Distributed detection of temperature gradients with single-wavelength phase-sensitive OTDR and speckle analysis methods

Andres Garcia-Ruiz*, Juan Pastor-Graells*, Hugo F. Martins®, Sonia Martin-Lopez®, Miguel Gonzalez-Herraez®,

*Opto. de Electrónica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain;
®FOCUS S.L., C/ Cretillana, 1, 28004, Madrid, Spain
*andres.garciaruiz@uah.es

** MOTIVATION **

- Traditional ΦOTDR allows for high-bandwidth vibration detection. But provides no information on temperature changes along the fiber.
- Distributed temperature fiber sensing (ΦOTDR, Raman OTDR, BOTDA) require:
 - More complex setups (and expensive)
 - Longer measurement times
 - Incompatible with vibration detection (need frequency sweep and/or high averaging)

** GOALS **

- Design of a cheap and easy to implement method which allows to extend the operation of traditional (single-frequency) ΦOTDR used for distributed vibration sensing, to the monitoring of distributed temperature gradients.
- Testing its reliability in a temperature-controlled oven hot-spot.

** MEASUREMENT PRINCIPLE AND EXPERIMENTAL SETUP **

1 km fiber + 20 m hot-spot — λ = 1550 nm, P_length = 20 ns

- Standard Φ-OTDR traces are measured @100 M/S/s:
 \[I(x) = |I(x)|^2 = \sum \cos(\phi_i - \phi_j) \]
- The optical intensity variation \(\Delta I(x) \approx \sum_i r_i r_j \sin(\phi_i - \phi_j) \Delta n \) (\(\Delta n = 10^{-17} \))

Slow gradients make \(\sin(\phi_i - \phi_j) \) linear!

** EXPERIMENTAL RESULTS **

1. Several consecutive traces (along 6 s):
 \(\Delta T \approx 1 \text{ mK/s} \) at hot-spot

2. Differences of the traces:
 \(\phi_i - \phi_j = \omega_2 (x_i - x_j) \frac{2\pi}{\Delta \lambda} \approx 2\pi \)

3. After integrations:

** CONCLUSIONS **

A simple and easy to implement method for temperature gradients detection in real time with single-wavelength ΦOTDR derived from the speckle analysis theory was presented and demonstrated.

The method relies solely on a low-cost post-processing of the standard ΦOTDR traces (already acquired for vibration detection).

Could be implemented without affecting the distributed vibration detection and with a close to zero cost.

A successful test of it has been performed by measuring the temperature decrease of water into an oven as hot-spot.

Acknowledgements

This work was supported by the European Research Council through Starting Grant UFINE (Grant no. 307441), the EC Horizon 2020 programme, the Spanish MINECO through DOMINO distributed (need frequency sweep and/or high averaging) allows detection temperature and expensive) in Grant operation temperature BOTDA implemented the Traditional acquires the BOTDA program, the Spanish MINECO and RELIABILITY tested the BOTDA program, and the regional programme INFOTON-CM: S2013/MIT-2790. Juan Pastor-Graells acknowledges funding from the Spanish MINECO through an FPI of project ∝ standard MINECO. Hugo F. Martins acknowledges EU funding through the FP7 ITN ICON program, gr. #608099. Sonia Martin-Lopez acknowledges funding from the Spanish MINECO through a “Ramon y Cajal” contract.