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        SUMMARY         
 

Microbial electrochemical systems deal with electrochemical systems 

in which living cells like electroactive microorganisms serve as catalysts for 

either oxidation or reduction reactions. These devices enable to transform 

chemical energy into electricity by the action of some bacteria (e.g. 

Geobacter sulfurreducens) that are able to oxidize organic compounds 

coupled to the reduction of an extracellular electron acceptor (e.g. 

electrode). The merging of two fields as different as microbiology and 

electrochemistry have resulted in a very powerful and versatile discipline 

that requires the synergy of both. 

 

This PhD thesis consists of 5 chapters, 3 of them experimental, that 

explore different aspects of microbial electrochemical systems, based on 

the model electroactive bacteria G. sulfurreducens. The research aims to 

develop novel approaches for further understanding Extracellular Electron 

Transfer (EET) process as well as for providing cutting-edge 

bioelectrochemical platforms. 

 

In view of the foregoing, Chapter 1 provides a literature review and 

contextualization of the use of G. sulfurreducens in microbial 

electrochemical systems. The mechanisms that allow G. sulfurreducens to 

establish redox contact with extracellular acceptors are based on the 

presence of a vast network of c-type cytochromes that facilitates electron 

transport from central metabolism. In order to verify the role of c-type 

cytochromes in EET, some deletion studies have attempted to obtain 

entirely EET-free cells. Nonetheless, knock-out cells did not display the 

expected phenotype, therefore we plan to follow an alternative approach as 

one of task of this thesis.  
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From a microbiology point of view, classical systems used in Microbial 

Electrochemical Technologies (METs) involve complex experimental set-

ups, long conditioning periods, and substantial costs. So thus, 

miniaturization of bioelectrochemical devices may bring considerable 

advantages, such as rapid electrical responses or cost reduction. These 

features would be especially desirable in systems with a potential use in 

electroanalysis.  

Another requirement for microbial electrochemical systems is the formation 

of a mature microbial biofilm. However, the long process needed for its 

development could be overcome by artificially assembling a bacteria-

electrode system (bioelectrode). Ready-to-use artificial bioelectrodes may 

represent a versatile time and cost saving strategy for microbial 

electrochemical technologies. They could be customized in terms of size, 

bacterial concentration or conductive support materials, among others 

aspects. 

 

According to the identified challenges, Chapter 1 ends describing the three 

main research goals of this thesis:  

i) investigating the role of Geobacter´s cytochromes in EET, 

ii) exploring SPEs as miniaturized tools for rapid assessing microbial   

electrochemistry, and 

iii) constructing ready-to-use Geobacter-based artificial bioelectrodes. 

 

Chapter 2 shows a straightforward method for growing cytochrome-

depleted cells of G. sulfurreducens with the aim to confirm the role of c-type 

cytochromes in EET. Heme-staining based protocols together with other 

tecniques like inductively coupled plasma mass spectrometry, and in situ 

nanoparticle enhanced raman spectroscopy analysis, revealed that the 

cytochrome content could be severely decreased by limiting iron availability 

in growth media. The cytochrome-depleted cells were viable since they 
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could reduced fumarate to succinate at inner-membrane level using a 

cytochrome-free reaction. However, cytochrome-free cells were unable to 

reduce Fe (III) citrate or to exchange electrons with a graphite electrode. 

These results confirm that c-type cytochromes are essential for extracellular 

electron transfer in G. sulfurreducens.  

 

Simplifying the electrochemical aspects for culturing electroactive 

bacteria is a must in this new discipline. So thus, Chapter 3 investigates the 

use of Screen-Printed Electrodes (SPEs) as a novel low-cost platform for 

assessing microbial electrochemical activity at the microscale level. SPEs 

proved to be robust for identifying the bioelectrochemical response, while 

avoiding complex electrochemical set-ups. The system was successfully 

validated for characterizing the response of G. sulfurreducens under diverse 

physiological states revealing different electron transfer responses. 

Moreover, a combination of SPE and G. sulfurreducens resulted to be a 

promising biosensor for quantifying the levels of acetate and for using 

samples as complex as urban wastewater. In addition, the potential of the 

technology for identifying electroactive consortia was also successfully 

tested.  

 

As a final scientific contribution, Chapter 4 explores a new strategy for 

constructing ready-to-use artificial bioelectrodes of G. sulfurreducens by 

means of effective immobilization of cells inside silica gel and carbon felt 

electrodes. Viability test confirmed that the vast majority of bacteria survived 

the encapsulation process and cell density did not change, at least, for a 96 

h period. This double entrapment prevents bacterial release from the 

electrode but allows solute diffusion, making possible the electrochemical 

characterization of the system. Artificial bioelectrodes were evaluated in 3-

electrodes reactors for several days, using several electron donors. Cyclic 

voltammetry of acetate-fed bioelectrodes revealed a sigmoidal catalytic 
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oxidation wave from the very beginning, typical of more aged biofilms. 

Furthermore, the presence of G. sulfurreducens within the fibers and silica 

gel could be verified by scanning electron microscopy and the 

transcriptomic response of cells encapsulated was analyzed as well.  

 

Based on our results, a general discussion, conclusions and future 

outlook are presented in Chapter 5. This chapter was structured in a 

question-answer mode. We believe this format could help the reader to 

understand the reasons beyond the experimental activities together with 

those supporting the research interpretation. The main value of this work is 

the straightforward, fast and economical nature of the tools provided that 

can help other researchers in microbial electrochemistry field. 
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        RESUMEN         
 

Los sistemas electroquímicos microbianos son aquellos en los que los 

microorganismos actúan, en combinación con electrodos, como 

catalizadores de reacciones redox. Estos sistemas permiten transformar la 

energía química en energía eléctrica mediante la acción de ciertos 

microorganismos (e.g. Geobacter sulfurreducens) que tienen la capacidad 

de oxidar compuestos orgánicos, acoplando dicha reacción a la reducción 

de un aceptor de electrones extracelular (e.g. electrodos). La fusión de dos 

campos tan diferentes como la microbiología y la electroquímica ha dado 

lugar a una disciplina nueva y versátil que requiere la sinergia de ambos. 
 

Esta tesis doctoral se compone de 5 capítulos, 3 de ellos 

experimentales, que exploran diferentes aspectos de los sistemas 

electroquímicos microbianos, utilizando como modelo de bacteria 

electroactiva a G. sulfurreducens. El objetivo principal de la investigación 

fue desarrollar nuevas estrategias para profundizar en la comprensión del 

proceso de transferencia de electrones extracelular (TEE), así como para 

explorar nuevas plataformas bioelectroquímicas. 

 

En vista de lo anterior, el Capítulo 1 explora el estado del arte sobre 

el uso de G. sulfurreducens en sistemas electroquímicos microbianos. 

Dicha bacteria posee la capacidad de establecer contacto electroquímico 

con aceptores extracelulares mediante a la presencia de una extensa red 

de citocromos de tipo c que conecta el citoplasma con el exterior celular. 

Con el fin de confirmar el papel de los citocromos de tipo c en la TEE se 

han realizado estudios de deleción génica para intentar obtener células 

incapaces de producir determinados citocromos tipo c. Sin embargo, las 

construcciones genética resultantes no mostraron el comportamiento 
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(fenotipo) esperado por lo que, en esta tesis, nos planteamos un enfoque 

alternativo basado en el metabolismo asimilatorio del hierro y su efecto en 

la síntesis de grupos hemo. 
 

Desde un punto de vista microbiológico los sistemas clásicos que se 

emplean en el desarrollo de la electroquímica microbiana implican 

complejos montajes experimentales, largos períodos de acondicionamiento 

y costes sustanciales. En este sentido, la miniaturización de los dispositivos 

bioelectroquímicos puede suponer ventajas considerables, tales como 

respuestas en producción de corriente o la reducción de costes. Estas 

características serían especialmente deseables en sistemas 

electroanalíticos. Otro requisito para los sistemas electroquímicos 

microbianos es la formación de un biofilm bacteriano maduro, lo cual suele 

implicar largos períodos de tiempo. Este proceso podría simplificarse 

mediante la construcción artificial de un sistema bacteria-electrodo.  

 

De acuerdo con los retos identificados, el Capítulo 1 concluye describiendo 

los tres objetivos específicos que conforman esta tesis doctoral: 

i) Investigar el papel de los citocromos de Geobacter en la TEE,  

ii) Explorar los electrodos serigrafiados como instrumentos 

miniaturizados para una rápida evaluación electroquímica de 

microorganismos electroactivos, 

iii) Construir bioelectrodos artificiales basados en Geobacter 

 

Con el objetivo de confirmar el papel de los citocromos de tipo c en la 

TEE, el Capítulo 2 describe un método para el cultivo de células de G. 

sulfurreducens carentes de citocromos. Los análisis bioquímicos basados 

en la tinción específica del grupo hemo, junto a otros basados en 

espectrometría de masas y en espectroscopía Raman, demostraron que es 

factible modificar el contenido de citocromos en G. sulfurreducens limitando 
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la disponibilidad de hierro en el medio de cultivo. Las células carentes de 

citocromos eran viables ya que pudieron reducir fumarato a succinato, una 

reacción a nivel de la membrana interna que no requiere citocromos, pero 

no fueron capaces de reducir hierro citrato (III) o de intercambiar electrones 

con un electrodo. Estos resultados confirmaron que los citocromos de tipo c 

son esenciales para la TEE en G. sulfurreducens. 

 

Teniendo en cuenta la necesidad de simplificar los aspectos 

electroquímicos, el Capítulo 3 investiga el uso de electrodos serigrafiados   

(SPEs) como una nueva plataforma de bajo coste para evaluar la actividad 

electroquímica microbiana a un nivel de microescala. Los SPEs resultaron 

ser válidos para identificar respuestas bioelectroquímicas, evitando 

complejos montajes. El sistema se validó mediante el estudio de la 

respuesta de G. sulfurreducens bajo diversos estados fisiológicos. Además, 

el uso de SPE y G. sulfurreducens reveló su potencial como biosensor para 

la cuantificación de acetato y para explorar muestras de naturaleza tan 

compleja como las aguas residuales urbanas. La identificación de 

consorcios electroactivos resultó ser otra de las aplicaciones de esta 

tecnología. 

 

Como aporte científico final, el Capítulo 4 explora una nueva 

estrategia para utilizar G. sulfurreducens en la de construcción 

bioelectrodos artificiales, mediante la inmovilización de las células en gel de 

sílice sobre electrodos de fieltro de carbono. El análisis de viabilidad 

confirmó que la  mayoría de las células sobrevivieron al proceso de 

encapsulación y que la densidad celular no evolucionó, al menos, durante 

un período de 96 h. Esta doble encapsulación impide la liberación de 

bacterias del electrodo, pero permite la difusión de solutos, haciendo 

posible la caracterización electroquímica del sistema. Los bioelectrodos 

artificiales se evaluaron en sistemas de 3 electrodos durante varios días, 
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utilizando diversos donadores de electrones. El análisis voltamétrico de los 

bioelectrodos alimentados con acetato mostró una onda de oxidación 

catalítica sigmoidal desde el inicio, característica de  biofilms más maduros. 

Además, se confirmó la presencia de G. sulfurreducens dentro de las fibras 

y del gel de sílice por microscopía electrónica de barrido y también se 

realizó un análisis transcriptómico para estudiar el efecto de la 

encapsulación a nivel intracelular. 

 

A partir de los resultados obtenidos, el Capítulo 5 presenta una 

discusión general, conclusiones y perspectivas de futuro. Este capítulo fue 

concebido con una estructura de preguntas y respuestas que confío ayude 

al lector a entender las razones que sustentaron tanto nuestra 

experimentación como la interpretación que hicimos de la misma. El valor 

fundamental de este trabajo es la naturaleza sencilla, rápida y económica 

de las herramientas proporcionadas que pueden ayudar a otros 

investigadores en el campo de la electroquímica microbiana.  
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        GENERAL INTRODUCTION         
 
1. MICROBIAL ELECTROCHEMISTRY: AN EMERGING FIELD OF 
STUDY 
 

Microbial electrochemistry deals with the interactions between 

microorganisms and electronic devices. At the beginning of the 20th century 

it was first conceived the idea of using microbial cultures in an attempt to 

produce electricity (Potter, 1911), in the first approach of what it is known 

nowadays as a microbial fuel cell (MFC). Generally speaking, a MFC is a 

system in which microorganisms catalyze the conversion of chemical 

energy into electrical energy. The process can occur in two directions, 

microorganisms can oxidize organic matter while an insoluble acceptor (e.g. 

electrode) is subsequently reduced or either, they can accept electrons from 

the electrode (Rosenbaum et al., 2011). Even though the concept emerged 

long time ago, it has been in the recent decades when it has really started to 

take off. Such is the case that, in addition to MFCs, a vast number of 

derivatives technologies have appeared recently for several purposes, for 

instance: microbial electrolysis cells (MECs) (Verea et al., 2014), microbial 

desalination cells (MDCs) (Cao et al., 2009), microbial electrosynthesis 

(MES) (Rabaey and Rozendal, 2010), or microbial electroremediating cells 

(MERCs) (Rodrigo et al., 2016), among others. All these diverse technology 

are included in what is named as microbial electrochemical technologies 

(METs) (Schröder et al., 2015). 

 

Several type of microorganisms can exchange electrons with an 

electrode, by donating or accepting them (Bond, 2010; Franks and Nevin, 

2010; Logan, 2009; Rosenbaum et al., 2011). Nevertheless, the 

mechanisms for such outstanding interaction, have been thoroughly studied 
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primarily in two bacteria Shewanella Oneidensis and Geobacter 

sulfurreducens (Carmona-Martínez et al., 2013; Marsili et al., 2008a; Lovley 

et al., 2011; Lovley, 2011; Schrott et al., 2011). The interest in G. 

sulfurreducens has exponentially grown, due to its easy culturing conditions, 

metabolism, its broad environmental relevance and because of its intrinsic 

capacity for establishing direct contact with electrodes. Hence it is not 

surprising that it has become the model organisms for the study of METs, 

and the focus of this work as well. 
 
2. THE ELECTROACTIVE BACTERIA: GEOBACTER 
SULFURREDUCENS 

 

General features  
Geobacter species can be classified in the family Geobacteraceae, 

belonging to the class Deltaproteobacteria and phylum Proteobacteria. They 

represent a wide genus of Gram-negative, metal-reducing microorganisms 

which have an important role in natural environments, where dissimilation of 

iron and manganese are predominant processes (Lovley et al., 2011). Since 

the discovery of G. metallireducens in 1987, it has been described more 

than a dozen subgenera, being G. sulfurreducens the one of the most 

extensively studied (Lovley et al., 2011). G. sulfurreducens strain PCA was 

isolated in 1994, and it was the first Geobacter strain able to grow with 

elemental sulfur as an electron acceptor (Caccavo et al., 1994). Moreover it 

was the first for which methods for genetic manipulation were developed 

(Coppi et al., 2001). Over time, it was shown the most relevant feature of 

these bacteria: its ability for respiring electrodes (Bond and Lovley, 2003). 

That implies the coupling of the intracellular oxidation of an electron donor, 

with the extracellular reduction of an electron acceptor. This milestone 

marked the beginning of METs and G. sulfurreducens became the model 

electroactive bacteria. 
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Electron donors and acceptors 

G. sulfurreducens has a broader range of electron donors than 

originally reported by Caccavo et al in 1994. 

 

Electron donors:  

Acetate is the preferred electron donor for G. sulfurreducens. It can be 

completely oxidized in the tricarboxylic acid (TCA), and electrons generated 

in the process can be accepted by intracellular (e.g fumarate) or 

extracellular electron acceptors (e.g Fe (III) or electrodes) (Lovley et al., 

2011). In addition, acetate provide carbon to the cell, via its conversion to 

pyruvate, for gluconeogenesis, biomass synthesis, and other anabolic 

reactions (Galushko and Schink, 2000; Segura et al., 2008; Yang et al., 

2010). Acetate is the central intermediate in the anaerobic degradation of 

organic matter in sedimentary environments, as well as the end-product of 

the acetogenic phase in the anaerobic wastewater treatments, and its 

presence is directly related with the formation of biogas in anaerobic digestion 

(Henze, 2008).  

 

Lactate is oxidized as well, producing piruvate and acetate coupled 

with the reduction of Fe (III), fumarate or an electrode (Call and Logan, 

2011). However, lactate-fed systems produce lower power density than 

acetate ones (Speers and Reguera, 2012). Formate and hydrogen, are also 

oxididized by G. sulfurreducens, with Fe (III) or electrode as terminal 

electron acceptors (TEAs), although in the case of the second, a carbon 

source (e.g. lactate) is required (Speers and Reguera, 2012).  

 

Reduced humic substances or the analog anthrahydroquinone-2,6-

disulfonate (AHQDS), can also act as electron donor for G. sulfurreducens. 

Nonetheless, due to its large size, they are extracellularly oxidized (Smith et 
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al., 2015). Finally, G. sulfurreducens have been reported to utilize graphite 

electrodes as electron donor for the reduction of fumarate (Gregory et al., 

2004). 

 

Electron acceptors: 

Fe (III) (in soluble and insoluble forms) is the natural TEA of G. 

sulfurreducens when coupled with the oxidation of acetate, hydrogen or 

lactate (Caccavo et al., 1994; Call and Logan, 2011). Fe (III) is the most 

abundant acceptor available in soils and sediments, the natural habitat of G. 

sulfurreducens (Lovley., 2011). Is interesting to notice that the reduction Fe 

(III) is preferred over the fumarate, despite the lower growth yield showed 

(Esteve-Núñez et al., 2004). 
 

Another relevant acceptor in natural environments are the humic 

substances, that are the most abundance source of organic matter (Lovley., 

2011). In addition, G. sulfurreducens can use the following TEAs: elemental 

sulfur, Mn(IV), uranium, malate, even other microorganisms, what is named  

as microbial direct interspecies electron transfer (DIET) (Caccavo et al., 

1994; Mehta et al., 2005a; Lovley et al., 2011; Lovley, 2011). 

With the isolation of G. sulfurreducens it was described that fumarate can be 

reduced coupled to the oxidation of acetate (Caccavo et al., 1994). A few 

years later, it was demonstrated that fumarate can be reduced using lactate 

(Call and Logan, 2011) or electrodes (Gregory et al., 2004) as electron 

donors. Fumarate reduction in G. sulfurreducens is in fact an artificial 

process, based on the succinate deshydrogenase (Sdh) activity. The natural 

rol of Sdh is to oxidize succinate as part of the TCA cycle, but it can operate 

backwards in presence of high concentration of fumarate. Considering that 

in sedimentary environments the exogenous fumarate is not abundant, it is 

likely that the primary function of the Sdh is the catalysis of succinate 

oxidation rather than fumarate reduction (Butler et al., 2006; Zaunmüller et 
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al., 2006). However, fumarate is the intracellular electron acceptor of choice 

for the culturing of G. sulfurreducens due to the high growth yield obtained in 

comparison with the natural acceptor Fe (III) (Esteve-Núñez et al., 2004, 

2005). 
 

Surprisingly, several years after its isolation, G. sulfurreducens was 

reported not to be a strict anaerobe, and it can indeed grow with oxygen at 

the sole electron acceptor at low concentrations (Lin et al., 2004). Finally, 

the utilization of electrodes as TEAs was demonstrated by coupling the 

electron transfer to acetate, lactate, formate, and hydrogen oxidation (Bond 

and Lovley, 2003; Speers and Reguera, 2012). 

 

Why G. sulfurreducens interact with electrodes? 

The fact that a microorganism can interact with electrodes is even 

more surprising taking into account that such conditions are not part of the 

natural environment. An initial hypothesis was simply that this type of 

microorganisms adapted their molecular machinery, over millions of years, 

to extracellular reduction of insoluble minerals. Apparently, these 

evolutionary mechanisms resulted to be effective for reducing electrodes as 

well (Lovley, 2012). However, when Geobacter species are grown on Fe (III) 

oxides, they express flagella that need for its continuously search of the 

next source of Fe (III) (Childers et al., 2002). A different situation is observed 

when Geobacter is cultured in an electrochemical system, where bacteria 

are permanently attached to electrodes (Bond and Lovley, 2003). So the 

origin of this evolutionary adaptation is likely to be different.  

 

Another possible explanation are the so-called natural geobatteries. 

Geobbateries are formed when graphite deposits in the subsurface are able 

to transfer electrons between anaerobic an oxic zones (Bigalke and 

Grabner, 1997), which constitute a long-term electron acceptor for the 
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surrounding microbes and have more in common with the electrodes acting 

as anodes in a MFC (Leung and Xuan, 2015) (Figure 1). 
 

 

 

 

 

 

 

 
Figure 1: Schematic representation of a geobattery. Ox: oxidizing zone. Red: 

reducing zone. Extracted from (Bigalke and Grabner, 1997). 
 

Types of mechanisms for electron transfer 
There is a great diversity of electroactive microorganisms which are 

able to exchange electrons with an electrode, hence they use different 

strategies for making extracellular electron transfer (EET). Three EET 

mechanisms between microorganisms and electrode surfaces can be 

distinguished (Figure 2), namely, i) indirect electron transfer (IET), ii) 

mediated electron transfer (MET), and iii) direct electron transfer (DET).  

 

i) IET occurs when a fermentative microorganism convert glucose into 

reduced metabolic products (hydrogen, formic acid, alcohol...) which can be 

secreted and react with electrons to an electrode (Karube et al., 1977, 

Sydow et al., 2014). 

 

ii) MET involves the use of mediators or electron shuttles which are soluble 

molecules that can accept electrons from microorganisms and 

subsequently, donate them to the electrode. In contrast to IET, mediators 

can be reversibly oxidized and reduced, so they have become a widely used 
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strategy in microbial electrochemistry field. Electron shuttles can be 

artificially added, like quinones (Adachi et al., 2008), however, its addition 

could be toxic and expensive for large-scale applications (Thrash and 

Coates, 2008). Some microorganisms are able to secrete their own electron 

shuttles to establish electric contact with the electrode, such is the case of 

Shewanella oneidensis, which produce flavins (Marsili et al., 2008a; Kotloski 

and Gralnick, 2013) or Pseudomonas aeruginosa that secrete phenazines 

(Pham et al., 2008). 

 

iii) Regarding DET, microorganisms such G. sulfurreducens establish direct 

electric contact with the electrode via an outer-surface redox network, which 

is formed basically by c-type cytochromes (Lovley, 2011; Lovley et al., 2011; 

Lovley, 2012). 

 

 
 Figure 2: Representation of bacterial mechanisms for: indirect electron transfer 

(IET), mediated electron transfer (MET) and direct electron transfer (DET) 
 

Direct extracellular electron transfer (DEET) in G. sulfurreducens: the 
role of the cytochromes  

The unique ability of Geobacter to establish a direct contact with an 

insoluble electron acceptor is due to the presence of a vast network of 
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cytochromes C that connects the internal cytoplasm with the outermost 

environment of the cell (Morgado et al., 2012; Aklujkar et al., 2013; Estévez-

Canales 2015b). There are about 100 putative c-type cytochrome genes 

encoded in G. sulfurreducens genome (Methé et al., 2003), which contain 

heme groups that can act as electron transfer groups. Many of these c-type 

cytochromes are located in the periplasmic space (Morgado et al., 2010), 

(e.g. PpcA) exposed on the outermost membrane of the cell, (e.g. OmcB), 

(Mehta et al., 2005; Ding et al., 2006; Qian et al., 2007), aligned along the 

pili structure, (e.g. OmcS) (Leang et al., 2010), while others, are found well 

beyond the cell membrane, embedded in the extracellular matrix (e.g. 

OmcZ) (Figure 3) (Inoue et al., 2011; Rollefson et al., 2011). Knock-out 

studies suggest that these c-type cytochromes transfer electrons in vivo to a 

diversity of natural extracellular electron acceptors, such as metals and 

humic substances (Leang et al., 2003; Leang et al., 2005; Mehta et al., 

2005b; Shelobolina et al., 2007; Voordeckers et al., 2010; Orellana et al., 

2013). Furthermore, numerous authors have demonstrated that c-type 

cytochromes directly participate in the electrochemical communication with 

the anode (Holmes et al., 2006; Nevin et al., 2009; Busalmen et al., 2010; 

Esteve-Núñez et al., 2011; Millo et al., 2011; Kuzume et al., 2013; Kuzume 

et al., 2014).  

 

The network of cytochromes in Geobacter can also function as a 

capacitor accepting electrons from the acetate metabolism (iron lungs) 

(Esteve-Núñez et al., 2008) when extracellular electron acceptors are not 

available (Esteve-Núñez et al., 2008; Lovley, 2008). Indeed, the abundant c-

type cytochromes in current-producing biofilms provide a capacitance 

comparable to that of synthetic supercapacitors with low self-discharge 

rates (Schrott et al., 2011; Liu et al., 2011; Malvankar et al., 2012).  

Although the exact pathway of each cytochrome of the network 

remains unknown, some elements seem to have a different role in the 
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respiration of electrodes or Fe (III) oxides (Figure 3). That is the case of the 

pili structure or nanowire (Reguera et al., 2005; Malvankar et al., 2011). 

Deletion studies proved that pili are crucial for reduction of Fe (III) oxides, 

but not for other extracellular acceptor such an electrode (Reguera et al., 

2005). However, in current producing biofilm growing on electrodes, pili are 

proposed to provide a conductive network through the internal structure of 

the biofilm, which allows to perform long-range electron transport (Lovley, 

2012). 

 
Figure 3: Representation of different pathways of the cytochromes network (c-cyt) 

proposed for short-range DEET to electrodes and Fe (III) oxides in G. 

sulfurreducens. 
 

The deeper understanding about the mechanism for the long-range 

electron transport through the inside of the biofilms, has led to two different 

school of thoughts: electron hopping and metallic-like conductivity.  

Metallic-like conductivity model, proposes that the pili structure posses 
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conductivity itself, and the overlapping π-orbitals of aromatic amino acids 

(forming the protein structure), are thought to be responsible for this model 

based on electron delocalization (Malvankar et al., 2011; Malvankar et al., 

2015). Conversely, the electron hopping model is based on the classical 

biological thought for electron transfer, and electrons are proposed to hop 

from one cytochrome to another. In this way electrons are always localized 

in discrete biomolecules, and they move through multi-step hopping (Snider 

et al., 2012; Bond et al., 2012).  

Some authors has pointed that the combination of both models, is the 

more plausible hypothesis (Bonanni et al., 2013). 

 

Despite the great research work in recent years, the complete 

understanding of the interaction bacteria-electrode represents a challenge 

and it will be key for establishing new frontiers and practical applications in 

the field of electromicrobiology. 

 

Influence of cell culturing methods 

G. sulfurreducens can be cultured using different approaches 

depending upon the application (e.g. fundamental studies, laboratory scale, 

actual implementations...) or physiology desired (e.g. over-expression of c-

type cytochromes, change of extracellular polymeric substances (EPS) 

profile...). In this thesis, batch and chemostat mode were used (Figure 4). 
 

Batch culture: 

It can be defined as a closed system where culture medium is 

inoculated and confined into a culture vessel. Then, it is incubated at a 

suitable temperature and gaseous environment for an appropriate period of 

time (Lee, 2006). The composition of the medium, the biomass and the 

metabolite concentration change as a result of cell metabolism. Four typical 

growth phases can be distinguished: lag, exponential, stationary and death 



                                                       Chapter 1: General introduction & Objectives 

 
19 

phase. Batch culture is common for fundamental studies (Kuzume et al., 

2013; Aklujkar et al., 2010). 

 

 

 

 

 

 

 

 
Figure 4: Photos of batch culture bottle (A) and chemostat culture (B) of G. 

sulfurreducens. 
 

Chemostat culture:  

It consists of an open system where sterile nutrient medium is added 

to the bioreactor continuously and an equivalent volume of used medium 

with microorganisms is simultaneously removed. The physiological steady 

state is controlled by means of the availability of a limiting substrate. A key 

parameter that must be fixed in a chemostat is the dilution rate, which is 

defined as the flow of medium per time over the volume of culture. At steady 

state, the specific growth rate of the microorganism is equal to the dilution 

rate, thus the biomass remains constant (Lee, 2006). The chemostat 

provides a great opportunity to study microbial physiology under specific 

and reproducible conditions, (Esteve-Núñez et al., 2004; Esteve-Núñez et 

al., 2005a). In particularly, for G. sulfurreducens, it has been showed that 

electron acceptor limitation growth condition in a chemostat, enhances 

extracellular electron transfer rates due to the overproduction of 

cytochromes at the cell surface (Esteve-Núñez et al., 2011), minimizing 

considerably the start-up process of METs (Borjas et al., 2015).  
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Others conditions: 

Recent unexpected findings have shown an alternative way for 

culturing highly electroactive cells by adding NaCl into batch cultures. These 

conditions modify the EPS profile so cells displayed 3-fold higher DEET 

capacity in comparison with standard batch cells (Borjas et al. personal 

communication). 

 

Biofilm vs planktonic growing 

The typical approach to study the electroactivity is G. sulfurreducens is 

to grow a biofilm on the electrode surface. Operating with a mature biofilm, 

allows to obtain steady and reproducible conditions (Harnisch and Freguia, 

2012; Schrott et al., 2011; Beyenal and Babauta, 2015; Marsili et al., 

2008b). A biofilm can be defined as an assemblage of surface-associated 

microbial cells. In G. sulfurreducens, the biofilm thickness has been reported 

to be of several tens of micrometers, although the physiological state is not 

homogeneous. As matter of fact, once biofilms are thicker than 60-70 μm, 

the accumulation of cells does not contribute to current production (Schrott 

et al., 2014). 

 

Alternatively, planktonic cells (bacterial suspension) have been also 

utilized for short time studies, in where the main goal is a rapid 

characterization, electrochemical or metabolic, of the system instead large 

current production (Esteve-Núñez et al., 2011; Estevez-Canales et al., 

2015a; Shelobolina et al., 2007). Moreover, the growth of planktonic 

electroactive cells of G. sulfurreducens could be supported by a Microbial 

Electrochemical-Fluidized Bed Reactor (ME-FBR), obtaining electron 

transfer rates similar to those reported for electroactive biofilms (Tejedor et 

al. personal communication).  

 

Despite the divergent growth conditions, both approaches provide an 
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opportunity to deepen understanding of G. sulfurreducens. 

 

Regulation of metabolism  
The expression of genes in an organism can be influenced by the 

environment, which may impose significant stress on cultures. In order to 

understand how G. sulfurreducens is likely to change its expression and 

metabolism in response to these variations, it is important to know how 

gene expression is regulated (Mahadevan et al., 2008). Among the 

mechanisms for regulating gene expression, the sigma and transcription 

factors are the most important (Methé et al., 2003; Lovley et al., 2011; Qiu et 

al., 2013). 

 

Sigma factors: 

Sigma factors play a key role in the regulation of gene expression in 

response to changing environments. σ-Factors are proteins needed for 

initiation of RNA synthesis that recognize specific promoter elements of a 

certain set of genes and initiate their transcription. The genome of G. 

sulfurreducens encodes homologs of RpoD, RpoS, RpoH, RpoN, RpoE and 

FliA found in E. coli and many other bacteria; indeed they are reported to be 

the major regulator of energy metabolism (Methé et al., 2003; Núñez et al., 

2004; Yan et al., 2006; Krushkal et al., 2007; Ueki and Lovley, 2007; Leang 

et al., 2009; Qiu et al., 2013). 

 

Transcription factors: 

Transcription factors are typically related with more specific cellular 

function than sigma factor in response to environmental and physiologic 

changes. Its operating mechanism includes a repressor and an activator 

which inhibits or promotes transcription, although some transcription factors 

can act in both ways. G. sulfurreducens genome encodes for 151 putative 

transcription factors (Methé et al., 2003). 
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One example of a transcription factor is the system for regulating the iron 

metabolism, the ferric-uptake regulator (Fur). Fur is a protein that acts as a 

transcriptional repressor. In response to the intracellular iron availability, Fur 

blocks the access of RNA polymerase to the DNA and controls many genes 

related to iron acquisition as well as redox-stress resistance and central 

metabolism (Embree et al., 2014; Wan et al., 2004). 

 
Bacterial immobilization 

With the aim of simplifying the start-up process and stability of the 

biofilm, recent studies have pointed at the possibility of artificially improving 

electroactive biofilms performance. Some examples reported in the 

literature using Shewanella, have introduced the concept of making artificial 

colonization of the biofilm, where bacteria are encapsulated in a material to 

conform a bioelectrode (Luckarift et al., 2012). Others bet on doping the 

biofilm, adding conductive compounds, in order to improve the electrical 

conductivity through it (Yu et al., 2011). Unlike traditional encapsulation, in 

order to build an artificial electroactive biofilm, aside from bacterial viability, 

it is key to ensuring electrical communication with the electrode. Among the 

matrices where cells can be immobilized, agar, pectine, alginate (organic 

polymers) and silica gels (inorganic polymer) are the most common choices 

(Bjerketorp et al., 2006). On one hand, organic polymers have the 

advantage to be always biocompatible as well as allows solute diffusion, 

(Srikanth et al., 2008). On the other hand, inorganic polymers, like silica 

gels, also allow solute diffusion but they offer better optical and mechanical 

properties, making the gel more robust and easier to control (Depagne et 

al., 2012; Ouay et al., 2013). 

 

Another possibility for bacterial immobilization on the electrode 
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surface is the union by using artificial linkers. For G. sulfurreducens it has 

been demonstrated that carboxyl-terminated alkanethiols linkers, such as 6- 

mercaptohexanoic acid, effectively bind to gold electrodes and outermost 

cytochromes providing biocompatible conditions (Kuzume et al., 2013; Füeg 

et al., Submitted). The alkanethiol group binds to gold surface and the 

negatively charged carboxyl groups binds electrostatically to a positively 

charged pocket of the cytochromes.  

 

Although the cellular and enzymatic entrapment have been studied for 

several decades (Calabretta et al., 2012; Datta et al., 2013), the interest in 

this methodology for electroactive bacteria is very recent, and it could be a 

helpful and versatile strategy both for bacterial conservation and for its 

implementation in METs, especially for biosensing purpose (Luckarift et al., 

2012; Yang et al., 2015). 

 

3. ELECTROCHEMICAL ASPECTS: TOOLS FOR STUDYING DEET IN G. 
SULFURREDUCENS 

 

The merging of two fields as different as microbiology and 

electrochemistry, have resulted in a very powerful and versatile tool for both, 

basic and applied research leading to a newborn field: METs. 

 

Microbial fuel cell (MFC) vs microbial electrolysis cell (MEC) 
Traditionally, the typical configuration of MFC consists of two chambers 

(anode and cathode) separated by a proton exchange membrane (Figure 
5). In the anode, microorganisms oxidize organic matter, producing CO2, 

electrons and protons. Electrons are transferred to the cathode 

compartment through an external electric circuit, while protons are 

transferred to the cathode compartment through the membrane. Electrons 

and protons are consumed in the cathode, combining with the catholyte and 
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reducing it. The combination of the electrical current production (I) and the 

voltage difference (V) between anode and cathode determine the amount of 

power produced: 

P=I V 

However, when it comes to the study of biological process in METs, it 

is key to maintain constant the anode potential, in order to obtain 

reproducible results. These conditions can be achieved by using a 

potentiostat which set a specific potential to the working electrode (anode) 

versus a reference electrode, in a MEC (Figure 5) (Beyenal and Babauta, 

2015). 
 

 
 
 
 
 
 
 
 
 

Figure 5: Scheme of a two-chambered MFC and MEC, both having an electron 

donor (D red/ox), an electron acceptor (A red/ox) and a proton exchange 

membrane. In the MEC, a potentiostat fix the working electrode potential to a 

specific value. 
 

Although traditionally, many MEC-related works are performed using a 

two-chamber configuration, it is also possible to operate in a single-

chamber, where there is not membrane, and working and counter 

electrodes share the same electrolyte. In a MEC, at equal number of 

electrodes, this simplified architecture allows to make the same 

electrochemical tests, and is especially useful in controlled systems where 
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the reactions than can take place are limited, for instance, working with pure 

cultures. 

 

Electrochemical methods for the study of the microbial electroactivity 
in G. sulfurreducens 

The use of a potentiostat allows real-time measurement of the 

microbial electroactivity by different techniques, such as 

chronoamperometry, cyclic voltammetry, open circuit potential or 

spectroelectrochemical techniques. 

 

Chronoamperometry (CA):  

This technique fixes a given potential between the working and the 

reference electrode, and the current produced or consumed is monitored as 

a function of time, as a result of the oxidation or reduction of a compound on 

the surface of the working electrode. 

 

In G. sulfurreducens there is a wide variety of examples in where CA 

has been used. On one hand, current produced serve as an status check of 

the system as well as to screening various levels of electroactivity (Harnisch 

and Rabaey, 2012; Borjas et al., 2015; Esteve-Núñez et al., 2011). On the 

other hand potentials applied, have great influence in the adaptation of 

exocellular electron transfer elements as well as in the microbial diversity of 

a biofilm community (Busalmen et al., 2008b; Torres et al., 2009). In 

addition, CA can be used in biosensors, as the current produced can be 

directly related with the concentration of electron donor that it is being 

oxidized (Li et al., 2011; Tront et al., 2008). 

There is no consensus about the optimal potential that should be 

applied, because it is dependant of many factors, but there are a few 

considerations. If the goal is promoting oxidation process, the potential 

applied must be more positive than the open circuit potential (OCP) of the 
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working electrode. Conversely, a negative potential accelerates reduction at 

the working electrode (Babauta et al., 2012). 

 

Cyclic voltammetry (CV):  

This electrochemical procedure consists of a cyclic potential sweep, at 

a fixed scan rate, during which the current of the working electrode is 

registered. CV is a powerful technique that provides valuable information 

about the redox behaviour of the reactions that G. sulfurreducens is able to 

catalyze (Harnisch and Freguia, 2012; Fricke et al., 2008). Understanding 

this process, from a strictly electrochemical point of view, might be 

confusing, since the oxidation or reduction mediated by a whole cell is far 

more complex that enzymatic catalysis or inorganic electrocatalysis. During 

a whole cell catalysis, there are a considerable number of enzymatic sub-

steps in the redox cascade, hence, peaks responses overlap, making 

difficult assigning them to specific redox couples (Fricke et al., 2008; 

Babauta et al., 2012;). In addition, voltammograms differ as function of the 

physiologial state, cellular arrangement and experimental conditions (Marsili 

et al., 2008b; 2012; Busalmen et al., 2008b; Esteve-Núñez et al., 

2011;Strycharz-Glaven and Tender). However, this fact can be considered 

an advantage as well. For instance, the voltammogram shape allows to 

determine whether the system is under turn-over (excess of substrate) or 

non turn-over conditions, and therefore, to obtain the maximum and limiting 

current value (Figure 6) (Harnisch and Freguia, 2012). Furthermore, 

through CV it is possible to determine the working electrode potential 

window in which DEET can occur for a given electron donor and 

experimental conditions (Fricke et al., 2008). CV can also serve a biosensor 

detection technique, since maximum current display is related with the 

concentration of electron donor, in a similar way that occurs in 

chronoamperometry. Moreover, the peak potential of catalytic curves 

ensures the proper performance of the system (Marsili et al., 2008b).  
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Regarding some technical aspect, it is worth noting that the scan rate 

selected is crucial, considering that capacitive currents can significantly 

mask the faradaic response (LaBelle and Bond, 2009; Harnisch and 

Freguia, 2012). 

 
Figure 6: Voltammetric characterization of the catalytic activity of G. sulfurreducens 

in A) Mature biofilm at turn-over conditions, B) Same biofilm after acetate depletion, 

C) At differents time of biofilm formation and D) Comparing different physiological 

state. (A) y B) extracted from (Strycharz et al., 2011), C) from (Marsili et al., 2008b), 

and D) from (Esteve-Núñez et al., 2011). 
 

 

Open circuit potential (OCP):  

This parameter is defined as the potential of an electrode (working or 

counter) measured versus the reference electrode. In long term 
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experiments, OCP value can be used as a diagnosis, of the microbial 

colonization of the working electrode. So thus, the more negative the value, 

the higher level of bacterial colonization; until reach a steady-state OCP, 

due to complete coverage of electrode (Babauta et al., 2012).  

 

Spectroelectrochemical techniques: 

Spectroelectrochemistry combines electrochemistry with 

spectroscopy, and it relates the changes in the spectral signature with 

electrochemically active compounds above an electrode set at a certain 

polarization potential (Bard and Faulkner, 2000). 

 

Spectroelectrochemical techniques can provide in vivo understanding 

of electron transfer mechanisms as well as molecular structures (Scott and 

Yu, 2015). This approach has been used for studying the interface between 

G. sulfurreducens and gold electrodes using Attenuated Total Reflection-

Surface Enhanced Infrared Absorption Spectroscopy (ATR-SEIRAS), 

showing oxidized/reduced states in c-type cytochromes, and evidencing that 

c-type cytochromes are responsible for DEET (Busalmen et al., 2008a; 

Busalmen et al., 2010; Esteve-Núñez et al., 2011) . 

 

Another spectroelectrochemical technique for the characterization of 

G.sufurreducens is the in situ Nanoparticle Enhanced Raman Spectroscopy 

(NERS), a powerful technique that can detect and further provide structure 

information of hemes groups of c-type cytochromes (Kuzume et al., 2013; 

Kuzume et al., 2014; Estevez-Canales et al., 2015b).  

 

From microbial metabolisms to electrical current 
Unlike other techniques to convert organic material to electricity, METs 

are unique because it allows direct electricity generation (Rabaey and 

Verstraete, 2005). In order to confirm that the current generated is due the 
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consumption of a given nutrient, the total charge transferred (Q) must be 

correlated with the electron donor consumption, by integrating current over 

time, following Faraday's law: 

Q = ∫ Idt = ne Nmol F 

The difference between the electrons released by the bacterial 

metabolism and the electrons recovered by the electrode, it is known as 

coulombic efficiency. In G. sulfurreducens, for each mol of acetate oxidized, 

eight electrons are harvested (ne), what corresponds with a coulombic 

efficiency of ca. 95 %, indicating that acetate was completely oxidized to 

CO2 (Bond and Lovley, 2003). Besides, coulombic efficiency, this relation 

can be used for comparing metabolic rates of oxidation under several 

conditions (Esteve-Núñez et al., 2005b). 

 

Screen-printed electrodes 

Screen-printing is an established technique to fabricate micro-scale 

electrochemical devices. A standard Screen Printed Electrode (SPE) 

comprise a variable number of electrodes and all the compounds necessary 

for completed the electric circuit placed over a supporting material (Hayat 

and Marty, 2014). Its inherent advantages include miniaturization, versatility, 

low cost and the possibility of mass production. SPEs can be manufacture 

using several materials as electrodes, including carbon inks that have very 

similar properties than conventional electrodes, such as low background 

signal and a wide range of working potentials. SPEs are accurate and rapid 

analysing devices (Taleat et al., 2014) that can be also combined with 

functionalization (through electrochemical techniques) of biomolecules 

(Gómez-Mingot et al., 2011) or bacteria (Chang et al., 2012). Moreover, they 

require small volumes of the analyte (microlitres), they are suitable for off-

the-bench assays.  

All these benefits turns SPEs into a natural choice that could serve as 

biosensor, as well as a fast screening of physiology, among others potential 
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application, from electroactive microorganisms (Estevez-Canales et al., 

2015a) . 
 

4. APPLICATIONS OF MINIATURIZED METs 
 

Among the classical applications known as METs, simultaneous 

electricity generation with wastewater treatment (Kim et al., 2015; Borjas et 

al., 2015; Malaeb et al., 2013) or bioremediation (Zhang et al., 2010; 

Rodrigo et al., 2014); have been the topics most widely studied. However, 

one of the major handicaps for practical implementation of METs is the 

scale-up, due to the lack of linearity between current density production and 

the active surface area (Babauta et al., 2012). 

 

For this reason, an alternative research line is receiving more and 

more attention: the down-scaled METs (Choi et al., 2015; Jiang et al., 2015; 

Yoon et al., 2014). Such platforms offer considerably advantages starting by 

the process of microfabrication itself: mass production and costs reduction 

(Choi, 2015), making them more applicable and potentially realizable than 

macro-scale METs, in terms of profitability. Second, micro-scale METs 

exhibit a higher surface area to volume ratio which enhance the efficiency 

usage of substrates per unit volume and the mass transport (Ren et al., 

2014). These features allow to obtain significantly shorter start-up time and 

rapid electrical response, compared with classical MFCs (Estevez-Canales 

et al., 2015a; Wang et al., 2011; Jiang et al., 2015; Li et al., 2011). 
 

From such appealing characteristics, the future applications of 

miniaturized METs, seem to point at: a) small portable electronic elements in 

remote locations, b) biosensing, and c) fundamental studies and screening 

of microorganisms.  
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a) Small portable electronic devices in remote location  
Power supply for small devices in remote location is one of the 

scenarios that can take more advantage from miniaturized METs in the 

future (Ren et al., 2012). Normally, disposable batteries are used with this 

purpose, with the inconvenient that they must be replaced because of the 

limited service life. 

 

In recent years some researchers (Choi and Chae, 2013; Ren et al., 

2014) have achieved power densities in the range of microwatts, that should 

be enough for feeding small devices, functioning as permanent power 

source in hard-to-access conditions (Wei and Liu, 2008). This technology 

would be especially useful for medical devices, such as intraspinal 

microelectrodes for treating paralysis that could operate consuming the 

glucose as fuel in the bloodstream (Siu and Chiao, 2008). However, further 

studies about toxicity, implantation rejection or bacterial leakage, are 

needed to investigate its suitability for in vivo applications. As a matter of 

fact, even for environmental applications, there are others aspects to 

overcome in micro-sized METs. For instance, high internal resistances that 

limit their power output, which makes fast responding analyses, the more 

promising applications in the foreseeable future (Wang et al., 2011; Choi, 

2015). 

 

b) Biosensing  
One of the most feasible trends for micro-scale METs is the biosensing 

based on electrochemical detection, as they can perform in situ analysis at 

short time with high sensitivity and stability (Yang et al., 2015). In 

wastewater technologies, researchers have successfully developed 

miniaturized sensors based on MFCs for measuring the biological oxygen 

demand (BOD) (Peixoto et al., 2011), acetate (Li et al., 2011), pH (Uria et 

al., 2016) as well as toxic compounds (Davila et al., 2011; Liu et al., 2014; 
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Lee et al., 2015). 

 

Moreover, scaling down the architecture of the biosensor allows 

multiple assays on a single platform (lab-on-chip). For instance it has been 

reported a multianod MFC-based biosensor that could serve as water 

diagnostic (Fraiwan et al., 2014), and a microfluidic MFC-based biosensor 

capable of screening several analytes simultaneously related to water 

toxicity (Figure 7) (Ben-Yoav et al., 2009). 
 

 

 

 

 

 

 

 

 
Figure 7:  Silicon-based micro-chip comprising four electrochemical  

micro-chambers, and inside view of a single three-electrode electrochemical micro-

chamber. (Extracted from Ben-Yoav et al., 2009). 
 

Microfluidics is considered a keystone technique for lab-on-chip 

development. It is defined as a science and a technique that deals with the 

flow of liquids inside micrometer-sized channels. Micro-scale fluids 

behaviour is substantially different than macro-scale, mainly due to the flow 

regime which become laminar instead of turbulent (Wang et al., 2011; 

Squires and Quake, 2005). This feature makes that viscous and surface 

forces start to dominate the fluid behaviour, resulting in precisely control of 

the electrolytes inside the channels, among others benefits of microfluidics 

like low consumption of costly reagents, short reaction time, multiple 
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analysis in parallel, portability, and versatility in design (Li et al., 2011; Choi, 

2015; Luka et al., 2015). 

 

Another interesting branch in order to make whole cell biosensors with 

a higher robustness, sensitivity and specificity, is the synthetic biology 

approach (Bereza-Malcolm et al., 2015). Generally speaking synthetic 

biology consist of designing, constructing and assembling biological 

components for useful purpose, such as industry, science or even space 

exploration (Menezes et al., 2015). For instance, it has been described a 

genetic engineered modified E.coli (a non eletrogenic bacteria), which has 

acquired a portion of the extracellular electron transfer chain of Shewanella 

oneidensis MR-1, making it able to perform a low but detectable EET 

(Jensen et al., 2010). 

 

c) Fundamental studies and screening of microorganisms  
Another field that can benefit from miniaturized METs is the 

fundamental studies and screening of microorganisms. Despite the 

continued advances of the field, the precise mechanisms of electron transfer 

in electroactive bacteria is still poorly understood. The kind of assays 

required for the study of this outstanding process, usually involve rather 

complex experimental setups and limited access to microbial tools 

(Harnisch and Rabaey, 2012; Schröder, 2012). Hence, there is a clear niche 

for the development of appropriate, simpler and faster devices that supply 

reproducible and reliable data for the characterization and selection of 

microorganisms. 

 

Screen-printed electrodes and microfluidic devices provide a great 

opportunity for the study, understanding and rapid screening of 

electroactivity or metabolic features of microorganisms in a single or multi-

plate analysis (Figure 8) (Wang and Su, 2013; Estevez-Canales et al., 
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2015a; Choi et al., 2015). Some researchers went further, and they have 

developed a device that enables simultaneous electrical and optical 

measurements without fluorescent markers, which allow observation of live 

bacteria (Dai et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8:  Image of the assembled sensor array for high-throughput 

screening of electrochemically (Extracted from Choi et al., 2015) 
 

There is still a long way to go for the real implementation of 

miniaturized METs in our daily life. In any case, the way to improve such 

devices is, for sure, through the integration of a variety of fields of 

knowledge: engineering, material science, chemistry, biochemistry, physics,  

nanotechnology, and biotechnology.



                                             Chapter 1: General introduction & Objectives 
 

 
35 

        OBJECTIVES AND OUTLINE         
 

The present PhD thesis aims to explore novel approaches for a 

further understanding of EET process in G. sulfurreducens, as well as for 

providing advantageous electrochemical platforms for assisting basic and 

applied studies on METs. So thus, the following specific objectives were 

proposed: 

 

- To study the role of c-type cytochromes in EET from G. 

sulfurreducens by developing a method for obtaining cytochrome-

depleted cells. 

 

- To explore Screen Printed Electrodes as miniaturized tools for 

rapid assessing microbial electrochemistry, avoiding complex 

electrochemical set-ups. More specifically, to implement a suitable 

platform for screening different physiologies of G. sulfurreducens, 

as well as desirable metabolic features from a microbial 

consortium. Moreover, to provide a system robust enough for 

performing studies in real wastewater and for biosensing of 

acetate. 

 

- To develop an artificial bioelectrode based on silica encapsulated 

G. sulfurreducens that allows a fast electrochemical characterization 

while also ensuring cell viability. 

 

 

The mentioned objectives are developed through the following 

chapters, each of which corresponds to a self-standing unit organized 

around the topics proposed. Except for Chapter 1 which is introductory 
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and Chapter 5 which presents a general discussion, conclusions and 

future outlook; the remaining chapters correspond to articles published or 

submitted to peer-review journals. A brief description of the following 

chapters is presented: 
 

Chapter 2 shows a straightforward method for growing G. 

sulfurreducens in a low iron medium that included a chelator, resulting in 

cytochrome-depleted cells (heme- cells), which were characterized in 

detail by electrochemical, molecular, spectroscopic and microscopic 

techniques.  
 

Chapter 3 investigates the use of SPEs as a novel low-cost 

platform for assessing microbial electrochemical activity at the microscale 

level, using either pure cultures of G. sulfurreducens or a microbial 

consortium. The study also included electrochemical analysis of different 

microbial physiological states, together with several materials for working 

electrodes 
 

Chapter 4 explores a new strategy for manufacturing ready-to-use 

artificial bioelectrodes of G. sulfurreducens by means of effective 

immobilization of cells inside silica gel and carbon felt fibers electrodes. 

Such bioelectrodes were electrochemically characterized using several 

electron donors. In addition, viability assays and an analysis of the 

transcriptomic response for the encapsulated cells were performed. 
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 The role of c-type cytochromes in extracellular 
electron transfer 

 
ABSTRACT 

 

The ability of Geobacter species to transfer electrons outside the cell 

enables them to play an important role in a number of biogeochemical and 

bioenergy process. Gene deletion studies have implicated periplasmic and 

outer-surface c-type cytochromes in this extracellular electron transfer. 

However, even when as many as five c-type cytochrome genes have been 

deleted, some capacity for extracellular electron transfer remains. In order 

to evaluate the role of c-type cytochromes in extracellular electron transfer, 

Geobacter sulfurreducens was grown in a low iron medium that included the 

iron chelator  (2,2'-bipyridine) to further sequester iron. Heme-staining 

revealed that the cytochrome content of cells grown in this manner was 15-

fold lower than in cells exposed to a standard iron-containing medium. The 

low cytochrome concentration was confirmed by in situ Nanoparticle 

Enhanced Raman Spectroscopy (NERS). The cytochrome-depleted cells 

reduced fumarate to succinate as well as the cytochrome-replete cells 

grown, but were unable to reduce Fe (III) citrate or to exchange electrons 

with a graphite electrode. These results demonstrate that c-type 

cytochromes are essential for extracellular electron transfer by G. 

sulfurreducens. The strategy for growing cytochrome-depleted G. 

sulfurreducens will also greatly aid future physiological studies of Geobacter 

species and other microorganisms capable of extracellular electron transfer.   
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INTRODUCTION 

 

G. sulfurreducens is an intensively studied microorganism that serves 

as a model system to investigate extracellular electron transfer (EET) in 

bacteria (Lovley et al, 2011). EET is the ability that certain bacteria have for 

coupling the oxidation of cytoplasmic electron donors with the reduction of 

insoluble electron acceptors located outside the cell.  EET is responsible of 

biogeochemical processes such as the reduction of Fe-oxides and other 

metals in soils and sediments (Lovley et al. 2004) and for syntrophic 

electron transfer to methanogens (Rotaru et al., 2013). EET is also behind 

practical applications in the emergent field of electromicrobiology (Lovley, 

2011), where bacteria are directly involved in redox processes with 

conductive materials (electrodes), which serve as electron acceptors. 

Microbial electrochemical technologies for harvesting energy from waste 

(Logan and Rabaey, 2012) or from soil enviroments (Dominguez-Garay et 

al., 2013), bioremediating polluted sediments (Lovley 2011, Rodrigo et al., 

2013) or biosensing (Dávila et al., 2011) are all based on effective EET.  

 

The unique ability of Geobacter to establish a direct contact with an 

insoluble electron acceptor is due to the presence of a vast network of 

cytochromes C that connects the internal cytoplasm with the outermost 

environment of the cell (Aklujkar et al., 2013; Morgado et al., 2012). There 

are about 100 putative c-type cytochrome genes encoded in G. 

sulfurreducens genome (Methé et al., 2003), most of which contain multiple 

heme groups that can act as electron transfer mediators.  Many of these c-

type cytochromes are exposed on the outermost membrane of the cell 

(Metha et al., 2005; Ding et al., 2006; Qian et al., 2007; Leang et al., 2010; 

Inoue et al., 2011). Knock-out studies suggest that these c-type 
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cytochromes transfer electrons in vivo to a diversity of natural extracelular 

electron acceptors, such as metals and humic substances (Leang et al., 

2003; Leang et al., 2005; Mehta et al., 2005; Shelobolina et al., 2007; 

Voordeckers et al., 2010; Orellana et al. 2013). Furthermore, numerous 

studies have demonstrated that c-type cytochromes directly participate in 

the electrochemical communication with the anode (Holmes et al., 2006,; 

Nevin et al., 2009; Busalmen et al., 2010; Esteve-Nuñez et al., 2011; Millo et 

al., 2011; Jain et al., 2011; Liu et al., 2011;  Richter et al., 2009; Strycharz et 

al., 2011).  

 

The network of cytochromes in Geobacter can also function as a 

capacitor accepting electrons from the acetate metabolism (Esteve-Núñez 

et al., 2008) when extracellular electron acceptors are not available (Esteve-

Núñez et al., 2008; Lovley., 2008). Indeed, the abundant c-type 

cytochromes in current-producing biofilms (Schrott et al., 2011; Liu et al., 

2011) provide a capacitance comparable to that of synthetic supercapacitors 

with low self-discharge rates (Malvankar et al., 2012).  

 

The synthesis of c-type cytochromes constitutes a complex process in 

which iron must be incorporated to the protoporphyrin ring to conform each 

heme group that subsequently will be attached (Stevens et al., 2004). A 

recent study has explored the iron stimulon, reporting how twenty-four 

different c -type cytochromes were slightly downregulated with decreasing 

iron levels (Embree et al., 2014). Interestingly, strategies for promoting 

transposon insertions in the cytochrome c maturation genes ccmC and 

ccmF1 led to Shewanella oneidensis strains unable to perform any kind of 

anaerobic respiration including the donation of electrons to extracellular 

electron acceptors like iron, or manganese or intracellular molecules like 

fumarate or nitrate (Bouhenni et al., 2005).  

 



Chapter 2: The role of c-type cytochromes in EET                                                       

 
56 

 

 Although iron is an abundant element in nature, its low solubility 

forces microorganisms to develop regulatory and transport mechanisms 

with the purpose of maintaining the iron homeostasis. In G. sulfurreducens, 

two systems belonging to the Feo family have been identified to facilitate the 

transport of Fe (II) (Cartron et al., 2006). All Feo genes  as well as eleven 

genes encoding components for heavy metal efflux pumps  were found to 

be most downregulated during iron-excess conditions (Embree et al., 2014).  

 

The most important system for regulating the iron metabolism is the 

ferric-uptake regulator (Fur).  Fur acts as a transcriptional repressor which in 

response of the iron availability, controls many genes related to iron 

acquisition as well as redox-stress resistance, central metabolism, and 

energy production in Geobacter sulfurreducens (O'Neil et al., 2008; Embree 

et al., 2014). Along with Fur, an additional transcriptional regulator called 

IdeR has been recently suggested to have a role in iron homeostasis for G. 

sulfurreducens (Embree et al., 2014).  

 

 In some bacteria, such as the Rhizobium genus (Johnston et al., 

2007), the Fur-like iron response regulatory protein (Irr) regulates the heme 

biosynthetic pathway according to the iron availability. Under iron limitation 

conditions, Irr reduces the heme synthesis in order to avoid porphyrins 

accumulation that can be highly toxic (Qi et al., 1999; Ishikawa et al., 2011). 

Although Irr has not yet been found in Geobacter species, it is likely that G. 

sulfurreducens has developed a system to limit the synthesis of 

cytochromes under iron-limiting conditions based on either Fur or IdeR 

regulators (Embree et al., 2014). 

 

  In the present study, we demonstrate that limiting the availability of 

iron to G. sulfurreducens resulted in a decreased cytochrome abundance 
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and a concomitant loss of its capacity for extracellular electron transfer while 

keeping the cell viability.  
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MATERIALS AND METHODS 

 
Media and growth conditions 

Geobacter sulfurreducens (strain DSM 12127; ATCC 51573) was 

grown at 30ºC in batch cultures. The freshwater medium contained the 

following mineral salts (per liter): 2.5 g of NaHCO3, 0.25 of NH4Cl, 0.06 g of 

NaH2PO4H2O and 0.1 g of KCl, 0.024 g of C6H5FeO7  (ferric citrate), 10 mL 

of a vitamins mix and 10 mL of a trace mineral mix (for details see Lovley et 

al., 1988). For batch cultures, acetate (20 mM) was supplied as the sole 

carbon source and electron donor, and fumarate (40 mM) as electron 

acceptor.  Anaerobic conditions were achieved by flushing the culture media 

with N2-CO2 (80:20) to remove oxygen and to keep the pH of the 

bicarbonate buffer at pH 7. 

Geobacter sulfurreducens was also cultured in a chemostat under 

acetate-limiting conditions (Esteve-Núñez et al., 2005). Fe(II) for 

supplementing iron in the culture media was supplied in form of 

(NH4)2Fe(SO4)2·6H2O. 

 

The bacteria were grown according to the following two-step protocol 

to obtain heme- cells with a reduced content of cytochromes. First, the cells 

were cultured in a freshwater medium prepared in the absence of Fe 

sources. Next, this Fe-free culture was used to inoculate (10%) of a Fe-free 

medium containing 30 µM of the iron chelator 2,2'-bipyridine. The resulting 

cells are named heme- cells in this work. 
 
Analytical methods 

The cells were disrupted by boiling the samples for 10 minutes in a 

lysis Tris-HCl buffer (100 mM, pH 6.8, 8% SDS) before the cytochrome 

analysis. To confirm the absence of cytochromes, the cellular proteins were 
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analyzed by electrophoresis on 10 % acrylamide tris-tricine SDS gels. The 

reagent 3,3',5,5'-tetramethylbenzidine (Sigma-Aldrich) was used for staining 

the heme-bands following published protocols (Francis et al., 1984). The gel 

was stained with Coomassie Brillant Blue (Bio Rad) for the determination of 

the total protein content. The Fe (III) reduction was measured employing a 

ferrozine assay, which was described previously (Lovley and Phillips, 

1986).Organic acids were determined using an HP series 1100 high-

pressure liquid chromatograph coupled with a UV detector (210 nm). The 

compounds were separated using a Supelco C-610H column with 0.1 % 

H3PO4 as mobile phase with a flow rate of 0.5 mL min-1.  

 

Electrochemical measurements 

Cyclic voltammetry was performed in a 3-electrodes configuration 

DRP-110 (Dropsens) using a potentiostat (Nanoelectra) connected to a PC 

and controlled by specific software. The potential was scanned between -

0.8 and 0.8 V, with a scan starting in the positive direction at 0.0 V. The scan 

rate was fixed at 0.005 V s-1. All potentials are reported versus a saturated 

Ag/AgCl electrode. All experiments were performed under anaerobic 

conditions (anoxic chamber Coy) guaranteeing the presence of a negligible 

amount of oxygen. An equal number of cells were adjusted at OD600 = 2 for 

the heme-free solution and the standard reference culture of G. 

sulfurreducens. Subsequently, both samples were resuspended in 30 mM 

phosphate buffer solution (pH = 6.8) containing 30 mM KCl and 20 mM 

acetate as electron donor. 

 

RAMAN 

In-situ NERS measurements were performed with a LabRAM HR800 

confocal Raman microscope (Horiba Jobin Yvon). The excitation wavelength 

was 532 nm from a Nd:YAG laser. The power of the laser on the sample 

was 1 mW, and a 50 times magnification long-distance (8 mm) objective 
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with a numerical aperture of 0.1 was used to focus the laser onto the 

sample for collecting the signal in a backscattering geometry. Citrate-

stabilized Ag nanoparticles with an average diameter of 80 nm were 

synthesized by reducing 200 mL of a boiling 0.018 wt% AgNO3 solution with 

4 mL of 1 wt% sodium citrate solution. A color change from yellow to pale 

green took place in about 20 sec. The solution was kept boiling for 1 h and 

was then stirred until cooling down to room temperature (Lee and 

Meisei.,1982). 1.5 mL of the Ag nanoparticle solutions was subsequently 

cleaned and concentrated by a factor of 100 via centrifugation (5500 rpm for 

15 min, 3 times), which led to 10-20 µl of a dark green sediment. This 

sediment was mixed with concentrated G. sulfurreducens, casted and dried 

on a flat Ag electrode in an Ar atmosphere and subsequently transferred into 

a home-made Raman cell to perform the NERS experiments. 
 
SEM 

The cells were harvested in the late exponential growth phase by 

centrifugation for 10 minutes at 9000 g. The cell pellets were harvested and 

fixed by immersion for one hour at room temperature in Cacodylate buffer 

(0.2 M, pH 7.2) containing 5 % glutaraldehyde. The samples were rinsed 

two times in 0.2 M Cacodylate buffer, pH 7.2 for 10 minutes, and 

subsequently dehydrated by a graded ethanol series (25, 50, 70, 90, 100 

and 100 %; 10 minutes each stage). Finally, the samples were rinsed two 

times in acetone for 10 minutes and immersed in anhydrous acetone at 4 ºC 

overnight. Finally, dehydrated cells were dried in CO2 at the critical point and 

processed using a scanning electron microscope DSM-950 (Zeiss). 

 

ICP-MS 

Aliquots (20 mL) of cultures at equal cell density were harvested by 

centrifugation (8000 g, 10 min). The cells were then washed with 20 mL of 

phosphate buffer (20 mM, pH = 7). The washed pellets were treated with 5 
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mL of 1 M NaOH for 3 hours to dissolve the intracellular content. The total 

iron content was analyzed by inductively coupled plasma mass 

spectrometry (ICP-MS). The samples were ionized and quantified using the 

method Icp/ms 7700x (Agilent). The iron concentrations were normalized 

with a control culture of Pseudomonas putida strain ATCC 12633 treated 

under the same conditions. 
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RESULTS AND DISCUSSION 
 
High iron requirement for the optimal growth of Geobacter 
sulfurreducens. 

The standard freshwater medium for Geobacter growth contains ca. 2 

µM Fe as part of its trace element cocktail (Lovley and Phillips, 1986). This 

concentration has been reported to be sufficient to satisfy the Fe bacterial 

requirement (Fukushima et al., 2012). However, it might be expected that 

the synthesis of the abundant cytochromes in Geobacter might impose a 

need for additional iron. In order to evaluate this, G. sulfurreducens was 

grown in chemostats under continuous culture conditions. Iron was supplied 

in the ferrous form because the presence of ferric iron results in 

transcriptional repression of the fumarate respiration (Esteve-Núñez et al., 

2004).  

 

With 2 µM ferrous iron, typically used in G. sulfurreducens medium, the 

steady state acetate concentration and the biomass concentrations were 

adjusted to 1.5 mM and 42.6 mgprot/l, respectively. Increasing the ferrous 

iron concentration to 150 µM led to a reduction of the residual concentration 

of acetate by a factor of 10 (150 µM). The biomass concentration increased 

to 51.7 mgprot/l culture. Adding a pulse of ferrous iron had a similar impact 

(Figure 1). 
 

These results suggest that the iron availability limits the growth in 

typical G. sulfurreducens growth medium. The higher assimilation of acetate 

in the presence of iron could be explained by the lower Ks obtained in 

chemostats with Fe (III) rather than with fumarate as TEA, which leads to a 

higher affinity for acetate (Esteve-Nuñez et al., 2005) when the iron supply 

is abundant.  
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Figure 1: Residual acetate concentration under acetate-limiting conditions with a) a 
culture growing in a standard freshwater medium (orange line), b) growing in Fe (II)-

supplemented freshwater medium (blue line), and c) growing in a standard 
freshwater medium, but spiked with Fe(II) as indicated by the arrow (purple line). 

 

When cultured with 150 µM ferrous iron G. sulfurreducens cells contain 

1.9 x 10-6 ng iron/cell. This is orders of magnitude higher than the average 

iron content of other bacteria such as E. coli (10-8 – 10-7 ng/cell, as derived 

by Andrews et al. 2003) (Figure 2A). One reason for the difference in iron 

content between G. sulfurreducens and E. coli is that the G. sulfurreducens 

genome encodes more than 100 c-type cytochromes, whereas only 5 genes 

encoding cytochromes are present in E. coli (Grove et al., 1996; Reid et al., 

2003). Many of the G. sulfurreducens cytochromes are constitutively 

expressed, regardless of the culture conditions (Ding et al., 2006), including 

during growth in the absence of extracellular electron acceptor, e.g. under 

fumarate-reducing conditions (Holmes et al., 2006; Esteve-Nuñez et al., 

2008). There is remarkably little conservation of c-type cytochromes genes 

across the six Geobacter species whose genomes have been sequenced. 
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This suggests that there has not been evolutionary pressure to maintain 

specific structures that might promote interactions of the cytochromes with 

the electron acceptors (Lovley, 2008). However, there has been evolutionary 

pressure for the Geobacter species to maintain an abundance of hemes. 

The energetic investment that Geobacter species make in the c-type 

cytochrome production could be very adaptive in providing an ‘iron lung’ that 

permits electron transfer in the temporary absence of Fe (III) oxides 

(Esteve-Núñez et al., 2008; Lovley, 2008). The hypothesis of the 

cytochrome network acting as capacitor, where multi-heme could store 

charge (Esteve-Núñez et al., 2008; Schroot et al., 2011; Robuschi et al., 

2013), may be the key to understand this biosynthetic pathway. The 

electron-accepting capacity of the cytochromes network would be useful in 

the absence of an electron acceptor while conferring Geobacter the ability to 

satisfy maintenance energy requirements to develop motility and search for 

the nearest available electron acceptor (Childers et al., 2002). 

 

Heme- Geobacter cells 

 The high requirement of G. sulfurreducens for iron suggests that it 

might be possible to limit the cytochrome production by limiting the iron 

availability.  In order to further lower the iron availability, the iron-non-

supplemented medium was amended with bypiridine, an iron chelator. The 

iron content of cells grown in this manner was 15-fold less (1.2 ng x 10-7/ 

cell) than in cells grown in a typical iron-containing medium (Figure 2A). 
Heme staining of whole-cell lysate proteins separated with SDS-PAGE 

demonstrated that the cytochrome content of cells grown in the low-iron 

medium was much lower than in cells grown in standard iron-containing 

medium (Figure 1B-D).  The cultures grown in the low-iron medium were 

much less red than cells grown in typical iron-containing medium (Figure 
2B).  
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Figure 2: (A) Total cellular iron content analyzed by ICP-MS; heme+  (black) and 
heme- (grey) cells of G. sulfurreducens. (B) Photo of the heme+  and the heme-  

batch cultures  of Geobacter sulfurreducens. The nalysis of the SDS-PAGE for the 
protein fraction of both the heme+ and the heme-  Geobacter cells followed by heme 

staining (C) and Coomassie staining (D). 
 

Scanning electron microscopy revealed no difference in cell 

morphology between cells grown with limited iron concentration versus the 

standard culture medium, indicating that the cells do not suffer from any 

major morphological damage due to the absence of the cytochromes 

network (Figure 3).  
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: SEM images of heme+ G. sulfurreducens (A) and heme- G. sulfurreducens 

(B). 
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The growth rate of G. sulfurreducens reduces from 0.050 h-1 to 0.035 h1 

when iron limits the growth. In contrast, the rates of fumarate reduction per 

cell in heme+ (2.0 x 10-10 mmol/h cell) and heme- (1.9 x 10-10 mmol/h cell) 

growing cells were similar demonstrating that this key central metabolism 

reaction was not affected by the absence of cytochromes. This is consistent 

with the fact that fumarate is reduced at the inner membrane by a 

membrane-bound fumarate reductase/succinate dehydrogenase that does 

not involve cytochromes (Butler et al., 2006). These results demonstrate 

that the low-iron culture conditions provide enough iron for cells to perform 

central metabolism reactions and assure viable cells 
 

Cytochromes c were shown for first time to release electron in vivo on 

electrodes in spectroelectrochemical studies of the outermost membrane of 

Geobacter cells upon reduction on a gold electrode (Busalmen et al., 

2008a). Since then, a number of techniques involving infrared (Busalmen et 

al., 2010; Esteve-Núñez et al., 2011) and Raman (Millo et al., 2011; Virdis et 

al., 2013; Kuzume et al., 2013; Robuschi, et al., 2013) were applied 

successfully to explore the surface of the bacteria.  
 

In order to analyze the outermost membrane of heme- cells, we used in 

this study Nanoparticle Enhanced Raman Spectroscopy (NERS), a powerful 

technique that can detect and further provide structure information of 

hemes, which are vicinal to the coinage metal nanoparticle surface. For the 

NERS measurement in this work, Ag nanoparticles, which act as optical 

antennas to enhance the Raman response, were deposited onto a 

submonolayer of bacteria. The Raman scattering is enhanced by the 

plasmonic Ag nanoparticles by several orders of magnitude (103-106) 

(Hildebrandt et al., 1986) allowing the selective probing of the vibrational 

signature of adsorbates adjacent to the nanoparticles. A SEM/EDX analysis 
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revealed that the Ag nanoparticles located vicinal to the bacterial cells are 

sufficiently close to enhance the Raman signals of the outermost domains. 

(Kuzume et al., 2013).  
 
Figure 4 displays a NER spectrum of G. sulfurreducens cells mixed 

with Ag nanoparticles in an Ar atmosphere. It shows a typical NER spectrum 

of the heme+ G. sulfurreducens cells, which correspond with key heme-

related bands described for 532 nm laser excitation line (Biju et al., 2007; 

Oellerich et al., 2002; Eng et al., 1996; Yeo et al., 2008). No specific Raman 

signals from heme-related domains were found in heme- sample prepared in 

this work, which represents a direct proof of the absence of heme-groups. 

The four signals between 1400 and 1600 cm-1 can be assigned to the amino 

acid adenine (Papadopoulou et al., 2010), and to citrate-stabilized Ag NP 

(Kuzume et al., 2013). These bands are located on the surface of the cells 

and are not related to heme-domains. 
 

 

 

 

 

 

 

 

 
Figure 4: Nanoparticle enhanced Raman spectra of heme+ G. sulfurreducens (a) 

and heme- G. sulfurreducens (b) mixed with Ag nanoparticles. 
 

Extracelullar Electron Transfer (EET) assays 

Gene deletion studies have implicated a number of c-type 

cytochromes in extracellular electron transfer, but even when multiple 

cytochrome genes are deleted in the same strain, some extracellular 
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electron transfer capability remains (Voordecker et al., 2010; Orellana et al., 

2013). However, the number of cytochrome genes that can be deleted in a 

single strain is limited.  

 

 To determine if the lack of cytochromes associated with the growth in 

a low iron concentration medium could completely remove the capacity for 

extracellular electron transfer, cells growing with fumarate as electron 

acceptor were pulsed with 10 mM Fe (III) citrate. No Fe (III) was reduced 

(Figure 5), and the rate of fumarate reduction to succinate (1.9 x 10 -10 

mmol/h per cell) was unaltered. In contrast, when Fe (III) was added to cells 

growing in a medium with the standard iron content, Fe (III) was rapidly 

reduced (5 x 10 -10 mmol/h per cell) and the fumarate reduction was 

inhibited.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Fe (III) reduction after addition of 10 mM ferric citrate to heme+ G. 

sulfurreducens (black line) and to heme-  G. sulfurreducens (grey line). 
 

Another EET process, where cytochromes have been reported to 

participate, is the electrode reduction in microbial electrochemical 
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technologies.  By using electrochemical approaches, such as cyclic 

voltammetry (Busalmen et al., 2008), the bioelectrochemical response for 

the extracellular electron transport was monitored. G. sulfurreducens was 

resuspended in phosphate buffer in the presence of an electron donor but in 

absence of a soluble electron acceptor. 

 

 Consequently, when G. sulfurreducens cells were incubated in a 

three-electrode cell, just the electrode could act as TEA. A typical 

voltammogram shows two redox peaks with current maxima at 0.2 and -0.2 

V vs. Ag/AgCl (Busalment et al., 2008; Richter et al., 2008; Fricke et al., 

2008), which represent the corresponding oxidation and reduction 

processes, respectively.  In contrast to the wild type, G. sulfurreducens 

heme- cells did not display any redox peak demonstrating that the presence 

of cytochromes is required for performing a sufficient redox communications 

with an exocellular electron acceptor, such as a polarized electrode (Figure 
6).  

 

 

 

 

 

 

 

 

 

 
Figure 6: Cyclic voltammograms of G. sulfurreducens cells deposited on a carbon 
electrode. Blue line: heme+  G. sulfurreducens. Red line: heme-  G.sulfurreducens. 

The potential refers to an Ag/AgCl reference electrod. 
 

The absence of additional current peaks confirms that the 
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cytochrome-related redox reactions comprise the major active compound in 

Geobacter redox-activity on polarized electrodes in BES. This conclusion is 

confirmed by recent findings of several groups (Busalmen et al., 2008a; 

Millo D et al., 2011; Kuzume et al., 2013).  
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CONCLUSIONS 

 
These results demonstrate dramatic impact of available iron on the 

growth and activity of G. sulfurreducens. Adjusting laboratory media to 

provide a higher iron concentration than that Geobacter species experience 

in a natural environment may promote important applications, such as METs 

that rely on optimized extracellular electron exchange. 

 

Alternatively, making iron less available yielded cells unable to produce 

heme groups and studies with these cells confirmed the key role of the vast 

cytochrome network in EET. Our bioelectrochemical results confirm that 

cytochromes are essential for direct electron transfer to electrodes. Although 

we have focused on getting heme− cells, our methodology allows controlling 

the level of cytochrome production by varying the doses of the chelator. In 

consequence, we could generate Geobacter cells with different levels of 

heme content in contrast with previous strategies performed in bacteria for 

erasing all c-type cytochromes through transposon insertions that led to 

unviable cells under anaerobic conditions (Bouhenni et al., 2005). 

Furthermore, we believe that heme− cells reported in this work will also be 

relevant for other researchers targeting investigations on the physiology of 

Geobacter under EET-free background conditions. 
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Screen-printed electrodes: new tools for 
developing microbial 

electrochemistry at microscale level 
 

ABSTRACT 

Microbial electrochemical technologies (METs) have a number of 

potential technological applications. In this work, we report the use of 

screen-printed electrodes (SPEs) as a tool to analyze the microbial 

electroactivity by using Geobacter sulfurreducens as a model 

microorganism. We took advantage of the small volume required for the 

assays (75 μL) and the disposable nature of the manufactured strips to 

explore short-term responses of microbial extracellular electron transfer to 

conductive materials under different scenarios. The system proved to be 

robust for identifying the bioelectrochemical response, while avoiding 

complex electrochemical setups, not available in standard biotechnology 

laboratories. We successfully validated the system for characterizing the 

response of G. sulfurreducens in different physiological states (exponential 

phase, stationary phase, and steady state under continuous culture 

conditions) revealing different electron transfer responses. Moreover, a 

combination of SPE and G. sulfurreducens resulted to be a promising 

biosensor for quantifying the levels of acetate, as well as for performing 

studies in real wastewater. In addition, the potential of the technology for 

identifying electroactive consortia was tested, as an example, with a mixed 

population with nitrate-reducing capacity. We therefore present SPEs as a 

novel low-cost platform for assessing microbial electrochemical activity at 

the microscale level. 
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INTRODUCTION 

 
Since the discovery in the last decade of electrode-respiring microbes, 

such as Geobacter sulfurreducens and some species of Shewanella (Bond 

and Lovley, 2003; Kim et al, 2002) there has been an increasing interest in 

their potential applications for designing several types of microbial 

electrochemical technologies (METs), like electricity production from 

wastewater in microbial fuel cells (MFC), bioremediation in microbial 

electroremediating cells (MERCs) (Rodrigo et al, 2014), electrosynthesis, or 

biosensing (Schröder et al, 2015).  

 

 Many attempts to optimize METs have been focused on reactor 

design and operational aspects (Rozendal et al, 2008; Clauwaert et al, 

2008). Different electrochemical approaches, such as chronoamperometric 

assays, cyclic voltammetry (CV), sometimes coupled to spectroscopic 

techniques as infrared (IR) or Raman (Busalmen et al, 2008a; Kuzume et al, 

2013, 2014), have been applied for the study of this fascinating 

phenomenon. All of these have helped to investigate and analyze 

electroactive microorganisms and learn valuable information about how 

microbial physiology at different hierarchical levels affects the capability of 

electron transfer to solid electrodes at the whole biofilm, single cell and sub-

cell (molecular) level (Schrott et al, 2011; Carmona-Martínez et al, 2013; 

Busalmen et al, 2008b). 

 

Nevertheless, much remains unknown regarding the electrochemical 

properties of electroactive bacteria and their interaction with electrodes. This 

is partially due to difficulties in monitoring METs or the requirement of rather 

complex experimental setups for growing bacteria in electrochemical 
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environments with limited access to microbial tools (Harnisch and Rabaey, 

2012; Schröder, 2012). 

 

 Although considerable efforts have been made to scale up METs for 

industrial applications, there is also a great interest in miniaturizing 

bioelectrochemical devices for research purposes where large current 

production is not the main goal. Those devices are typically designed to 

work under fixed potential conditions with a three-electrode setup. Some 

examples include flow cells, microfluidic devices or micro-sized microbial 

fuel cell (Davila et al, 2011; Li et al, 2011, Fraiwan et al, 2014) 

 

Screen-printing is an established technique to fabricate electrochemical 

devices. A standard screen-printed electrode (SPE) comprises a variable 

number of electrodes and all the compounds necessary for completed the 

electric circuit placed over a supporting material (Hayat and Marty, 2014).  

Moreover, for carbon SPEs, the inks employed are based on graphite and 

have very similar properties to conventional electrodes, such as low 

background signal and a wide range of working potentials. With inherent 

advantages including miniaturization, versatility, low cost and the possibility 

of mass production. SPEs have been proved to be disposable, yet highly 
accurate and rapid devices (Taleat et al, 2014), with a promising future as a 

tool for bioelectrochemical systems. SPE can be also combined with 

functionalization (through electrochemical techniques) of biomolecules 

(Gómez-Mingot et al, 2011) or bacteria (Chang et al, 2012). Moreover, they 

require small volumes of the analyte (microlitres), they are suitable for off-

the-bench assays and they are marketed by several companies. All these 

benefits make SPEs a natural choice that can serve as biosensors, as well 

as for a fast screening of the physiology and/or metabolism of electroactive 

microorganisms, among other potential applications, in kinds of assays that 

apt
er 
3 
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performed with conventional electrochemical devices involve more time and 

complexity (Asturias-Arribas et al, 2014, Esteve-Núñez et al, 2011). 

 

Considering that G. sulfurreducens is a well-accepted model system in 

METs, it could be the ideal candidate for exploring its activity and its 

potential applications on SPEs, for which, to our knowledge, there is no 

precedent using Geobacter species. There is indeed one interesting study 

where SPEs are tested with Shewanella sp. (Sudhakara Prasad et al, 

2009), but Shewanella species are reported to release electron shuttles as 

the primary mechanism to make extracellular electrons (Marsili et al, 2008; 

Kotloski et al, 2013), in contrast to Geobacter species that perform direct 

extracellular electron transfer (DEET) (Lovley 2011).  

 

Herein, we report the use of SPEs as a tool to analyze the 

electrochemical behavior of Geobacter species and mixed cultures, under 

several physiological conditions. Our analysis was performed with 

planktonic cells in 75 µL drop-assays, at short term, using working 

electrodes made from SPEs either as electron acceptor and electron donor. 

SPEs provide us with the possibility to develop quick drop-assays and 

rapidly assess the electrochemical properties of a bacterial culture, avoiding 

complicated experimental setups. We, therefore, present SPEs as a novel, 

low-cost platform for studying microbial electrochemical activity at the 

microscale level. 

 

 

 

 

 

 

 
 



                                                                    Chapter 3: Screen-printed electrodes 

 
83 

MATERIALS AND METHODS 

 
Bacterial Culture 

Geobacter sulfurreducens (strain DSM 12127; ATCC 51573) was 

grown at 30 °C in freshwater medium containing the following mineral salts 

(per liter): 2.5 g of NaHCO3, 0.25 g of NH4Cl, 0.06 g of NaH2PO4·H2O and 

0.1 g of KCl, 0.024 g of C6H5FeO7 (ferric citrate), 10 mL of a vitamins mix 

and 10 mL of a trace mineral mix (Lovley and Phillips, 1988). Anaerobic 

conditions were achieved by flushing the culture media with N2:CO2 (80:20) 

to remove oxygen and to keep the pH of the bicarbonate buffer at pH = 7. 

For batch cultures, acetate (20 mM) was supplied as the sole carbon source 

and electron donor, and fumarate (40 mM) as electron acceptor. Mid-log 

cells and stationary cells were harvested 40 h and 72 h, respectively, after 

the inoculation procedure.  

 

G. sulfurreducens was also cultured in continuous mode using a 

chemostat. This growth method allowed to achieve fumarate-limiting 

conditions, a situation that led to a better EET, as previously described 

(Esteve-Núñez et al, 2005; (Esteve-Núñez et al, 2011). The nitrate reducing 

microbial consortium was directly harvested from an anaerobic reactor 

operating under nitrate reducing conditions. 
 
Electrochemical Analysis 

Bacterial cultures were harvested by centrifugation at 6000 rpm during 

10 min. Subsequently, bacterial pellet were resuspended (OD600 = 2) in 

filtered wastewater or 30 mM phosphate buffer solution (pH = 6.8) 

containing 30 mM KCl. Then, 75 µL of a G. sulfurreducens cell suspension 

was added to the SPE and, immediately, the electrochemical assays were 

performed without any preconditioning period. All electrochemical assays 
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were performed in a screen-printed three electrode configuration using 

electrodes made of carbon (DRP-110, Dropsens, Asturias, Spain) or 

graphene (DRP-110GPH, Dropsens). 

 

 These electrodes consist of a working electrode of carbon ink (surface 

= 0.12 cm2), a carbon counter electrode and a silver reference electrode; 

assembled on a ceramic platform (3.4 cm × 1.0 cm × 0.05 cm), connected 

to a potentiostat and controlled by specific software (Nanoelectra, Madrid, 

Spain). All potentials were reported versus an Ag/AgCl electrode. For 

chronoamperommetric assays the current was registered every 0.5 s and 

two electrode potentials were explored: current producing assays by 

supplying acetate as electron donor to the cell suspension and fixing the 

potential at 0.2 V; and current consuming assays, by supplying nitrate as 

electron acceptor and fixing the potential at −0.5 V. For CV, the potential 

window was scanned between −0.8 V and 0.8 V at 0.005 V s−1. All 

experiments were performed under anaerobic conditions by using an anoxic 

chamber (Coy, Grass Lake, MI, USA) or, alternatively, a sealed cap-tube. 

The sealed cap-tube was assembled by gluing the upper section of a cut-

tube (1.5 mL, Eppendorf, Hamburg, Germany) to the ceramic surface of the 

SPE. Anoxic conditions inside the tube were achieved by flushing the 

headspace with N2 (Figure 1). 

Perfomance of the Acetate Biosensor Assay 

Early stationary bacterial cultures were harvested by centrifugation at 

6000 rpm during 10 min. Then, samples were resuspended (OD600 = 5) in 

30 mM phosphate buffer solution (pH = 6.8) containing 30 mM KCl. 

Subsequently, a drop of 75 µL of the cell suspension was placed on the 

electrode and cells were fixed by cycling the working electrode between 0.1 

V and −0.1 V at 100 mV s−1 during 100 scans (Gómez-Mingot, 2011). Then, 
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the electrode was washed with phosphate buffer in order to remove the 

unattached cells. Finally, a 75 µL drop of acetate solutions (1–20 mM) in 

phosphate buffer were added, and the electrode was polarized at 0.2 V 

during 15 min. For each acetate concentration a new SPE was used. 

Scanning Electron Microscopy (SEM) 

The microbial attachment of the electrode surface was observed by 

SEM. Microbial SPEs were fixed by immersion for one hour at room 

temperature in cacodylate buffer (0.2 M, pH = 7.2) containing 5% 

glutaraldehyde. The samples were rinsed two times in 0.2 M cacodylate 

buffer, pH = 7.2 for 10 min, and subsequently dehydrated by a graded 

ethanol series (25%, 50%, 70%, 90%, 100% and 100%; 10 min each stage). 

Then, the samples were rinsed two times in acetone for 10 min and 

immersed in anhydrous acetone at 4 °C overnight. Finally, dehydrated cells 

were dried in CO2 at the critical point and processed using a scanning 

electron microscope DSM-950 (Zeiss, Oberkochen, Germany). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Screen-printed electrodes                                                                           

 
86 

RESULTS AND DISCUSSION 

 
Testing Electroactivity in Geobacter 

It is well known that the central metabolism of Geobacter can fully 

oxidized acetate to CO2 by coupling it with the extracellular electron transfer 

to electrodes of different nature (Bond and Lovley, 2003; Kuzume et al, 

2014; Maestro et al, 2014). The purpose of this work was to test if SPEs 

could be suitable tools for assaying such a reaction.  

Figure 1. (A) Scanning electron microscopy (SEM) image of G. sulfurreducens 
attached to a carbon screen-printed electrode (SPE); (B) steady current 

production of G. sufurreducens at different cell density; (C) scheme of a SPE; 
and (D) detail of a lid-tube sealed to the SPE ceramic surface. 

With the aim of standardize our methodology, a preliminary study was 

performed by increasing the cell concentration of G. sulfurreducens and 

measuring the current production using carbon SPEs. Due to electrode 

sensitivity, we were able to detect changes in the current values by varying 
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the amount of cells in contact with the electrode. We concluded that a cell 

suspension of bacteria with a value of 2 units of optical density (1.6 × 109 

cells/mL) can generate a current value in the mid-linear phase of the 

response (Figure 1B). 
 

The electrogenic response of G. sulfurreducens under electron 

acceptor limitation has been previously studied by electrochemical and 

spectroelectrochemical techniques (Busalmen et al, 2008a,b). Bacteria were 

grown in continuous culture with acetate as electron donor and fumarate as 

sole electron acceptor. Attenuated Total Reflection-Surface Enhanced 

Infrared Reflection Absorption Spectroscopy (ATR-SEIRAS) and CV, in a 

classical three-electrode chamber setup, showed that terminal electron 

acceptor (TEA) limited cells, exhibited a constitutive capacity for 

extracellular electron transfer (EET) (Esteve-Núñez et al, 2011). The 

capability of cells in fumarate-limiting conditions to respire electrodes was 

analyzed on disposable miniaturized carbon SPEs, in order to compare the 

results to those previously obtained with a classical electrochemical cell 

configuration. 

 

The fumarate-limited cells response showed that current production 

from metabolic acetate oxidation is predominant from the very beginning, 

displaying an electron transfer rate of 32.7 pmol electrons/s per cm2, which 

indicates the constitutive capacity for electron transfer to the electrode. In 

contrast, mid-log cells exhibit a lag phase, lower current production and ca. 

2-fold lower electron transfer rate (15.6 pmol electrons/s per cm2), when 

they were tested with a SPE polarized at 0.2 V (Figure 2A). The 

electrochemical properties of both physiologies were also then tested by CV 

in SPEs. Once again, fumarate-limited cells presented a well-defined redox 

process showing the two characteristic redox peaks (Figure 2B), while mid-

log cells exhibit a remarkably lower peak current under identical analysis 
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conditions. This result is consistent with previous data that suggest a 

different bacterial electroactive response for each physiological condition 

(Esteve-Núñez et al, 2011). 

 

Moreover, it is possible to use these SPEs for testing the 

electrochemical response corresponding to the growth phases of G. 

sulfurreducens, since it will be a key factor in the electrochemical 

performance. The availability of TEAs in microorganisms entails 

physiological changes in the cell, especially in those adapted to oligotrophic 

environments, such as G. sulfurreducens. As previous studies showed, the 

electron acceptor limitation triggers a metabolic adaptation that includes the 

overexpression of redox-active proteins, such c-type cytochromes (Esteve-

Núñez et al, 2011).  

 

Following this strategy, electrons generated from acetate metabolism 

can be stored in a c-type cytochrome network which act as capacitor-like 

element (Esteve-Núñez et al, 2008), that would discharge them as soon as 

a TEA is available. Interestingly, the current generated and the electron 

transfer rate (30.2 pmol electrons/s per cm2) by cells in stationary phase, 

was similar to the one found on fumarate-limited cells, suggesting that cells 

in stationary phase are also well adapted to EET (Figure 2).  
 

This behavior could be justified with the proteomic profile, which 

reveals the increase of several proteins at stationary phase, including 

cytochromes an oxidoreductase involved in electron transport (Bansal et al, 

2013; Ding et al, 2006. In contrast, the significant lower electron transfer 

rate in mid-log phase cells, suggests that they still have not synthesized all 

the redox players for performing an efficient electron transfer to the 

electrode, so analyzing the electroactivity of a bacterial culture may help to 

predict the growth phase of the cells. 
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Figure 2. (A) Current production by G. sulfurreducens cells under different 
growth conditions: chemostat cells under fumarate-limiting conditions (red), 
early stationary cells (green), midlog cells (blue) and buffer control (black), 

polarized a 0.2 V; (B) Cyclic voltammetry (CV) of G. sulfurreducens cells under 
different growth conditions: chemostat cells under fumarate-limiting conditions 

(red), early stationary cells (green), mid-log cells (blue) and buffer control 
(black). 

 

It is interesting to mention that cells are still able to produce current 

when adsorbed onto a polarized electrode, even if acetate is not present in 

the electrolyte solution (Figure 3A). This can be explained by the presence 

of some intracellular acetate that remains as a source of electrons. Using 

this internal organic fuel, cells are able to produce current for ca. 3 min, after 

then intracellular acetate is not enough to produce a stable current value, 

and the current decreased to zero, presumably because the electron donor 

was fully consumed. From the gathered data, we calculated using the 

Faraday equation that the intracellular acetate content is about 1.51 × 10−6 

pmol per cell. Regarding the acetate oxidation rate, it is worth noting that the 

remaining stored acetate is consumed ca. 4-fold slower (1 × 10−9 pmol/s per 

cell) than when it is at high concentration as 20 mM in the extracellular 

medium (4 × 10−9 pmols/s per cell). 

 

During the last years, G. sulfurreducens’s electroactivity was tested on 

several materials serving as TEAs, such as graphite, gold, silver and 
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platinum (Kuzume et al, 2014; Maestro et al, 2014). Among all the 

conductive materials that can be tested nowadays, graphene is for sure one 

of the most attractive ones. Its single atomic layer of graphite allows it to 

have higher electric conductivity than conventional carbon materials (Castro 

Neto et al, 2009). Despite the excellent features of graphene, there are few 

examples of its use in METs (Guo et all, 2014; Kumar et all, 2014).  

 

Figure 3. (A) Current production (at 0.2 V vs. Ag/AgCl) by G. sulfurreducens 
under acetate-excess conditions (red), and under acetate-limiting conditions 

just using intracellular acetate content (black); (B) CV of G. sulfurreducens on a 
graphene SPE (green) and a carbon SPE (black). 

 

 
The electroactivity in stationary cells of G.sulfurreducens using 

graphene SPEs was also tested in this work, which resulted in a 

considerably increase of the signal intensity in contrast to carbon SPEs 

(Figure 3B). Moreover the redox signal appeared now at more negative 

values of potential (ca. 0 V) in contrast with the typical value of ca. 0.2 V 

detected on standard graphite electrodes (Busalmen et al, 2008a; Estevez-

Canales, 2015). The shift in the oxidation potential might be related with 

graphene’s better electric conductivity, which is several orders of magnitude 

higher than that of carbon (Castro Neto et al, 2009). In addition, it is well 

Ch
apt
er 
3 



                                                                    Chapter 3: Screen-printed electrodes 

 
91 

known that the working electrode material can influence the microbial 

response at METs. Even using the same material, a mere change in the 

active surface could lead to different electroactive microorganism behavior 

(Maestro et al, 2014) so the improved response could be a combination of 

both electric conductivity and a different bacteria-electrode interaction. 

Graphene is by far the best up-and-coming material which is being 

implemented in several fields, so further studies will be required to take 

advantage of its unique conductive properties. 

Practical Applications 

a) Screening of metabolic features from a microbial consortium: SPEs 
acting as electron donor 

Another desirable property for a microorganism employed in METs, is 

the ability of using an electrode as electron donor source, conforming a 

biocathode. In comparison with an abiotic cathode, promoting the redox 

reaction at the cathode by microorganisms, increases the operational 

sustainability as well as reduces the cost of construction and operation of 

METs (Rabaey and Keller, 2008). This trait could be exploited with the aim 

of screening predominant metabolic pathways from a mixed culture, by 

monitoring the electroactive response in the presence of several oxidizing 

substrates. 

 

 As a proof of concept, a consortium well adapted to nitrate reduction 

obtained from an anaerobic reactor was tested. In contrast, a culture of G. 

sulfurreducens was used as a negative control for electroactive bacteria 

unable to reduce nitrate. The current consumption of both types of cells was 

evaluated in the presence of the selected electron acceptor nitrate (2 mM) 

after polarizing the SPE-working electrode at −0.5 V. After a brief 

conditioning period of 5 min, we observed that the current consumption was 
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20-fold higher in the microbial consortium assay in comparison with the pure 

culture of G. sulfurreducens. (Figure 4).  

 

 

 

 

 

 

 

Figure 4. Electricity consumption by a microbial consortium (red) and G. 
sulfurreducens (blue) and buffer control (black) using nitrate (2 mM) as TEA, 

polarized at −0.5 V. 

The results are not unexpected, considering that the consortium was 

fully adapted to nitrate-reducing conditions, while G. sulfurreducens is very 

well known for its ability to interchange electrons with electrodes, but not 

with nitrate as sole electron acceptor (Caccavo et al, 1994). 

 

Aside from this example, the use of SPEs appears as an easy and 

quick method to identify potential microbial cultures showing activity in 

biocathodes. The microbial metabolism in biocathodes, indeed provides an 

excellent opportunity to find candidates for produce useful products 
performing bioelectrosynthesis (Nevin et al, 2010) or for removing unwanted 

compounds from water like sulfate (Coma et al, 2013), nitrate (Clauwaert et 

al, 2007), uranium (Gregory and Lovley, 2005, chloroaromatic compounds 

(Alulenta et al, 2005), which could be exploited in METs. 
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b) Bioelectrochemical Sensing of Acetate 

Among the METs, there are a few examples of whole-cell biosensors as 

the electric signal transducer for generating and quantifying soluble organic 

matter (Tront et al, 2008; Li et al, 2011), or for detecting the presence of a 

toxic compound like formaldehyde (Davila et al, 2011). In contrast to those 

studies, we combine the use of SPEs with G. sulfurreducens to follow a CV-

based strategy and construct a prototype microbial electrochemical sensor 

for quantifying acetate. Our assays revealed that the microbial current 

displayed by the CV at a potential of 0 V seems to be proportional to the 

concentration of acetate (Figure 5). The fact of using voltammograms for 

extrapolating current produced at 0 V, allows us to take advantage of both 

electrochemical methods. Amperometry makes it possible to detect down to 

picoamperes, while performing CV offers a low noise signal on top of 

verifying the proper electrode-bacteria interaction (Su et al, 2010). Indeed, 

the current response to acetate concentration at this conditions, exhibited a 

coefficient of determination (R2) of 0.98 with a detection limit between 20 

mM and 1 mM. 

Figure 5. (A) Voltammograms corresponding to SPE-monolayer of G. 
sulfurreducens exposed to solutions with different acetate concentration; (B) 

Calibration curve for acetate concentration between 1 mM and 20 mM, 
calculated from current display at 0 V according to the CV. 

apt
er 
3 



Chapter 3: Screen-printed electrodes                                                                           

 
94 

 
Similar results were previously obtained by other authors, although they 

used more sophisticated microfluidic devices (Li et al, 2011). Although 

further investigation for optimization of the sensor will be required, 

nevertheless, to our knowledge, this is the first approach to an amperometric 

acetate biosensor using a pure culture of G. sulfurreducens in combination with 

a SPE. 

c) Effects of a Background of Real Urban Wastewater 

In contrast with the fascinating profile of electron acceptors (Fe-oxides, 

uranium, humic acids, graphite or gold electrode) that G. sulfurreducens can 

use (Lovely et al, 2011), its ability for oxidizing organic electron donors is 

very limited. Actually just acetate (Bond et al, 2003) and lactate (Speers and 

Reguera, 2012) can be converted into electrical current by this strain. This 

apparent limitation can nevertheless be a positive feature because just 

acetate will be converted into electrical current regardless of the complexity 

of mixture. This is especially relevant if we consider that acetate is the end-

product of the acetogenic phase in the anaerobic wastewater treatments, 

and its presence is directly related with the formation of biogas in anaerobic 

digestion (Henze, 2008). 

 

Therefore, as a first approach for future applications, we tested the 

current production of our microbial-SPE-based in a background sample of 

real urban wastewater, using acetate as electron donor. According to the 

electrical current production, there was no substance in the sample of non-

buffered wastewater able to significantly compete with the electrode as 

TEA. Moreover, current production was doubled when the acetate 

concentration was artificially increased from 5 mM to 10 mM demonstrating 



                                                                    Chapter 3: Screen-printed electrodes 

 
95 

that the system was robust enough for performing assays in any kind of 

medium (Figure 6). 

 

 

 

 

 

 

 

 

 

Figure 6. Current production of G. sulfurreducens from a real urban 
wastewater supplemented with 0 (black), 5 (green) and 10 mM acetate (blue). 

Working electrode was polarized a 0 V (vs. Ag/AgCl). 
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CONCLUSIONS 

 
The results presented in this work demonstrate that screen-printed 

disposable electrodes can be used as a novel platform to assess within 

minutes the electron transfer capacities of electroactive microorganisms in 

quick drop assays that only require microlitres of culture samples. SPEs 

have shown to be sensitive to different physiological conditions in 

Geobacter sulfurreducens and excellent working electrode materials. 

Furthermore, SPEs could be exploited for fast screening methods to select 

tailor made biocathodes. SPEs were designed for electroanalytical 

applications, and we have demonstrated that they are ready to accept 

whole-living cells and explored biosensor development for uses such as 

acetate detection in wastewater. Finally, we understand this work as a proof 

of concept for exploring new scenarios to investigate microbial 

electrochemistry without setting-up large electrochemical devices. 
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Ready-to-use artificial bioelectrodes: a 

promising strategy for Microbial 

Electrochemical Technologies 

ABSTRACT 

Microbial Electrochemical Technologies (METs) deal with the 

interactions between microorganisms and electronic devices, enabling to 

transform chemical energy into electricity. We report a new approach to 

construct artificial Geobacter sulfurreducens bioelectrodes by immobilizing 

cells in silica gel and carbon felt fibers. Viability test confirmed that the 

majority of bacteria (ca. 70 ± 5 %) survived the encapsulation process and 

cell density did not increase in 96 h. This double entrapment prevents 

bacterial release from the electrode but allows a suitable mass transport 

conditions (ca. 5 min after electron donor pulse), making the electrochemical 

characterization of the system possible. The artificial bioelectrodes were 

evaluated in 3-electrodes reactors, using different electron donors. The 

maximum current displayed was ca. 220 and 150 µA/cm3 for acetate and 

lactate respectively. Cyclic voltammetry of acetate-fed bioelectrodes 

revealed a sigmoidal catalytic oxidation wave, typical of more advanced 

stage biofilms. The presence of G. sulfurreducens within the fibers and silica 

gel was verified by SEM analysis. Moreover, the transcriptomic response of 

encapsulated G. sulfurreducens was analyzed. Therefore, ready-to-use 

artificial bioelectrodes, represent a versatile time and cost saving strategy 

for microbial electrochemical systems. 
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INTRODUCTION 

 
The advent of Microbial Fuel Cells (MFC) marked the beginning of a 

new research area, between biology and electrochemistry (Schröder and 

Harnisch., 2015). These electrochemical devices enable the transformation 

of chemical energy into electricity by means of electrode-respiring 

microorganisms. They are able to oxidize organic compounds (electron 

donors) to reduce an electrode as an extracellular electron acceptor (Kim et 

al., 2002; Bond and Lovley, 2003; Logan et al., 2006; Lovley et al., 2011). 

Advances in Microbial Electrochemical Technologies (METs) have led to a 

wide range of systems, like microbial desalination cells (Ping et al., 2016), 

microbial electroremediating cells (MERCs) (Rodrigo et al., 2016), and 

microbial electrosynthesis cells (MES) (Rabaey and Rozendal, 2010).  

 

Among electroactive bacteria, G. sulfurreducens has become a model 

system for the study of all kind of METs (Yates et al., 2015; Yu et al., 2015; 

Dantas et al., 2015; Borjas et al., 2015; Estevez-Canales et al., 2015) in 

order to achieve a deeper understanding of the biological mechanisms 

involved in direct extracellular electron transfer (DEET) (Lovley, 2011; Bond 

et al., 2012; Bonanni et al., 2013). In long term experiments, with no 

terminal electron acceptor available apart from the electrode, G. 

sulfurreducens forms a biofilm on the electrode, reaching a thickness of tens 

of microns (Snider et al., 2012; Stephen et al., 2014; Schrott et al., 2014). 

The natural formation of an electrogenic biofilm, with stable current 

production, entails prolonged conditioning periods, as long as days or 

weeks, depending on the architecture of the electrochemical system, and 

bacterial physiology (Vargas et al., 2013; Borjas et al., 2015). 

 

Recent studies have pointed out the possibility of artificially improving 
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electroactive biofilms with the aim of simplifying this process. Some 

examples are based on doping the electrode in order to improve the 

electrical conductivity through the biofilm (Adachi et al., 2008; Liang et al., 

2011; Katuri et al., 2011; Nguyen et al., 2013). Others have introduced the 

concept of making an artificial biofilm, where electroactive bacteria are 

encapsulated in a material to constitute a bioelectrode (Srikanth et al., 2008; 

Yu et al., 2011; Luckarift et al., 2012; Sizemore et al., 2013). 

 

Biomolecule encapsulation has been studied for several decades due 

to its benefits in both, longevity and practical applications, especially for 

biosensing purposes. (Bjerketorp et al., 2006; Balcão and Vila, 2015; Nimse 

et al., 2014; Liu et al., 2015). Nevertheless, the interest in this methodology 

for electroactive bacteria, such as Shewanella (Yu et al., 2011; Luckarift et 

al., 2012; Sizemore et al., 2013) or Geobacter (Srikanth et al., 2008) is very 

recent.  

 

 In contrast to traditional encapsulation, in order to build an artificial 

electroactive biofilm, aside from bacterial viability, it is vital to ensure 

electrical contact with the electrode. There is a wide variety of matrices used 

for biomolecules immobilization, including agar, pectin, alginate (organic 

polymers) and silica gels (inorganic polymer) (Bjerketorp et al., 2006). 

Organic polymers have the advantage of being biocompatible, allowing 

solute diffusion and electron exchange (Srikanth et al., 2008). On the other 

hand, inorganic polymers, like silica gels, allow both solute diffusion and 

electrons exchange, but offer better optical and mechanical properties, 

making the gel more robust and easier to control than organic polymers 

(Depagne et al., 2012; Ouay et al., 2013; Wang et al., 2015). 
 

To the best of our knowledge, silica gel encapsulation remains 

unexplored for the whole-cell immobilization of the model bacteria G. 
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sulfurreducens, though its use for immobilizing Shewanella in artificial 

bioelectrodes has been reported (Yu et al., 2011; Luckarift et al., 2012; 

Sizemore et al., 2013). However, Shewanella species are reported to 

release electron shuttles as the primary mechanism of extracellular electron 

transfer (Marsili et al., 2008a; Kotloski and Gralnick, 2013). This may be a 

drawback in case of serial fed-batch operation. In contrast, G. 

sulfurreducens establishes DEET so its performance is not affected when 

the media is refreshed (Lovley, 2011). 

 

In this work, we report a new approach to construct ready-to-use 

artificial bioelectrodes of G. sulfurreducens by means of immobilizing cells in 

silica gel and carbon felt fibers electrodes.   
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MATERIALS AND METHODS 

 
Bacterial culture 

Geobacter sulfurreducens (strain DSM 12127; ATCC 51573) was 

grown at 30ºC in freshwater medium containing the following mineral salts 

(per liter): 2.5 g of NaHCO3, 0.25 of NH4Cl, 0.06 g of NaH2PO4H2O,0.1 g of 

KCl, 0.024 g of C6H5FeO7 (ferric citrate), 10 mL of a vitamins mix and 10 mL 

of a trace mineral solution (Lovley and Phillips, 1988). Acetate (20 mM) was 

supplied as the sole carbon source and electron donor, and fumarate (40 

mM) as the sole electron acceptor.   Anaerobic conditions were achieved by 

flushing the media with N2-CO2 (80:20) to remove oxygen and to keep the 

pH of the bicarbonate buffer at pH 6.8.  

 

Bioelectrode construction  
First, the electrode was treated in order to make it more hydrophilic 

(Ouay et al., 2013).  Carbon felt (Mersen) was immersed in nitric acid (65%, 

Sigma Aldrich) for 48 h. Then the felt was rinsed with bicarbonate buffer (pH 

6.8) and stored in the same solution before use. 

Prior to the gel encapsulation, early stationary bacterial cultures were 

harvested by centrifugation at 8000 rpm for 10 minutes. These samples 

were resuspended (OD600 = 5) in 90 mM phosphate buffer (pH = 6.8). 

For the encapsulation of G. sulfurreducens in silica gel, 0.52 mL of sodium 

silicate (2 M, Sigma Aldrich),  0.1 mL of Ludox HS-40 (Sigma Aldrich) and 

1.5 mL of bicarbonate buffer (90 mM), were mixed, deoxygenated and 

neutralized with 310 µl of HCl (3 M). Subsequently, 2 mL of the 

concentrated bacterial suspension was added to the mixture, followed by 

the immersion of the pretreated carbon felt, which lead to a final bacteria 

concentration of 2 OD600 units. Gelation process ends after ca. 20 minutes, 

with continuously bubbling with a flux of N2-CO2 (80:20) to maintain anoxic 
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conditions inside the bioelectrode. 
Electrochemical analysis and calculations 

All electrochemical assays were performed in a 3-electrodes 

configuration reactor. This system consisted of a hermetically sealed glass 

vessel, where electrodes were assembled. The finished silica-carbon 

biolectrode was used as a working electrode, a carbon plate (5 x 2 x 0.5 cm) 

as counter electrode and an Ag/AgCl 3M reference electrode (BASI). The 

system was controlled by a PC connected-potentiostat (Bio-Logic Science 

Instruments, SP-150). The reactor was filled with 125 mL of 90 mM 

bicarbonate buffer amended, when specified, with sodium acetate (20 mM) 

or lactate (20 mM). 

All potentials were quoted versus an Ag/AgCl electrode. For 

chronoamperometric assays the current was recorded every 10 seconds 

and the potential was fixed at 0.25 V. 

For cyclic voltammetry, the initial potential was 0 V and the potential window 

was scanned between -0.6 and 0.6 V at 0.005 V s-1. All experiments were 

performed under a continuous bubbling of N2-CO2 (80:20) to maintain an 

anoxic enviroment and a pH of 7. 

 Faradays's law (Q = ∫ Idt = ne Nmol F) was used for the oxidation rate 

estimations. 

 

Viability test 
The viability of silica gel encapsulated G. sulfurreducens was tested at 

24, 72 and 96 hours in the presence of an electron donor and an acceptor. 

An aliquot of each sample was removed from the bulk of the gel and was 

fluorescently stained with the LIVE/DEAD Baclight bacterial viability kit 

(Invitrogen). For staining mixture, 3 µL of SYTO 9 and 3 µL of propidium 

iodide were mixed in 1 mL of bicarbonate buffer (90 mM). The samples of 

encapsulated bacteria were stained for 1 h at room temperature in the dark. 

Post staining samples were washed twice with bicarbonate buffer, in order 
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to remove the excess of staining, which might cause background noise at 

the observation. Confocal images were captured using a confocal and 

multiphoton fluorescence microscope (Leica TCS SP5). Images were 

analyzed by the ImageJ software for the semi-quantitative analysis. 

 

SEM 

A functional bioelectrode was extracted from the reactor, after 72 h of 

polarization (steady current producing) using acetate as electron donor. 

Samples were immersed at room temperature for one hour in cacodylate 

buffer (0.2 M, pH 7.2) containing 5 % glutaraldehyde for the cellular fixation. 

Samples were rinsed twice in 0.2 M cacodylate buffer, pH 7.2 for 10 

minutes.Samples were then dehydrated with a series of ethanol solutions 

(25, 50, 70, 90, and 100 %) for 10 minutes at each stage. Finally, ethanol 

was removed by evaporation at room temperature, before the samples were 

cut in half and imaged with a scanning electron microscope DSM-950 

(Zeiss). 
 
RNA extraction and transcriptomic analysis 

Encapsulated and free G. sulfurreducens cells were incubated at 30ºC 

for 96 h in the presence of acetate (20 mM) and fumarate (40 mM) prior to 

RNA extraction. To harvest RNA, 500 µL aliquots were scraped 

(encapsulated sample) or pipetted (free culture sample) into 1.5 mL tubes. 

Samples were homogenized by the addition of 500 µL of Purezol (BioRad, 

USA) and vortexed in the presence of glass beads (1 mm diameter, Sigma 

Aldrich) for 2 min. Samples were then incubated at 65ºC for 10 min with 

occasional mixing. 100 µL of chloroform (Sigma Aldrich) was added into 

each tube, vortexed for 15 s, placed on ice for 10 min and centrifuged for 15 

s at 15,000xg. The aqueous phase of each tube (approximately 200 µL) was 

mixed with 500 µL of 2-Propanol (Sigma Aldrich). Then, samples were 

transfer to RNeasy spin columns (RNeasy kit, Qiagen) and centrifuged for 
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15 s at 8000 x g, discarding the eluate. RNA was purified and concentrated 

in Rnase-free water, following the protocol provided in the RNeasy kit 

(Qiagen). RNA yield was measured by absorbance at 260 nm (NanoDrop 

ND-100, Thermo Fisher Scientific). RNA purity was assessed by examining 

A260/280 ratio with both samples exceeding a 1.8 value. RNA extracts were 

sent to FPCM (Campus Cantoblanco, Madrid) to perform the RNA 

sequencing (RNA-seq). Bioinformatics analysis was performed by Era7 

Bioinformatics (Granada, Spain). 
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RESULTS AND DISCUSSION 

 
Survival of G.sulfurreducens after encapsulation  

Cell viability after silica encapsulation, was monitored by confocal and 

multiphoton fluorescence microscopy in the presence of soluble electron 

donor and acceptor, using Live/Dead staining taking advantage of the good 

optical properties of the silica gel. This kit allows simultaneous observation 

of living (green) and dead bacteria (red) based on two different fluorescent 

dyes. Figure 1 shows that the viability after 24 h of encapsulation was 

reasonably good with the majority of bacteria (ca. 70 ± 5 %) surviving the 

process. This result is corroborated by similar studies conducted on 

Escherichia coli (Ouay et al., 2013) and Shewanella (Yu et al., 2011). 

Moreover, 96 h after encapsulation, viability appeared to remain constant, 

demonstrating that encapsulation in silica gel did not significantly affect to G. 

sulfurreducens.  

 

It is also worth noting that cell density did not appear to change over 

time (Figure 1).  Silicate cages are reported to prevent for both escape and 

proliferation of immobilized bacteria, depending on the selected porosity of 

the three-dimensional network of the gel. This is feasible because the silica 

network is not degradable by most living organisms (Bjerketorp et al., 2006; 

Wang et al., 2015). Nevertheless it has been recently showed that silica-

encapsulated E. coli may divide if the inorganic network is flexible enough 

(Depagne et al., 2012; Eleftheriou et al., 2013). It would be interesting to 

study this aspect further, considering that for certain application, such as 

biosensing, maintaining the number of cells it would be crucial.  
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Figure 1: Viability of encapsulated G. sulfurreducens within silica gel by Live 
(green)/Dead (red) staining, up to 96 h. 

 

Bioelectrodes running test 
Artificial bioelectrodes were assembled by encapsulating a cell 

suspension in silica gel within the carbon felt. Once the bioelectrode was 

assembled, it was immersed in a 3-electrodes reactor containing acetate as 

sole electron donor and polarized at 0.25 V. Likewise, a bioelectrode was 

incubated in a free-acetate reactor, and an abiotic electrode containing silica 

and electron donor were used as a controls. After 60 min of polarization at 
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0.25 V, a cyclic voltammetry analysis was performed in order to explore the 

catalytic activity of the three conditions. In the presence of acetate and 

encapsulated cells the voltammogram displayed a sigmoidal shape profile, 

typical of the catalytic activity of an advanced-stage biofilm of G. 

sulfurreducens (Marsili et al., 2010; Strycharz et al., 2011) (Figure 2A). 
However, in the absence of electron donor the catalytic activity displayed 

was not significant and there is no catalytic activity in the abiotic control, as 

expected. 

Figure 2: A) Cyclic voltammetries of G. sulfurreducens bioelectrodes in the 
presence of electron donor (green), without electron donor (yellow) and abiotic 

control with electron donor (red). B) Diffusion of acetate with time. 
 

These results confirm that silica encapsulation does not hinder the 

electric contact bacteria/electrode, while making possible the acetate to 

diffuse through the gel. 

 

On these bases, acetate diffusion from the solution to the microbial 

conversion to electricity was monitored over time. An assembled 

bioelectrode was placed in a 3-electrodes reactor with no electron donor. It 

was polarized at 0.25 V until the complete depletion of intracellular acetate, 

leading to null current production. Then, a pulse of acetate was added to the 

reactor to produce a final concentration of 20 mM.  As shows Figure 2B, the 

current production was restablished ca. 5 minutes after the pulse, revealing 
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that the diffusion of acetate through the silica gel occurred in a short time.  

Indeed, our results are consistent with alternative studies conducted without 

immobilized cells (Bond and Lovley, 2003; Tront et al., 2008). So thus, 

acetate diffusion is unlikely to be a limiting step for characterization of the 

bioelectrode. 

 

Electrochemical behaviour of the bioelectrode using different 
electrons donors 

In order to explore the behaviour of the system, the electrochemical 

activity of the bioelectrode was monitored over time using two different 

electron donors: acetate and lactate. 

 

 Acetate is the preferred electron donor for G. sulfurreducens and the 

end-product of the acetogenic phase in anaerobic wastewater treatments, 

so it is widely used in MET studies (Wang and Ren, 2013; Scott and Yu, 

2015). The artificial bioelectrode was polarized in a 3-electrodes reactor for 5 

days. During this time cyclic voltammetry (CV) and open circuit potential 

(OCP) measurements were performed every 24 h. Chronoamperometric 

results showed a brief initial phase where the current increased, while cells 

were adapting to the system. Maximum current production (ca. 220 µA/cm3) 

was reached after 24 h of polarization and it kept  stable for 96 h. After that 

period it started to drop (Figure 3A). Assuming that cell density remained 

constant during the experiment, the average oxidation rate of acetate was 

estimated in ca. 3.5 x 10-10 pmol/s per cell, which is an order of magnitude 

lower than values for non-encapsulated cells (Estevez-Canales et al., 2015). 

This lower oxidation rate of acetate in comparison with non-encapsulated 

cells could be explained by the limited access of G. sulfurreducens to the 

electrode. This is likely considering that not every cell immobilized in silica 

matrix may be in contact with the electrode or other cells close to it. 
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Figure 3: A) Current production at 0.25 V vs Ag/AgCl and open circuit potential vs 

time of acetate-fed artificial bioelectrode. B) Cyclic voltammetries performed at 
different time of acetate-fed artificial bioelectrode. 

 

Accordingly with amperometric results, the voltammograms exhibit a 

sigmoidal catalytic wave from the very beginning, with an onset potential 

near -0.4 V. Moreover, they achieved similar limiting current values (ca. 200 

µA) as in chronoamperometric assays, which is commonly reported for G. 

sulfurreducens anodic biofilms under turn-over conditions (Figure 3B)  
(Katuri et al., 2010; Marsili et al., 2010). Once maximum limiting current was 

reached after 24 h, it remained quite steady for the next 72 h. Again, from 

96 h onwards, limiting current in the CV also decreased, although the onset 

oxidation potential as well as the OCP remained constant (- 0.48 V) during 

the whole experiment. Similar OCP values have been commonly reported 

for acetate-fed biofilms, demonstrating the sturdiness of our bioelectrode 

(Babauta et al., 2012). 

 

Since acetate concentration in the reactor is not limited, biofilm 

acidification might be a possible interpretation for the decrease of current 

production at the final phase. During the reduction of an external electron 

acceptor, there is a remarkably accumulation of protons that typically limits 

the performance of MFCs (Franks et al., 2008). Opposite, when the terminal 
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electron acceptor is intracellular, like fumarate, those protons are consumed 

in the process, so this explains the lack in decrease of cell viability seen 

earlier.  
 

The behaviour using lactate (20 mM) was also explored. Lactate is 

metabolized by producing pyruvate and acetate coupled with the reduction 

of an electrode in G. sulfurreducens (Call and Logan, 2011; Speers and 

Reguera, 2012). Regarding chronoamperometric results, the overall 

behaviour allows to distinguish as well an initial, steady and drop phase; 

however the time scale is quite different. The initial phase was considerably 

longer when lactate was the sole electron donor, and it took a week to reach 

the stable current production (Figure 4A).  Lower steady current (ca. 150 

µA/cm3) and oxidation rate (ca. 1 x 10-10 pmol/s per cell) were observed, 

which is consistent with others studies that attribute this fact to the lactate 

diversion to anabolic activities rather than electricity production (Speers and 

Reguera, 2012).  

 
Figure 4: A) Current production and open circuit potential evolution of 

lactate-fed artificial bioelectrode, polarized at 0.25 V. B) Cyclic voltammetries at 
different times of lactate-fed artificial bioelectrode. 

 

In contrast to the results obtained with acetate, lactate-fed cyclic 

voltammetry assay displays two well defined peaks characteristic of the 
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catalytic activity in non-turnover conditions, when the electron donor is 

limited in a biofilm (LaBelle and Bond, 2009; Strycharz et al., 2011) (Figure 
4B). In non-encapsulated mature biofilms, acetate concentrations lower 

than 3 mM showed indeed a great influence in oxidation waves on 

voltammograms (Marsili et al., 2008b). It is not surprising that in lactate-fed 

systems, electron donor was limited regarding its interaction with the 

electrode due to metabolic constrains. G. sulfurreducens encodes for 

glycolate oxidase (GO), an enzyme homologous to lactate deshydrogenase 

in S. oneidensis that poorly catalyze the oxidation of lactate (Speers and 

Reguera, 2012). Moreover, the pyruvate released is described as a poor 

electron donor for G. sulfurreducens, thus current contribution in lactate-fed 

system is mainly due to its partial oxidation to acetate (Segura et al., 2008; 

Speers and Reguera, 2012). These studies could explain the prolonged lag 

phase required to achieve maximum current values. Moreover, the 

voltammetric profile obtained in our work may correspond with a gradual 

generation of acetate and a low concentration of it.  
 

In agreement with these results, OCP acted analogously to current 

production toward more negative values until entering in the steady phase, 

where the potential reaches ca. -0.45 V. This is similar to previously 

experiment, using acetate as the sole electron donor. Higher initial and final 

values of OCP, could be accounted for a lower concentration of acetate. 

Likewise, biofilm acidification could be the limiting factor for the bioelectrode 

performance, resulting in current decrease.  

 

Metabolic constraints in lactate oxidation coupled with electrode 

reduction need further study. For instance, they might be partially overcome 

by adding other carbon sources that displace lactate for anabolic activities 

(Speers and Reguera, 2012). 
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In both acetate and lactate fed bioelectrodes there was no increase in 

turbidity of the media (data not shown), demonstrating that the double 

entrapment (silica gel and carbon fibers) prevented bacterial release from 

the electrode. 

 

Cross-section morphology of the artificial bioelectrode 
Furthermore, the inner structure of an acetate-fed artificial 

bioelectrode in steady state current production (72 h) was analyzed by 

SEM. Images obtained reveal a heterogeneous coverage, yet the presence 

of G. sulfurreducens cells within carbon felt fibers and silica gel was 

confirmed (Figure 5). 
 

 
 

Figure 5: Characterization of the cross-section morphology and structure of 
the artificial bioelectrodes by SEM. 

 

 Such irregular distribution suggests that no every cell was contacting 

with the electrode, this fact would explain the lower acetate oxidation rate 

estimated in the preceding section when compared to other studies. It would 

be interesting to explore other techniques of immobilization in the future, to 

attain a more homogeneous coverage improving the performance of the 

bioelectrode. 
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Transcriptome analysis 

To further understand the cell’s response to immobilization, the 

preliminary transcriptomic response of encapsulated G. sulfurreducens was 

analyzed. Transcript abundance of free cells and encapsulated cells were 

analyzed. Silica encapsulation resulted in differentially expression of 86 

genes, 69 overexpressed and 17 underexpressed, considering a P 

value<0.01. The 30 most differentially expressed genes are listed in Table 1. 

 
Table 1: The 30 most strongly overexpressed and underexpressed genes in 
response to 96 h of silica gel encapsulation compared with a control in standard 
culture conditions of G. sulfurreducens. 
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Genes encoding proteins related to osmotic stress are the most 

strongly overexpressed when G. sulfurreducens was encapsulated (Figure 
6). These include genes involved in the synthesis and metabolism of 

compatible solutes such as aminoacids (GSU0151, GSU1607, GSU2371, 

GSU0153, GSU2874) and sugar alcohol (GSU3125), which were 

overexpressed between 4.8 and 3-fold. Another bacterial common response 

to environmental changes, including osmotic stress, is the modification of 

the membrane composition (Zhang and Rock, 2008). Silica encapsulation of 

G. sulfurreducens triggered the overexpression (between 6 and 2.9-fold) of 

several genes involved in the synthesis and transport of membrane 

components such as fatty acids (GSU1603, GSU1602, GSU1601), 

lipoproteins (GSU2373, GSU2374, GSU0832), proteins (GSU1336, 

GSU2267) and lipopolysaccharides (GSU2085, GSU2490) (Figure 6). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Differentially expression of silica encapsulated G.sulfurreducens 

according to their annotation function in the genome (NCBI database). 
 

Moreover, bacteria are equipped with a broad number of mechanisms 

in order to sense information caused by external stimuli into the interior of 

the cell, and to initiate an according response (Krämer et al., 2010). 
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Therefore it is not surprising that several genes involved in signal 

transduction, translation, transport and transcription, exhibited changes in 

their expression when cells are silica encapsulated, in response to osmotic 

upshift among other stimuli (Figure 6). 
 

The transcriptomic results are consistent with previous work that has 

identified high salinity as the predominant stress for aqueous alkaline 

silicates precursors of silica gels, like sodium silicate (Dickson et al., 2012; 

Wang et al., 2015). Furthermore, similar changes in expression patterns 

have been recently observed in our research group when G. sulfurreducens 

is exposed to NaCl over several generations, although cell adaptation had 

surprising effects like higher electroactivity (Borjas et al 2016, Submitted). 

These saline-adapted G. sulfurreducens could be used to improve silica gel 

encapsulation, by avoiding the need for artificial osmoprotectants, and 

perhaps enhancing the electroactivity of artificial bioelectrodes. 

Nonetheless, additional analysis of target genes by qRT-PCR would be 

required to obtain more conclusive results. 
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CONCLUSIONS 
 

These results show an effective method for the immobilization of G. 

sulfurreducens within silica gel and carbon felt fibers to produce a ready-to-

use artificial bioelectrode. Viability test of silica encapsulation confirmed that 

the majority of bacteria survived the process and the apparently cell density 

did not change over time. This double entrapment prevented bacterial 

release from the electrode, so the system could be electrochemically 

characterized under suitable mass transport conditions. Geobacter-based 

artificial bioelectrodes were tested using acetate and lactate as electron 

donors. In both cases biofilm acidification provided a plausible explanation 

for the limitation of long term performance. Furthermore the cross-section of 

this artificial bioelectrode was interrogated by SEM, and the presence of a 

heterogeneous coverage of G. sulfurreducens within the fibers and silica gel 

was confirmed. Transcriptomic analysis suggested that osmotic pressure 

was the predominant stress for silica gel encapsulation of G. sulfurreducens. 

Our methodology will allow the use of different fibrous conductive materials, 

silica gel porosity and cell densities, for a wide range of applications. Herein, 

ready-to-use artificial bioelectrodes represent a versatile time and cost 

saving strategy that could be relevant for short and medium term 

experiments in microbial electrochemical systems. 
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       DISCUSSION, CONCLUSIONS        
      & FUTURE OUTLOOK      

 

What is the role of iron in G. sulfurreducens for performing DEET? 

Iron is crucial for synthesizing c-type cytochromes as it must be 

incorporated to the protoporphyrin ring to conform the heme groups. Making 

iron less available, leads to cells unable to produce enough heme groups for 

reducing extracellular electron acceptors (Fe(III) or electrodes).  Therefore, 

iron is essential for synthesizing the functional cytochromes network that 

makes DEET a feasible process. Moreover, supplying enough concentration 

of iron in the culture media promotes an optimal production of this redox 

network what ensures maximal electron transport to electrodes. 

 

What could be the molecular mechanisms acting in response to low-
iron availability in G. sulfurreducens? 

We hypothesize that low-iron availability triggers the expression of 

certain transcription factors, such as Fur or IdeR, present in G. 

sulfurreducens as well as in many others bacteria. Once the regulator 

protein is expressed, it blocks the access of RNA polymerase to those 

genes related to iron acquisition as well as redox-stress resistance. The so-

called Fur-like iron response regulatory protein (Irr) has been described in 

many bacteria genus and it regulates specifically the heme biosynthetic 

pathway according to the iron availability. Although Irr has not been found in 

Geobacter species yet, it is likely that G. sulfurreducens has developed a 

similar system to limit the synthesis of cytochromes under iron-limiting 

conditions. 
 
What are the advantages of using a low-iron culture methodology for 
avoiding cytochromes synthesis? 
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This iron chelator-based methodology for eliminating cytochromes is 

straightforward, fast and economical. Furthermore, heme- cells obtained by 

this culture approach led to viable cells able to perform a functional central 

metabolism (eg. Fumarate respiration). So thus, heme- cells reported in this 

thesis will be extremely useful for other researchers targeting investigations 

on the physiology of G. sulfurreducens under EET-free background 

conditions. Moreover, it would be possible to generate cells with different 

levels of heme groups by varying the doses of the chelator. 
 

What are the main advantages and drawbacks of using SPEs for 
testing microbial electrochemistry?  

Incorporating SPEs as regular tools for METs could be very helpful 

due to their reduced sized together with a low volume requirement 

(microliters range). Moreover, the larger surface area to volume ratio 

enhances the efficiency usage of substrates per unit volume. Such a feature 

allows to significantly reduce the start-up operation time while obtaining a 

rapid electrical response compared with classical systems. In addition, they 

are commercially marketed by several brands and they are available in 

various configurations and materials at low cost. SPEs are indeed more 

applicable and potentially realizable than macro-scale METs.  

Nonetheless, they are probably not suitable for long term experiments due 

to its disposable nature. 

 

What is the framework for Geobacter-based SPEs in a basic research 
context? 

SPEs were successfully validated for characterizing the response of 

G. sulfurreducens in different physiological states (exponential phase, 

stationary phase, and steady state under continuous culture conditions) 

revealing different electron transfer responses. The results are consistent 

with previous data that used classical electrochemical systems. 
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Nonetheless SPEs offer a much faster electrical response, which can be 

used for identifying a certain physiology. 

 

What are the practical applications of SPEs in microbial 
electrochemical systems? 

The results obtained demonstrated that SPEs could be exploited for 

fast screening methods to select tailor made biocathodes, but SPEs could 

be used for the detection electroactive microorganisms in bioanodes as 

well. Moreover, it was displayed a promising biosensor for quantifying the 

levels of acetate, based on the combination of SPE and G. sulfurreducens. 

In addition, it was shown that the system was robust enough for performing 

assays in real urban wastewater. 

 

How is G. sulfurreducens affected by the silica-based encapsulation? 

Viability test results confirmed that the vast majority of bacteria (ca. 70 

± 5 %) survived the process, demonstrating that encapsulation in silica gel 

did not significantly affect to G. sulfurreducens. Moreover, the apparently cell 

density did not change over time. Nevertheless it has been recently showed 

that silica-encapsulated E. coli might even divide if the inorganic network is 

flexible enough. Under this scenario we found interesting to further study 

this aspect in encapsulated G. sulfurreducens. This is especially key in 

applications like biosensing where maintaining the number of cells can be 

crucial.  

 

Encapsulation must impose some kind of stress in the cells, and 

eventually such a stress will generate changes in gene transcription to cope 

with the environmental shift. So thus, we decided to interrogate the cellular 

gene expression in order to identify what cellular processes are affected by 

encapsulation. Nonetheless, an RNAseq-based transcriptomic analysis 

suggested that high salinity was the predominant stress for silica gel 
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encapsulations of G. sulfurreducens. Saline-adapted G. sulfurreducens 

could be further investigated avoiding the use of artificial osmoprotectants 

during silica gels encapsulation. 

 

Do the architecture of artificial bioelectrodes enable electrical 
conductivity and solute diffusion? 

The results demonstrate that the double entrapment within silica gel 

and carbon felt fibers did not hinder the electric contact bacteria/electrode 

and the system could be electrochemical characterized. Moreover the 

catalytic activity displayed few minutes after encapsulation was comparable 

to a more non-encapsulated advanced-stage biofilm. Furthermore, the 

architecture of these artificial bioelectrodes also allows well mass transport 

conditions.  
 

What could be the limiting factors in acetate-fed artificial 
bioelectrodes? 

The restricted contact between bacteria and the electrode might be 

one limiting factor due to the heterogeneous coverage observed in SEM 

analysis. That could explain the lower acetate oxidation rates estimated in 

comparison with non-encapsulated cells. Hence, in the future it would be 

interesting to explore other techniques for silica immobilization, in order to 

improve the performance of the system. 

 

Moreover, biofilm acidification might be a possible reason for the 

decrease of current production at the final phase. During the reduction of an 

external electron acceptor, protons are not consumed at the same rate that 

EET takes place. As a result, a remarkably accumulation of protons 

released by the cells inhibit the cell activity, and this is considered one of the 

main limitations for the performance in microbial electrochemical systems. 

So thus, promoting the proton flux out of the bioelectrode, by modifying the 
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porous structure, could be an interesting strategy that should be explored in 

the future. 

 

What are the main advantages of artificial bioelectrodes? 

Ready-to-use artificial bioelectrodes of G. sulfurreducens allow a fast 

electrochemical characterization of cell response, avoiding long periods 

typically required for electroactive biofilm formation. This feature could be 

useful for conducting basic research as well as for electroanalytical 

purposes such as biosensors. 
 

The fabrication methodology would also allow to explore different 

fibrous conductive materials and to select silica gel with different porosity, as 

well as to use different cell density, depending on the desired end use.  

Herein artificial ready-to-use bioelectrodes represent a versatile time and 

cost saving strategy that will be key for short and medium term experiments 

in microbial electrochemical systems. 
 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Discussion, Conclusions & Future Outlook                                              

 
134 

 
Future outlook 
 

This thesis offers several bioelectrochemical approaches to explore 

EET in G. sulfurreducens although further research is still needed. The main 

value of this work is the straightforward, fast and economical nature of the 

tools provided. An upcoming tendency to scale-down the electrochemical 

platforms is not exclusive for SPEs but also for microfluidics, the 

cornerstone of lab-on-chip biosensing tools. Another future trend is the use 

of synthetic biology leading to make robust and reliable microorganisms 

able to assist on long-term and in situ analysis. Hard-to-reach natural 

locations such as sea and river bottoms, or more applied situations like 

wastewater treatment plants will be benefit of such a technology. There is 

still a long way to go for the optimization of this fascinating discipline where 

biology meets electrochemistry and engineering in a manner not expected 

just 15 years ago. 
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        ABBREVIATIONS         
 
 
 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATR- SEIRAS  

 

CA 

CV 

DET 

DEET  

DIET 

EET 

EPS  

Fur  

IET  

MDC 

MEC  

ME-FBR 

MERC  

MES  

MET 

METs 

MFC 

 

 

Attenuated Total Reflection-Surface Enhanced  

Infrared Absorption Spectroscopy  

Chronoamperometry 

Cyclic Voltammetry 

Direct Electron Transfer 

Direct Extracellular Electron Transfer 

Direct Interspecies Electron Transfer  

Extracellular Electron Transfer 

Extracellular Polymeric Substances 

Ferric-uptake regulator 

Indirect Electron Transferred 

Microbial Desalination Cell 

Microbial Electrolysis Cell  

Microbial Electrochemical-Fluidized Bed Reactor 

Microbial Electroremediating Cell 

Microbial Electrosynthesis 

Mediated Electron Transfer 

Microbial Electrochemical Technologies 

Microbial Fuel Cell 

 

 



Abbreviations                                                                                                              

 
136 

 

 

 

 

 

 

  

 

 

 

 

 

 

NERS 

OCP 

RNA-seq  

SPEs 

TEA 

TCA: 

 

 

Nanoparticle Enhanced Raman Spectroscopy 

Open Circuit Potential 

RNA- sequencing  

Screen Printed Electrodes 

Terminal Electron Acceptor 

Tricarboxylic acid cycle or citric acid cycle 
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