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ABSTRACT

Brillouin Optical Time Domain Analysis (BOTDA) is becoming a consolidated technique in applications requiring high-
resolution monitoring over extremely long distances. Extension of the measuring range has therefore become one of the
main areas of research around BOTDA technology. To increase the sensing range, it is necessary to increase the Signal
to Noise Ratio (SNR) of the retrieved signal. This has been achieved so far by applying techniques like pre-amplification
before detection, pulse coding or Raman amplification. Here, we analyze these techniques in terms of their performance
limits and provide guidelines that determine which is the best configuration to overcome current range limitations.

Keywords: Brillouin Scattering, distributed optic fiber sensor, pre-amplification, optical pulse coding, distributed
Raman amplification, temperature sensor, strain sensor.

1. INTRODUCTION

Standard Brillouin Optical Time Domain Analysis (BOTDA) systems [1] are normally limited in sensing range to 30-40
km due to the intrinsic fiber attenuation (¢ =0.2 dB/km @ 1550 nm). This phenomenon reduces the intensity of the
signals within the fiber, thus decreasing the Signal to Noise Ratio (SNR) as the monitored distance increases. Due to the
proliferation of large infrastructures that require intensive monitoring in a distributed way, recently, new approaches
have been developed to extend the range of conventional BOTDA systems. These are based on introducing a pre-
amplification stage before detection [2], pulse coding [3] or distributed Raman amplification [4,5]. Unfortunately, the
application of such technologies does not provide a final solution to fulfill all the required applications, in many cases
beyond 100 km fiber length. In this work, we perform an analysis of the different range-extending techniques to evaluate
the benefits in terms of SNR enhancement and their effect in the Figure of Merit (FoM) [6] of the BOTDA and its
sensing distance. As we will see, the combination among techniques is the path to follow for achieving extremely long
sensing ranges, thus, the effect of the different unions is also described.

2. CONVENTIONAL BOTDA RANGE LIMITATIONS

In BOTDA systems, two signals are introduced within the fiber in opposite directions; a pulsed pump wave and a
continuous probe wave. The detected probe signal at the far end of the fiber (AP?) can be expressed as [6]:

APQ = %}’j’fppipsie—zamz (1)

where gp is the Brillouin gain coefficient, A.ss is the nonlinear effective area, Pp; and Ps; are the pump and probe input
powers respectively, « is the linear fiber attenuation, L is the fiber length and Az is the spatial resolution. As it can be
seen, fiber attenuation is reflected in a squared exponential decay with distance, which means that the signal AP is
reduced by as much as 10 dB every time the distance is increased in 25 km. Thus, a mild range increase of 25 km implies
a signal reduction equivalent to a tenfold improvement in resolution. Besides, it has to be taken into account the distance
restriction produced by the BOTDA structure itself when dealing with linear sensing applications. Since the system
requires access to both fiber ends, the real measuring distance is half of the employed total fiber length [7]. In terms of
power levels, the pump wave is limited by depletion and Modulation Instability (MI) (typ. Pp;<50 mW) and the probe
signal (Ps;<500 pW) by the appearance of MI [7]. These maximum values are lower for Raman assistance. As stated
before, this paper compares several techniques used for range extension by assessing their performance in terms of SNR
enhancement.



3. ANALYSIS OF RANGE INCREASE SOLUTIONS IN TERMS OF SNR

A simple way of improving the SNR of the retrieved signal is based on using a pre-amplification stage just before
detection, usually by introducing an Erbium Doped Fiber Amplifier (EDFA), which may provide up to 30 dB of gain. As
Gain (G) is provided, noise sources materialize [8]. From the photodetector point of view, thermal and shot noises are
predominant, with (iZ,.,} « T and (iZ%,,.) « G respectively. In addition, Amplified Spontaneous Emission (ASE) noises
have to be taken into account. ASE introduces noise through different beatings: the beating produced by the ASE noise
with the shot noise ({ifsz_snoe) ¢ G), the beating with the detected signal (i, asg) < G?) and with itself ((i25z_4s5) X
G%). Based on the proportionalities of each noise source, it can be easily seen that the amplification process is only
interesting to overcome the thermal noise contribution in the detector. Beyond this limit, the other noise terms grow at a
rate proportional to the gain (G) or gain squared (G?), therefore the SNR will not improve. In Fig.1 the variation of the
different noise sources as a function of the gain in the amplifier and the SNR evolution are represented for a total length
of 100 km ((a) - (b)) and 200 km ((c) - (d), 100 km linear sensing range). In both cases, an input probe power of 500 uW
is considered and 20 ns pump pulses. The gain in the detector is assumed to be 40 V/mA and the electrical and optical
bandwidths are100 MHz and 50 GHz respectively. As we can see, thermal noise is dominant for gain values below 7.5
and 17 dB (100 and 200 km cases respectively) where, from this point onwards the onset of Signal-ASE and the ASE-
ASE noise starts to dominate, with its well-known quadratic gain dependence. The optimum gain in terms of SNR
appears at roughly 12 dB for 100 km length and 25 dB in the 200 km case, which gives a SNR improvement of roughly
7.5 dB and 15 dB respectively (optical). This SNR improvement is equivalent to a maximum range extension of ~ 19-
37.5 km, which is significant but not enough in applications for ranges beyond 100-200 km.

10000 T - 10
/ // Shot Noise 9

—~ Thermal Noise 1

< 4009 ——Signal-ASE Noise 84

= ——— ASE-ASE Noise 7]

S ~_—

5 ool —— ASE-Shot Noise % 61

£ 4000 ; 5]

== 7 4

& 2000 2

=

zZ 0 %)

r T T T - 1 T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Gain (dB) Gain (dB)
10000 @ ®)
ﬂ [ Shot Noise -2

- Thermal Noise -4+
h;é 8000, — Signal-ASE Noise e

E e ASE-ASE Noise 1

. 6000+ — ASE-Shot Noise E <

ks = -10+

2 4000 ~ 12

= =

7, -14-

L 2000

-E / e -161

e 0 -18+

T T T T T =20 T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Gain (dB) Gain (dB)
(c) (d)

Figure 1. Noise power (a)-(c) and SNR evolution (b)-(d) for 100 and 200 km respectively for 1024 averaged traces.

Another technique to increase the SNR bases its principle on coding the pump wave with a known pulse sequence. The
amplified probe wave is recovered as a linear superposition of all the traces produced by each independent pulse. As a
result of the superposition, there is an increase in the received energy level, thus increasing the SNR. Through simple
algebraic operations, it is possible to de-convolve the measured traces to obtain the equivalent of a single pulse trace.
The gain in SNR produced by the code scales with the square root of the code-length (\/L—C) [3], thus the longer the code,
the higher the measured energy with the consequent SNR improvement. Nonetheless, pulse coding bases its principle on
ensuring the linearity of the detection stage, where a 1 bit change in the code has to be reliably measured. This means
that the non-linearity of the detector at the probe power level has to be better than 1/Lc, which turns out to be extremely
challenging in conventional InGaAs photodiodes for Lc > 1000. Besides, signal processing time also has to be taken
into consideration. In conclusion, we can say that, for affordable pulse code lengths (~ 511 bits), the SNR enhancement
is approximately 10 dB, which implies a range increase of roughly 25 km.



The last technique is based on introducing a fully distributed gain along the sensing fiber through stimulated Raman
scattering, in order to partially or totally compensate the intrinsic fiber loss. This reduces the limitation of the double
attenuation suffered by the detected probe wave (Eq. 1). The configurations incorporated to the standard BOTDA
scheme can be based on First-order Raman amplification [4] or Second-order Raman amplification [5]. To provide
considerable gain levels to long range systems, Raman assistance requires relatively high powers, normally achieved
through Raman fiber lasers. These lasers introduce Relative Intensity Noise (RIN) transfer, although it cannot be
considered as a fundamental limitation since several techniques have been shown to strongly reduce it, such as the
balanced detection proposed by Dominguez-Lopez ef al. in [9]. Fig.2 shows a representation of the theoretical gain traces
achieved in a bi-directional First- and Second-order Raman-assisted configuration for 100 km (a) and 200 km (100 km
linear) (b) (pump wave: 20 ns and 10 mW peak power - probe wave: 50 uW). Perfect end-to-end transparency has been
considered for the probe wave in these calculations. Based on the models developed in [4,5] and neglecting RIN transfer,
the ASE noise power in detection can be evaluated; -41.47 dBm and -35.48 dBm in the First-order configuration for 100
and 200 km respectively and -41.77 dBm and -36.69 dBm in the Second-order one (in all cases for a 50 GHz optical
filter). This sets the SNR in the worst contrast position to be roughly 14 dB in the First-order case and 19 dB in the
Second-order scheme for 100 km, and 1.5 dB and 6.5 dB for the 200 km case (in all cases, with 1024 averages). In this
last case, the SNR enhancement given by Raman is ~ 20 and ~ 25 dB, largely surpassing all the previous techniques.

1,2 ——— —— 4,0 7 —
= Bi-Directional Ist Order ‘ |—F!}-Dirccl!|mul Ist Order
% —— Bi-Directional 2nd Order| 3,5 | == Bi-Directional 2nd Order |
bl 3,0'
~ 0.8 ~ 2,54
o ®
g% £ 201
£ %8 £ 15
< o~
QO 04 QD 1,01
0,5
0,2’ “9“7
0 20 40 60 80 100 0 20 40 60 80 100
Distance (km) Distance (km)
(a) (b)

Figure 2. Theoretical Brillouin gain traces for bi-directional 1% or 2™ order pumping on 100 (a) and 200 km (100 linear) (b).

By making a comparison among the evaluated techniques, in terms of SNR it is evident that Raman amplification
provides the best option when range is the parameter to be enhanced. Still, even though it can display remarkable
distance extension, the approach is obviously limited and the complexity of the technique is considerable. Moreover, it
should be noted that the SNR estimated in the Raman-assisted case is still too low for real application in the 200 km
scenario. Pulse coding has to be used for reaching a sufficient SNR. It is important to realize that the SNR in the Raman
assisted cases in transparency is limited by signal-ASE beating in the detector. It is therefore clear that EDFA pre-
amplification makes little sense in this case, as more amplification would in no way lead to a better SNR. When working
below transparency, there is a chance that EDFA and Raman may be used together advantageously. As none of the
proposed three techniques provides an ultimate solution to extend the sensing range of BOTDAs it is evident then, that
the combination among techniques can provide the key.

4. EFFECT OF COMBINATION OF TECHNIQUES

By employing the Figure of Merit (FoM) [6] reported by Soto er al. it is possible to evaluate the effect of the
combination among the aforementioned techniques on the performance of BOTDA sensors. The first “long range”
BOTDA [10] showed a FoM of 2 (mainly due to the low resolution of 10 m). With the introduction of pre-amplification
[2], the FoM was increased up to 6.8. With the application of pulse coding [3] a performance improvement was obtained
of almost a factor of 10 in comparison to the previous results. As expected, Raman amplification (First- [4] and Second-
order [5]) implies a considerable breakthrough. The sensing range is increased until 100 km maintaining a 2 meter
resolution. In spite of the acquired range extension, the FoM is only improved ~ 7 times, mainly due to the elevated
number of averages performed due to the detrimental effect of RIN transfer. When RIN noise is removed, e.g. by
applying the balanced detection technique [9], the FoM upgrades up to 500, as expected from our models. The
combination of coding with pre-amplification [11] and Raman [12], can provide 120 km sensing ranges with resolutions
of few meters, but the number of averages is still elevated. The unification of all three techniques [13] is the one that
provides a sensing range greater than 100 km with a 4 meter resolution and an averaging of 500, improving enormously



the performance of the BOTDA until 13,000. In all the proposed systems, the sensing range equals the total fiber length
employed; therefore, if a linear measuring application is required, the maximum sensing distance is of “just” ~ 60 km.
By combining all three techniques in a linear sensing configuration [7], it is possible to reach 120 km of sensing fiber
(240 km of fiber loop) with 5 meter resolution and the equivalent of 2048 averages. Evidently, the FoM is quickly
increased up to 300,000.

5. CONCLUSIONS

In this work, we have presented a measure of the limits of the available techniques to obtain extremely long sensing
ranges on BOTDA systems. After a detailed revision of the available techniques (pre-amplification, pulse coding and
Raman assistance) and the application of the FoM, it is concluded that the combination among techniques is the most
effective way to break the limiting barrier of 100 km. This has been demonstrated in recent literature results, which
might be improved in the future. It is evident that the combination of all the proposed techniques is the path to follow
when extremely long distances are required. Obviously, the complexity of such systems is considerable too, but the
performance enhancement is so obvious, that is completely worth it. The range achieved so far provides an efficient
sensing solution for most applications so far, but still some demanding applications may require larger sensing ranges.
There are already some research groups and companies that are introducing balanced detection in their long-range
BOTDA systems, probably the final improvement on the proposed schemes to break the 150 km sensing distance barrier.

ACKNOWLEDGEMENTS

This work was supported by the ERC through Starting Grant U-FINE (Grant no. 307441), the Spanish “Plan Nacional de
[+D+i” through projects TEC2012-37958-C02-01/02, TEC2013-45265-R and TEC2011-27314, the INTERREG
SUDOE program ECOAL-MGT, and the Comunidad de Madrid under projects EDISON and SINFOTON. S. Martin-
Lopez acknowledges support by the Spanish MINECO through a “Ramén y Cajal” contract.

REFERENCES

[1] Horiguchi, T., and Tateda, M., “BOTDA — Nondestructive Measurement of Single-Mode Optical Fiber Attenuation
Characteristics Using Brillouin Interaction: Theory,” IEEE J. Lightwave Technol. 7(8), 1170-1176 (1989).

[2] Diaz, S., Mafang, S. F., Lopez-Amo, M., and Thévenaz, L., “A high-performance optical time-domain Brillouin
distributed fiber sensor,” IEEE Sens. J. 8(7), 1268—1272 (2008).

[3] Soto, M. A., Bolognini, G., Di Pascuale, F., and Thévenaz, L., “Simplex-coded BOTDA fiber sensor with 1 m
spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259-261 (2010).

[4] Angulo-Vinuesa, X., et al., “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 m
resolution and 1.2° C uncertainty,” IEEE J. Lightwave Technol., 30(8), 1060-1065 (2012).

[5] Martin-Lopez, S., ef al., “Brillouin optical time-domain analysis assisted by second-order Raman amplification,”
Opt. Express, 18(18), 18769-18778 (2010).

[6] Soto, M. A., and Thévenaz, L., “Modeling and evaluating the performance of Brillouin distributed optical fiber
sensors,” Opt. Express 21(25), 31347-31366 (2013).

[71 Soto, M. A., et al., "Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber
Analyzers," IEEE J. Lightwave Technol., 32(1), 152-162 (2014).

[8] De Souza, K., and Newson, T. P., “Signal to noise and range enhancement of a Brillouin intensity based temperature
sensor,” Opt. Express 12(12), 2656-2661 (2004).

[9] Dominguez-Lopez, A., et al., “Strong cancellation of RIN noise in a Raman-assisted BOTDA using balanced
detection,” IEEE Photon. Technol. Lett., 26(18), 1817-1820 (2014).

[10]Bao, X., Webb, D. J., and Jackson, D. A., “22-km distributed temperature sensor using Brillouin gain in an optical
fiber,” Opt. Lett., 18(7), 552-554 (1993).

[11]Soto, M. A., Bolognini, G., and Di Pasquale, F., “Long-range simplex-coded BOTDA sensor over 120 km distance
employing optical preamplification,” Opt. Lett., 36(2), 232-234 (2011).

[12]Soto, M. A., Bolognini, G., and Di Pasquale, F., “Optimization of long-range BOTDA sensors with high resolution
using first-order bi-directional Raman amplification,” Opt. Express, 19(5), 4444-4457 (2011).

[13]Jia, X.H., et al., “Towards fully distributed amplification and high-performance long-range distributed sensing based
on random fiber laser,” Proc. of SPIE, 8421, 842127 (2012).

*xabier.angulo@uah.es; phone +34-91-885-69-14



	Rating_the_SPIE_2015_27542
	PP Rating the Limitations and Effectiveness

