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Abstract. This paper deals with the decision problem of the surjectiv-
ity of a rational surface parametrization. We give sufficient conditions
for a parametrization to be surjective, and we describe different families
of parametrizations that satisfy these criteria. In addition, we consider
the problem of computing a superset of the points not covered by the
parametrization. In this context, we report on the case of parametriza-
tions without projective base points and we analyze the particular case
of rational ruled surfaces.

Keywords: Rational algebraic surface, normality, ruled surfaces, base
points

1 Introduction

Often, when motivating the applicability of rational surfaces, one claims that
providing a different representation to the implicit one (for example a ratio-
nal parametrization representation) is very useful in many particular applied
problems, for instance in computer aided geometric desing (see [9] and [8]).
Examples of this are plotting images in computer screens, curve or surface in-
tegration, intersection of varieties, etc. Nevertheless, even though this is true,
one must add that, for the parametrization to be feasibly useful, it must satisfy
certain properties. For instance, if we are using a parametrization for plotting,
and the parametrization is given over the complex numbers, how do we know
whether the variety is indeed real? What parameter values must be put into the
parametrization in order to get real points? Of course, this is not a problem if
the input parametrization is given with real coefficients; this problem has been
studied in [1], [2], and [12].
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A similar phenomenon can arise when computing the intersection of two
surfaces where one of them is given parametrically: how do we know that the
parametrization is not missing essential information for the problem we are deal-
ing with? This is, indeed, the central topic of this paper: surjectivity (also called
normality) of rational surface parametrizations. Let us illustrate by an example
the situation described above.

Example 1. We consider the surfaces S1 and S2 defined by

F1(x, y, z) = x2y2z − 2xyz − x2 + z

and
F2(x, y, z) = −x3y2z + x2y2z + 2x2yz + x3 − 2xyz − x2 + z

respectively. If we compute a Gröbner basis of (F1, F2) we get {z2, xz, x2 − z},
and so S1 ∩ S2 consists of the line z = x = 0. However, if we take the rational
parametrization

P(s, t) =

(
1

t
, s+ t,

1

s2

)
of S1 and we substitute it in F2 we get 1/(ts2) and hence no intersection
point. Nevertheless, if we observe that F1 is linear in z we can also consider
the parametrization

Q(s, t) =

(
s, t,

s2

s2t2 − 2st+ 1

)
of S1. Substituting this new parametrization in S2 we get

s3

s2t2 − 2st+ 1
.

So the intersection of S1 and S2 is Q(0, t) = (0, t, 0), the expected line. The
difference between P(s, t) and Q(s, t) is that the second one is surjective. See
Remark 3 in relation to the parametrization Q.

The problem of deciding the normality of a surface parametrization (i.e.
whether it is surjective over the algebraic surface) can be attacked by means of
elimination theory techniques, but a direct application of these can be too com-
plex in terms of time. Moreover, deciding whether a given rational surface admits
a normal parametrization is, at least to our knowledge, an open problem. In this
article we approach the problem by, on one hand, giving sufficient conditions for
the normality of an input rational surface parametrization; and, on the other,
for general rational surfaces and under certain conditions, as well as for ruled
surfaces, we describe explicitly a convenient superset of the complementary of
the image in the surface.

In situations where we cannot assure normality, an alternative approach,
proposed in [15], is to cover the algebraic surface with a finite number of affine
parametrizations. In projective space this is possible by [4].
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When dealing with coverings we need to assume that the parametrization
has no projective base points. Only in some cases, like ruled surfaces, there
has been progress in base point removal, see [6] and its reference [14]; see also
[3] for the surface implicitization problem. Therefore in most situations it is
assumed that the given parametrization has none base points, as we do here. As
an intermediate step, one can reparametrize in such a way that all affine base
points are sent to infinity, see [16] for details.

Ruled surfaces are of particular relevance in applications. We show how, given
any rational parametrization of a ruled surface, one can reparametrize it so that
provided the new parametrization does not have affine points, then it is normal
or the set of missing points is contained in a line that can be made explicit.

Our coefficient field is algebraically closed of characteristic zero; for other
fields (for example R, of obvious interest) the curve case already suffers from
complications that make the analysis very difficult, see [5], [13].

The structure of the article is as follows: in Section 2 we show how to calculate
algebraic supersets of the complement of a given parametrization. In Section 3
we present criteria for normality. Section 4 deals with the ruled case.

2 Computation of critical sets

Let us fix some notation through a few definitions. In the sequel, we use the fol-
lowing terminology: a parametrization takes its values in two-dimensional space
in the variables s, t into three-dimensional space in the variables x, y, z.

Definition 1. Let K be an algebraically closed field of characteristic zero and
S ⊂ K3 an affine algebraic surface. A parametrization of S is a triple of rational
functions that determines a rational dominant map

P : K2 − → S

(s, t) 7→
(
p1(s, t)

q(s, t)
,
p2(s, t)

q(s, t)
,
p3(s, t)

q(s, t)

)
.

We assume w.l.o.g. that gcd(p1, p2, p3, q) = 1. We denote as S the projective
closure of S in P3(K). The function P has a projective counterpart, P:

P : P2(K) −→ P3(K)

s = (s : t : u) 7→ (p1(s) : p2(s) : p3(s) : q(s))

where the four components are the polynomial homogenizations of the numerators
and denominator of P such that their gcd is 1 and they have the same degree.
Note that P may be undefined at some points of P2(K), since its four components
may have a common zero.

Definition 2. The common zeros of the components of P are called projective
base points. Such a point (s : t : u) is also called an affine base point if u 6= 0.



4 J. Rafael Sendra, David Sevilla, and Carlos Villarino

Since the gcd of the four homogeneous polynomials is 1, by Bézout’s theorem
it follows that there can be at most finitely many projective base points.

Definition 3. An (affine) surface parametrization is called normal if it is sur-
jective on S, that is, for every p ∈ S there exist s0, t0 ∈ K such that P(s0, t0) = p.

Definition 4. Let P be a parametrization that is not normal. A closed proper
subset C ⊂ S is called a critical set of P if C ⊃ S \ P(K2).

Example 2. In Example 1, the line z = x = 0 is a critical set for P. Any (re-
ducible) curve on the surface that contains that line is also a critical set.

Example 3. The cone x2 + y2 = z2 has the parametrization

P(s, t) =

(
2st

1 + t2
,
s(1− t2)

1 + t2
, s

)
that has the critical set x = y+ z = 0. The complement of the image is that line
minus the origin, since P(0, t) = (0, 0, 0) for any t 6= ±

√
−1.

Now we give explicit descriptions of a critical set. See [15] for details. It is
important to remark that the set of missing points may be finite, but we do
currently know how to detect that case or compute a finite critical set when it is
possible to do so, although eventually the method may generate zero-dimensional
outputs (see Examples 5 and 6).

Theorem 1. Let P be a non-normal parametrization of a surface S without
projective base points. In the notation of Definition 1, let n = deg(q) and li =
deg q−deg pi for i = 1, 2, 3. Necessarily li ≥ 0 by the hypothesis. Let Pi,n−li(s, t)
be the homogeneous form of highest degree in pi(s, t) and Qn(s, t) that of q(s, t).

Let δi,j denote the Kronecker delta. Define

C1(s) =

(
P1,n−l1(s, 1)

Qn(s, 1)
· δl1,0,

P2,n−l2(s, 1)

Qn(s, 1)
· δl2,0,

P3,n−l3(s, 1)

Qn(s, 1)
· δl3,0

)
,

and

p =

(
P1,n−l1(1, 0)

Qn(1, 0)
· δl1,0,

P2,n−l2(1, 0)

Qn(1, 0)
· δl2,0,

P3,n−l3(1, 0)

Qn(1, 0)
· δl3,0

)
.

Then S = P(K2) ∪ C1(K) ∪ {p}. In particular, the rational curve

C1(K) ∪ {p} =
{
P(s : t : 0) | (s : t) ∈ P(K)

}
∩ S.

is a critical set.

Remark 1. It is worth noting that by a Gröebner basis computation we can
decide if a given point in space belongs to the image of the parametrization. The
same technique works if we want to test the points of a curve on the surface,
whether parametrically or implicitly given.
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Remark 2. In the particular case when P is proper (i.e. injective) with inverse
Q, the points not in the image are contained in the curves defined by the denom-
inators of P and the denominators of P(Q). More precisely, one can proceed as
follows:

1. Compute a representant of the inverse of P; say

Q(x, y, z) =

(
A1(x, y, z)

B1(x, y, z)
,
A2(x, y, z)

B2(x, y, z)

)
.

2. Compute the denominators Di(x, y, z) of P(Q(x, y, z)).
3. The intersection of the algebraic surface and the algebraic set
V (lcm(D1, D2, D3, B1, B2)) is a lower-dimensional algebraic set containing
the set of non-reachable points. (Here V (F1, . . . , Fs) denotes the algebraic
set defined over K by the polynomials {F1, . . . , Fm} ⊂ K[x, y, z].)

The following example illustrates this.

Example 4. Let us consider the revolution surface S given parametrically by

P(s, t) =

(
2s

s2 + 1

t− 1

t+ 1
,

(1− s2)

s2 + 1

t− 1

t+ 1
,
t+ 1

t− 1

)
obtained by rotating the hyperbola C, of implicit equation yz = 1 given para-

metrically by
(

0, t−1t+1 ,
t+1
t−1

)
, around the z-axis. In order to analyze the missing

points of the surface, we first observe that the hyperbola itself has only a missing
point P = (0, 1, 1) which corresponds to the limit when t→∞ (see [13]). Then
it is logical to think that the circle that this point generates is a circle not reach-
able by P; direct calculations confirm it. On the other hand, another candidate

curve for missing points could be the limit curve
(

0,− t−1t+1 ,
t+1
t−1

)
(obtained as

s → ∞) and that is, in the plane yz, the curve symmetric of the hyperbola C
with respect the z-axis. Again, direct calculations show that no point of this
curve is reachable by P. Now, in order to see that there are no more missing
points we compute a critical set by means of the inverse of P. From a Gröbner
basis for the ideal(

numer(p1 − x), numer(p2 − y), numer(p3 − z), w(s2 + 1)(t2 − 1)− 1
)

we can choose the representative of the inverse of P

Q(x, y, z) =

(
z + 1

z − 1
,

xz

yz + 1

)
.

The curves defined by the denominators of Q and P(Q) over S are contained in

z(z − 1)(yz + 1)(x2z2 + y2z2 + 2yz + 1) = 0, x2z2 + y2z2 − 1 = 0.

The prime decomposition of this variety is (x, yz + 1) ∪ (z − 1, x2 + y2 − 1).
Then, a critical set it is formed by the hyperbola x = yz + 1 = 0 and the circle
z−1 = x2 +y2−1 = 0; among the choices of the inverse, this is the best possible
outcome.
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Example 5. We consider the parametrization

P(s, t) =

(
t2

s2 + t2
,

s

s2 + t2
,

st

s2 + t2

)
of the cylinder x2 + z2 − x = 0. A representative of the inverse of P is(

1− x
y

,
z

y

)
.

Applying the procedure described in Remark 2, the critical set obtained is the
point (1, 0, 0). This point is reachable as P(0, 1), thus the parametrization is in
fact normal.

Example 6. We consider the parametrization

P(s, t) =

(
t2

s3 + t3
,

s

s3 + t3
,

t

s3 + t3

)
of the quintic surface of equation x2y3 + x2z3 − z4 = 0. A representative of the
inverse of P is (xy

z2
,
x

z

)
.

From this the critical set obtained is the point (0, 0, 0). From the parametrization,
it is clear that the origin is not reachable. Thus the critical set is optimal.

In the following example the critical set given by Theorem 1 is smaller that
the one generated by Remark 2.

Example 7. We consider the parametrization

P =

(
t2

s2 + 1
,
s2 + t

s2 + 1
,
t2 + s

s2 + 1

)
.

Observe that it has no projective base points. The surface parametrized by P(s, t)
is defined by the degree 4 polynomial

x4 − 4x3y − 6x3z + 2x2y2 + 8x2yz + 7x2z2 − 4xy2z − 4xyz2−
−4xz3 + y4 + 2y2z2 + z4 + 3x3 − 2x2y − 6x2z − xy2 + 4xyz+
+3xz2 − 2y3 − 2yz2 + 2xy + y2 − x.

The inverse of P can be expressed as{
s =

x2 − 2xy − xz + 2yz + x− z
x2 − 2xz − y2 + z2 + 2y − 1

, t =
x2 − xy − 2xz + y2 + z2 + x− y
x2 − 2xz − y2 + z2 + 2y − 1

}
.

Thus Remark 2 provides, as a critical set, the variety

V (−2y + x+ 1, 3x− 1− 2z) ∪ V (y − 1, x− z) ∪ V (−2y + x+ 1, x+ 1− 2z).

However, Theorem 1 reduces the critical set to V (y − 1, x− z).
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3 Criteria for normality

We will describe sufficient conditions on a rational surface parametrization to be
normal. Note that the composition of a normal parametrization with an affine
transformation of K3 is again normal. So the results below are also valid applying
affine transformations to the parmatrizations.

Taking into account the inverse-based method for computing critical sets
described in Remark 2, we have the following criterium.

Proposition 1. Every proper polynomial parametrization with polynomial in-
verse is normal.

Example 8. We consider the surface S defined by x4 − 2x2y+ y2 + x− z. It can
be parametrized by P(s, t) = (t, t2 + s, s2 + t). This parametrization is proper
and its inverse can be expressed polynomially as (y − x2, x). Therefore, P(s, t)
is normal.

Corollary 1. A parametrization of the form

P(s, t) = (as+ b, ct+A(s), B(s, t))

where ac 6= 0, A ∈ K[s] and B ∈ K[s, t] is normal.

Proof. Note that P(s, t) is polynomial and proper, and its inverse can be ex-
pressed as (

x− b
a

,
y −A(x−ba )

c

)
which is polynomial.

More generally, one has the next corollary.

Corollary 2. A parametrization of the form

P(s, t) = (ϕ1(s, t), ϕ2(s, t), B(s, t)),

where (ϕ1, ϕ2) is an automorphism of K2, and B ∈ K[s, t], is normal.

Proof. The inverse of P(s, t) can be expressed as

(ϕ1(s, t), ϕ2(s, t))
−1

which is polynomial.

Remark 3. Every irreducible surface S defined by a polynomial F (x, y, z) with
degree 1 with respect to one of the variables is rational. Assuming w.l.o.g. that
degz(F ) = 1, then F can be expressed as F = p(x, y)−zq(x, y) where gcd(p, q) =
1, and S can be easily parametrized as

P(s, t) =

(
s, t,

p(s, t)

q(s, t)

)
.
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The analysis of the normality of this parametrization is also very simple: P is a
normal parametrization of S if and only if V (p(s, t), q(s, t)) is empty. Indeed, if
V (p(s, t), q(s, t)) =

⋃
{(si, ti)}, then the lines (si, ti, λ)λ∈K are in S and are not

reachable. On the other hand, if P is not normal there exists a point (x0, y0, z0) ∈
S not reachable by P; this implies that q(x0, y0) = p(x0, y0) = 0.

In particular, the parametrizationQ in Example 1 is normal because V (s, s2t2−
2st− 1) = ∅.

The following criterium can be found in Theorem 5 in [15]. It applies to
situations where there is an absence of projective base points.

Proposition 2. Let P(s, t) have no projective base points. If

max{deg(p1),deg(p2),deg(p3)} > deg(q)

then P(s, t) is normal.

Example 9. By Proposition 2, we know that the parametrization

P(s, t) =

(
s2

s+ 2t
,

t2

s− 2t
,
st+ 1

s+ 2t

)
is normal.

Corollary 3. A parametrization of the form

P(s, t) = (A1(s), A2(t), A3(s, t)),

where A1, A2 are non-constant polynomials of the same degree, A3 ∈ K[s, t] with
deg(A3) ≤ deg(A1), is normal.

Proof. Let A1 = ans
n + · · · + a0, A2 = bnt

n + · · · + b0. Let PH(s, t, u) be the
projectivization of P(s, t). Then, PH(s, t, 0) = (ans

n : bnt
n : α : 0) for some

α ∈ K[s, t]. So, the parametrization does not have projective base points. Now
the result follows from Proposition 2.

Corollary 4. A parametrization without affine base points of the form

P(s, t) =

(
p1
q
,
p2
q
,
p3
q

)
where

p1 = ant
n + P ∗1 (s, t),

p2 = bns
n + P ∗2 (s, t),

such that P ∗1 , P ∗2 and q have degree strictly less than n, and p3 has degree ≤ n,
is normal.

Proof. Once again, PH(s, t, 0) = (ans
n : bnt

n : α : 0) for some α ∈ K[s, t] so
there are no projective base points.
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The next criterium is based on the notion of pseudo-normality, a concept
introduced in [11]. Let I be the implicitization ideal of P(s, t), that is the ideal
in K[W, s, t, x, y, z] generated by {q(s, t)x − p1(s, t), q(s, t)y − p2(s, t), q(s, t)z −
p3(s, t), qW − 1}. We consider the maps Πs : K5 → K4; (s, t, x, y, z) 7→ (t, x, y, z)
and Πt : K4 → K3; (t, x, y, z) 7→ (x, y, z). Let V be the variety in K5 defined by
{q(s, t)x− p1(s, t), q(s, t)y − p2(s, t), q(s, t)z − p3(s, t)}. In this situation, we say
that P(s, t) is pseudo-normal if

S ⊂ πt(πs(V )).

The next result can be found in Corollary 4.4. in [11].

Proposition 3. A pseudo-normal polynomial parametrization is normal.

To finish this section, we present a family of normal parametrizable surfaces
that do not come from the previous criteria. In Figure 1 we see one of them. As
the image suggests, they correspond to surfaces having three independent planes
being asymptotes of the surface.

Fig. 1. The surface x4y5z3 = 1

Proposition 4. Let λ 6= 0 and let S be the surface defined by

L1(x, y, z)nL2(x, y, z)mL3(x, y, z)k = λ

where Li are three linearly independent linear forms with natural exponents.
Then S can be normally parametrized.
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Proof. W.l.o.g. we can assume, after a suitable affine linear change, that S is
given by xnymzk = λ. We consider the parametrization

P(s, t) =
(
sk, tk,

k
√
λ/(sntm)

)
.

Since λ 6= 0, the affine surface does not intersect the coordinate planes x = 0,
y = 0, and z = 0. Now observe that, if (a, b, c) ∈ S, then (a, b, c) = P( k

√
a, k
√
b).

4 Critical set of ruled surfaces

Our starting point is a parametrization of a ruled surface. In [10] methods to
determine if a surface is ruled are presented, including the computation of a
parametrization of the surface in the form A(t)+sB(t). We will assume without
loss of generality that any ruled surface is given in this form.

Lemma 1. A parametrization as above can be reparametrized into the form

P(s, t) =

(
r1(s) + tp1(s)

q(s)
,
r2(s) + tp2(s)

q(s)
,
r3(s) + tp3(s)

q(s)

)
where gcd(p1, p2, p3) = 1, gcd(r1, r2, r3, q) = 1, deg(r1) = deg(r2) = deg(r3) =
deg(q) = m and deg(p1) = deg(p2) = deg(p3) = n.

Proof (Sketch). It suffices to follow these steps:

– Put a common denominator.
– By a Möbius transformation, the degrees of the r, p, q are made equal.
– With the change t← t/ gcd(pi), the pi are made coprime.

The following theorem describes simple critical sets of ruled surface parametriza-
tions given as in Lemma 1, and under the assumption of not having affine base
points.

Theorem 2. Let P be a ruled surface parametrization in the form provided by
Lemma 1 without affine base points. Then the following line is a critical set of
P: {

p2n(xqm − r1m)− p1n(yqm − r2m) = 0
p3n(xqm − r1m)− p1n(zqm − r3m) = 0

where pin, rim and qm are the leading coefficients of the polynomials pi, ri and
q respectively. Moreover, a parametrization of this line is(

r1m + λp1n
qm

,
r2m + λp2n

qm
,
r3m + λp3n

qm

)
, λ ∈ K

that can be obtained from P considering Q(0, λ) in Q(s, t) = P
(

1

s
,

t

sm−n

)
.
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Proof (Sketch). In the ring K[x, y, z, s, t, w] we consider the ideal

I = (r1(s) + t · p1(s)− x · q(s), . . . , . . . , w · q(s)− 1).

Then Image(P) = π(V (I)) where π : K6 → K3 : π(x, y, z, s, t, w) = (x, y, z).
Repeated application of the Extension Theorem (see in [7], also Exercise 6.3.7
in p. 283) proves the result.

Remark 4. The concept of pseudonormality introduced in [11] corresponds to
the case where it is possible to extend a surface point to s, t but possibly not to
w.

In the next example Theorem 2 provides a better critical set than Remark 2.

Example 10. We consider the parametrization

P(s, t) =

(
s+ t(s2 + 1)

s+ 1
,
s+ 3 + t(s2 − 2)

s+ 1
,
s+ 2 + t(s2 − 3)

s+ 1

)
that parametrizes the cubic surface defined by the polynomial

x3 − 8x2y + 7x2z + 16xy2 − 32xyz + 15xz2 + 16y2z − 24yz2+
+9z3 − 6x2 + 24xy − 12xz − 24yz + 18z2 − 12x− 24y + 36z.

Observe that P(s, t) satisfies the hypotheses of Theorem 2. Hence, a critical set
for P(s, t) is the line x = y = z. On the other hand a representative of the
inverse of P(s, t) is{

s = − 1

12

x2 − 4xy + 4xz − 4yz + 3z2 − 6x+ 12y − 6z − 12

y − z
,

t = − 1

12
x2 +

1

3
yx− 1

3
zx+

1

3
zy − 1

4
z2 +

1

2
x− 1

2
z

}
.

Applying the method in Remark 2 we get as a critical set the variety

V (y − z, x3 − x2z − xz2 + z3 − 6x2 + 12xz − 6z2 − 12x+ 12z)

that decomposes as the line y = x = z and the conic V (y2−6y−x2+6x+12, y−z).
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