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Abstract

Singular Spectrum Analysis (SSA) is a nonparametric tecnique for signal extraction

in time series based on principal components. However, it requires the intervention of

the analyst to identify the frequencies associated to the extracted principal components.

We propose a new variant of SSA, Circulant SSA (CSSA) that automatically makes this

association. We also prove the validity of CSSA for the nonstationary case. Through

several sets of simulations, we show the good properties of our approach: it is reliable,

fast, automatic and produces strongly separable elementary components by frequency.

Finally, we apply Circulant SSA to the Industrial Production Index of six countries.

We use it to deseasonalize the series and to illustrate that it also reproduces a cycle in

accordance to the dated recessions from the OECD.

Keywords: circulant matrices, signal extraction, singular spectrum analysis, non-

parametric, time series, Toeplitz matrices.

JEL Classi�cation: C22, E32

�The views expressed in this paper are those of the authors and should not be attributed to the European

Commission. First and third authors acknowledge �nancial support from the Spanish government, contract

grants ECO2015-70331-C2-1-R, ECO2014-56676C2-2-P and ECO2015-66593-P.

1



1 Introduction

In many occasions, macroeconomic policy relies on analyzing a particular signal from the

observed time series as the cycle or the trend. Additionally, statistical o¢ ces need to pro-

duce seasonally adjusted data for a large amount of economic indicators. Singular Spectrum

Analysis (SSA) is a non-parametric (and, therefore, model free) procedure based on sub-

space algorithms for signal extraction. The main task in SSA is to extract the underlying

components of a time series like the trend, cycle, seasonal and irregular components. It has

been applied to a wide range of time series problems, besides signal extraction, like fore-

casting, missing value imputation and others. SSA builds a trajectory matrix by putting

together lagged pieces of the original time series and works with the Singular Value De-

composition of this matrix. It is a procedure closely related to Principal Component (PC)

analysis but applied to the trajectory matrix.

SSA has been applied in several �elds. In economics, Hassani and Thomakos (2010)

review SSA for economic and �nancial time series, focusing on forecasting and the business

cycle monitoring. Regarding forecasting, Hassani, Heravi, Brown and Ayoubkani (2013)

and Silva and Hassani (2015) focus on the e¤ects of forecasting with SSA before and after

the 2008 recession, Hassani, Soo� and Zhigljavsky (2013) forecast the in�ation dynamics

or Hassani, Heravi and Zhigljavsky (2013) forecast industrial production with multivariate

SSA. Related to business cycles, de Carvalho, Rodrigues and Rua (2012) track the US busi-

ness cycle, de Carvalho and Rua (2017) focus on the real time nowcasting of the output

gap and Sella, Vivaldo, Groth and Ghil (2016) analyze economic cycles and their synchro-

nization in three European countries. SSA has also been applied to estimate stochastic

volatility models by Arteche and García-Enríquez (2016).

However, an important drawback of the initial SSA procedures is that the intervention

of the analyst is required to identify the harmonic frequencies of the extracted components.

To solve this problem we propose a new SSA methodology based on circulant matrices

(CSSA). The main feature of these matrices is that their eigenstructure can be obtained as

a function of the frequencies and therefore we can automatically identify the eigenvalues and

eigenvectors associated to any particular frequency. Moreover, we also prove the validity

of our proposal for nonstationary time series as well. An additional contribution of our

method is the strong separability of the extracted components as compared to previous

variants of SSA.

In summary, our contribution is to propose Circulant SSA to automatically apply SSA

2



for signal extraction, without the intervention of the analyst, recovering reliable components

that are strongly separable for both stationary and nonstationary time series.

The structure of this paper is as follows: Section 2 brie�y describes the SSA technique.

Section 3 proposes our new SSA procedure, named after Circulant SSA and proves its use

for nonstationary time series too. Section 4 veri�es the strong separability of the extracted

components. Section 5 presents a set of simulations to check the properties of the proposed

methodology and Section 6 applies it to several real time series. Finally, Section 7 concludes.

2 SSA methodology

The origin of SSA dates back to 1986 with the publication of the papers by Broomhead and

King (1986a, 1986b) and Fraedrich (1986). Vautard and Ghil (1989) introduce Toeplitz

SSA under the assumption of stationary time series and Vautard et al. (1992) further

develop the technique and are the �rst to derive an algorithm to obtain the extracted

components with the length of the original series. At the same time, and independently,

the so-called Caterpillar technique was developed in the former Soviet Union (see, Danilov

and Zhigljavsky, 1997). Elsner and Tsonis (1996), Golyandina et al. (2001) and Golyandina

and Zhigljavsky (2013) are books on the topic.

In this section we brie�y describe the steps of the SSA technique to decompose a time

series in its unobserved components. Let fxtg be a real valued time series of size T;
x = (x1; :::; xT )

0; and L a positive integer, called the window length, such that 1 < L < T=2.

The Basic SSA or Broomhead-King (BK) procedure involves 4 steps:

1st step: Embedding

From the original time series we will obtain an L�N trajectory matrix X given by L

dimensional time series of length N = T � L+ 1 as

X =(x1j:::jxN ) =

0BBBBB@
x1 x2 x3 ::: xN

x2 x3 x4 ::: xN+1
...

...
...

...
...

xL xL+1 xL+2 ::: xT

1CCCCCA
where xj = (xj ; :::; xj+L�1)0 indicates the vector of dimension L and origin at time j: Notice

that the trajectory matrix X is Hankel and both, by columns and rows, we obtain subseries

of the original one.

2nd step: Decomposition
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In this step, we perform the singular value decomposition (SVD) of the trajectory

matrix X = UD1=2V0 where U is the L�L matrix whose columns uk are the eigenvectors
of the second moment matrix S = XX0, D = diag(�1; :::; �L), �1 � ::: � �L � 0, are the

eigenvalues of S and V is the N � L matrix whose columns vk are the L eigenvectors of
X0X associated to nonzero eigenvalues. This decomposition allows to write X as the sum

of the so-called elementary matrices Xk of rank 1,

X =

rX
k=1

Xk =

rX
k=1

ukw
0
k;

where wk = X0uk =
p
�kvk and r = max�k>0fkg=rank(X).

3rd step: Grouping

Under the assumption of weak separability given in Golyandina et al. (2001), we group

the elementary matrices Xk into m disjoint groups summing up the matrices within each

group. Let Ij = fj1; :::; jpg; j = 1; :::;m each disjoint group of indexes associated to the

corresponding eigenvectors. The matrix XIj = Xj1 + :::+Xjp is associated to the Ij group.

The decomposition of the trajectory matrix into this groups is given by X = XIj+:::+XIm :

The contribution of the component coming from matrix XIj is given by
P
k2Ij

�k=
Pr
k=1 �k:

4th step: Reconstruction

Let XIj = (exij). In this step, each matrix XIj is transformed into a new time series

of the same length T as the original one, denoted as ex(j) = (ex(j)1 ; :::; ex(j)T )0 by diagonal
averaging of the elements of XIj over its antidiagonals as follows

ex(j)t =

8>><>>:
1
t

Pt
i=1 exi;t�i+1; 1 � t < L

1
L

PL
i=1 exi;t�i+1; L � t � N

1
T�t+1

PT�N+1
i=L�N+1 exi;t�i+1; N < t � T

9>>=>>; :

The alternative Toeplitz SSA or Vautard-Ghil (VG) relies on the assumption that x

is stationary and zero mean and it performs the SVD decomposition in step 2 from an

alternative matrix ST= (sij) where

sij=
1

T � ji� jj

T�ji�jjX
m=1

xmxm�ji�jj; 1 � i; j � L: (1)

In this case, the matrix ST is the sample lagged variance-covariance matrix of the original

series, a symmetric Toeplitz matrix. The set (�k;uk;wk) is named the k-th eigentriple.

The rest of the algorithm remains unchanged.
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3 Circulant SSA

As previously stated in the introduction, a drawback of SSA in any of its variants is that it

requires the intervention of the analyst to identify the harmonic frequencies of the extracted

components. To try to overcome this problem, Ghil and Mo (1991), associate two di¤erent

extracted principal components with similar eigenvalues to the same oscillation if they

are highly correlated for a given lag. Vautard et al. (1992) suggest a test based on the

periodogram to establish if a pair of eigenvectors are associated to the same harmonic.

Later, Alexandrov and Golyandina (2004, 2005) introduce optimal thresholds for grouping

eigenvectors linked to nearby frequencies in order to assign them to the same harmonic.

Alonso and Salgado (2008) and Bilancia and Campobasso (2010) apply cluster techniques

for grouping the elementary components based on k-means and hierarchical clustering,

respectively. Nevertheless, whatever procedure is used, the grouping of frequencies is made

after the elementary components are extracted. Also, the previous tests and procedures

are based on parameters and/or thresholds that have to be previously set in a subjective

way. Since the pairs of eigenvalues and eigenvectors are obtained, not as a function of

the frequency, but rather on a decreasing magnitude, this means that the grouping is done

with uncertainty. Bozzo et al. (2010) provided a partial solution by linking the eigenvalues-

eigenvectors as a function of the frequency for symmetric positive de�nite Toeplitz matrices.

However, the analytic form of the eigenvalues for this type of matrices is only known for

heptadiagonal ones (see, Solary, 2013). We generalize this link between the eigenstructure

and the associated harmonics by the use of circulant matrices.

In this section, we propose an automatic version of SSA based on circulant matrices.

First, we deal with the stationary case and later on we will extend our proposal to the

nonstationary case.

3.1 Stationary case

In this subsection we propose to apply SSA to an alternative matrix of second moments that

is circulant. In this case, we have closed form eigenvalues-eigenvectors that are linked to the

desirable speci�c frequencies. We show the asymptotic equivalence between the traditional

Toeplitz matrices used in SSA and our proposed circulant matrices. We also propose a

more friendly and very easy to estimate approach to the elements of the circulant matrix.

Based on all the previous results we propose a new alghorithm that we name Circulant SSA

(CSSA).
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Toeplitz matrices appear when considering the population second order moments of

the trajectory matrix. Let fxtg be an in�nite, zero mean stationary time series whose
autocovariances are given by m = E(xtxt�m) m = 0; 1; ::: and its spectral density function,

a real 2�-periodic, continuous function, denoted by f: Let

�L(f) =

0BBBBB@
0 1 2 ::: L�1

1 0 1 ::: L�2
...

...
...

...
...

L�1 L�2 L�3 ::: 0

1CCCCCA (2)

be the L � L matrix that collects the second moments. Notice that �L(f) is a symmetric
Toeplitz matrix that depends on the spectral density f through the covariances m. Recall

that m =
R 1
0 f(w) exp(i2�mw)dw for any integer m where w is the frequency in cycles

per unit of time.

Analytic expressions for the eigenvalues of Toeplitz matrices are only known up to hep-

tadiagonal matrices. To be able to have closed solutions of the eigenvalues and eigenvectors

for any dimension, we use a special case of Toeplitz matrices that are the circulant ones.

In a circulant matrix every row is a right cyclic shift of the row above as follows:

CL(f) =

0BBBBB@
c0 c1 c2 ::: cL�1

cL�1 c0 c1 ::: cL�2
...

...
...

...
...

c1 c2 c3 ::: c0

1CCCCCA :
Following Lancaster (1969), the k-th eigenvalue of the L�L circulant matrix CL(f) is

given by

�L;k =

L�1X
m=0

cm exp

�
i2�m

k � 1
L

�
for k = 1; :::; L with associated eigenvector

uk = L
�1=2(uk;1;:::; uk;L)

0 (3)

where uk;j = exp
�
�i2�(j � 1)k�1L

�
.

In particular, if we consider the circulant matrix of order L�L with elements cm de�ned
as:
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cm =
1

L

L�1X
j=0

f

�
j

L

�
exp

�
i2�m

j

L

�
; m = 0; 1; :::; L� 1; (4)

we have two interesting results. First, the eigenvalues of this circulant matrix coincide with

the spectral density evaluated at points w = k�1
L ,

�L;k = f

�
k � 1
L

�
; (5)

and second, the matrices �L(f) and CL(f) are asymptotically equivalent as L!1, �L(f)
�CL(f); in the sense that both matrices have bounded eigenvalues and lim

L!1
k�L(f)�CL(f)kFp

L
=

0, where k�kF is the Frobenius norm, as Gray (1972; lemma 4.1) shows. Moreover, the

eigenvalues of both matrices �L(f) and CL(f) are asymptotically equally distributed in

the sense of Weyl1 as a consequence of the fundamental theorem of Szegö (Grenander and

Szegö, 1958) as Trench (2003) shows.

To obtain a more operational version of the procedure, we consider a new circulant

matrix eCL(f) whose elements ecm are given by
ecm = L�m

L
m +

m

L
L�m; m = 0; 1; :::; L� 1: (6)

In this case, Pearl (1973) shows that �L(f) is asymptotically equivalent to eCL(f): By
the transitivity property, the three matrices �L(f), eCL(f) and CL(f) are asymptotically
equivalent.

Therefore, our proposal will consist on using these closed forms of the eigenvalues and

eigenvectors to associate the SSA elementary components to a particular frequency before

extracting them. Moreover, with this approach the spectral density is easily evaluated at

frequencies k�1L by the eigenvalues of the eCL(f) matrix.
Finally, to deal with observed data we have to work with estimated, rather than popula-

tion, quantities. So, we substitute the population autocovariances fmgL�1m=0, by the sample

second moments fsmgL�1m=0 where sm;m = 0; :::; L� 1 is de�ned as

sm =
1

T �m

T�mX
t=1

xtxt�m:

1Weyl de�nes two sets of bounded real numbers fan;kgnk=1 and fbn;kg
n
k=1as asymptotically equally distrib-

uted if for a given continuous function F on the interval [�K;K], it holds that lim
n!1

nP
k=1
(F (an;k)�F (bn;k))

n
= 0:
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Since the sample autocovariances converge in probability to the population autocovariances,

we de�ne SC with elements given by

bcm = L�m
L

sm +
m

L
sL�m; m = 0; 1; :::; L� 1: (7)

In what follows, we describe our new proposed algorithm, named Circulant SSA. Given

the time series data fxtgTt=1:
1st step: Embedding. This step is as before.

2nd step: Decomposition. Compute the circulant matrix SC whose elements are

given in (7). Find the eigenvalues b�k of SC and based on (5), associate the k-th eigenvalue
to the frequency w = k�1

L ; k = 1; :::; L:

3rd step: Grouping. Given the symmetry of the spectral density, we have thatb�k = b�L+2�k. Their corresponding eigenvectors given by (3) are complex, therefore, they
are conjugated complex by pairs, uk = uL+2�k where v indicates the complex conjugate

of a vector v, and u�kX and u�L+2�kX correspond to the same harmonic period, where v�

denotes the transpose conjugate of uk . We proceed as follows to transform them in pairs

of real eigenvectors in order to compute the associated components.

To form the elementary matrices we �rst form the groups of 2 elements Bk = fk; L+2�
kg for k = 2; :::;M with B1 = f1g and BL

2
+1 =

�
L
2 + 1

	
if L is even. Second, we compute

the elementary matrix by frequency XBk as the sum of the two elementary matrices Xk

and XL+2�k, associated to eigenvalues b�k and b�L+2�k and frequency k�1
L ,

XBk = Xk +XL+2�k

= uku
�
kX+ uL+2�ku

�
L+2�kX

= (uku
�
k + uku

�
k)X

= 2(RukR
0
uk
+ IukI

0
uk
)X

where the prime denotes transpose, Ruk denotes the real part of uk and Iuk its imaginary

part. In this way, all the matrices Xk; k = 1; :::; L; are real.

4th step: Reconstruction. As before.

Notice that the elementary reconstructed series by frequency can be automatically as-

signed to a component according to the goal of our analysis.

3.2 Nonstationary case

In economics, many time series are nonstationary. That is to say, the autoregressive poly-

nomial has unit roots. This has important consequences in our analysis and we have to
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show that Circulant SSA can be applied to nonstationary time series. The next theorem, a

generalization of the analogous given by Gray (1974), provides the theoretical background

needed to apply Circulant SSA to nonstationary time series.

Theorem 1 Let TL(s) be a sequence of Toeplitz matrices with s(w) a real, continuous and

2�-periodic, such that s(w) � 0, where the equality is reached in a �nite number of points
H = fw0i ; i = 1; :::; lg. Given a �nite �, consider the disjoint sets


i =

�
w 2

�
w0i � ai; w0i + bi

�
js(w) � 1

�

�
; ai; bi 2 R+; i = 1; :::; l

and let g(w) be a function de�ned as

g(w) =

(
f(w) = 1

s(w) if w =2 [li=1
i
hi(w) if w 2 
i

)
where hi(w) is any real valued bounded function continuous in 
i. Let Mhi = ess sup

hi <1 and mhi = ess inf hi = hi
�
w0i � ai

�
= hi

�
w0i + bi

�
= �:

Let �L;k; k = 1; :::; L; be the eigenvalues of (TL(s))
�1 sorted in decreasing order and let

F (x) be a continuos function in
h
1
Ms
;maxiMhi

i
with Ms = ess sup s, then

lim
L!1

1

L

LX
k=1

F (min(�L;k;max(egk; �))) = 1Z
0

F (g(w))dw; (8)

where egk are the values of g(k�1L ) sorted in descending order.

Proof : The proof is given in the Appendix.

In a similar way to Gray (1974), the theorem states that the sequence of eigenvalues of

the sequence of matrices (TL(s))
�1 are asymptotically distributed (in the sense of Weyl)

as the eigenvalues of the sequence of matrices TL(g) up to a �nite value � as L tends to

in�nity. Moreover, the matrices TL(g) � CL(g) and by Szegö�s theorem, the eigenvalues

of the sequence of matrices TL(g) are asymptotically distributed as the eigenvalues of the

sequence of matrices CL(g) up to a �nite value � as L tends to in�nity.

As a result, for a nonstationary series, the union of the estimation of the spectral density

in a point of discontinuity with the estimations in the adjoint frequencies through segments

is an easy way of building the functions hi: If all the functions hi are constant and equal to a

particular value � �nite , we have the particular case proved in Gray (1974). Therefore, the

generalization to functions hi allows a better approximation of the spectral density when

we increase the window length.
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4 Separability of SSA

Separability of the elementary series as well as those grouped by frequencies is an as-

sumption of SSA and should also be a characteristic of the estimated components. This

characteristic is important since many signal extraction procedures assume zero correlation

between their underlying components, whereas the estimated signals can be quite corre-

lated. As Golyandina et al. (2001) point out the SSA decomposition can be successful only

if the resulting additive components of the series are quite separable from each other. In

this section, we �rst introduce the basic notions of separability and how it is measured. Af-

terwards, we show that Circulant SSA produces component series that are highly separable

outperforming alternative algorithms.

For a �xed window length L; given two series
n
x
(1)
t

o
and

n
x
(2)
t

o
extracted from the

series fxtg, we say that they are weakly separable if both their column as well as row spaces
are orthogonal, that is X(1)

�
X(2)

�0
= 0L�L and

�
X(1)

�0
X(2) = 0N�N . Furthermore, we

say that two series
n
x
(1)
t

o
and

n
x
(2)
t

o
are strongly separable if they are weakly separable

and the two sets of singular values of the trajectory matrices X(1) and X(2) are disjoint.

When the trajectory matrix of the original time series has not multiple singular values or,

equivalently, each elementary reconstructed series belongs to a di¤erent harmonic, strong

separability is guaranteed according to the previous de�nition.

Usually, separability is measured in terms of w-correlation (see, for instance, Golyandina

et al., 2001, and Golyandina and Zhigljavsky, 2013), that it is given by

�w
12
=



x(1);x(2)

�
wx(1)

w

x(1)
w

;

where


x(1);x(2)

�
w
= (x(1))0Wx(2) is the so called w-inner product and

x(1)
w
=
q

x(1);x(1)

�
w

and W =diag(1; 2; :::; L; :::; Lz }| {
T � 2(L� 1) times

; :::; 2; 1). Note that the window length L en-

ters the de�nition of w-correlation. We are interested on producing components with

w-correlation (ideally) zero because, in this case, we can conclude that the component se-

ries are w-orthogonal, i. e.


x(1);x(2)

�
w
= 0 and separable (see, Golyandina et al. 2001).

To quickly check how separable are the component series when performing SSA, we plot

the matrix of the absolute values of the w-correlations for all the component series, coloring

in white the absence of w-correlation, in black w-correlations in absolute value equal to 1

and in a scale of grey colors the remaining intermediate values.
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To show that Circulant SSA produces components that are strongly separable, �rst no-

tice that the real eigenvectors
p
2Ruk and

p
2Iuk (linked to eigenvalues �k and �L+2�k, re-

spectively, �k = �L+2�k) are orthogonal and have information associated only to frequency
k�1
L . Those are the only eigenvectors that have information related to this frequency.

As eigenvectors can be considered �lters, Kume (2013), these pair of eigenvectors extract

elementary series linked to the same frequency without mixing harmonics of other frequen-

cies. As a result, the two elementary series, when reconstructed in step 4, have spectral

correlation close to 1 between them and close to zero with the remaining ones. Taking into

account the pairs of reconstructed series per frequency, any grouping of the reconstructed

series results in disjoint sets from the point of view of the frequency. Then, Circulant SSA

produce components that are approximately strongly separable. In this case, the graph of

the w-correlation matrix is black color in the main diagonal and white elsewhere as in the

ideal case.

As we shall see in the simulation and in the empirical application, CSSA produces

components that are more separable than previous alternatives os SSA, Basic and Toeplitz.

5 Simulations

In this section we compare the performance of our new proposal, Circulant SSA, with the

competing SSA algorithms, i.e. Basic SSA and Toeplitz SSA for a linear as well as nonlinear

time series model. We focus on two main aspects: reliability of the estimated components

in �nite samples and separability.

5.1 Linear time series

The �rst model is a basic structural time series model

xt = Tt + ct + st + et (9)

where Tt is the trend component, ct is the cycle, st is the seasonal component and et is

the irregular component. We assume an integrated random walk for the trend (see Young

1984) given by

Tt = Tt�1 + �t�1 (10)

�t = �t�1 + �t
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with �t � N(0; �2�): The cyclical and seasonal components are speci�ed according to Durbin
and Koopman (2012), where the cycle is given by the �rst component of the bivariate

VAR(1)  
ctect
!
= �c

 
cos(2�wc) sin(2�wc)

� sin(2�wc) cos(2�wc)

! 
ct�1ect�1

!
+

 
"te"t
!

(11)

with

 
"te"t
!
� N(0; �2"I) and 1

wc
the period with wc 2 [0; 1]. The seasonal component is

given by

st =

[s=2]X
j=1

aj;t cos(2�wjt) + bj;t cos(2�wjt) (12)

with wj =
j
s ; j = 1; :::; [s=2] and s the seasonal period, where [�] is the integer part and aj;t

and bj;t are two independent random walks with noise variances equal to �2j : Finally, the

irregular component is white noise with variance �2e: All the components are independent

of each other. We set �c = 1; so the trend, cycle and seasonal components have a unit root.

We consider that the series are monthly with s = 12 and cyclical period equal to 1
wc
= 48

months. The sample size is T = 193 and the noise variances of the di¤erent components

are given by �2� = 0:0006
2, �2j = 0:004

2, �2" = 0:008
2 and �2e = 0:06

2: We choose as window

length L = 48 following Golyandina and Zhigljavsky (2013), since L is multiple of the

seasonal period, it is equal to the cyclical period and T � 1 is multiple of L:
The trend is related to the 0 frequency, the cycle to frequency 1/48 and the seasonal

components to frequencies 1/12, 1/6, 1/3, 1/4, 5/12 and 1/2. Then, according to (5) and

the symmetry of the spectral density, the trend is reconstructed with the eigentriple 1, the

cyclical component with the eigentriples 2 and 48, and the seasonal components with the

eigentriples 5, 9, 13, 17, 21, 25, 29, 33, 37, 41 and 45. For example, for the frequency w = 1
12 ,

we have that k�1L = 1
12 , and therefore, we sum the elementary components k = 48

12 + 1 = 5

and L+ 2� k = 48 + 2� 5 = 45.
If the procedure for signal extraction works well, the simulated component yt (yt can

be the trend, cycle or seasonal component) could be written as

yt = byt + ut
where ut is the noise and byt is the extracted signal. Then, in the regression

yt = a+ bbyt + et (13)
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a = 0 (unbiasedness) and b = 1 (the scale is not changed). We simulate 1000 times the

model and perform signal extraction with Circulant SSA. Table 1 shows the percentiles of

the empirical distribution of the estimated coe¢ cients of the regression in (13). The last

three rows of the table show the inverse of the signal to noise ratio

SNR�1 =
�2u
�2s

where �2u is the variance of the noise ut = yt � byt and �2s is the variance of the estimated
signal byt. A value close to zero indicates that the explanatory power of the noise is very

small compared to that of the signal and it is an indication of a good approximation.

Table 1 shows that the median of the estimated intercept and is almost zero for the three

estimated components (cycle, seasonal component and trend). The median for the scale

parameter b is almost one for the three components, but looking at the values for di¤erent

quantiles, the empirical distribution for the estimated b associated to the cycle indicates a

larger dispersion.

TABLE 1 SHOULD BE INSERTED AROUND HERE

The estimated residuals from equation (9) are given by bet = xt� bTt�bct� bst and should
be white noise. In order to check this, we �t an AR(1) to bet. Table 2 shows the quantiles of
the empirical distribution of the mean, standard error and autoregressive coe¢ cient of the

residuals of the 1000 replications. The median of the mean and autoregressive coe¢ cient

are close to zero. The median of the standard deviation is 0.0529 (the value used for the

simulations was 0.06).

TABLE 2 SHOULD BE INSERTED AROUND HERE

The results from the simulations seem very good. In order to compare Circulant SSA

with alternative algorithms as Basic and Toeplitz SSA, we describe in more detail the

simulation corresponding to the replication number 500. With Circulant SSA, we know

in advance the eigentriples corresponding to each component (trend, cycle and seasonal

component). For Basic and Toeplitz SSA, we associate the eigentriples to each component

(trend, cycle or seasonal component) afterwards. In this particular case, for Basic SSA, we

associate the eigentriple 1 with the trend, eigentriples 2 and 3 with the cycle and eigentriples

4 to 14 with the seasonal component. For Toeplitz SSA, the trend is reconstructed with

the eigentriple 1, the cycle with eigentriples 2 and 3 and the seasonal component with the

eigentriples 5 to 11 and 14 to 18. We also compute the statistics associated to the error
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term of the estimated components. In Table 3 we present the summary statistics for the

error term as well as the inverse of the SNR.

TABLE 3 SHOULD BE INSERTED AROUND HERE

Although the summary statistics from Table 3 seem to show that the three algorithms

(Circulant, Basic and Toeplitz SSA) produce similar results, notice that Circulant SSA

produces components with smaller SNR�1.

Regarding separability, Figure 1 plots the w-correlation matrices for the components

extracted with the three algorithms. Notice that Circulant SSA produces matrices that

are closer to diagonality than the other two alternatives where we can see di¤erent degrees

of grey in the o¤-diagonal cells. Therefore, as it was expected, Circulant SSA recovers

components that are more separable than the two alternative versions of SSA, Basic and

Toeplitz.

FIGURE 1 SHOULD BE INSERTED AROUND HERE

5.2 Non-linear time series

For the case of non-linear time series, we borrow the model from Durbin and Koopman

(2012) for UK travellers given by

xt = Tt + ct + exp(a0 + a1Tt)t + "t

where Tt is the trend, ct is the cycle and t is the seasonal component speci�ed as in

(10), (11) and (12), respectively. The parameters a0 and a1 are unknown �xed coe¢ cients.

Coe¢ cient a0 scales the seasonal component. The sign of the coe¢ cient a1 determines

whether the seasonal variation increases or decreases when a positive change in the trend

occurs. The overall time varying amplitude of the seasonal component is determined by

the combination a0 + a1�t:

As for the linear case, we simulate the model 1000 times for series of length T = 193

observations. We set a0 and a1 such that for each replication 0:5 � exp(a0 + a1�t) � 1:5,
with a1 > 0. We apply Circulant SSA with a window length L = 48: Table 4 shows the

quantiles of the empirical distribution of the estimated coe¢ cients of the regression in (13).

The last three rows of the table show the inverse of the signal to noise ratio SNR�1:

TABLE 4 SHOULD BE INSERTED AROUND HERE
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In order to check that the estimated residuals are white noise, we �t an AR(1) to bet as
in the linear case. Table 5 shows the quantiles of the empirical distribution of the mean,

standard error and autoregressive coe¢ cient of the residuals of the 1000 replications. The

median of the mean and autoregressive coe¢ cient are close to zero. The median of the

standard deviation is 0.053 (the value used for the simulations was 0.06).

TABLE 5 SHOULD BE INSERTED AROUND HERE

As in the linear case, the results from the simulations seem very good. To compare

Circulant SSA with alternative algorithms as Basic and Toeplitz SSA, we describe in more

detail replication number 500. Table 6 shows the summary statistics of the residuals as

well as the inverses of the SNR in order to check the adequacy of the three versions of SSA.

TABLE 6 SHOULD BE INSERTED AROUND HERE

Although the three algorithms seem to work quite well, Circulant SSA produces compo-

nents with smaller SNR�1. Figure 2 shows the w-correlation matrices for the components

extracted with the three algorithms. Notice that in the nonlinear case, Circulant SSA also

presents w-correlation matrices that are closer to the diagonality than the other two alter-

natives where we can see di¤erent degrees of grey in the o¤-diagonal cells. Again, Circulant

SSA recovers components that are more separable than the two alternative versions of SSA,

Basic and Toeplitz.

FIGURE 2 SHOULD BE INSERTED AROUND HERE

6 Application

We consider monthly series of Industrial Production (IP), index 2010=100, of six countries:

France, Germany, Italy, UK, Japan and USA. Industrial Production is widely followed

since it is pointed out in the de�nition of a recession by the National Bureau of Economic

Research (NBER), http://www.nber.org/cycles/recessions.html, as one of the four

monthly indicators series to check in the analysis of the business cycle. The sample covers

from January 1970 to September 2014, so the sample size T = 537: The data source is

the IMF database. As it can be seen in Figure 3, these indicators show di¤erent trend,

seasonality and cyclical behavior, and our goal is to extract these components and discuss

about the results.
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FIGURE 3 SHOULD BE INSERTED AROUND HERE

The �rst step is to establish the window length. Due to the monthly periodicity and

seasonality, we select a window length multiple of 12. Assuming that the period of the cycle

in these series goes from 1 year and a half to 8 years, we choose a window length multiple

of 8�12=96 months. From the two available options, 96 and 192 months, we select the

second one since it is larger according to the asymptotic results provided in Section 3.

We apply Circulant SSA, and associate the trend to the frequencies w = 0 and w =

1=192 (as they correspond to periods of in�nite and a long cycle of 16 years respec-

tively). According to (5) and the symmetry of the spectral density, the trend is re-

constructed with the eigentriples 1, 2 and 192 and with the elementary groups by fre-

quencies B1 and B2 respectively. According to the assumption that the period for the

cycle goes from 1.5 to 8 years, this component is associated to the frequencies w =

1=96; 1=64; 1=48; 5=192; 1=32; 7=192; 1=24; 3=64; 5=96 and the cycle signal is reconstructed

with the eigentriples 3 to 11 and 183 to 191, with the elementary groups by frequen-

cies from B3 to B11: Finally, the seasonal component is associated to the frequencies

w = 1=12; 1=6; 1=4; 1=3; 5=12; 1=2 and reconstructed in a similar way with the eigentriples

17, 33, 49, 65, 81, 97, 113, 129, 145, 161 and 177 and with the elementary groups by

frequencies B17; B33; B49; B65; B81; and B97:

Table 7 shows the contributions of the signals to the original IP variations in percentage.

First, we highlight that the contribution of the irregular component (those oscillations not

explained by the trend, cyclical or seasonal components) is smaller than 3.5% in all the

countries. Main contributions come from the trend and seasonality, that account for more

than 84% in all the countries. As expected, the contribution of the seasonal component is

almost negligible in USA, and quite small in Japan and Germany, while it is very relevant

in Italy and France. Finally, the cycle contributes in a range between 7.8% in Italy to 13.8%

in Japan.

TABLE 7 SHOULD BE INSERTED AROUND HERE

Figure 3 shows the estimated trends for every country. The trend is a smooth component

that has shown a decreasing evolution since the last decade for France, Italy and UK as a

consequence of the last economic crisis. On the contrary, in Germnay and US, the trend

shows an upward evolution in all the sample period.

Figure 4 shows the cyclical component where the shaded areas correspond to recessions

as dated by the OECD. We can see that the extracted cycle re�ects quite well the business
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cycle for all countries.

FIGURES 4 AND 5 SHOULD BE INSERTED AROUND HERE

Figure 5 shows the matrices of w-correlations and it can be seen that, as expected,

Circulant SSA produces components that are strongly separable. Separability results is

a very desirable feature in the construction of seasonal adjusted time series, that is the

absence of any remaining seasonality. To check the quality of seasonal adjustment by

Circulant SSA, we have applied the combined test for seasonality (Lothian, 1978) used in

X12-ARIMA. We found that there were no signs of any remaining seasonality in any of the

seasonal adjusted time series for the di¤erent countries2.

7 Conclusions

SSA is a nonparametric technique to extract the unobserved components present in a time

series. Up to now, the intervention of the analyst was needed to identify the frequencies

associated to each component. In this paper, we propose a new version of SSA, Circulant

SSA, that does not need the intervention of the analyst. It relies on the asymptotic equiva-

lence between Toeplitz and circulant matrices of second order moments of time series. The

properties of circulant matrices allow to estimate the spectral density of a time series at

certain frequencies through the eigenvalues. We can also identify automatically and a priori

the frequencies associated to those eigenvalues. In this way, results are obtained very fast

and with no subjective intervention from the analyst.

We also extend the algorithm to the nonstationary case providing a generalization of

Gray�s theorem (1974).

The eigenvectors obtained from the diagonalization of the circulant matrix associated

to second moments of the original series are real and form an orthonormal basis in the

column space of the trajectory matrix. As a result, we can guarantee that all the elemental

components are real. Additionally, they are strongly separable, so it is easy to group

the elemental series to obtain the di¤erent signals (trend, cycle, seasonality...). We have

compared our version of SSA to two already available ones (Basic and Toeplitz SSA) and

although the �nal results are quite similar, Circulant SSA is faster, automatic and produces

more separable components.

2Results are available from the authors upon request.
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The properties of Circulant SSA have been checked through a set of simulations for

linear and nonlinear time series models as well as through the empirical application where

we showed that Circulant SSA produced deseasonalize series clean of any seasonality. The

cycle was also very useful to study the business cycle.

8 Appendix

Proof of Theorem 1: As de�ned, the function g(w) is real, continuous and 2�-periodic.

Its image is
h
1
Ms
;maxiMhi

i
being di¤erent from zero in the whole interval. Then, by

the properties of the inverse of Toeplitz matrices
�
TL(g

�1)
��1 � TL(g). Moreover, if

F (x) is continuos in
h
1
Ms
;maxiMhi

i
, then F ( 1x) is continuos in

h
1

maxiMhi
;Ms

i
: Given that

Gutiérrez and Gutiérrez (2012) relax the assumption of g(w) being a Wiener�s class function

to a continuous and 2�-periodic function, Szegö�s Theorem leads to (8).
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9 Tables and Figures

Quantiles

Statistic Component 5 25 50 75 95

Trend -.058 -.023 -.012 .019 .054

a Cycle -.010 -.004 .000 .005 .011

Seasonal -.002 -.001 .000 .001 .002

Trend .975 .996 1.004 1.015 1.062

b Cycle .854 .957 1.005 1.046 1.126

Seasonal .947 .983 1.006 1.029 1.064

Trend .001 .002 .005 .021 .169

SNR�1 Cycle .018 .041 .085 .179 .522

Seasonal .035 .052 .070 .092 .139
Table 1. Statistics related to the goodness of �t of the extracted signals. The �rst

columns are quantiles of the empirical distribution of the estimated coe¢ cients of the re-

gression of the generated components over the extracted ones; the last three rows show the

inverse of the signal to noise ratio.

Quantiles

Statistic 5 25 50 75 95

Mean -.003 -.001 .000 .001 .003

S.E. .048 .051 .053 .055 .058

� -.173 -.083 -.031 .028 .117
Table 2. Quantiles of the empirical distribution of the statistics related to the residuals.

Statsitics for bet SNR�1

Algorithm Average S.E. � Trend Cycle Seas

Circulant .004 .053 -.063 .0008 .0133 .0586

Basic -.001 .053 -.073 .0014 .0140 .0599

Toeplitz .001 .054 -.059 .0008 .0194 .0651
Table 3. Summary statistics of the residuals of the model bet (columns 2 to 4) and

inverses of the SNR (columns 5 to 7) for the replication number 500.
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Quantiles

Statistic Component 5 25 50 75 95

Trend -.057 -.020 .000 .021 .058

a Cycle -.011 -.004 .000 .005 .011

Seasonal -.002 -.001 .000 .001 .002

Trend .971 .995 1.003 1.014 1.062

b Cycle .845 .954 1.002 1.046 1.138

Seasonal .921 .976 1.006 1.034 1.073

Trend .001 .002 .006 .022 .181

SNR�1 Cycle .020 .041 .080 .158 .495

Seasonal .037 .060 .082 .117 .184
Table 4. Statistics related to the goodness of �t of the extracted signals for the nonlinear

model. The columns are quantiles of the empirical distribution of the estimated coe¢ cients

of the regression of the generated components over the extracted ones; the last three rows

show the inverse of the signal to noise ratio.

Quantiles

Statistic 5 25 50 75 95

Mean -.004 -.001 .000 .001 .003

S.E. .048 .051 .053 .055 .059

� -.166 -.089 -.026 .029 .104
Table 5. Quantiles of the empirical distribution of the statistics related to the residuals.

Statsitics for bet SNR�1

Algorithm Average S.E. � Trend Cycle Seas

Circulant -.001 .054 -.145 .0020 .0315 .0372

Basic .002 .054 -.148 .0027 .0318 .0403

Toeplitz .000 .059 -.228 .0021 .0433 .0628
Table 6. Summary statistics of the residuals of the nonlinear model bet (columns 2 to

4) and inverses of the SNR (columns 5 to 7) for the replication number 500.
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Components France Germany Italy Japan UK USA

Trend 52.1 77.3 42.7 79.0 72.0 87.9

Cycle 9.5 12.6 7.8 13.8 11.1 10.3

Seasonal 35.6 6.7 47.3 5.1 13.5 0.3

Irregular 2.8 3.4 2.2 2.1 3.4 1.5

Total 100.0 100.0 100.0 100.0 100.0 100.0
Table 7. Contribution (%) of the di¤erent signals to IP.
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Figure 1: Example: w-correlations of the extracted components with Circulant, Basic and 

Toeplitz SSA. 

 

Figure 2: Illustrative example: w-correlations of the extracted components with Circulant, 

Basic and Toeplitz SSA (nonlinear case). 

 

Figure 3: Original IP and trend for the different countries. 

 



 

Figure 4. Estimated cycles and OECD announced recessions (shadowed areas). 

 

 

 

Figure 5. w-correlation matrix for the elementary reconstructed series for the 30 greatest 

eigenvalues. 


