1, the ISI model consists in a linear filter with finite
impulse responséh = (h_y,---,hy), normalized to

b2 = SN_ \|hm|? = 1, so that it does not affect oo
the signal power at the receiver. The AWGN process: o._ o o,
adds independent Gaussian samplgsvith meann = 0 2 s
and powers2. We have considered two possible impulse :o.
responses: for low ISI, and for moderate ISI. These:o
impulse responses are shown in Fig. 4, and they have-”"

IIl. PERFORMANCE ANALYSIS

N = 7 coefficients. The parameter used to compare the - e Do )
degree of ISl is the ratio of signal power to interference-
power at the receiver, SIR #2/(||h||?> — h3) [21]. For K \
IOW ISI we have SIR;484 dB, and fOI’ moderate ISI, Error Ioopwi[hout ISI ErrorlooPWith ISI

SIR=R8.88 dB.

Due to the trellis coded nature of this chaos-based9- 5. Examples of minimal length error loops for the caséhout

. | th . be desi d d de th ISI and with low ISl in the trellis representation of a BSM CGMith
signal, t e_ recew_er Can_ e esigned to ec_o e the 36': 3. Continuous lines: transitions given by input bitDashed lines:
guence usingnaximum likelihoodML) or maximum a transitions given by input bit.

posteriori (MAP) sequence decoding algorithms. In this

case, we have used a known MAP soft-input soft-output To establish comparisons with the performance of the
(SISO) decoder adapted to the decoding of this kind othaos coded modulated systems, we will also take into
chaotic sequences in AWGN channels [23], [24]. Thisaccount the case of uncoded binary phase shift keying
SISO decoder, which has the advantage of allowing eagBPSK) over the same channel. The theoretical BER of
concatenation, is used here without any equalization, angpsK in the I1SI channel can be easily calculatedVifis

thus it is simply based on the channel metrics of thenot large [25]. With respect to the chaos coded modulated
AWGN case. Recall that we are interested in the effect oequence, since the priori probabilities for bits1 and

ISI in this kind of chaos-based coded modulations. 0 are the same, MAP decoding will be equivalent to
The SISO takes as input a bloak of M received ML decoding and the pairwise error probability can be
samples, calculated as follows. There will be an error event when,
N having sent the chaos coded sequemcethe decoder
Tn = Yn +Np = Z hnTman +nn, (8)  chooses a sequengé+ x, where both sequences diverge
m=—N at time m and eventually merge again aftér steps in
n=0,---,M-—1, the trellis. Sequences andx’ are thus related through a

© 2010 ACADEMY PUBLISHER
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binary error evene = b ® b’ containing an error loop
of length L starting at timem [26]. In the case of ML
decoding, and taking into account that the metrics of the 40|
SISO decoder are calculated as a functior{rof — x,,)?

[23], this is equivalent to
0.02f-

m+L—1 m—+L—1
Z (1 — )% < Z (T — )% (10)

After some algebra, we get

m+L—1

> [ —20)* = (g —20)*] < (11)

n=m
m+L—1

<2 Z (zn — 2),) 0.
n=m

For given x and x/, the right hand side member of

inequality (11) is a Gaussian RV, so that the pairWiSq:ig. 6. Histogram ofdZy; in the case of low ISI for the BSM CCM

error probability can be calculated straightforwardly as with Q = 4 when the error events are of the kind described.

1 |di; E A
P.(x = X'|x) = §erfc %Fz , (12) oo

0.016 -

where P = 1/3 is the power of the chaos coded modu- .|
lated signdl, anddZ; is anequivalent squared Euclidean

distancein the ISI channel betweer andx’ [27], given 0012¢
by 0.01F
L—1 L—1
disr = anjm (yn — ZC;L)Q - an:m (yn — mn)Q 0008
dg ’

(13) 0.006

The factord? = Y75 '(x, — 2/,)? is the squared
Euclidean distance between sequencemdx’. o004

According to (12), the error probability will be dom-
inated for high E,/Ny by the error events leading to
minimum values ofdi;. The search for such error pat- 0
terns may be a difficult task due to the structured@f,
since it depends on the ISl filter coefficients and on thei 2 Histoaram ok in the case of low IS! for the BSM CCM
CCM (ejnco;jinlg;SIIrellir]s. Nevgrthelesst' cijr']ffthe Cashe O_ftr:OV\&/i?H Q =5 whgen the elr%r events are of the kind described.
or moderate ISI, where,, does not differ much wi
respect tox,,, the most probable error events are to be 001
found among the error events with low loop lengfhdn
Fig. 5 we can see two typical low length error loops for
the BSM system with) = 3 in the case without ISI and 0.008-
with low ISI. Note that, since the CCM's are nonlinear
and they do not meet the uniform error event property
[28], the values ofi%; for a given binary error event o.0061
depend on the exact values @f andz!,, and not only oo0sl
on e. This makes an important difference with respect to
the study of related TCM schemes under ISI impairment,  °®
where uniform error properties and linearity properties
can be extensively exploited [27].

As exemplified in Fig. 5, there is a difference between
the typical error paths with and without ISI, which leads ootk
to a change in the distance spectrum of the chaos-based
coded modulation. By performing some test simulations, 0 o5 o8 T T 2

IS

0.002 -

0.009-

0.007F

0.002[

n fact, this is the power whe) — oo for the CCM’s proposed, ) ) 5
since they produce data uniformly distributed[in1, 1]. Nevertheless, Fig. 8. Histogram ofd7g; in the case of low ISI for the BSM CCM
it can be considered a good approximation for all the cases kere. ~ With @ = 6 when the error events are of the kind described.

© 2010 ACADEMY PUBLISHER
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0048 ‘ ‘ ‘ ‘ ‘ ‘ As stated before, the?; spectrum given by such error
events depends on the ISI coefficients andegrand «/,.
In Figs. 6, 7, 8, we can see the histograms of the values
of d%; associated to the mentioned error events in the
case of the BSM CCM with low ISI fof) = 4,5,6. It is
easy to verify that the number of possible sequenggs
), related through the binary error evanthat can yield
different values fo """ 2! (y, —a 12— S "By, —
r,)? (and thus fordi;) is 24V +Q+L so that we can
evaluate exactly the associated distance spectrurifpr
when N, @Q and L are low enough. If not, it is always
possible to estimate the related histogram by taking a
significant number of samples after generating sets of
test values forr,, and z,. Note that the spectra for the
BSM CCM with low ISI and different) are quite similar,

0 ! 2 et s ¢ 7 and this will lead to similar results both for the bound

; and for the BER results. We will see the reason for this

Fig. 9. Histogram ofd%, in the case of low ISI for the mTM CCM  insensibility to@ in the next section.

0.04f

0.035[

0.03F

0.025[

0.02F

0.015[

0.01F

0.005[

with Q = 5 when the error events are of the kind described. On the other side, we have depicted the histogram of
the associated distances for the mTM CCM with= 5
0025 ‘ ‘ ‘ (see Fig. 9). Though there is a quantity of distances

with high values, we can see that there is a significant
concentration of low values, and, since their minimum
is lower than in the cases of the BSM CCM seen, we
can foresee worse BER results with the mTM CCM
than with the BSM CCM. We will verify this in Section
V. In Fig. 10, we have depicted the histogram for the
BSM CCM with Q = 5 and moderate ISI. As could be
expected, the distance spectrum broadens and we witness
the appearance of distance values lower than the minimum
attained in the case with low ISI, so that, accordingly, we
will see in Section V how the bound and the BER wiill
exhibit a corresponding degradation.
As verified throughout the last plots, in the cases
considered here the values df, Q and L are not high
25 and the evaluation of all the possible valuesify for the
mentioned binary error events is feasible. & denote
Fig. 10. Histogram ofiZy; in the case of moderate ISI for the BSM the set of all SUCW%SI values for a given CCM, a given
CCM with @ = 5 when the error events are of the kind described.  ISI FIR filter and the corresponding most probable binary
error event, and leD denote the number of elements in
D.. Then, taking into account the expression for the error
it has been found out readily that the dominant errorevent probability (12), an average bound on the bit error
events in the low or moderate ISI cases are of thegrobability can be calculated as [29]
following kind as a function of the underlying map:

« For the BSM CCM, the most probable error events P~ — Z erfc di; Ep , (14)
are those with Hamming weight(e) = 2, length 2D \ 4P No

L =Q + 2 and structurd,, 1, (Q) 0’'s.

« For the TM CCM, the most probable error events arewherew is the Hamming weight of the dominant binary
the same that give the minimum @,. They have error eveni (i.e.: 2 in the case of the BSM CCM, ar@
length L = Q + 1, Hamming weightw(e) = Q and in the case of the TM and mTM CCM’s). In the mBSM
structurel, (Q — 2) 1's,1,0. CCM case, we have two possible error events and we have

« For the mBSM CCM, these error events are of twoto average over the two contributions, one with= 1 and
kinds. The first kind is that with Hamming weight the other withw = 2.

0.02-

0.015

0.01F

0.005

w(e) =1, lengthL = @ +1 and structurd, (Q) 0's. Nevertheless, we will verify that this bound does not
The second kind has Hamming weighi{e) = 2, always give reason of the bit error probability behavior,
lengthL = @ + 3 and structurd, 0,1, (Q) 0's. even if the binary error events actually happening are of
« For the mTM CCM, the error events with minimum the kind mentioned. In fact, we will verify the appearance
d?;; are the same as for the TM CCM. of an error floor, which can be explained looking into the

© 2010 ACADEMY PUBLISHER
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expression (11). If the differencés,, —2’,)? are not high, same values for both branches of the loop, the next square
and depending on the filter coefficients, there could existlifferences will only have to account for the effectigf

the possibility that the right hand side of inequality (11)and¥/,,. Due to the expanding nature of the BSM map,
becomes negligible, specially whéf /N is higher than in z,,,, andz,, , the bitsb,, andb;, will be weighted

a threshold value (which, for fixed signal powey means by 29! so that the new square difference will be

a vanishing value of the noise powe?). In this situation,

; : N I SO
inequality (11) becomes (Tm1 = 2hyq) =44 =4 : (20)
m—+L—1 m+L—1 Before the paths merge again in the loop, the last value for
Z (yn — 21)* < Z (yn —x,)%.  (15) the square differences different frabrwill be associated
n=m n=m with Output Symb0|$m+[‘,2 and Z;n,—&-L—Q' so that

For a given set of filter coefficients, let us denote a8,
the number of pairs of sequences x’ related through
the binary error even¢ that meet inequality (15). Since Note that for the BSM CCM, this sequence of square
there is a total oR*N+@+L possible different values for differences associated to the error loop do not depend
Z;”’;ﬁ_l(yn—x;f—ZZ”;ﬁ_l(yn—an whenx andx’  on the starting and ending states nor on theinput
are linked by a single error eveaidf the kinds stated, and values. This is not in general the case, and with the rest of
since the related sequences occur with equal probability CCM’s these factors would have to be taken into account
for i.i.d. b,, data, then the error floor associated with theto calculate the spectrum of distances associated to their
binary error event can be estimated as respective minimal error loops in the case without ISI.
wBe !\Iote that the distapce given by the mentioned error loop
Py = SINTQIL (16)  in the BSM CCM is

where w takes the mentioned values depending on the ZQ:(QH _ 4 (1 1 ) _

CCM kind and its dominant binary error event. Again, 3\ 4@
this calculation requires a limited value féiNV + Q + L,

but there is always the possibility to bound this error floor Though drawn for the BSM CCM, we have seen a
by generating a sufficient number of test data. Note als@eneral property for all the kind of CCM's based on
that, for the mBSM CCM, there are two error eveatsnd ~ €xpanding maps with slop£2: the partial square differ-

we should average over their corresponding contribution€nces which contribute to the square distance associated
to a given error loop have starting values weighted by

4~-@+! The values of the subsequent differences from this

) i ~ value and on will depend on the given underlying map,
We have witnessed through Figs. 6, 7 and 8 a relativghe starting state of the loop and the input bit sequence,

insensibility to@ in the distance spectrum of the BSM ;¢ they will be weighted in general by a facter @+
CCM under low ISI. According to what was seen in growing from4-2+! to a maximum value. Therefore, a
previous section, the distance spectra exhibit a largejrowing( will have a vanishing effect on the calculations,
quantity of values when) grows, but they seem 10 gjnces—@+1 diminishes very fast witl), and that is why

keep the same shape, the same minimum and maximugRe pehavior of any of these BSM CCM’s in AWGN will
values and the same structure. This has led us to foresgg aimost the same from a minimughvalue and on.

(Tmyr—2 — xlm-&-L—Q)Q =4.479 2 =1 (1)

(22)

j=1

IV. EFFECT OF QUANTIZATION PARAMETER(Q)

similar behaviors in point of BER, which in fact we will — \yjith respect to the ISI channel, we have seen in the
verify through simulation. But what is the reason for suchyreyious section that the calculations of the IS distances
insensibility? involve also accounting for other kind of error loops

First of all, let us focus on the BSM CCM without ISI. through the trellis (different to the ones typical for a
We see in Fig. 5 that the minimal error loop has Iengﬂ‘1Oure AWGN channel), but they will exhibit the same
L = Q+1, and it corresponds to an error pattern of weightyroperty: increasing) and correspondingly the error loop
1, with structuree = (10 --0). Assuming that the bit on |ength will have a limited effect in the final values from
error isb;,, and the correct value is,,, and according to 4 minimum@ value and on. That is why we can say that
equations (1) and (2), the correef, sequence and the the properties of these CCM's in the ISI channel depend

incorrectz;, sequence start to diverge when mainly on the underlying map and not on the parameter
2 = 221 mod 1+ by, - 29, 17) @ which we mtrodgced as an ad hog development_ln
F g d1+b 9@ 18 order to build practical coded modulation schemes with
Zp = 2Zm—1 MOd L +bp, - 2, 18)  an equivalent trellis representation.
and their square difference in terms of thg and z/,
sequences is V. SIMULATION RESULTS
(m — l’;n)z — 4z — Z;n)z —4.47Q — 47+ (19) In Figs. 11 and 12 we can see, the simulation results and
the bounds for the several CCM'’s proposed under low and
where we have made use of the fact thiaf — b/,| =  moderate ISI, respectively. We show also the theoretical

1. Since the rest of input bits,, 1, b,,12,--- take the bit error probability of BPSK in the same channels for

© 2010 ACADEMY PUBLISHER
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—— BSM, AWGN, Q=5 | *
—x — TM, AWGN, Q=5
-0~ mBSM, AWGN, Q=6 |. . -
~0— mTM, AWGN, Q=5
+- BSM,low ISI, Q=5
X TM, low IS, Q=5 E
0+ mBSM, lowIS1, Q=6
O - mTM, low ISI, Q=5

20 25

15
E,/N, (dB)

Fig. 11. Simulation results and bounds for AWGN and low IS3uBds
are depicted with thin continuous lines. The performancBRSK over
the same ISl channel is depicted with a dotted line. The pedace of
the test TCM system is depicted with thick continuous linesth for
AWGN only (left) and for low ISI (right).
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Fig. 12. Simulation results and bounds for AWGN and modei&te
Bounds are depicted with thin continuous lines. The peréoroe of
BPSK over the same ISI channel is depicted with a dotted [ire2
performance of the test TCM system is depicted with thickticolwus
lines, both for AWGN only (left) and for moderate ISI (righ#\ll the
cases are fo€) = 5.
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Fig. 13. Simulation results and bounds for low ISI in the ca$e
the BSM CCM with different@ values. The bounds are depicted with
continuous lines.

bits and the BER results were recorded 166 frames on
error.

As stated for the CCM systems, in some of the cases the
performance is dominated by condition (11) and the BER
tends to zero a€v, /Ny grows, while in other cases the
mentioned error floor given by condition (15) is dominant
for high signal to noise ratios. In low ISI, the TM CCM
is severely affected by ISI impairment, while the rest
of systems exhibit low or moderate losses. It is very
significant that the mTM CCM comes next i), /Ny loss
in comparison with the AWGN channel, while the systems
based on the Bernoulli shift map behave quantitatively and
qualitatively better. When we have moderate ISI, however,
only the BSM CCM is robust enough, keeping a steady
coding gain with respect to the uncoded BPSK case, and
the performance of the rest of CCM’'s degrades a lot,
showing a high error floor and no coding gain. Note that
in all the cases the corresponding bounds drawn from (14)
and (16) are very tight and explain the BER behavior for
high signal to noise ratios.

With respect to the conventional TCM system under
low ISI, we can see that the loss i,/N, for a same
BER of around10~7 is similar to the loss in the case
of the mBSM CCM, and slightly higher compared to the
loss for the BSM CCM, while the mTM CCM is clearly
worse (see the double arrows in Fig. 11). In the case of
moderate ISI (see Fig. 12, double arrows), the BSM CCM
outperforms the TCM system in point &% /N loss. This

comparison [25]. We have depicted also the simulatiorgives a interesting hint of how this kind of chaos-based
results for a conventiondt = 1 bit/symbol TCM scheme systems could exploit both the foreseen good properties of

consisting on a constraint length = 5 encoder with

chaos in the channel and the already known possibilities

generator polynomial§6 and 23 and quadrature phase of coded modulations in dispersive environments.

shift keying (QPSK) modulation [29]. It is a rotationally

The cases leading to error floors are typical cases where

invariant system suitable for dispersive channels. All theequalization is absolutely mandatory [30]. The results

simulations have been run with data blocks\éf= 10000

© 2010 ACADEMY PUBLISHER

obtained stress the fact that, if condition (15) is met with
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a given CCM for some low loop length error event in the [2]
ISI channel, then the BER tends fast to an error floor for
growing E; /Ny. In absence of equalization, this provides
a design criterion for chaos-based coded modulations ingj
situations where a low degree of unequalized ISl is to
be expected. Note also how the systems based on chaoti[g]
maps with poor performing abilities in AWGN (due to its
poor distance spectrum, like the TM CCM [31]) also lead [6]
to bad results in ISI.

In Fig. 13, we show the results and bounds in low 7
ISI for the BSM CCM with different quantization levels.
From a value of = 4 and on, the behavior is the same,
and the simulation results and the bounds are practicall)ls]
the same forQ = 5,6, 7. Thus, we verify that what was
said in previous section about the negligible effectbf
is in fact true so long as it has a value larger than a
minimum. In this case, this minimum value @ = 4.
This insensibility with respect t@ is a desirable feature [10]
in chaos-based coded modulations, because the encoding
and decoding complexity can be kept low enough without
degrading the performance, while the dynamics of thei1)
case) — oo can be considered for evaluation and design
purposes when necessary.

[9]

[12]
VI. CONCLUSIONS

In this article we have analyzed the possibility to drawt3]
bounds for the bit error probability of a class of chaos-
based coded modulations face to a limited amount of 1S[14]
We have seen that, using the device of the ISI distance
spectrum for a limited amount of possible error events, we
can calculate simple bounds which are tight enough foris)
high signal-to-noise ratios. By means of some examples,
we have shown that chaos-based coded modulations ﬂfe]
this kind can keep the good properties of coded modu-
lations in dispersive environments [22]. We have as well
verified the conditions for the appearance of error floord!”]
even in the presence of low ISI, and this provides a useful
and interesting tool for design and evaluation tasks of
related chaos-based coded modulations. (18]

Moreover, we have analyzed the effect of the quan-
tization parameter) on the final performance of the [19]
related systems, and we have seen that, so long as this
parameter takes a value larger than a minimumd4pf 20]
the behavior of the chaos-based coded modulation is in
practice the same as for the ideal case with— ooc.

This links the performance results to the dynamics of?l
the underlying map and gives a useful insight into chaospy
based communications. At the same time, this allows the
desing of practical systems wit) as low as possible [23]
for bounded encoding and decoding complexity. All this
opens a promising way for chaos-based communications
since, as the principles shown here are directly applicabl&4]
to the whole kind of chaos-based systems described by a
trellis, they can help to cast a theoretical ground for newys;
and successful developments in dispersive channels.
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