
 
 
 
 
 
 
 

 
 

U
N

IV
E

R
S

ID
A

D
 D

E
 A

L
C

A
L

Á
, 

P
A

T
R

IM
O

N
IO

 D
E

 L
A

 H
U

M
A

N
ID

A
D

 

D E P A R T A M E N T O  D E  E L E C T R Ó N I C A  

Escuela Politécnica Superior 
28805 Alcalá de Henares (Madrid) 
Teléfonos: 91 885 65  40       Fax: 91 885 65 91 
eldep@depeca.uah.es 

 
 

 

Dr. Juan Jesús García Domínguez  

Dr. Jesús Ureña Ureña 

 

 

 

INFORMAN: Que la Tesis Doctoral titulada “Efficient complementary sequences-
based architectures and their application to ranging measurements”, 
presentada por D. Enrique García Núñez y realizada bajo nuestra 
dirección, dentro del campo de procesado de señal para sistemas 
de posicionamiento en interiores, reúne los méritos de calidad y 
originalidad para optar al Grado de Doctor. 

 

Alcalá de Henares, a 26 de Febrero de 2013 

 

 

 

Fdo.: Juan Jesús García Domínguez                             Fdo.: Jesús Ureña Ureña 

 





 
 
 
 
 
 
 

 
 

U
N

IV
E

R
S

ID
A

D
 D

E
 A

L
C

A
L

Á
, 

P
A

T
R

IM
O

N
IO

 D
E

 L
A

 H
U

M
A

N
ID

A
D

 

D E P A R T A M E N T O  D E  E L E C T R Ó N I C A  

Escuela Politécnica Superior 
28805 Alcalá de Henares (Madrid) 
Teléfonos: 91 885 65  40       Fax: 91 885 65 91 
eldep@depeca.uah.es 

 

 

 

Dr. Juan Jesús García Domínguez, Director del Departamento de Electrónica de la 
Universidad de Alcalá, 

 

 

INFORMA: Que la Tesis Doctoral titulada “Efficient complementary sequences-
based architectures and their application to ranging measurements”, 
presentada por D. Enrique García Núñez y dirigida por el  Dr. Juan 
Jesús García Domínguez y el Dr. Jesús Ureña Ureña, cumple con 
todos los requisitos científicos y metodológicos para ser defendida 
ante un tribunal, según lo indicado por la Comisión Académica del 
Programa de Doctorado. 

 

 

Alcalá de Henares, a 26 de Febrero de 2013 

 

 

Fdo.: Juan Jesús García Domínguez 

 





UNIVERSIDAD DE ALCALÁ
ESCUELA POLITÉCNICA SUPERIOR

DEPARTAMENTO DE ELECTRÓNICA

EFFICIENT COMPLEMENTARY SEQUENCES-BASED
ARCHITECTURES AND THEIR APPLICATION TO

RANGING MEASUREMENTS

Author

Enrique García Núñez

Advisors

Dr. Juan Jesús García Domínguez

Dr. Jesús Ureña Ureña

DOCTORAL THESIS

2013





Resumen

En las últimas décadas, los sistemas de medición de distancias se han beneficiado de los
avances en el área de las comunicaciones inalámbricas. En los sistemas basados en CDMA
(Code-Division Multiple-Access), las propiedades de correlación de las secuencias emplea-
das juegan un papel fundamental en el desarrollo de dispositivos de medición de altas
prestaciones. Debido a las sumas ideales de correlaciones aperiódicas, los conjuntos de
secuencias complementarias, CSS (Complementary Sets of Sequences), son ampliamente
utilizados en sistemas CDMA. En ellos, es deseable el uso de arquitecturas eficientes que
permitan generar y correlar CSS del mayor número de secuencias y longitudes posibles.
Por el término eficiente se hace referencia a aquellas arquitecturas que requieren menos
operaciones por muestra de entrada que con una arquitectura directa.

Esta tesis contribuye al desarrollo de arquitecturas eficientes de generación/correlación
de CSS y derivadas, como son las secuencias LS (Loosely Synchronized) y GPC (Gener-
alized Pairwise Complementary), que permitan aumentar el número de longitudes y/o de
secuencias disponibles. Las contribuciones de la tesis pueden dividirse en dos bloques:

En primer lugar, las arquitecturas eficientes de generación/correlación para CSS bi-
narios, derivadas en trabajos previos, son generalizadas al alfabeto multinivel (secuencias
con valores reales) mediante el uso de matrices de Hadamard multinivel. Este plantea-
miento tiene dos ventajas: por un lado el aumento del número de longitudes que pueden
generarse/correlarse y la eliminación de las limitaciones de las arquitecturas previas en el
número de secuencias en el conjunto. Por otro lado, bajo ciertas condiciones, los pará-
metros de las arquitecturas generalizadas pueden ajustarse para generar/correlar eficiente-
mente CSS binarios de mayor número de longitudes que con las arquitecturas eficientes
previas.

En segundo lugar, las arquitecturas propuestas son usadas para el desarrollo de nue-
vos algoritmos de generación/correlación de secuencias derivadas de CSS que reducen el
número de operaciones por muestra de entrada. Finalmente, se presenta la aplicación
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de las secuencias estudiadas en un nuevo sistema de posicionamiento local basado en
Ultra-Wideband y en un sistema de posicionamiento local basado en ultrasonidos.



Abstract

In the last decades, ranging systems have benefited from advances in the wireless commu-
nication field, as multiple access techniques or near-far mitigation algorithms. In CDMA-
based (Code-Division Multiple-Access) ranging systems, the properties of the spreading
sequence used play a key role on the development of high-precision ranging measurements.
This thesis proposes novel efficient generation/correlation architectures of Complement-
ary Sets of Sequences (CSS) and sequences derived from them, as Loosely Synchronized
(LS) and Generalized Pairwise Complementary (GPC) sequences. We consider the term
efficient applicable whether the proposed architectures requires less operations per input
sample in comparison with a straighforward implementation (a Tapped-Delay Line im-
plementation). The contributions of the thesis can be divided into two stages:

Firstly, we generalize the efficient generation/correlation architectures for binary CSS,
derived in previous works, to the multilevel (real-valued) alphabet by using multilevel
Hadamard matrices. This approach has two advantages: on the one hand the increase of
the feasible lengths that the architecture is capable to generate/correlate, and the elim-
ination of the previous limitations in the number of sequences of the set; on the other
hand, under certain conditions, the generalized architectures allow to particularize their
inner structure to efficiently generate/correlate binary CSS with more different lengths
than the ones feasible with previous efficient algorithms.

Secondly, based on the proposed architectures, we provide novel algorithms for LS and
GPC sequences that reduce the number of operations per input sample. Finally, we do
a comparative analysis of the performance of LS and Kasami sequences in a novel UWB
indoor positioning system.
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«... If practical problems exist
in which the correlation function
is the thing desired, a device
performing the correlation cal-
culations efficiently and with
reasonably short samples would
fall in the class of [an outstanding
useful application]»

M. J. E. Golay
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Chapter 1

Preface

1.1 Thesis Background

This thesis has been developed under the research project LEMUR (ref. TIN2009-14114-
C04-01), supported by the Spanish Ministry of Science and Innovation.

The thesis has also been economically supported by the University of Alcalá grant
program FPI/UAH (ref. FPI/UAH2009), by the Spanish Ministry of Education grant
program FPU/MEC (EDU/3083/2009) and by the University of Alcalá mobility program.
The former one made possible a research stay at the Digital Signal Processing and Image
Analysis (DBS) research group of the University of Oslo.

The main goal of the LEMUR project is to achieve significant improvements in Local
Positioning Systems (LPS) to operate in extensive areas (including indoor and restricted
outdoor environments) in a transparent form for users or services. Continuous and robust
positioning is achieved by means of a combination of ultrasound and radio frequency
technologies. Particularly, this thesis copes with the following objectives of the LEMUR
project:

• The study of modulation, encoding and digital signal detection by using CDMA
and UWB techniques to enhance optimal processing of US and RF signals.

• Implementation of a demonstrator: an integrated system for continuous localization
and guidance of people in large buildings.

1.2 Introduction

Binary Complementary Sets of Sequences (CSS) are used intensively in a broad number of
fields, as sonar [Alvar 06], MIMO radar [Li 10], Non-Destructive Test (NDT) applications
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2 Preface

[White 92], low Peak-to-Average Power Ratio (PAPR) OFDM communication systems
[Davis 99], or the second digital terrestrial television broadcasting standard (DVB-T2)
[He 11], due to their ideal sum of aperiodic correlation functions. Furthermore, they
are considered as a basic building block for the generation of novel Generalized Ortho-
gonal (GO) spreading sequences for Quasi-Synchronous Code Division Multiple Access
(QS-CDMA) systems [Stanc 01, Chen 06, Li 08]. Those applications would benefit from
generation and correlation architectures capable of dealing with CSS of a large number
of feasible lengths and set sizes, and correlate them with a reduced number of operations
per input sample. In this sense, there has been a sustained research effort in the last dec-
ades for the design of flexible CSS and CSS-derived GO sequences [Darne 88, Kemp 89,
Gavis 94, Fan 96, Trinh 06, Chen 06, Fan 07, Li 11a, Budis 11, Bi 12] and of correlation
architectures for CSS and CSS-derived GO sequences with a reduced number of hard-
ware resources [Budis 91, Alvar 04, De Ma 07, Perez 08, Donat 09b, Perez 09b, Perez 10,
Coker 10, De Ma 11, Budis 11].

This thesis contributes to the increase on the versatility of the efficient architectures
for the generation and correlation of CSS and CCS-derived GO sequences, as Generalized
Pairwise Complementary (GPC) and Loosely Synchronous (LS) sequences. It also focuses
on the application of the spreading sequences in ranging systems by proposing a CDMA-
based Ultra-Wideband (UWB) indoor positioning system, which is used as a test-bed
for the performance comparison of LS and Kasami spreading sequences. Furthermore,
an ultrasonic local positioning system has been used for the analysis of CSS-derived GO
spreading sequences.

1.3 Summary

The proposals of the thesis have been divided into the following chapters:

• Chapter 2: “State of the Art and Problem Statement”. In this chapter we introduce
the signal processing techniques employed in ranging measurements and review the
generation algorithms of the classical and the newest spreading sequences available in
literature. Later, we revise the performance of two types of ranging systems: Ultra-
Wideband-based and ultrasound-based local positioning systems. From the previous
review we derive the problems in ranging systems and introduce the objectives and
proposals of this thesis.



Preface 3

• Chapter 3: “Generalization of Efficient Architectures for the Generation and Correl-
ation of Multilevel CSS”. In this chapter we cope with the first objective of the thesis
and propose efficient architectures for the generation and correlation of multilevel
CSS. With these architectures it is possible the generation/correlation of multilevel
CSS with more flexible lengths and without limitations in the number of sequences
of the set. The proposals of this chapter have been submitted for publication in the
international journal IEEE Transactions on Signal Processing.

• Chapter 4: “Efficient Architectures for the Generation and Correlation of Binary
CSS”. This chapter deals with the generalization of the efficient generation/correl-
ation architectures of K|CSS binary CSS of lengths L|CSS = KQ

|CSS to K|CSS binary
CSS of length L|CSS =

�

K|CSS/2
�

· 2N · 10M · 26P , with N , M and P non-negative
integers and Q and integer so that Q � 1. The proposal of the architecture for
K|CSS = 2 binary CSS (the so-called Golay sequence pairs) has been published in
the International Journal of Circuit Theory and Applications and its extension to
K|CSS = 2

k, k 2 N � {0}, binary CSS has been submitted for publication in the
journal IEEE Transactions on Signal Processing.

• Chapter 5: “Novel Algorithms for the Generation and Correlation of Generalized
Orthogonal Sequences”. In this chapter we propose a generalization of binary LS
sequences to multilevel LS sequences, by applying the algorithms of Chapter 3 and a
novel generation/correlation architecture for GPC sequences, by using the algorithm
introduced in Chapter 4. Finally we show the theoretical link between LS and GPC
sequences and this leads to the proposal of a novel and efficient generation and
correlation algorithm for LS sequences. The proposals of this chapter have been
published in the international journals Electronics Letters and IEEE Communica-
tions Letters.

• Chapter 6: “Application to Ultra-Wideband Ranging Systems”. In this chapter we
present an indoor positioning system based on Ultra-Wideband which is used as a
test-bed for the performance comparison of two spreading sequences, LS and Kasami
sequences [Kasam 66]. The work derived from this chapter is being prepared for
submission to the international journal Sensors & Actuators A: Physical.

• Chapter 7: “Application to Ultrasonic Ranging Systems”. In this chapter we use the
GO sequences studied in the thesis in an ultrasonic indoor positioning system to
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analyze the advantages and disadvantages of each spreading sequence and modula-
tion scheme.

• Chapter 8: “Conclusions and Future Works”. In this chapter we include the most
significant conclusions derived from the contributions of this thesis; later we show
the references to the publications in indexed international journals and international
conferences derived from this thesis. Finally, we propose some research lines that
could be tackled with these contributions.



Chapter 2

State of the Art and Problem
Statement

2.1 Introduction

There are certain desirable properties in ranging and wireless communication systems
as a large spectral and energy efficiency, immunity to interferences and low hardware
complexity.

In the last years, ranging systems have benefited from the advances in the wireless
communication field. In this way, among all the existent methods to carry out mechanisms
for sharing the channel between users1, the most used is Code-Division Multiple-Access
(CDMA), also known as Spread Spectrum Multiple-Access (SSMA), where the channel
division is carried out by means of spreading sequences with good correlation properties.
Its main advantages in comparison with other multiple access schemes are its spectral
efficiency, the capability of simultaneous access to the channel by the users and the pro-
cessing gain that it provides [Fan 96]. This processing gain conferes a large robustness
to Additive White Gaussian Noise (AWGN) and to narrowband interferences [Chen 07].
Nevertheless, the properties of the particular spreading sequence used for multiple access
significantly affect to the system performance.

First, this chapter introduces the typical signal processing techniques used for ran-
ging measurements. Later, we review the classical and the newest spreading sequences
available in the literature; finally, we show the architectures traditionally used for the
implementation of a matched filter.

1In this thesis the term “user” is adopted in a broad sense, referring to a sensor transmitting an
assigned spreading sequence.

5
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2.2 Signal Detection and Ranging Measurements

The problem of signal detection and ranging measurements dates from the mid-twentieth
century and since then, there has been an intensive work to reduce the false alarm prob-
ability in the detection and ranging errors. In this section, we review a compendium
of the most common signal processing techniques used for signal detection and ranging
measurements.

2.2.1 Envelope Detection

This type of detection is used in applications where it is not needed high accuracies
in ranging estimation. This kind of detection has been intensively used in ultrasound
systems [Boren 88], where the envelope is obtained by rectifying the received signal and
integrating it over the time. If the envelope exceeds a given threshold it is considered
that the signal is present. In spite of being easy to implement, these systems have several
drawbacks, and the main ones are the followings [Alvar 05]:

• Low immunity to noise: If there are interferences in the working frequency band it
is possible to exceed the threshold regardless of not receiving the signal of interest.

• Low ranging accuracy: By using this method it is not possible to know the exact
time instant in which the signal is received.

• Difficulty in working properly in multiuser environments: If the available bandwidth
is reduced, a multiple access scheme, as Time Division Multiple-Access (TDMA) or
Carrier Sense Multiple-Access (CSMA), in which only one device is transmitting at
a given time is needed. This is because if the same frequency band is used for all
the devices at the same time, there is no chance to distinguish the contribution to
the envelope amplitude of each user.

• Low update rate: Due to the previous limitations, if TDMA or CSMA is used, the
update rate falls as the number of users increase.

Nevertheless, this kind of receivers are still used in ranging applications due to its simpli-
city, as in low-cost UWB ranging systems [Lie 05].
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2.2.2 Correlation and Matched Filter

Given a sequence of length L, s [l] = {s0, s1, . . . , sL�1}, a matched filter is a Finite Impulse
Response (FIR) filter with an impulse response, h [l], equal to the time reversed version of
the sequence s [l], i.e. h [l] = s [�l] ; s [�l] = {sL�1, sL�2, . . . , s0}. This filter maximises
the SNR at its output in the presence of AWGN. Considering that s [l] is a binary sequence,
s [l] 2 {+1, �1}, and that the received signal, r [l] is equal to r [l] = s [l] + n [l]; where
n [l] is AWGN with a two-sided Power Spectral Density (PSD) equal to N0

2 W/Hz, then
the output of the matched filter is equal to:

o [l] = r [l] ? h [l]

= s [l] ? s [�l] + n [l] ? s [�l] (2.1)

where the symbol ? refers to the convolution operation. The first term s [l] ? s [�l] of
the equation 2.1 is equal to the auto-correlation function of the sequence s [l] and only
depends on its properties. The second term n [l] ? s [�l] of the equation 2.1, is equivalent
to the cross-correlation of n [l] and s [l].

The maximum SNR is obtained at the output of the matched filter, at the zero time
shift, when matching happens, and for binary sequences is equal to [Proak 00]:

SNRoutmax =

2 · L
N0

(2.2)

Notice that the SNR at the output of the matched filter depends on the energy of the
input sequence (in the binary case equal to L) and on the PSD of the AWGN noise (N0),
but not on the particular characteristics of the sequence [Proak 00].

Given two real and unitary2 sequences of length L, {sn [l] , sm [l]} ; 0  l  L � 1, it
is defined the periodic correlation function as

Rsn,sm [⌧ ] =
L�1
X

l=0

sn [l] · sm [l + ⌧ ] (2.3)

when n = m, equation 2.3 turns out to be the periodic auto-correlation function,
whereas if n 6= m, the equation 2.3 is the periodic cross-correlation function.

2This term is used to refer those sequences whose correlation properties depend solely on their inner
characteristics.
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The aperiodic correlation function is defined as

Csn,sm [⌧ ] =

8

>

>

>

>

>

<

>

>

>

>

>

:

L�1�⌧
P

l=0
sn [l] · sm [l + ⌧ ] , 0  ⌧  L� 1

L�1+⌧
P

l=0
sn [l � ⌧ ] · sm [l] , 1� L  ⌧ < 0

0, |⌧ | � L

(2.4)

Equation 2.4 represents the aperiodic auto-correlation function when n = m, and the
aperiodic cross-correlation function when n 6= m. Notice that independently of the correl-
ation function applied, aperiodic or periodic auto-correlation, the maximum SNR at the
correlator output is given by the equation 2.2. Figure 2.1 depicts the periodic and aperi-
odic correlation function of the sequence s [l] = {+1,+1,+1,�1}. Notice the differences
between aperiodic and periodic correlation functions: in the periodic correlation function
no gaps between the periods of the sequence s [l] is considered; in the aperiodic correlation
function, different periods of the sequence s [l] do not overlap in the correlation process.
This is what happens in bursting transmissions, typically used in wireless sensor networks,
ultrasound and UWB ranging systems. The sequence s [l] is called in the literature as
a perfect binary sequence, as its periodic auto-correlation function is ideal. Nevertheless,
its aperiodic auto-correlation function is far from being ideal. For this reason, the term
perfect sequence is normally referred to those with an ideal periodic correlation function.

In this thesis, we will use by default aperiodic correlation functions.

2.2.3 Generalized Matched Filters

As was shown previously, matched filters are optimum in the sense that maximize the
SNR at their output when the noise is AWGN. In the presence of coloured noise, this
is not true, and the matched filter can be preceded by a weight function (also known as
pre-whitening filter). This filter in cascade with the matched filter is commonly named as
generalized matched filter or Generalized Cross-Correlation (GCC) function [Knapp 76]
and it has found applications to ranging estimation [Villa 11]. Nevertheless, in practice
the GCC tends to an error-prone range estimation, especially at low SNR.

2.2.4 Mismatched Filters

In the last decades, mismatched filters have been broadly used in the radar field to side-
lobe suppression [Ackro 73, Levan 04]. There are mainly two approaches in the sidelobe
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Figure 2.1: a) Periodic correlation of the perfect sequence {+1,+1,+1,�1}, b) Aperiodic
correlation

suppression with mismatched filters: the first one consists on the use of a mismatched
filter alone [Griep 95, Levan 05] and the second one uses a mismatched filter in cascade
with a matched filter [Rihac 71, Schol 00]. Both introduce a SNR loss and are commonly
designed as a FIR filter. The coefficients of this filter are computed by means of an op-
timization algorithm, as Least Squares or Iteratively Reweighted Least Squares (IRLS)
[Green 84].

This algorithm has been also extended to cope with multiuser environments [Griep 95]
or Doppler shifts [Zejak 91] and normally tries to minimize the Integrated Sidelobe Levels
(ISL) or the Peak Sidelobe Levels (PSL), (which is computationally much more demand-
ing) of the correlation function.

We will review the algorithm introduced in [Griep 95, Levan 05] to compute the filter
coefficients that minimizes the ISL metric, considering only here the case of only one user.
Define the real-valued sequence s[l] of length L1, which expressed in a vectorial form, is
s = [ s[0] s[1] . . . s[L1 � 1]

]

T and the mismatched filter coefficients h[`] of length L2
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in a vectorial form h = [ h[0] h[1] . . . h[L2 � 1]

]

T . The correlation operation can be
expressed in a matricial form as y = h⇥S, where y represents the output of the correlation
operation with length L = (L1 + L2 � 1), the symbol ⇥ is the matricial product and S is
the Toeplitz matrix of the sequence s of dimensions L2 ⇥ L and it is defined as

S =

2

6

6

6

6

6

6

4

s[L1 � 1] . . . s[1] s[0] 0 · · · 0

0 s[L1 � 1] . . . s[1]
. . . ...

... . . . . . . . . . s[0] 0

0 · · · 0 s[L1 � 1] . . . s[1] s[0]

3

7

7

7

7

7

7

5

(2.5)

Define now a square weighting diagonal matrix F of order L, with a diagonal equal to

diag(F) =
h

f 2
[�L+ 1] . . . f 2

[0] . . . f 2
[L� 1]

i

(2.6)

where f is a vector whose entries have an arbitrary weight. If f [0] = 0, the total energy
of the sidelobes of y can be defined as

E = y ⇥ F⇥ yT

= h⇥(S⇥ F⇥ ST
)⇥ hT

= h⇥A⇥ hT (2.7)

The vector h that minimizes the sidelobes energy is equal to

h =

s⇥A�1 ⇥
�

s⇥ sT
�

s⇥A�1 ⇥ sT
(2.8)

with the constraints that the matrix A is not singular and that s⇥ hT
= s⇥ sT , i.e. the

filter h is normalized to have the same response at zero time shift as the matched filter.
Nonetheless, without the normalization of the filter h, the SNR loss introduced by the

mismatched filter is computed as

SNRloss =
"2

C2
p

(2.9)

where " is the maximum output of the mismatched filter at zero time shift and Cp is the
correlation peak of the received signal. Figure 2.2 depicts the output of a matched filter
when a zero-padded Barker sequence of length 13 is received and Figure 2.3 shows the
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output of a mismatched filter, whose real-valued coefficients are obtained by means of the
Least Squares algorithm for minimizing the ISL. Finally, Figure 2.4 shows the coefficients
of the mismatched filter, which are real-valued coefficients.
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Output of a matched filter

Figure 2.2: Output of a matched filter when a zero-padded Barker sequence of length 13

is received and the template signal is itself.

2.2.5 Coherent/Non-Coherent Detection

Coherent receivers use complex systems for phase and frequency estimation of the emitter
Local Oscillator (LO) and thus adjust the receiver LO for their synchronization. Later,
the demodulation process is done by multiplying the received signal by the LO. This pro-
cess (ideally) does not generate Inter-symbol Interference (ISI) and the signal detection is
known as coherent detection. On the contrary, non-coherent receivers, easier to implement
than the coherent ones, recover neither the phase nor the frequency of the transmitter os-
cillator. In the case of using matched filters for signal detection, the demodulation process
is done by correlating the received signal with the carrier symbol [Proak 00]; this results
in ISI, even in the case of an ideal channel, as the auto-correlation of the band-limited
symbol is not a Kronecker delta. The demodulated signal should pass through a matched
filter in order to carry out the signal detection. In non-coherent demodulation schemes ISI
appears as correlation sidelobes, which degrade the SNR of the system. Figure 2.5 shows
the aperiodic auto-correlation of a CDMA signal when the signal pass through a root-
raised cosine filter and is coherently demodulated; Figure 2.6 depicts the auto-correlation



12 State of the Art and Problem Statement

−30 −20 −10 0 10 20 30
−2

0

2

4

6

8

10

12

14

τ

A
m

p
lit

u
d
e

Output of a mismatched filter of 39 taps

Figure 2.3: Output of a mismatched filter of 39 taps when the received signal is a zero-
padded Barker sequence of length 13.

of the same CDMA signal with non-coherent demodulation. As depicted, the degradation
in the auto-correlation of Figure 2.6 is due to ISI generated in the demodulation process.

Possible solutions for reducing correlation sidelobes due to non-coherent demodulation
is the use of carrier symbols with reduced correlation sidelobes and a controlled spectrum,
as repeating Barker codes [Pinke 92], the use of equalizers at the output of the matched
filter [Johns 98], or the use of differential modulation/demodulation schemes [Proak 00].

2.3 Benefits of Coding and Spreading Sequences

Additionally to the maximization of the SNR at the output of a matched filter in AWGN
channels, the use of coding conferes a SNR gain at its output. This is also known as
processing gain and it is derived briefly in this section. The SNR gain, SNRG, due to
coding is defined as the relation between the SNR at the output of the matched filter,
SNRout, and the SNR at the input, SNRin. Mathematically it is expressed as

SNRG =

SNRout

SNRin
(2.10)

For narrowband signals, the SNR at the output of the matched filter, SNRout, is equal to
SNRout =

SNRoutmax

2 . This is due to the fact that the average power at any time instance
is approximately half the instantaneous peak power at the same time instance [Misar 05].
The SNRin is expressed as SNRin =

Pin

N0·B , where B is the signal bandwidth, Pin =

L
Td

is
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Figure 2.4: Comparison of the coefficients of the matched and mismatched filter. The
coefficients of the matched filter are a zero-padded Barker sequence of length 13.

the average power of the input signal, L is the sequence length, Td = L · Ts is the signal
duration and Ts is the symbol duration. So the SNRG can be expressed as

SNRG =

2·L
N0
2

Pin

N0·B
=

Pin·Td

N0

Pin

N0·B
= B · Td (2.11)

Therefore, the SNR gain can be expressed as SNRG = B ·L · Ts, which is approximately
equal to SNRG = L as 1

Ts

⇠
=

B. The SNRG is also known as processing gain and
normally it is expressed in decibels.

Note that for systems in which the users transmit pair of sequences (each one of
length L), in the receiver it is performed the sum of correlation (so the sequences are not
unitary) and consequently, the auto-correlation at zero time shift (⌧ = 0) is equal to 2 ·L.
Therefore, the SNR gain for those systems will be SNRG = 2 · L. This gain gives large
robustness to noise and to narrowband interferences [Chen 07].

In [Garci 11] a comparison of the link budget between a coded and a non-coded ul-
trasonic ranging system is presented. It is demonstrated that the use of spreading codes
in an ultrasonic LPS gives the same maximum range distance as a low bandwidth non-
coded ultrasonic LPS system, but with the feasibility of accurate ranging. Unfortunately,
there is no free lunch and the use of spreading sequences implies several challenges and
trade-offs in ranging systems:
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Figure 2.5: Auto-correlation of a CDMA signal with coherent demodulation and a root-
raised cosine filter.

• The processing gain, which is proportional to the sequence length, L, is restricted by
the maximum allowable emission time and hardware capabilities. Larger sequences
imply larger hardware requirements on the receiver side and larger emission times,
which depending on the relative velocity emitter-receiver, can be prohibitively large
due to Doppler shifts [Pared 11].

• In asynchronous CDMA multiuser ranging systems, where K users transmit simul-
taneously, near-far effect is a major issue. This effect occurs when the signal of an
user impinges the receiver close to it with a larger energy than the one of other users.
As a consequence, weaker signals from users further away cannot be detected because
their auto-correlation functions will be masked by the sidelobe peaks caused by the
signal with more energy. In CDMA satellite communication systems they commonly
use power-controlled emissions in order to receive a similar energy from all the users.
On the receiver side, there are several techniques to cope with the near-far effect,
such as the use of Successive Interference Cancellation (SIC) [Viter 02]. The SIC
method consists on subtracting from the received signals the emitted ones as they
are being detected, improving the detection of the other emitters. Power control ap-
proach is complex, expensive and leads to bulky solutions. SIC approach introduces
a large complexity in the receiver side and has a limited performance at low SNR.
Another solution is the use of time multiplexing, i.e. TDMA. Unfortunately this
solution implies emission times more than K times longer than those required with
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Figure 2.6: Auto-correlation of a CDMA signal with non-coherent demodulation.

CDMA. Again, this can be unfeasible due to Doppler shifts, especially in ultrasound
ranging systems. Finally, the use of Frequency Division Multiple-Access (FDMA),
resolves the near-far effect at the expense of requiring a larger bandwidth.

In general terms, spread spectrum sequences can be classified as shown in Figure 2.7,
where polyphase, real and binary sequences are distinguished. The most used poly-
phase sequences are the so-called Constant Amplitude Zero Auto-Correlation (CAZAC)
sequences and in second place Huffman sequences. CAZAC sequences are polyphase se-
quences with an ideal periodic auto-correlation and unitary magnitude, i.e. constant
envelope, and for this reason, they are commonly used as a preamble for synchronization
of mobile devices. Nevertheless, CAZAC sequences have favourable aperiodic correlation
functions for their use in asynchronous radar systems [Frank 63, Krets 88]. Among the
CAZAC sequences with good aperiodic correlation functions, can be mentioned Frank
sequences [Frank 62] and its variations P1, P2 [Lewis 81] and P3, P4 [Lewis 82] as well as
Zadoff-Chu sequences [Chu 72], which have been recently proposed for their use in Long
Term Evolution (LTE) communication systems.

In what follows, we review the spreading sequences represented in Figure 2.7, with
the exception of polyphase sequences, whose analysis and optimization are beyond the
scope of this thesis. Additionally, in order to make this chapter more readable, Chaotic
sequences and Pseudo-Noise (PN) sequences are reviewed in Appendix A.
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Figure 2.7: General classification of CDMA sequences.

2.3.1 Walsh-Hadamard Sequences

Walsh-Hadamard sequences, also known as Orthogonal Variable Spreading Factor (OVSF)
sequences are orthogonal sequences with applications in synchronous CDMA systems
and used intensively as a basic building block for the generation of Generalized Ortho-
gonal (GO) sequences. These sequences are the rows or columns of a Hadamard matrix3

[Seber 92], which can be generated from any construction method, as the one proposed
by J. J. Sylvester [Sylve 67]. By using the previous method, a Hadamard matrix H2a of
order 2

a, a 2 N, can be generated recursively as follows:

H1 = [1] ; H2 +1 =

"

H2 H2 

H2 �H2 

#

; 2 {0, 1, . . . , a� 1} (2.12)

For instance, if a = 2, the resultant Hadamard matrix, H4 is equal to

H4 =

2

6

6

6

6

6

4

+1 +1 +1 +1

+1 �1 +1 �1

+1 +1 �1 �1

+1 �1 �1 +1

3

7

7

7

7

7

5

3A K ⇥K matrix H
K

with entries ±1 is a Hadamard matrix if HT

K

⇥H
K

= K · I
K

.
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where the rows or columns of the matrix H4 are mutually orthogonal and they represents
Walsh-Hadamard sequences.

2.3.2 Barker Sequences

A binary sequence, s [l] of length L|Barker is a Barker sequence if the absolute value of the
sidelobes of its aperiodic auto-correlation are lower than one. Expressed mathematically
leads to the expression

�

�

�

�

�

�

L|Barker�⌧�1
X

l=0

s [l] · s [l + ⌧ ]

�

�

�

�

�

�

 1; ⌧ 6= 0 (2.13)

Barker sequences have very good aperiodic auto-correlation functions. In fact, the Barker
sequence of length 13 has the largest merit factor known [Jedwa 04]. Unfortunately, the
known number of Barker sequences is very limited, reducing their use to sonar, medical ul-
trasound imaging applications with low processing gain requirements [Pinke 92, Zhao 07]
and to channel estimation in the IEEE 802.11.b standard [IEEE 99]. There are strong
evidences that other binary Barker sequences than those represented in Table 2.1 do not
exist [Turyn 61, Turyn 67].

Length L|Barker Barker Sequence
2 {+1 + 1}
3 {+1 + 1 � 1}
4 {+1 + 1 + 1 � 1}; {+1 + 1 � 1 + 1}
5 {+1 + 1 + 1 � 1 + 1}
7 {+1 + 1 + 1 � 1 � 1 + 1 � 1}
11 {+1 + 1 + 1 � 1 � 1 � 1 + 1 � 1 � 1 + 1 � 1}
13 {+1 + 1 + 1 + 1 + 1 � 1 � 1 + 1 + 1 � 1, +1 � 1 + 1}

Table 2.1: Barker sequences known up-to-date.

2.3.3 Huffman Sequences

Huffman sequences were proposed in 1962 [Huffm 62] as real/complex sequences with
near perfect aperiodic auto-correlation functions. For this reason they are also known as
impulse-equivalent pulse trains, as they almost have a Kronecker delta auto-correlation
function. Obviously, the energy of Huffman sequences are not distributed in only one
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pulse as a Kronecker delta, but they do not have an uniform envelope [White 77]. Given
a polynomial with R roots expressed in the Z-domain as shown in equation 2.14, it
represents a Huffman sequence if its roots are chosen so that they are uniformly distributed
in the complex plane (i.e. at equal angular intervals), with each of the zeros located either
in a circle of radius A or one of radius A�1 [Huffm 62]. In order to obtain real Huffman
sequences, the zeros of the polynomial must appear in conjugate pairs, in other cases they
will be polyphase [Ackro 72].

S
�

z�1
�

= s0 + s1 · z�1
+ · · ·+ sR · z�R (2.14)

Following the previous rule, there are 2

R zero patterns and consequently, K|Huffman =

2

R Huffman sequences, sk[l], 0  k  2

R � 1 of length L|Huffman = R + 1, 0  l  R,
that have a near perfect aperiodic auto-correlation, defined as depicted in equation 2.15.

Csk, sk [⌧ ] =

L|Huffman�1�⌧
X

l=0

sk [l] · sk [l + ⌧ ] =

8

>

>

<

>

>

:

P0, for ⌧ = 0

0 for 1  |⌧ |  R� 1

P0·A�R

1�A�2·R for |⌧ | = R

(2.15)

where P0 is the energy of the Huffman sequence.
Nevertheless, each of the zero pattern of the polynomial S(z�1

), results in Huffman
sequences with a different ambiguity function4 distribution in the time-frequency plane
and with a different energy efficiency [Ackro 70, Ackro 72]. Figure 2.8 shows the auto-
correlation of a real Huffman sequence, which is depicted in Figure 2.9.

2.3.4 Golay Binary Pairs and Complementary Sets of Sequences

In 1961, M. Golay analyzed pairs of binary sequences whose Sum of Aperiodic Auto-
correlation Functions (SACF) is a Kronecker delta and their Sum of Aperiodic Cross-
correlation Functions (SCCF) is zero for all time shifts ⌧ [Golay 61]. These sequences are
currently known as Golay binary sequences pairs.

He gave non-recursive algorithms for the generation of Golay pairs of length 2 ·L1, by
interleaving, and lengths 2 · L1 · L2 by concatenating Golay pairs of lengths L1 and L2;

4Represents the time-frequency plane formed by the output of a matched filter for different Doppler
displacements [Woodw 53].
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Figure 2.8: Auto-correlation function of a Huffman sequence.

and found operations of equivalence between sequence pairs. M. Golay also found pairs
that cannot be generated from the proposed algorithms (the so-called Golay kernels) of
lengths 10 [Golay 61] and 26 [Golay 62] (also called as Golay kernels 10 and 26). Later in
[Jaure 62], Jauregui found by means of an exhaustive computer search that there are no
more non-equivalent kernels of length 26 that the one found by Golay using a “by hand
technique”. More recently, Borwein and Ferguson reported the existence of the Golay
kernel of length 20 [Borwe 03].

In 1974, Turyn proposed a non-recursive algorithm to generate Golay pairs of lengths
L|Gol = 2

N · 10M · 26P where N , M and P are non-negative integers, by combining the
Golay kernels [Turyn 74]. There is still unknown Golay binary pairs of different lengths
from L|Gol = 2

N · 10M · 26P .
In 1972, Tseng and Liu expanded Golay pairs to binary Complementary Sets of Se-

quences (CSS) [Tseng 72]. They proposed to increase the number of sequences in the set
from two (in the case of Golay binary pairs) to K|CSS = 2

k, where k 2 N� {0}.
A set of K|CSS sequences sj,i [l] ; 0  j, i  K|CSS � 1 of length L|CSS whose SACF is

a Kronecker delta is called a CSS. Mathematically is expressed as

K|CSS�1
X

i=0

Csj,i [⌧ ] = ⌘ · � [⌧ ] ; 0  j  K|CSS � 1; ⌘ 2 R� {0} (2.16)
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Figure 2.9: Real Huffman sequence of 14 bits.

Notice that if K|CSS = 2, the CSS is equal to a Golay binary pair. Furthermore,
T|CSS = K|CSS CSS are called uncorrelated CSS if their SCCF is zero for all shifts ⌧ . This
can be expressed as

K|CSS�1
X

i=0

Csj,i,sj0,i [⌧ ] = 0; 8⌧ ; 0  j 6= j0  T|CSS � 1 (2.17)

Nowadays, due to the ideal SACF and SCCF of Golay binary sequence pairs and of
their generalization, CSS, they are used as a basic building block for the generation of
many other sequences for Quasi-Synchronous CDMA (QS-CDMA) systems, as depicted
in Figure 2.10.

N-shift Orthogonal 
sequences LS 

IGC 

T-ZCZ 

GPZ 
E-sequences 

GPC 
LS 

Z-Complementary Golay 

CSS 

Figure 2.10: Block diagram of CSS derived sequences.
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Since 1961, the number of applications found for Golay binary pairs and CSS go from
MIMO radar [Li 10], Non-Destructive Test (NDT) applications [White 92], low Peak-to-
Average Power Ratio (PAPR) OFDM communication systems [Davis 99], or the second
digital terrestrial television broadcasting standard (DVB-T2) [He 11]. The intensive re-
search work done since 1961 produces that a large amount of terminologies exist in the
literature. To avoid confusions, Figure 2.11 includes the basic terminology used for dif-
ferent subclasses of complementary sequences. In [Suehi 88] the term of Complete Com-
plementary (CC) sequences was introduced to define a set of K|CC = 2

k
; k 2 N � {0}

sequences of length L|CC = K2
|CC whose SACF is a Kronecker delta and their SCCF is

zero for all shifts ⌧ . Notice that these sequences have the same correlation properties as
the uncorrelated CSS. Additionally, some authors [Chen 01, Perez 08] use the term ortho-
gonal CSS to designate those sequences whose SCCF holds the equation 2.17. This thesis
uses the notation of [Fan 96] and [Perez 09a] instead, and reserves the term orthogonal
CSS for those complementary sets of sequences whose SCCF is only zero at ⌧ = 0 (i.e.
the sum of dot products is zero). This is an important clarification as it is known that the
maximum number of uncorrelated CSS5 is equal to T|CSS = K|CSS while for orthogonal
CSS, the number of sets is limited by the expression T|CSS  K|CSS · L|CSS [chapter 13,
Fan 96].

Later, H.-H. Chen introduced the term Perfect Complementary (PC) sequences [Chen 04].
These sequences are uncorrelated CSS, generated from an algebraic approach that can take
into account the real scenario in the sequence design, as multipath effect or MAI.

Budišin coined the term of supercomplementary sequences to define a special class
of complex complementary sequences with a good ambiguity function [Budis 87]. Later,
Sivaswamy introduced a set of composite signals generated from complementary sequences
and called subcomplementary sets of sequences. The sum of the aperiodic correlation
functions of these sequences has a zone with low correlation sidelobes and a good am-
biguity function [Sivas 78a, Sivas 82]. Later, Popović and Budišin generalized this gen-
eration algorithm, calling the new sequences generalized subcomplementary sequences
[Popov 87]. In the last years these types of sequences are known as Low Zero Correla-
tion Zone (LCZ) sequences instead of being considered as a subclass of complementary
sequences [Tang 01b]. Both kind of sequences, subcomplementary and generalized sub-

5In what follows, for CSS we will use equivalently T|CSS

and K|CSS

by using the expression
K|CSS

�CSS to refer K|CSS

uncorrelated CSS of K|CSS

sequences.
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complementary, are not strictly complementary sequences and they should be considered
as a type of GO sequences.

Supercomplementary 

Uncorrelated CSS 

Complete 
Complementary 

(CC) 

Subcomplementary 

Generalized  
Subcomplementary 

Perfect 
Complementary 

(PC) 

Figure 2.11: Different subclasses of complementary sequences.

M. Darnell expanded the concept of CSS to the multilevel alphabet, proposing a
non-recursive algorithm to generate multilevel CSS without limitations in the length of
sequences or in the number of sequences in the set [Darne 88, Kemp 89]. Later, Budišin
proposed a recursive algorithm for the generation of a pair of multilevel complementary of
sequences [Budis 90b]. Sivaswamy [Sivas 78b] and Frank [Frank 80] carried out a similar
generalization to the polyphase alphabet.

2.3.5 Generalized Orthogonal Sequences

In synchronous CDMA systems, sequences with an orthogonal behaviour (i.e. cross-
correlation is zero for the time shift ⌧ = 0) between sequences of the family set, as
Walsh-Hadamard sequences (or OVSF sequences) are used. Nevertheless, in practice for
loosely synchronous systems, where receivers and emitters are not strictly synchronized,
the cross-correlation is not zero for ⌧ = 0. Independently of the synchronization accuracy,
multipath provokes the received signal to contain multiple, delayed and attenuated copies
of the transmitted signal; so the orthogonality between received and transmitted signal is
affected.

Therefore, the ideal solution would be to find sequences with ideal auto-correlation
and cross-correlation functions. They would allow to work in a completely asynchronous
manner, independently of the relative delays among users and mitigating ISI and Multiple-
Access Interferences (MAI). Nevertheless, these ideal sequences do not exist [Welch 74,
Leven 99, Sarwa 79], so when ISI is mitigated by reducing the auto-correlation sidelobes,
MAI increases, worsening the cross-correlation function and viceversa. Traditionally, in
CDMA systems, sequences with good (but not ideal) aperiodic correlation properties
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as Kasami sequences have been used. In contrast to mobile communication systems, a
large majority of Local Positioning Systems (LPS) do not use power-controlled emissions
to receive an equal amount of signal energy from each emitter. This implies that with
conventional sequences, the system is severely affected by near-far effect. Therefore,
positioning with a low level of errors is only feasible in those positions where the energy
of received signals from each beacon is equal.

Although CSS have ideal sums of aperiodic correlation functions, they increase the
complexity of the transmission scheme, as each user has to transmit a set of sequences.
Furthermore, the emission time depends on the number of users as the number of sequences
in a CSS set increase with the number of users. The typical transmission scheme in
communication systems is Multi-Carrier CDMA (MC-CDMA), using a carrier frequency
for each sequence of the set [Tseng 00]. In narrowband ranging systems, for the case
of K|CSS = 2 CCS, the use of quadrature modulation schemes as QPSK is common
[Herna 04], whereas for larger complementary sets, transmissions schemes based on the
concatenation or interleaving of the set of sequences is used [Alvar 06], worsening in this
way the correlation properties of the CSS [De Ma 06].

For this reason, in the last years the interest for QS-CDMA systems have boosted
[Suehi 94, Fan 03, Li 03]. These systems use Generalized Orthogonal (GO) or Generalized
Quasi-Orthogonal (GQO) sequences. GO sequences have a Zero Correlation Zone (ZCZ)
WZCZ in the vicinity of the correlation time shift ⌧ = 0, or equivalently an Interference
Free Window (IFW), where IFW = 2 ·WZCZ + 1, i.e. the double-sided ZCZ, due to the
symmetric properties of the correlation functions. GQO sequences, instead of having a
ZCZ, have a Low Correlation Zone (LCZ) next to the time shift ⌧ = 0 where the amplitude
of the correlation sidelobes are limited to a certain value.
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Figure 2.12: Normalized aperiodic correlation functions of a class of GO sequence.

Figure 2.12 depicts the aperiodic correlation functions of a GO sequence with the IFW
and ZCZ marked to differentiate both zones. Notice that the correlation sidelobes outside
of the IFW are larger than some non-GO sequences as PN sequences. For this reason, it
is important to ensure that the maximum delay between users is lower than WZCZ and
to limit the zone of interest to the IFW.

GO sequences are sub-optimum solutions because of the unfeasibility to generate unit-
ary sequences with ideal aperiodic correlation functions. Figure 2.13 shows a classification
of GO sequences which will be introduced in the following sections.

Figure 2.13: General classification of GO sequences.
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Z-Complementary Sequences

Fan et al. propose Z-Complementary sequences [Fan 07], as a generalization of the Golay
binary sequence pairs to cope with their limitation in length. As shown previously, the
lengths of the Golay binary sequences pairs, L|Gol, are limited to L|Gol = 2

N · 10M · 26P ,
being N , M and P non-negative integers [Golay 61, Borwe 03]. The limitation in length
of Golay binary sequences pairs as well as the reduced number of uncorrelated pairs (also
known as mates) make difficult their use in practice. Nevertheless, they are commonly
considered as a building block for the generation of GO sequences [Stanc 01, Chen 06,
Zhang 04]. Consequently, the former limitations of Golay binary sequence pairs are also
applicable to GO sequences derived from them.

For this reason, Fan et al. propose a generation algorithm of complementary sequences
with sub-optimum aperiodic correlation properties (i.e. with ZCZ) [Fan 07], so the limit-
ation in length is relaxed and the number of sequences available is enlarged.

The same generation algorithms and equivalence rules as those used in Golay binary
sequence pairs can be used for Z-complementary sequences. Similarly to Golay binary
pairs, there are Z-complementary pairs which cannot be generated from the Golay rules
[Golay 61], the so-called kernels. In [Fan 07] Fan et al. present a list of the kernels up
to length L|ZC = 26 with maximum ZCZ, W|ZC . Those kernels include Golay kernels of
lengths L|Gol = 2, L|Gol = 10 and L|Gol = 26 with W|ZC = L|ZC .

Following the generation rules used for complementary sets [Tseng 72], Fan et al.
conjecture that for certain values of W|ZC , Z-complementary sequences exist for all lengths.
Later, Li et al. demonstrate in [Li 11a] the existence of Z-complementary pairs of lengths
L|ZC � 4 for W|ZC = 3 , L|ZC � 6 for W|ZC = 4, L|ZC � 8 for W|ZC = 5 and L|ZC �
10 for W|ZC = 6. Additionally, they derive the ZCZ size upper bound for binary Z-
complementary pairs of length L|ZC odd and is equal to

W|ZC 
L|ZC + 1

2

(2.18)

For the case of Z-complementary sets, the number of sets TZC is bounded by the expression

T|ZC  K|ZC ·
�

L|ZC

W|ZC

⌫

(2.19)

where K|ZC represents the number of sequences in the set and bxc represents the largest
integer less than or equal to x. Notice that if W|ZC = L|ZC , Z-complementary sequences
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result in uncorrelated CSS and the set size upper bound becomes equal to T|ZC  K|ZC .
Additionally, if W|ZC = 1, the Z-complementary sequences become orthogonal comple-
mentary sequences.

Loosely Synchronized Sequences

In 2000, LinkAir company proposed Loosely Synchronized (LS) sequences as a candidate
for the 3G wireless communications standard to cope with ISI and MAI in QS-CDMA
systems [Li 00]. These unitary and ternary sequences over the alphabet {�1, 0,+1} have
ideal aperiodic correlation functions in a window IFW, placed in the vicinity of the cor-
relation shift ⌧ = 0. There are two generation algorithms for LS sequences, namely:

1. Generation of LS sequences from Golay binary pairs :

In [Stanc 01], a comprehensive study of the LS generation method of [Li 00] was
presented. This algorithm generates a set of K|LS = 2

a
; a 2 N � {0} LS sequences

of length L|LS = K|LS · L|Gol + W|LS and is based on the concatenation of Golay
binary sequence pairs following a code tree and the insertion of a chain of zeros of
length W|LS in the middle of the concatenated sequence. The length of this chain is
equal to the ZCZ length if and only if W|LS  L|Gol � 1. The generation algorithm
of these sequences is introduced in Chapter 5.

2. Generation of LS sequences from CSS :

In [Zhang 05] Zhang et al. propose a generation algorithm of LS sequences from
K|CC CC sequences of length L|CC is proposed. This algorithm generates K|LS =

K
(1+↵)
|CC LS sequences of length L|LS = K

(1+↵)
|CC ·L|CC+(K|CC�1)·W|LS and it requires

↵ iterations to increase the number and length of the LS sequences, (↵ 2 N� {0}).
Both, the number and length of LS sequences can be equivalently adjusted by using
K|CSS CSS of length L|CSS, Sj(z

�1
) = {Sj,0(z

�1
), Sj,1(z

�1
), . . . , Sj,K|CSS�1(z

�1
)}; 0 

j  K|CSS � 1 and P=1 iterations instead of using ↵ > 1 iterations and CC se-
quences [Perez 08]. So K|LS = K2

|CSS LS sequences of length L|LS = K2
|CSS ·L|CSS +

�

K|CSS � 1

�

·W|LS can be generated by following the recursive equation

Vg,k

�

z�1
�

=

K|CSS�1
X

i=0

hk,i · z�i·L|CSS ·

2

4

K|CSS�1
X

j=0

z�j·
(

K|CSS ·L|CSS+W|LS) · S⇡g,i,j

�

z�1
�

3

5

(2.20)
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where 0  g, k  K|CSS � 1, hk,i are the elements of a Hadamard matrix of or-
der K|CSS and ⇡g,i = (g + i)modK|CSS. As stated in equation 2.20 LS sequences
are generated by concatenating the j-th complementary sequence of the set ⇡g,i,
S⇡g,i,j(z

�1
), with the polarity given by the Hadamard entry hk,i and by inserting

a chain of zeros W|LS = L|CSS � 1 every K|CSS concatenated sequences. This al-
gorithm is more general than the previous one from Golay binary sequence pairs.
In fact, if K|CSS = 2 and K|LS = 4 both algorithms are equivalent.

Generalized LS Sequences

Tang and Mow propose in [Tang 06] the generation of groups of Generalized Loosely Syn-
chronized (GLS) sequences with favourable intergroup cross-correlation functions, while
maintaining the sequence and ZCZ length of the original LS sequences. The generation
algorithm of GLS sequences is a generalization of the one for LS from Golay binary pairs.
The generation of GLS sequences clearly shows the problem of generating large families
of GO sequences for a given length and with the largest theoretical ZCZ length. Tang and
Mow found a generation algorithm of GLS sequences that almost reach the theoretical
maximum number of sequences that can be generated for a given sequence length and
ZCZ length. T|GLS groups of K|GLS = K|LS = 2

a
; a 2 N � {0} GLS sequences of length

L|GLS = L|LS are generated from T|GLS sets of Hadamard matrices of order 2a�1 [Yang 00],
which are constructed from sequences with good cross-correlation properties, as Kerdock
codes [Kerdo 72] (used when a is even, T|GLS = 2

a�2) or Gold sequences (used when a is
odd, T|GLS = 2

a�1).
The aperiodic auto-correlation and cross-correlation properties of GLS sequences of the

same group is the same as those of LS sequences. Nonetheless, for the cross-correlations
of GLS sequences from different groups (i.e. generated from a different Hadamard matrix)
appears an interference at the time shift ⌧ = 0 with a maximum value lower than 2

(

a+1
2 ) ·

L|GLS when a is even and lower than 2

(

a+2
2 ) · L|GLS when a is odd. This is an important

issue, as the cross-correlation interference at ⌧ = 0 could be erroneously detected as an
auto-correlation peak. There exists a trade-off between ZCZ length, sequence length and
family size; this problem would be more tractable if a set of non-equivalent Hadamard
matrices exists whose rows and/or columns are orthogonal with the rows and/or columns
of any other non-equivalent Hadamard matrix of the set.
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Generalized Pairwise Complementary Sequences

One of the main disadvantages of LS sequences is their limited energy efficiency, as the
IFW is obtained by inserting a chain of zeros in the middle of the sequence. Moreover,
when the number of users is considerable, the IFW is reduced to avoid very large sequences.
In 2006, the research group of Hsiao-Hwa Chen proposed a novel kind of binary pairs of
spreading sequences, known as Generalized Pairwise Complementary (GPC) sequences
[Chen 06]; these sequences are energy efficient, can be easily implemented and have a
controllable IFW.

T|GPC = 2 · G; G = 2

a
; a 2 N � {0} pairs of GPC sequences (K|GPC = 2) of length

L|GPC = 4·G·L|CC are generated from CC sequences of length L|CC and Generalized Even
Shift Orthogonal Sequences (GESO), which confers to the sequences sums of aperiodic
correlation functions with sparse interferences, at know locations. GPC sequences are
divided into two groups; the SACF has an IFW of length IFW = 8 · L|CC � 1, while the
SCCF of GPC sequences has bi-valued properties: the intra-group SCCF has an IFW of
length IFW = 8 · L|CC � 1, while the inter-group SCCF is zero for all shifts ⌧ . These
sequences will be analyzed thoroughly in Chapter 5.

Generalized Pairwise Z-Complementary Sequences

Generalized Pairwise Z-complementary (GPZ) sequences, pairs derived from Z-complementary
sequences, are a variation of GPC sequences and they are proposed with the objective
of increasing the number of sequences available. As the number of CC mates are lower
than the number of Z-complementary sets for a given sequence length L (refer to equation
2.19), GPZ sequences, generated from Z-complementary sequences, have a larger number
of pairs, T|GPZ , than the one of GPC sequences for a given length.

Furthermore, the lengths of CC sequences are theoretically limited to L|CC = 2

N ·10M ·
26

P , whereas the lengths of Z-complementary sequences have less restrictions [Li 11a];
this implies that GPZ sequences are more flexible than GPC sequences. Apart from the
use of Z-complementary sequences instead of CC sequences for the generation of GPZ
sequences, the later steps are equal to the GPC algorithm. In fact, the sum of aperiodic
correlation functions maintains the bi-valued correlation property, with a reduction on the
IFW length. The GPZ set is defined as GPZ(T|GPZ , L|GPZ , IFW), where T|GPZ = T|ZC ·G
is the number of GPZ pairs of sequences (K|GPZ = 2) and G is the Walsh-Hadamard
expansion factor; L|GPZ = 4 · L|ZC · G is the length of GPZ sequences and the IFW is
equal to IFW = 8 ·W|ZC + 1.
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Inter-Group Complementary Sequences

The SACF of both, GPC and GPZ sequences have bi-valued properties. The generaliza-
tion of GPC sequences, named Inter-Group Complementary (IGC) sequences is proposed
in [Li 08] to increase the number of groups from two of GPC sequences to K|PC .

Given T|PC = K|PC binary PC sets of K|PC sequences of length L|PC = W|IGC + 1,
Sj[`] =

n

sj,0 [`] , sj,1 [`] , . . . , sj,K|PC�1 [`]
o

; 0  j  K|PC � 1; 0  `  L|PC � 1 and a
Hadamard matrix of order G, HG, IGC sequences are generated by applying the Kronecker
product HG ⌦ Sj[l]; 0  j  K|PC � 1. The j-th IGC group is defined as Y(j)

[l] =

{y(j)g,0[l], y
(j)
g,1[l], . . . , y

(j)
g,K|PC�1[l]} where y

(j)
g.k [l] is the k-th sequence of the g-th set belonging

to the j-th group, 0  l  L|IGC � 1; 0  g  G � 1; 0  k, j  K|PC � 1, with
L|IGC = G · L|PC and it is generated as:

y
(j)
g,k [l] = hg,0 · sj,k [l] + hg,1 · sj,k

⇥

l � L|PC

⇤

+ · · ·+ hg,G�1 · sj,k
⇥

l � (G� 1) · L|PC

⇤

(2.21)

where hu,v 2 {+1,�1} ; 0  u, v  G � 1 are the entries of the Hadamard matrix HG.
The previous algorithm generates T|IGC = G·K|PC sets of K|IGC = K|PC IGC sequences in
each set; and the entire set size is divided into K|PC complementary groups. Finally, the
sums of aperiodic correlation functions of IGC sequences have the following properties:

SACF [⌧ ] =

K|IGC
X

k=0

L|IGC�1�⌧
X

l=0

y
(j)
g,k[l] · y

(j)
g,k[l + ⌧ ]

=

8

<

:

Cp if ⌧ = 0

0 if 1  |⌧ |  W|IGC

0  g  G� 1; 0  j  K|IGC � 1; Cp 2 R� {0}

(2.22)

SCCF [⌧ ] =

K|IGC
X

k=0

L|IGC�1�⌧
X

l=0

y
(j)
g,k[l] · y

(j0)
g0,k[l + ⌧ ]

=

8

<

:

0 if 0  |⌧ |  W|IGC ; j = j0

0 if 8⌧ ; j 6= j0
0  g, g0  G� 1; g 6= g0; 0  j, j0  K|IGC � 1

(2.23)

So IGC sequences have also bi-valued aperiodic correlation properties.
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T-ZCZ Sequences

Zhang et al. propose in [Zhang 04] Three-Zero Correlation Zone (T-ZCZ) sequences and,
similarly to GPC sequences, they are a class of GO binary sequence pairs. These sequences
have a ZCZ in the vicinity of ⌧ = 0 and two more in the final part of the aperiodic
correlation functions. They are constructed by rearranging the Tseng and Liu generation
matrix [Tseng 72]; the form in which it is rearranged leads to a family of T-ZCZ sequences
with different ZCZ lengths. In any case, the ZCZ length of these sequences is lower
than the one obtained with GPC sequences. For a detailed description of the generation
algorithm of T-ZCZ sequences refer to [Zhang 04, Zhang 05, Perez 09a].

2.4 Theoretical Bounds and Merit Factors

There are several metrics to determine the goodness of a spreading sequence s [l] of length
L. Golay proposed the so-called Merit Factor, which is defined as follows [Golay 72]:

Merit Factor =
Cs,s [0]

2

2 ·
L�1
P

⌧=1
|Cs,s [⌧ ]|2

(2.24)

Notice that the Merit Factor evaluates the relationship between the squared energy of
s [l], measured with the auto-correlation peak at zero time shift (⌧=0) and the total
energy of the auto-correlation sidelobes. More general metrics to evaluate the correlation
functions of spreading sequences are the ISL and the PSL. Given a family of K sequences
S[l] = {s0 [l] , s1 [l] , . . . , sK�1 [l]} of length L, the ISL determines the total energy of the
auto-correlation and cross-correlation sidelobes. Mathematically it is defined as

ISL =

K�1
X

i=0

L�1
X

⌧=�L+1
⌧ 6=0

|Csi,si [⌧ ]|
2
+

K�1
X

i=0

K�1
X

j=0
j 6=i

L�1
X

⌧=�L+1

�

�Csi,sj [⌧ ]
�

�

2 (2.25)

and the PSL computes the maximum peak sidelobe of the correlation functions, i.e. the
PSL is equal to

PSL = max

�

Csi,sj [⌧ ]
 

; 0  i, j  K � 1; 8⌧ if i 6= j; 8⌧ 6= 0 if i = j (2.26)
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An equivalent metric to the PSL are the auto-correlation and cross-correlation bounds,
✓AC and ✓CC respectively. These metrics are defined for a family of K sequences S[l] =

{s0 [l] , s1 [l] , . . . , sK�1 [l]} of length L as follows:

✓AC = max

⇢

|Csi,si [⌧ ]|
Csi,si [0]

�

; 8⌧ 6= 0; 0  i  K � 1

✓CC = max

(

�

�Csi,sj [⌧ ]
�

�

Csi,si [0]

)

; 8⌧ ; 0  i, j  K � 1; i 6= j (2.27)

✓ = max {✓AC , ✓CC} =

PSL
L

Consequently, the joint correlation bound, ✓, 0  ✓  1, is the normalized PSL and
determines the correlation properties of a set of sequences, where the lowest bound means
that the sequence set has the best correlation properties.

Theoretical lower bounds for these metrics have been derived. They determine math-
ematically the minimum values which can be accomplished for a given family of K spread-
ing sequences of length L. These theoretical bounds can be divided into four groups:
theoretical bounds for unitary and non-GO/GQO sequences, theoretical bounds for non-
unitary and non-GO/GQO sequences, theoretical bounds for unitary and GO/GQO se-
quences and theoretical bounds for non-unitary and GO/GQO sequences. There is a
considerable amount of effort done to derive the tightest lower bounds, i.e. best theoret-
ical lower bounds to evaluate the correlation properties of a set of sequences. Here only
the current tightest bound is included; for a comprehensive overview of the theoretical
lower bounds refer to [Fan 04].

2.4.1 Theoretical Bounds for Unitary and Non-GO/GQO Sequences

In this group are included sequences as Walsh-Hadamard (also known as OVSF sequences)
or PN sequences (refer to the classification of Figure 2.7). The tightest lower bounds for
these class of sequences are the Peng-Fan lower bounds [Peng 04], which are stronger than
Welch [Welch 74], Sarwate [Sarwa 79] and Levenshtein [Leven 99] lower bounds. They are
expressed as follows:

p
3 · L�

p
K

⇣p
3 ·K � 2 ·

p
K
⌘

· L2
· ✓2AC +

p
3 · (K � 1)

⇣p
3 ·K � 2 ·

p
K
⌘

· L
· ✓2CC � 1 (2.28)
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✓ � L ·

s p
3 ·K � 2p

3 ·K · L� 1

; forK � 3, L � 2 (2.29)

2.4.2 Theoretical Bounds for Non-unitary and Non-GO/GQO Se-
quences

This group includes sequences as Golay binary sequence pairs and CSS (refer to the
classification of Figure 2.7). If T|CSS = K|CSS CSS are used, each of them composed
of K|CSS sequences, then the theoretical bound is zero, but this is not true when it is
transmitted more than K|CSS sets of sequences simultaneously. In general, Welch derived
the theoretical lower bound for a system of T sets of K sequences, each of them of length
L that transmits T > K sets; This lower bound is equal to:

✓ � T · L ·

s

K
T � 1

K · (2 · L� 1)� 1

(2.30)

Notice that if the number of sets T is equal to T = 1, then the Welch lower bound of
equation 2.30 turns out in the conventional Welch lower bound used for binary unitary
sequences.

Recently Liu proposed the following theoretical lower bound for multichannel systems
[Liu 11a]:

✓ �

s

T · L2 ·K � T 2 · L2 � T ·K·(L2�1)
3

L ·K � 1

(2.31)

The proposed bound is stronger than the Welch lower bound for multichannel systems if
one of the following conditions holds:

1. K = 4 · T � 1, T > 2 andL > 2
1� 1

T

, or

2. K � 4 · T, T > 2 andL � 2

2.4.3 Theoretical Bounds for Unitary GO/GQO Sequences

The lower bounds derived for unitary GO/GQO sequences are generalizations of some of
the previous lower bounds and the tightest ones are the Peng-Fan lower bounds [Peng 04].
They are derived for K unitary GO/GQO sequences of length L over complex roots of
unit, as LS sequences. They include the Tang-Fan [Tang 01a], Welch [Welch 74], Sarwate
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[Sarwa 79] and Levenshtein [Leven 99] lower bounds when the length of the LCZ (or ZCZ)
window is equal to WLCZ = L� 1:

3 · � · ✓2AC + 3 · (� + 1) · (K � 1) · ✓2CC � 3 ·K · L� 3 · L2

+3 ·K · � · L� 2 ·K · � �K · �2
; for any 0  �  WLCZ (2.32)

p
3 · L�

p
K

⇣p
3 ·K � 2 ·

p
K
⌘

· L2
· ✓2AC +

p
3 · (K � 1)

⇣p
3 ·K � 2 ·

p
K
⌘

· L
· ✓2CC � 1;

forK > 3, L > 2, WLCZ >

r

3

K
· L� 1 (2.33)

2 · (4� � 1) · ✓2AC + 3 · (K � 1) · 4� · ✓2CC �
�

3 ·K · L� L2 � 4 ·K
�

· 4�

+6 · (� � 2) · 2� ·K + 6 ·K · � + 16 ·K � 2 · L2
; for any 0  �  WLCZ (2.34)
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2.4.4 Theoretical Bounds for Non-unitary GO/GQO Sequences

The previous theoretical lower bounds do not contemplate sets of GO/GQO sequences
as GPC, T-ZCZ, IGC or Z-Complementary sequences. Recently some novel theoretical
bounds for families of T sets of K GO/GQO sequences have been derived. In this case,
the tightest lower bound is the one of Liu [Liu 11b]. Given T sets of K sequences of length
L, with energy E and LCZ window WLCZ , the Liu theoretical lower bound is equal to:

✓ � E ·

s

�

T
K � 1

�

·WLCZ � L+ 1

(T ·WLCZ � 1) · (L+WLCZ � 1)

(2.38)

If K = 1, then the lower bound of equation 2.38 will be the same as the Tang-Fan
theoretical bound [Tang 01a]. Furthermore, in [Liu 11b] the upper bound of the number
of sets, T is derived and expressed as

T  (1� ✓2 · E2
) ·K · (L+WLCZ � 1)

[(1�K · (L+WLCZ � 1) · ✓2 · E2
)] ·WLCZ

; for ✓ <
1

E ·
p

K · (L+WLCZ � 1)

(2.39)
The upper bound of equation 2.39 is reached if a Hadamard matrix of order T is used
to expand the set size to T = K ·

j

L
WZCZ

k

+ K and the sequence sets are ternary GO
sequences with the same energy E, i.e. there are a ZCZ (WZCZ) instead of a LCZ window
(WLCZ) in the aperiodic correlation functions.

2.5 Matched Filter Architectures for Signal Detection

and Ranging Systems

For practical signal detection and ranging applications, not only it is important the use
of spreading sequences with good correlation properties, but also the design of efficient
architectures for their generation and, which is more critical, their correlation. The term
efficient is used here in the sense of requiring less operations than the straightforward
correlator. In the literature, to the author’s knowledge, most of the efficient architectures
are based on some orthogonal transforms: Fast Walsh Transform (FWT) [Budis 89], Fast
Fourier Transform (FFT) [Van N 91] or Discrete Wavelet Transform (DWT) [Coker 10].
All of those transformations can be analyzed using a filter bank approach. In what follows,
we review the most common architectures used for implementing matched filters in signal
detection and ranging systems.
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2.5.1 Tapped Delay Line Architecture

This architecture is also known as the straightforward implementation of a matched filter
(or by extension of any FIR filter). Consider the real sequence s [l] = {s0, s1, . . . , sL�1} of
length L and with Z-transform S(z�1

), whose elements can be represented with b bits and
the input signal r [l] with Z-transform R(z�1

). Then, the Tapped Delay Line architecture
for the correlation of r [l] is the one represented in Figure 2.14. Notice that the coefficients
of the matched filter are the time reversed version of the sequence elements of s [l], and that
this architecture has L�1 stages. Therefore, it requires L multiplications, L�1 additions
per input sample and L � 1 delays. Clearly, if the sequence is binary, s [l] 2 {+1,�1},
then no multiplications are required.

R z-1( )

C
R,S

z-1( )
sL-1 sL-2 sL-3 s0 s1 

-1Z -1Z -1Z
b bits 

Figure 2.14: Tapped Delay Line implementation of a straightforward matched filter.

2.5.2 Lattice Architectures and FFT

Lattice architectures are very popular in adaptive filters and multirate filter banks due
to its desirable properties, as modularity, resilience to quantization effects or losslessness
in the case multirate filter banks [Vaidy 90]. The coefficients �l (0  l  L � 1) of the
standard lattice architecture can be directly derived from the coefficients of the Tapped
Delay Line (straightforward) FIR architecture [Proak 96] and it requires 2 · (L� 1) mul-
tiplications and additions and L � 1 delays for correlating a signal R(z�1

) of length L

with s[l] (with Z-transform equal to S(z�1
) ) in Q = L� 1 stages. It can be expressed as

depicted in Figure 2.15.
In 1991, Budišin [Budis 91], and later Popović [Popov 99a], proposed an efficient cor-

relator for Golay binary pairs of sequences of lengths L|Gol = 2

N
; N 2 N � {0} with an

efficient lattice architecture (depicted in Figure 2.16) that requires only Q = N stages
for the correlation of a sequence of the Golay pair, which we will reference from now on
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β0

...

R z-1( )
β0

... Z-1  Z-1

βQ-1

βQ-1β1

β1

 Z-1
CR,S z

-1( )

R2 z
-1( )

Figure 2.15: Standard lattice architecture for filtering the input R(z�1
) in Q = L � 1

stages. The output R2(z
�1
) is not used.

as {s(Q)
j,0 [l], s

(Q)
j,1 [l]} for 0  j  1 by adding the superscript (Q) to the original notation

to indicate the number of stages for generating/correlating them. The coefficients W (1,q),
0  q  Q� 1, are complex numbers of unit modulus and D(q) is a delay whose value is
any permutation of the set {20, 21, . . . 2Q�1}. Therefore, the implementation of the Golay
pair SACF with this architecture requires only 4 · log2

�

L|Gol

�

+ 1 additions/subtractions
per input sample and 2 · (L|Gol � 1) delays.

( )0-DZ
( )1,0W

...

... ( ) ( )Q
j,1

-1
R,S
C Z

( ) ( )Q
j,0

-1
R,S
C Z

( )1,Q-1W

( )Q-1-DZ

+
− −
+

R z-1( )  Z-D 1( )

W 1,1( )

−
+

Figure 2.16: Efficient Golay correlator [Budis 91, Popov 99a].

From a filter bank point of view, the ideal Golay binary pairs SACF (and hence their
sum of their power spectrum is a constant of amplitude 2·L|Gol) makes that their correlator
can be implemented by using a two-channel Perfect Reconstruction Quadrature Mirror
Filter (PR-QMF). In fact, the architecture proposed by Budišin and Popović is quite
similar to the analysis bank of the two channel PR-QMF [p. 305, Vaidy 93, Meyer 01].
Nonetheless, the number of stages for the correlator of [Budis 91, Popov 99a] is only
log2(L|Gol), whereas for the PR-QMF, the length of the analysis bank is equal to the
length of the input signal, L. Figure 2.17 shows the block diagram of a two-channel
PR-QMF, where ˆR(z�1

) represents the filtered version of the input R(z�1
).

De Marziani et al. have generalized the efficient correlator of [Budis 91, Popov 99a]
to K|CSS = 2

k
; k 2 N � {0} CSS of length L|CSS = KQ

|CSS, Q 2 N � {0}, and it has
an architecture quite similar to the K|CSS-channel Perfect Reconstruction (PR) filter
[De Ma 07]. These architectures has been also applied to the efficient generation and
correlation of GO sequences [Perez 08, Perez 09b].
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R Z-1( )

 ↓ 2  A0

...

 -1

 ↓ 2α

 Z-1  Z-1  Z-1  AQ-1

 −AQ-1 −A1

 A1

 Analysis bank

...

...

  
R̂ Z-1( ) A0

 ↑ 2
α Z-1  Z-1 Z-1

 AQ-1  A1

 Synthesis bank

 -1 −AQ-1  −A1

 ↑ 2 −A0

Figure 2.17: Analysis and synthesis bank of a two-channel PR-QMF [p. 305, Vaidy 93].

Recently, Donato et al. have modified the architecture proposed in [Budis 91, Popov 99a]
to perform simultaneously the SACF [Donat 09a]. Again, this proposal has a strong sim-
ilarity to the synthesis bank of the two channel PR-QMF (refer to Figure 2.18), but it
requires only log2(L|Gol) stages in comparison with the synthesis bank of the PR-QMF
(its length is equal to the length of the input signal L). Consequently, the proposal of
[Donat 09a] requires only log2

�

L|Gol

�

+ 1 additions and L|Gol � 1 delays to perform the
SACF of a Golay.

( )1,0W

...

...

C
Sj,i
Q( ),Sj,i

Q( ) Z
-1( )

i=0

1

∑
( )1,Q-1W

( )Q-1-DZ

+
− −
+ W 1,Q-2( )

−
+

Z-D
Q-2( ) ( )0-DZ

Sj,0
Q( ) Z-1( )

 
Sj,1

Q( ) Z-1( )

Figure 2.18: Optimized Golay Correlator of a Golay pair in Q = N stages [Donat 09b].

Donato et al. and De Marziani et al. have generalized the improved architecture
of [Donat 09a] to K|CSS = 2

k
; k 2 N � {0} CSS of length L|CSS = KQ

|CSS in Q stages
[Donat 09b, De Ma 11] and also it has been applied to the efficient generation and cor-
relation of GO sequences [Perez 10, Perez 11].

Other efficient correlation architectures take advantage of the correlation properties
in the frequency domain, by using the FFT [Coole 65]. Compared to the architectures
proposed for Golay pairs, FFT-based architectures are not specific for a given type of
spreading sequence, but this approach requires an FFT, the complex multiplication of the
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result with a pre-computed complex vector stored in memory (FFT of the correlation tem-
plate) and an Inverse Fast Fourier Transform (IFFT). By using a radix-2 FFT algorithm
(decimation-in-time or decimation-in-frequency), each FFT/IFFT requires L

2 · log2L com-
plex multiplications and L · log2L complex additions, where L is a power-of-two number
larger than or equal to the signal length (and equal to the number of FFT points); the
complex product between the pre-computed complex vector and the result of the FFT
requires L complex multiplications and L� 1 additions [pp. 477-478 Proak 96].

Finally, other orthogonal transforms have been used to design efficient correlators;
for example, Budišin proposed an efficient correlator for m-sequences of length L|m�seq

by using the Fast Walsh Transform (FWT) [Budis 89]. This architecture requires only
2 ·L|m�seq · log2

�

L|m�seq

�

additions/subtractions. In [Coker 10], Coker and Tewfik exploits
the concepts of the Discrete Wavelet Transform (DWT) and the properties of the E-
sequences to generate an efficient architecture, which curiously has the same structure as
the one proposed in [Budis 91, Popov 99a].

2.6 Coding in Local Positioning Systems

In the last years, there has been a significant increase of interest for mobile devices that
offer location based services (the so-called location aware systems) have been increased
dramatically. According to the market research carried out by IDTechEx [IDTec 12], the
Real Time Locating Systems (RTLS) market will rise from 293 million dollars in 2012 up
to 4 billion dollars in 2022.

The requirements on the location accuracy depend on the application and impose the
technology to be used; the accuracies can go from the sub-millimetre range for InfraRed
(IR) systems, to hundreds of meters for E-911 emergency location systems.

In this section, we review the most representative works related to Ultra-Wideband
(UWB) and ultrasound (US)-based local positioning systems.

2.6.1 Ultra-Wideband Local Positioning Systems

UWB is defined as any signal with a center frequency larger than 2.5 GHz and a bandwidth
larger than 500 MHz or alternatively, any signal with center frequency lower than 2.5 GHz
and relative bandwidth larger than 20% [Feder 02]. In 2002 the Federal Communications
Commission (FCC) liberated the frequency band that goes from 3.1 GHz to 10.6 GHz
with a power emission limit of �41.3 dBm/MHz.
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Due to the generic definition of UWB and the broad range of operational frequencies,
in the literature there is a considerable variety of UWB-based Local Positioning Systems
(LPS), working in different conditions and with very different performances. So, it is hard
to make a correct comparison of the reported systems.

Consider the Cramér-Rao theoretical limit for the Root Mean Square Error (RMSE)
in the estimation of the Time Of Arrival (TOA) of a signal [Sahin 08] as

RMSETOA � c

2 ·
p
2⇡ ·

p
SNR · B

(2.40)

where c is the speed of light. Notice that the theoretical limit for TOA estimation depends
inversely on the effective signal bandwidth, B, and on the SNR. Also, the center frequency
determines the penetration capabilities of the UWB signal over the materials. Considering
the TOA measurements are statistically independent and their estimator is unbiased, the
Cramér-Rao theoretical limit for the RMSE in the estimation of the Time Differences Of
Arrival (TDOA) of a signal is equal to:

RMSETDOA � c

2 · ⇡ ·
p

SNR · B
(2.41)

For the sake of clarity, Table 2.2 depicts the most representative systems available in
the literature.

2.6.2 Ultrasound-based Local Positioning Systems

One of the first US-based LPS was the Active Bat system, developed by AT&T [Ward 97].
This location system is based on ultrasonic emitter tags (carried by the unit to locate) and
US base stations (receivers placed on the ceiling). Close to the base stations, the system
uses RF for synchronization purposes, so it triggers the emission of an uncoded ultrasonic
signal by the tag. The US base stations send the estimated distance measurements to a
centralized computer to obtain the estimated user position. The channel division is based
on TDMA, thus limiting the system update rate. In its first version, the positioning errors
were lower than 9 cm for the 95% of the readings.

Later, another US-based location system known as Cricket, was developed [Priya 00].
Similar to Active Bat, the system uses RF signalling for synchronization purposes, TDMA
channel division and an uncoded pulse transmission.
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On the contrary, Cricket is a privacy-oriented system, so US transmitters are placed
on the ceiling and the received signal is processed in the mobile device. The positioning
errors of Cricket are lower than 123.7 cm for the 95% of the readings with a non-valid
measurements rate of the 39.18%.

Atlintida system, [Gonza 09], improves the positioning accuracy of the Cricket system
to 16.6 cm for the 95% of the readings and the rate of non-valid measurements to 4.25%
by using spreading sequences of length L.

All the previous systems use narrowband US transducers: in the case of Atlintida
system the transducers bandwidth is approximately 2 kHz. Therefore, in order to accom-
modate the encoded signalling of the Atlintida system to the transducer bandwidth, the
emission duration increases by a factor L compared with Cricket emission time.

Hazas and Ward proposed a novel centralized and broadband location system, called
Dolphin [Hazas 02]. The novelty of the centralized location version of the Dolphin system,
lies in the use of ad-hoc broadband transducers and simultaneous emissions, encoded with
Gold spreading sequences; i.e. the use of CDMA techniques. The positioning accuracy of
the centralized Dolphin system is better than 2.34 cm with a 95% of confidence level.

Later, Hazas and Ward proposed an asynchronous privacy-oriented Dolphin system
with a location accuracy better than 26.6 cm in the 95 % of the measurements [Hazas 03].

Prieto et al. presented a high-accuracy US LPS, named 3D-LOCUS [Priet 07]. The
system uses Golay binary sequence pairs, assigning each sequence of the pair (modulated
in BPSK) to a different transducer, and reaches positioning accuracies better than 1 cm
in the 90% of the measurements in a reduced area of 2⇥ 0.4 metres.

Ureña et al. proposed an encoded US LPS, with asynchronous detection and privacy-
oriented [Urena 07]. In this system, the transmitted signals are modulated in BPSK with
Kasami codes of 255 bits and the accuracies obtained are in the sub-centimetre range.
This work is improved later in [Perez 09c] by using LS sequences, with accuracies better
than 2.5 cm even in hard multipath environments.

In [Garci 11], García et al. carry out a comparison between the link budget of the
uncoded LPS system of [Holm 05] and the one of [Perez 09c]. Although the LPS sys-
tem of [Holm 05] uses uncoded and low-bandwidth signals, it gives a similar immunity to
ultrasound noise to that provided by the processing gain obtained with coding. For avoid-
ing signal collisions, this proposal needs a channel multiplexing mechanism, as CSMA.
Despite of the small signal duration, the update rate of the system of [Holm 05] can fall
to less than 0.5 positions per second due to channel sensing; this problem is eliminated
later in [Holm 09]. Notice that this problem does not happen with a CDMA-based system
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as the one proposed in [Perez 09c]. Nevertheless CDMA-based systems can be adversely
affected by near-far problem if non-GO spreading sequences are used, or if there is not
implemented a power control stage in transmissions. This makes difficult the localization
in positions where the power of the received signals from each beacon are very different.

Finally, it is noteworthy the recent work of [Saad 12]. It provides 3-D positioning
with accuracies better than 9.5 cm in 99% of the measurements. The proposed system
is privacy-oriented and the mobile device determines its position based on the Angle
Of Arrival (AOA) and the Time Of Flight (TOF) of the transmitted signals from fixed
positions. In the same way as the US LPS of [Perez 09c], the work of [Saad 12] does not
need synchronization between emitters and receivers. The use of broadband transducers
allows to modulate the transmitted signals by using Frequency Hopping Spread Spectrum
(FHSS) techniques.

Table 2.3 depicts a resume of the most representative ultrasound-based local position-
ing systems, where the term MA refers to the Multiple-Access scheme used.

System Accuracy Errors Coverage MA Coding
Active Bat [Ward 97] < 9 cm 95% conf. 280 m3 TDMA No

Cricket [Priya 00] < 123.7 cm 95% conf. scalable TDMA No
Dolphin [Hazas 02] < 2.34 cm 95% conf. 3.5⇥ 2.6⇥ 2.3 m CDMA Yes

[Holm 05] Room level scalable CSMA No
3D-LOCUS [Priet 07] < 1 cm 90% conf. 2⇥ 2⇥ 0.4 m CDMA Yes

[Urena 07] < 1 cm 1⇥ 1 m CDMA Yes
[Perez 09c] < 2.5 cm 95% conf.6 4.5⇥ 3.5 m CDMA Yes

Atlintida [Gonza 09] < 16.6 cm 95% conf. 8.78⇥ 4.40 m TDMA Yes
[Saad 12] < 9.5 cm 99% conf. 3.50⇥ 2.85⇥ 2.70 m FDMA Yes

Table 2.3: Characteristics of the most representative US LPS available in the literature.

2.7 Problem Statement and Thesis Objectives

The properties of the spreading sequences used play a key role on the development of
high-precision ranging measurements. For practical ranging systems, there are important
issues to be considered, such as: the aperiodic correlation properties, available number of
sequences for a given sequence length, ZCZ length or the number of hardware resources

6In an environment with large multipath components.
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needed for correlation implementation. Therefore, they would benefit from generation
and correlation architectures that require a low number of operations per input sample
and capable to deal with binary CSS, which have constraints both in the number of
sequences of the set and in the sequence lengths. Unfortunately, at the present moment,
binary CSS are only known to exist for limited lengths and set sizes [Seber 92, Borwe 03].
In [Phoon 05], Phoong and Chang summarize the known methods for the generation of
antipodal paraunitary matrices7 (which it is equivalent to the generation of binary CSS);
for clarity, we have included them in Table 2.4. The set size K generated with Wornell
and Butterfly method is constrained by the known dimensions of Hadamard matrices
[Seber 92].

Set size K Sequence length L

Turyn and Taki method [Taki 69, Turyn 74] 2 2

N · 10M · 26P

Golay-Rudin-Shapiro method [Shapi 51, Rudin 59, Golay 61] 2 2

N

Tseng-Liu interleaving and concatenating method [Tseng 72] 2

k
2

k · L1

Generalized Kronecker product method [Phoon 05] K1 ·K2 L1 · L2

Wornell method [Worne 95] 2 or 4 · k K

N

Generalized Agayan-Sarukhanyan (AS) method [Seber 92] K1·K2
2 L1 · L2

Butterfly method [Phoon 05] 2 or 4 · k 2

N

Table 2.4: Different methods to generate binary CSS of K sequences and length L. Ki

and Li are integers for which binary CSS of Ki sequences and length Li exist. N , M , P
and k are non-negative integers [Phoon 05].

Additionally, among the known methods for the generation of binary CSS, the efficient
architectures for their generation and correlation only deal with K|CSS = 2

k binary CSS
of lengths L|CSS = KQ

|CSS, (k,Q 2 N � {0}) [De Ma 07, Funes 10], with the exception of
the architecture proposed by Budišin for Golay binary sequence pairs of lengths L|Gol =

2

N · 10M (where N , M are non-negative integers) [Budis 11].
Interestingly, the current limitations on the set size (K|CSS) and sequence length

(L|CSS) with binary CSS do not occur with multilevel (real-valued) CSS [Darne 88].
This thesis contributes to the design of efficient generation and correlation algorithms

of CSS with more flexible lengths and set sizes and take advantage of them to propose novel

7A K ⇥K polynomial matrix P(z

�1
) is said to be antipodal if the matrix coefficients are ±1 and it

is paraunitary if P(z

�1
) ⇥PT

(z) = c · I
K

, where c 2 R� {0} and I
K

is the identity matrix of order K

[Phoon 05].
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architectures and generation/correlation algorithms for LS [Li 00] and GPC sequences
[Chen 06], both used in QS-CDMA.

This thesis has the following objectives:

• Design of modular and efficient architectures for the generation and correlation of
flexible CSS : Due to the fact that CSS are used as a building block for the gener-
ation of spreading sequences for aperiodic correlation, we will focus mainly on the
development of architectures for generate/correlate flexible CSS. This is carried out
by using two different approaches:

– By expanding the CSS to the multilevel alphabet by using multilevel Hadamard
matrices. With this approach, the multilevel CSS have sequence lengths that
are a multiple number of the set size, and thus there are no constraints on it.

– By using the generation/correlation algorithm for multilevel complementary
pairs to generate binary sequences in the final stage of the algorithm. In this
way, a novel form to decompose the Golay kernel 26 is proposed. This is
later combined with the Golay kernel 10 decomposition proposed by Budišin
[Budis 11], to generate K|CSS = 2 binary CSS of all the currently known
lengths. Finally, the algorithm is expanded to K|CSS = 2

k
; k 2 N � {0}

binary CSS of length L|CSS = (

K|CSS

2 ) · 2N · 10M · 26P , where N , M and P are
non-negative integers.

• Design of efficient architectures to generate and correlate GO sequences: The ap-
plication of the previous novel architectures to GO spreading sequences is desired,
as they will benefit from the flexibility achieved with the proposed architectures
for CSS. This thesis proposes a novel and efficient generator/correlator for GPC se-
quences and shows the theoretical link between LS and GPC sequences. This allows
the proposal of a new and very efficient LS generation and correlation algorithm.

• Application of the spreading sequences to ranging measurements : Finally the spread-
ing sequences analyzed in this thesis will be applied to different LPS: an ultrasonic
LPS and a novel CDMA-based UWB LPS. This will allows to analyze the advantages
and disadvantages of each spreading sequence.



Chapter 3

Generalization of Efficient
Architectures for the Generation and

Correlation of Multilevel CSS

In this chapter we present two generalizations of efficient architectures for the generation
and correlation of K|MultCSS multilevel CSS: the first one for K|MultCSS = 2

k, k 2 N�{0}
multilevel CSS and the second one for K|MultCSS � 3 � {4} multilevel CSS. Therefore
with both algorithms it is possible to generate/correlate efficiently K|MultCSS multilevel
CSS, with K|MultCSS � 2 and their lengths can be adjusted without constraints. These
architectures not only are interesting from the theoretical point of view, but also because
they can be the basis for the generation of multilevel CSS with low Peak-to-Average
Power Ratio (PAPR) and flexible length. Furthermore, the first algorithm introduced for
K|MultCSS = 2

k multilevel CSS, will be used in the following chapters for the proposal of
efficient architectures for other types of spreading sequences.

Along this chapter we will use the algorithms shown in Table 2.4 (refer to Chapter
2, section 2.7) to explain the efficient architectures presented here for multilevel CSS:
Golay-Rudin-Shapiro, Wornell, and Tseng-Liu interleaving algorithms.

Consequently, the main contribution of this chapter is the design of efficient architec-
tures for multilevel CSS to generate/correlate complementary sets of sequences of more
lengths and set sizes than the currently reported for binary CSS.

45
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3.1 Foundations of Efficient Algorithms for Comple-

mentary Sequences

In this section we will review and unify the recursive generation algorithms for Golay
binary sequences, polyphase and multilevel complementary pairs. The resultant algorithm
will be the basis for further generalizations along the thesis. The non-recursive algorithms
presented by Golay in [Golay 61] for the generation of Golay sequence pairs {s(Q)

j,0 [l], s
(Q)
j,1 [l]}

can be expressed in a recursive form as follows:

s
(0)
j,0 [l] = � [l]

s
(0)
j,1 [l] = � [l]

s
(q+1)
j,0 [l] = s

(q)
j,0 [l] + s

(q)
j,1 [l � 2

q
]

s
(q+1)
j,1 [l] = s

(q)
j,0 [l]� s

(q)
j,1 [l � 2

q
] (3.1)

where the following parameters are defined:

• s
(q+1)
j,i [l] for 0  i  1 is the i-th Golay sequence of the j-th uncorrelated pair after

iteration q.1 This recursive algorithm can only generate a Golay pair of a given
length L|Gol and it is not capable of generating uncorrelated Golay pairs (for clarity
we can assume that j = 0).

• L|Gol is the length of the Golay pair, L|Gol = 2

N and N a non-negative integer.

• q is the iteration number, 0  q  Q � 1 and Q = N , Q � 1, the total number of
iterations, Q = log2(L|Gol).2

• l is an integer number with values 0  l  L|Gol � 1.

Both Saphiro [Shapi 51] and Rudin [Rudin 59] found this recursive algorithm independ-
ently when researching on flat polynomials on the unit circle of the complex plane (i.e
sequences with a flat power spectra and amplitude equal to their length). Because of that,
this recursive algorithm is known as Golay-Rudin-Shapiro.

1Observe that the superscript (q + 1) refers to the result after the iteration q and the superscript (q),
the result after the iteration (q � 1).

2The term N is used to define the length 2

N of the sequence and Q to indicate the number of iterations
(stages) of the algorithm.
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Later, Sivaswamy [Sivas 78b] generalized the Golay-Rudin-Shapiro algorithm to the
polyphase alphabet by introducing the parameter W (1,q), which is a complex number of
unit magnitude and sometimes called the “seed” of the complementary sets. The algorithm
of Sivaswamy is expressed as

s
(0)
j,0 [l] = � [l]

s
(0)
j,1 [l] = � [l]

s
(q+1)
j,0 [l] = s

(q)
j,0 [l] +W (1,q) · s(q)j,1 [l � 2

q
]

s
(q+1)
j,1 [l] = s

(q)
j,0 [l]�W (1,q) · s(q)j,1 [l � 2

q
] (3.2)

This algorithm is capable of generating two uncorrelated Golay binary sequence pairs
(i.e. 0  j  1) by setting W (1,q) 2 {�1,+1} and choosing different values in the first
stage q = 0 for each Golay pair and by maintaining the same values for both pairs in the
stages 1  q  Q� 1 [Alvar 04].

In 1990, Budišin [Budis 90a] proposed a generalization of the Golay-Rudin-Saphiro
and Sivaswamy algorithm by changing the delays to D(q), whose value in each iteration
q is chosen from any of the Q! permutations without repetition of the set {20, . . . , 2Q�1}.
The generalized algorithm of Budišin is capable of generating all the complementary pairs
that can be obtained by means of the non-recursive methods of Golay (in fact 2

Q ·Q! by
combining different delay permutations and W (1,q) values, although only two are mutually
uncorrelated, 0  j  1), as well as polyphase complementary pairs and even multilevel
complementary pairs for certain delay distributions, different from the given definition of
D(q). This generalization is expressed as

s
(0)
j,0 [l] = � [l]

s
(0)
j,1 [l] = � [l]

s
(q+1)
j,0 [l] = s

(q)
j,0 [l] +W (1,q) · s(q)j,1

⇥

l �D(q)
⇤

s
(q+1)
j,1 [l] = s

(q)
j,0 [l]�W (1,q) · s(q)j,1

⇥

l �D(q)
⇤

(3.3)

The previous algorithm is the cornerstone of the Efficient Golay Correlator (EGC)
proposed by Budišin [Budis 91] and later by Popović [Popov 99a] (refer to Chapter 2, sec-
tion 2.5.2), who demonstrated that the number of memory bits required can be minimized
if the delays permutation is {2Q�1, . . . 20}.
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Also in 1990, Budišin proposed a generation algorithm for pairs of multilevel comple-
mentary sequences (PMCS), (number of sequences equal to K|MultCSS = 2) [Budis 90b],
and it is expressed as

s
(0)
j,0 [l] = � [l]

s
(0)
j,1 [l] = 0

s
(q+1)
j,0 [l] = s

(q)
j,0 [l] + A(q) · s(q)j,1

⇥

l �D(q)
⇤

s
(q+1)
j,1 [l] = A(q) · s(q)j,0 [l]� s

(q)
j,1

⇥

l �D(q)
⇤

(3.4)

where the new parameter A(q) is defined as an arbitrary real number and again the para-
meter D(q) is defined as any permutation of the set {20, . . . , 2Q�1}, (although this restric-
tion is not necessary to generate multilevel complementary pairs). It is noteworthy that
the delays values D(q), as in the algorithm 3.3, are chosen to avoid overlaps in interme-
diate stages, and gaps (i.e. zero elements) in the final iteration. In this way, the length,
L|MultCSS of the generated multilevel complementary pair is equal to L|MultCSS = 2

Q.
Notice that with the previous algorithm we cannot generate uncorrelated comple-

mentary pairs, and the generated pair will assume to be the pair {s(Q)
0,0 [l], s

(Q)
0.1 [l]}, j = 0,

0  l  L|MultCSS � 1.
In the following generalizations, the delay values are chosen according to the mentioned

conditions and later we analyze what happens when other delay distributions are chosen
(i.e. we will firstly generalize the generation algorithms, and then, the parameters of these
algorithms).

All the previous generation algorithms can be easily unified by adding the parameter
W (1,q) to the algorithm 3.4 and by changing the initial condition of the sequence s

(0)
j,1 [l].

Hence, the generalized algorithm is as follows:

s
(0)
j,0 [l] = � [l]

s
(0)
j,1 [l] = � [l]

s
(q+1)
j,0 [l] = s

(q)
j,0 [l] + A(q) ·W (1,q) · s(q)j,1

⇥

l �D(q)
⇤

s
(q+1)
j,1 [l] = A(q) · s(q)j,0 [l]�W (1,q) · s(q)j,1

⇥

l �D(q)
⇤

(3.5)
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where the seed values W (1,q) are again complex number of unit modulus; for the generation
of real-valued complementary pairs, which is the objective here, W (1,q) 2 {�1,+1}. This
parameter, as in the binary case allows the generation of K|MultCSS = 2 multilevel and
uncorrelated complementary pairs: {s(Q)

0,0 [l], s
(Q)
0,1 [l]} for j = 0 and {s(Q)

1,0 [l], s
(Q)
1,1 [l]} for j = 1,

(0  j  1). It is interesting to note that although the initial condition of the sequence
s
(Q)
j,1 [l] in equation 3.4 has been changed regarding equation 3.5, the generated pairs remain

complementary.

Proof. For this proof we will change the notation of the seeds to W
(1,q)
j , where 0  j  1

indicates the number of the complementary set that is generated, so we can distinguish
the seed values of each of them. Consider now the equation 3.5 particularized for the
generation of the pair {s(Q)

0,0 [l], s
(Q)
0,1 [l]} for j = 0 and the pair {s(Q)

1,0 [l], s
(Q)
1,1 [l]} for j = 1, as

shown in equations 3.6 and 3.7 respectively:

s
(0)
0,0 [l] = � [l]

s
(0)
0,1 [l] = � [l]

s
(q+1)
0,0 [l] = s

(q)
0,0 [l] + A(q) ·W (1,q)

0 · s(q)0,1

⇥

l �D(q)
⇤

s
(q+1)
0,1 [l] = A(q) · s(q)0,0 [l]�W

(1,q)
0 · s(q)0,1

⇥

l �D(q)
⇤

(3.6)

s
(0)
1,0 [l] = � [l]

s
(0)
1,1 [l] = � [l]

s
(q+1)
1,0 [l] = s

(q)
1,0 [l] + A(q) ·W (1,q)

1 · s(q)1,1

⇥

l �D(q)
⇤

s
(q+1)
1,1 [l] = A(q) · s(q)1,0 [l]�W

(1,q)
1 · s(q)1,1

⇥

l �D(q)
⇤

(3.7)

As was shown in the definition of uncorrelated complementary sequences (refer to
equation 2.17), two complementary pairs of sequences are uncorrelated if their SCCF is a
delta of Kronecker. Hence, if we express the aperiodic correlations between the sequences
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of two different pairs, we have

C
s
(Q)
0,0 ,s

(Q)
1,0

[⌧ ] =

L|MultCSS�1�⌧
X

l=0

⇣

s
(Q�1)
0,0 [l] + A(Q�1) ·W (1,Q�1)

0 · s(Q�1)
0,1

⇥

l �D(Q�1)
⇤

⌘

·
⇣

s
(Q�1)
1,0 [l + ⌧ ] + A(Q�1) ·W (1,Q�1)

1 · s(Q�1)
1,1

⇥

l �D(Q�1)
+ ⌧
⇤

⌘

C
s
(Q)
0,1 ,s

(Q)
1,1

[⌧ ] =

L|MultCSS�1�⌧
X

l=0

⇣

A(Q�1) · s(Q�1)
0,0 [l]�W

(1,Q�1)
0 · s(Q�1)

0,1

⇥

l �D(Q�1)
⇤

⌘

·
⇣

A(Q�1) · s(Q�1)
1,0 [l + ⌧ ]�W

(1,Q�1)
1 · s(Q�1)

1,1

⇥

l �D(Q�1)
+ ⌧
⇤

⌘

(3.8)

If we expand the previous equations, they can be expressed as

C
s
(Q)
0,0 ,s

(Q)
1,0

[⌧ ] = C
s
(Q�1)
0,0 ,s

(Q�1)
1,0

[⌧ ] +
�

A(Q�1)
�2 ·W (Q�1)

0 ·W (Q�1)
1 · C

s
(Q�1)
0,1 ,s

(Q�1)
1,1

[⌧ ]

+

L|MultCSS�1�⌧
X

l=0

⇣

A(Q�1) ·W (1,Q�1)
1 · s(Q�1)

0,0 [l] · s(Q�1)
1,1

⇥

l �D(Q�1)
+ ⌧
⇤

+ A(Q�1) ·W (1,Q�1)
0 · s(Q�1)

0,1

⇥

l �D(Q�1)
⇤

· s(Q�1)
1,0 [l + ⌧ ]

⌘

C
s
(Q)
0,1 ,s

(Q)
1,1

[⌧ ] =
�

A(Q�1)
�2 · C

s
(Q�1)
0,0 ,s

(Q�1)
1,0

[⌧ ] +W
(1,Q�1)
0 ·W (1,Q�1)

1 · C
s
(Q�1)
0,1 ,s

(Q�1)
1,1

[⌧ ]

�
L|MultCSS�1�⌧

X

l=0

⇣

A(Q�1) ·W (1,Q�1)
1 · s(Q�1)

0,0 [l] · s(Q�1)
1,1

⇥

l �D(Q�1)
+ ⌧
⇤

+ A(Q�1) ·W (1,Q�1)
0 · s(Q�1)

1,0 [l + ⌧ ] · s(Q�1)
0,1

⇥

l �D(Q�1)
⇤

⌘

(3.9)

By adding the previous equations we obtain that the SCCF after stage Q� 1 is equal
to:

C
s
(Q)
0,0 ,s

(Q)
1,0

[⌧ ] + C
s
(Q)
0,1 ,s

(Q)
1,1

[⌧ ] =
h

1 +

�

A(Q�1)
�2
i

·
⇣

C
s
(Q�1)
0,0 ,s

(Q�1)
1,0

[⌧ ] +W
(1,Q�1)
0

·W (1,Q�1)
1 · C

s
(Q�1)
0,1 ,s

(Q�1)
1,1

[⌧ ]
⌘

(3.10)

Finally, in order to recursively iterate and to cancel the summation terms of equa-
tion 3.9, the seed values W

(1,q)
0 and W

(1,q)
1 for 1  q  Q � 1 must be equal and have

unitary modulus. Hence, by iterating Q � 1 times more, and taking into account that
the initial conditions of the complementary pairs are a Kronecker delta (and thus the
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cross-correlation is also a delta), we obtain the following expression:

C
s
(Q)
0,0 ,s

(Q)
1,0

[⌧ ] + C
s
(Q)
0,1 ,s

(Q)
1,1

[⌧ ] =

Q�1
Y

q=0

h

1 +

�

A(q)
�2
i

·
⇣

� [⌧ ] +W
(1,0)
0 ·W (1,0)

1 · � [⌧ ]
⌘

(3.11)

In order to make the SCCF equal to zero, the seeds values at stage q = 0, (W (1,0)
0 and

W
(1,0)
1 ) must be of unitary modulus and hold the expression W

(1,0)
0 = �W

(1,0)
1 . Further-

more, the seed values in the other stages 1  q  Q� 1, must be also of unitary modulus
and hold the expression W

(1,q)
0 = W

(1,q)
1 . ⌅

Going back to the initial notation, from the previous proof we state that the seeds
W (1,q) are defined in W (1,q) 2 {�1,+1} for the generation of real-valued complement-
ary pairs. Although this is a very straightforward generalization, it will have a great
importance for further generalizations proposed in this thesis.

3.2 Generalization of Efficient Algorithms for CSS to

the Multilevel Alphabet

In 1995 Wornell [Worne 95] proposed an efficient algorithm for the generation of K|CSS

of length L|CSS = KQ
|CSS that is defined as

S
(k,0)
j [l] = HK|CSS

S
(k,q+1)
j [l] = HK|CSS

⇥D(k,q)
[l]⇥ S

(k,q)
j [l] (3.12)

where the following parameters are defined:

• HK|CSS
is a Hadamard matrix generated with the Sylvester’s recursive method (refer

to Chapter 2, section 2.3.1), K|CSS = 2

k.

• k is the number of iterations of the Sylvester’s algorithm needed for generating the
Hadamard matrix HK|CSS

, k = log2K|CSS, k � 1.

• S
(k,q+1)
j [l] is the j-th CSS of K|CSS sequences of length L|CSS after iteration q.

S
(k,q+1)
j [l] = [ s

(q+1)
j,0 [l] · · · s

(q+1)
j,K|CSS�1[l] ]

T . The Wornell algorithm can only gener-
ate one CSS. Hence for clarity we will assume that j = 0.

• q is the number of iteration of the Wornell algorithm, 0  q  Q� 1, Q 2 N� {0}.
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• D(k,q) is a delay matrix defined as

D(k,q)
[l] =

2

6

6

6

6

6

6

4

� [l] 0 · · · 0

0 �
h

l �Kq
|CSS

i

0

...
... 0

. . .
0

0 · · · 0 �
h

l � (K|CSS � 1) ·Kq
|CSS

i

3

7

7

7

7

7

7

5

(3.13)

Notice that this algorithm is a generalization of the Golay-Rudin-Shapiro algorithm pre-
viously explained, and it can only generate one CSS of K|CSS sequences.

Álvarez et al. generalized the algorithm of Wornell for K|CSS = 4 uncorrelated binary
CSS [Alvar 04] and De Marziani et al. [De Ma 07], for K|CSS = 2

k uncorrelated binary
CSS.

The generalization proposed in [De Ma 07] of the Wornell algorithm can be expressed
in discrete time domain as

S
(k,0)
j [l] = � [l] ·

h

1 · · · 1

iT

1,K|CSS

S
(k,q+1)
j [l] = ⇤

(k,q)
j [l]⇥D(k,q)

[l]⇥ S
(k,q)
j [l] (3.14)

where the matrix ⇤
(k,q)
j is a Hadamard matrix of order K|CSS = 2

k, k 2 N�{0}, generated
with the Tseng-Liu interleaving method [Tseng 72]; the term S

(k,q+1)
j [l] denotes the j-th

complementary set (0  j  K|CSS � 1), composed by K|CSS binary sequences after
iteration q (0  q  Q � 1), i.e. S

(k,q+1)
j [l] = [ s

(q+1)
j,0 [l] · · · s

(q+1)
j,K|CSS�1[l] ]

T . The matrix
D(k,q)

[l] is a diagonal matrix defined as
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(3.15)

where the delay elements D(q) are chosen as any permutation of the values {K0
|CSS,

K1
|CSS, . . . , K

Q�1
|CSS}. Therefore, the generation algorithm of [De Ma 07] is a generalization

of the Wornell algorithm analogous to what Budišin did with the Golay-Rudin-Shapiro
algorithm.
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The Hadamard matrices ⇤
(k,q)
j of order K|CSS have been generated with the Tseng-

Liu interleaving method for a given complementary set S(k,Q)
j [l]. The Tseng-Liu recursive

expansion method allows the generation of K|CSS uncorrelated CSS. This method can be
expressed as follows:

⇤
(k,q)
j =

h

�
(k,q)
left �

(k,q)
right

i

�
(k,q)
left =

"

⇤
(k�1,q)
j �⇤

(k�1,q)
j

�⇤
(k�1,q)
j �⇤

(k�1,q)
j

#

�
(k,q)
right =

"

�⇤
(k�1,q)
j �⇤

(k�1,q)
j

⇤
(k�1,q)
j �⇤

(k�1,q)
j

#

(3.16)

where the symbol � represents the interleaving operation.
This method that starts for k = 2, generates in each expansion step k two new

matrices: the left matrix �
(k,q)
left , which represents a CSS of 2k sequences of length 2

k and
the right matrix, �(k,q)

right, that represents another CSS of 2k sequences of length 2

k and
uncorrelated with the CSS set �(k,q)

left . Therefore, this algorithm generates in each step k,
two uncorrelated CSS of 2k sequences of length 2

k. The previous algorithm is unified in
[De Ma 07] as

⇤
(k,q)
j =

2

4

⇤
(k�1,q)
j �

⇣

�W (k,q) ·⇤(k�1,q)
j

⌘

⇤
(k�1,q)
j �

⇣

W (k,q) ·⇤(k�1,q)
j

⌘

3

5 (3.17)

In order to generate K|CSS uncorrelated CSS of length L|CSS = KQ
|CSS, we have to use

all the variations with repetition of the seeds W (k,0) 2 {�1,+1} at the first iteration
(q = 0), taken from k in k. The j-th variation, 0  j  K|CSS � 1, generates the
j-th uncorrelated CSS of length L|MultCSS = KQ

|MultCSS. The seed values for the other
iterations, {W (k,1), . . . ,W (k,Q�1)} must be equal for all the sets.

The algorithm proposed in [De Ma 07] has two advantages over the recursive algorithm
of Wornell [Worne 95]. Firstly, it allows the generation of K|CSS uncorrelated binary CSS
by simply varying the sign of the seeds W (k,0) for 1  k  log2(K|CSS). Secondly, the
algorithm can minimize the number of memory bits by choosing the delay permutation
{KQ�1

|CSS, K
Q�2
|CSS, . . . , K

0
|CSS}.

In order to accomplish the generalization of the efficient algorithm of De Marziani et
al. to the multilevel alphabet, the generation algorithm 3.5 for K|MultCSS = 2 is expressed
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in a matricial form as follows:
"

s
(q+1)
j,0 [l]

s
(q+1)
j,1 [l]

#

=

"

1 A(q) ·W (1,q)

A(q) �W (1,q)

#

⇥
"

� [l] 0

0 �
⇥

l �D(q)
⇤

#

⇥
"

s
(q)
j,0 [l]

s
(q)
j,1 [l]

#

(3.18)

which comes directly expressed as the De Marziani et al. efficient algorithm if we define
the matrix ⇤

(1,q)
j as

⇤
(1,q)
j =

"

1 A(q) ·W (1,q)

A(q) �W (1,q)

#

(3.19)

and redefine the term S
(k,q+1)
j [l] as the j-th multilevel complementary set (0  j 

K|MultCSS � 1), composed by K|MultCSS = 2

k (k 2 N � {0}) multilevel sequences after
iteration q (0  q  Q � 1), i.e. S

(k,q+1)
j [l] = [ s

(q+1)
j,0 [l] · · · s

(q+1)
j,K|MultCSS�1[l] ]

T and the
the matrix D(k,q)

[l] as

D(k,q)
[l] =

2

6

6

6

6

6

6

4

� [l] 0 · · · 0

0 �
⇥

l �D(q)
⇤

0

...
... 0

. . .
0

0 · · · 0 �
⇥

l � (K|MultCSS � 1) ·D(q)
⇤

3

7

7

7

7

7

7

5

(3.20)

As we will show later, with this generalization, the delay values D(q) do not have to
be chosen as a permutation of the set {K0

|MultCSS, K
1
|MultCSS, . . . , K

Q�1
|MultCSS} and this will

provide interesting properties to the generalized algorithm.

Example. Consider the generation of K|MultCSS = 2

2
= 4 (i.e. k = 2) of length

L|MultCSS = 4

2
= 16 with the generalized algorithm of [De Ma 07]. The number of

stages of this algorithm is equal to Q = 2, the delays D(q) are chosen as D(q)
= {41, 40}

and the values of A(q) as A(q)
= {1, 3}. By using the recursive equation 3.17, the matrix
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⇤
(2,0)
0 ; W (1,0)

= +1,W (2,0)
= +1 ⇤

(2,0)
1 ; W (1,0)

= �1,W (2,0)
= +1

2

6

6

6

4

1 �1 A(0) �A(0)

A(0) �A(0) �1 1

1 1 A(0) A(0)

A(0) A(0) �1 �1

3

7

7

7

5

2

6

6

6

4

1 �1 �A(0) A(0)

A(0) �A(0)
1 �1

1 1 A(0) �A(0)

A(0) A(0) �1 1

3

7

7

7

5

⇤
(2,0)
2 ; W (1,0)

= +1,W (2,0)
= �1 ⇤

(2,0)
3 ; W (1,0)

= �1,W (2,0)
= �1

2

6

6

6

4

1 1 A(0) A(0)

A(0) A(0) �1 �1

1 �1 A(0) �A(0)

A(0) �A(0) �1 1

3

7

7

7

5

2

6

6

6

4

1 1 �A(0) �A(0)

A(0) A(0)
1 1

1 �1 �A(0) A(0)

A(0) �A(0)
1 �1

3

7

7

7

5

Table 3.1: Matrices ⇤
(2,0)
j for the generation of 4 CSS obtained as the variations with

repetition of the seed values at the first stage.

⇤
(2,q)
j results as follows:

⇤
(2,q)
j =

2

4

⇤
(1,q)
j �

⇣

�W (2,q) ·⇤(1,q)
j

⌘

⇤
(1,q)
j �

⇣

W (2,q) ·⇤(1,q)
j

⌘

3

5

=

2

6

6

6

6

6

4

1 �W (2,q) W (1,q) · A(q) �W (1,q) ·W (2,q) · A(q)

A(q) �W (2,q) · A(q) �W (1,q) W (1,q) ·W (2,q)

1 W (2,q) W (1,q) · A(q) W (1,q) ·W (2,q) · A(q)

A(q) W (2,q) · A(q) �W (1,q) �W (1,q) ·W (2,q)

3

7

7

7

7

7

5

Table 3.1 shows the K|MultCSS = 4 variations with repetition of the seed values W (1,0),
W (2,0) and the resultant matrices ⇤

(2,0)
j .

Then by using the multilevel Hadamard matrix ⇤
(2,q)
j belonging to the algorithm of

equation 3.14, the efficient generation algorithm for K|MultCSS = 4 uncorrelated CSS is
defined as stated in equation 3.21.
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Figure 3.1: Architecture of the generation algorithm of four multilevel complementary
sets of sequences, 0  j  3.

s
(0)
j,0 [l] = s

(0)
j,1 [l] = s

(0)
j,2 [l] = s

(0)
j,3 [l] = �[l]

s
(q+1)
j,0 [l] = s

(q)
j,0 [l]�W (2,q) · s(q)j,1 [l �D(q)

] +W (1,q) · A(q) · s(q)j,2 [l � 2 ·D(q)
]

� A(q) ·W (1.q) ·W (2,q) · s(q)j,3 [l � 3 ·D(q)
]

s
(q+1)
j,1 [l] = A(q) · s(q)j,0 [l]�W (2,q) · A(q) · s(q)j,1 [l �D(q)

]�W (1,q) · s(q)j,2 [l � 2 ·D(q)
]

+W (1.q) ·W (2,q) · s(q)j,3 [l � 3 ·D(q)
]

s
(q+1)
j,2 [l] = s

(q)
j,0 [l] +W (2,q) · s(q)j,1 [l �D(q)

] +W (1,q) · A(q) · s(q)j,2 [l � 2 ·D(q)
]

+ A(q) ·W (1.q) ·W (2,q) · s(q)j,3 [l � 3 ·D(q)
]

s
(q+1)
j,3 [l] = A(q) · s(q)j,0 [l] +W (2,q) · A(q) · s(q)j,1 [l �D(q)

]�W (1,q) · s(q)j,2 [l � 2 ·D(q)
]

�W (1.q) ·W (2,q) · s(q)j,3 [l � 3 ·D(q)
] (3.21)

Figure 3.1 shows the architecture of the generation algorithm for K|MultCSS = 4 mul-
tilevel CSS of length L|MultCSS = KQ

|MultCSS with the output rearrangement proposed in
[Perez 07a] for the De Marziani et al. architecture.

We will consider only the generation of the multilevel complementary set with the
variation W (1,0)

= �1 and W (2,0)
= �1 (assigned to the generation of the fourth multilevel

CSS with the matrix ⇤
(2,0)
3 , refer to Table 3.1). Their values in the stage q = 1 are equal

to W (1,1)
= �1 and W (2,1)

= �1. Therefore, considering all the parameter values we have
that the generation process of four multilevel CSS in two stages is equal to:
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Initial conditions :

s
(0)
3,0[l] =

n

+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

o

s
(0)
3,1[l] =

n

+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

o

s
(0)
3,2[l] =

n

+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

o

s
(0)
3,3[l] =

n

+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

o

Zero stage (q = 0):

s
(1)
3,0[l] = s

(0)
3,0[l] + s

(0)
3,1[l � 4]� s

(0)
3,2[l � 8]� s

(0)
3,3[l � 12]

s
(1)
3,1[l] = s

(0)
3,0[l] + s

(0)
3,1[l � 4] + s

(0)
3,2[l � 8] + s

(0)
3,3[l � 12]

s
(1)
3,2[l] = s

(0)
3,0[l]� s

(0)
3,1[l � 4]� s

(0)
3,2[l � 8] + s

(0)
3,3[l � 12]

s
(1)
3,3[l] = s

(0)
3,0[l]� s

(0)
3,1[l � 4] + s

(0)
3,2[l � 8]� s

(0)
3,3[l � 12]

s
(1)
3,0[l] =

n

+ 1, 0, 0, 0, +1, 0, 0, 0, �1, 0, 0, 0, �1, 0, 0, 0

o

s
(1)
3,1[l] =

n

+ 1, 0, 0, 0, +1, 0, 0, 0, +1, 0, 0, 0, +1, 0, 0, 0

o

s
(1)
3,2[l] =

n

+ 1, 0, 0, 0, �1, 0, 0, 0, �1, 0, 0, 0, +1, 0, 0, 0

o

s
(1)
3,3[l] =

n

+ 1, 0, 0, 0, �1, 0, 0, 0, +1, 0, 0, 0, �1, 0, 0, 0

o

First stage (q = 1):

s
(2)
3,0[l] = s

(1)
3,0[l] + s

(1)
3,1[l � 1]� 3 · s(1)3,2[l � 2]� 3 · s(1)3,3[l � 3]

s
(2)
3,1[l] = 3 · s(1)3,0[l] + 3 · s(1)3,1[l � 1] + s

(1)
3,2[l � 2] + s

(1)
3,3[l � 3]

s
(2)
3,2[l] = s

(1)
3,0[l]� s

(1)
3,1[l � 1]� 3 · s(1)3,2[l � 2] + 3 · s(1)3,3[l � 3]

s
(2)
3,3[l] = 3 · s(1)3,0[l]� 3 · s(1)3,1[l � 1] + s

(1)
3,2[l � 2]� s

(1)
3,3[l � 3]
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Q 1 2 3 4 Q 1 2 3 4

K|MultCSS

= 2

' = 0 3 6 12 24

K|MultCSS

> 2

' = 0 4 8 16 32

' = 1 2 4 8 16 ' = 1 2 4 8 16

' = 2 � 2 4 8 ' = 2 � 2 4 8

' = 3 � � 2 4 ' = 3 � � 2 4

Table 3.2: Number of amplitude levels (N`) for K|MultCSS when 1  Q  4 and 1  '  3.

s

(2)
3,0[l] =

n

+ 1, +1, �3, �3, +1, +1, +3, +3, �1, +1, +3, �3, �1, +1, �3, +3

o

s

(2)
3,1[l] =

n

+ 3, +3, +1, +1, +3, +3, �1, �1, �3, +3, �1, +1, �3, +3, +1, �1

o

s

(2)
3,2[l] =

n

+ 1, �1, �3, +3, +1, �1, +3, �3, �1, �1, +3, +3, �1, �1, �3, �3

o

s

(2)
3,3[l] =

n

+ 3, �3, +1, �1, +3, �3, �1, +1, �3, �3, �1, �1, �3, �3, +1, +1

o

N

3.2.1 Number of Amplitude Levels and Amplitude Values

Considering that the values A(q), 0  q  Q� 1, are co-prime numbers, i.e. they cannot
be expressed as the products of the others, the maximum number of amplitude levels of
the multilevel CSS (N`) is equal to:

N` 
(

3 · 2Q�1 for ' = 0 andK|MultCSS = 2

2

Q�'+1 otherwise
(3.22)

where ' is the number of values of A(q) of unit magnitude.

Proof. Consider first the case of being K|MultCSS = 2 and ' = 0. In this case, the number
of levels in the matrix ⇤

(1,0)
j is equal to three as the term A(0) is different from zero (refer

to equation 3.19). Refer to Table 3.2, which shows the number of amplitude levels (N`) for
K|MultCSS CSS obtained for 1  Q  4 and 1  '  3. In each stage q, for a given value
of ', the number of levels increase by two as it appears a new parameter A(q) multiplying
the sequence of the previous stage q � 1.

Equation 3.23 represents a combinatorial approach to the maximum number of levels
(N`) for ' = 0 and K|MultCSS = 2:
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N`  3 ·
Q�1
X

⌫=0

 

Q� 1

⌫

!

(3.23)

where it represents the combinations without repetition of the products of values A(q). By
using the properties of the binomial coefficients [Rade 04], equation 3.23 can be expressed
as N`  3 · 2Q�1.

The same demonstration can be carried out for the other cases of equation 3.22 knowing
that the number of levels in the matrix ⇤

(k,0)
j (k = log2K|MultCSS) is at the most four

when ' = 0 and q = 0, i.e. K|MultCSS > 2 (refer to equation 3.17 and Table 3.1) and that
the number of levels are divided by two with the increase of '. Equation 3.24 represents
these considerations.

N`  4 ·
Q�1�'
X

⌫=0

 

Q� 1� '

⌫

!

(3.24)

Hence the number of levels is bounded by the expression N`  2

Q�'+1. ⌅

The amplitude levels of the multilevel CSS generated with this algorithm depend on
the values A(q) of each iteration.

Example. Consider the generation of a complementary set of K|MultCSS = 2 sequences
of length L|CSS = 4. If we iterate the algorithm depicted in equation 3.5 we have:

Initial conditions :

s
(0)
j,0 [l] =

n

1, 0, 0, 0

o

s
(0)
j,1 [l] =

n

1, 0, 0, 0

o

Zero stage (q = 0):

s
(1)
j,0 [l] =

n

1, A(0) ·W (1,0), 0, 0

o

s
(1)
j,1 [l] =

n

A(0), �W (1,0), 0, 0

o

First stage (q = 1):

s
(2)
j,0 [l] =

n

1, A(0) ·W (1,0), A(1) · A(0) ·W (1,1), �A(1) ·W (1,0) ·W (1,1)
o

s
(2)
j,1 [l] =

n

A(1), A(1) · A(0) ·W (1,0) �W (1,1) · A(0), W (1,1) ·W (1,0)
o
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Figure 3.2: Multilevel complementary sequence pair of length 32 with amplitudes in the
QAM alphabet {(±1,±3)⇥ (±1,±3)}.

Therefore, for the case K|MultCSS = 2 it is possible to obtain a four-level comple-
mentary pairs of sequences that can be matched to the QAM alphabet {s(Q)

j,0 [l], s
(Q)
j,1 [l]} 2

{(±1,±3) ⇥ (±1,±3)} by choosing for example the values A(q)
= {+1, · · · ,+1,+3} and

assigning each sequence of the pair to a branch of a quadrature modulator. Figure 3.2
shows such a multilevel complementary pair of length L|MultCSS = 32 (Q = 5) gener-
ated by using the values A(q)

= {+1, · · · ,+1,+3}, delays D(q)
= {44, 43, ..., 40} and seeds

W (1,q)
= {�1,�1, · · · ,�1}.

N

There are two homomorphic transformations that can be applied to the multilevel
CSS of length KQ

|MultCSS. The first transformation is ts
(Q)
j,i [l] = c · s(Q)

j,i [l] for 0  i, j 
K|MultCSS � 1, 0  l  L|MultCSS � 1 and c 2 R � {0}; where ts

(Q)
j,i [l] represents the i-th

transformed complementary sequence of the j-th set, and the transformation represents
an amplification factor. The second transformation is proposed in [Budis 90b], which is
the solution to the Cauchy’s power equation [Aczél 89, Dummi 04], and that is expressed
as

ts
(Q)
j,i [l] =

�

�

�

s
(Q)
j,i [l]

�

�

�

c

· sign
⇣

s
(Q)
j,i [l]

⌘

(3.25)

Notice that in the second transformation, if c = 0, binary CSS are generated and the
proposed generalization is reduced to the same algorithm for binary CSS of [De Ma 07].
The transformation of equation 3.25 implies that the correlation properties of multilevel
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CSS of length KQ
|MultCSS generated with this generalization, are not affected by clipping.

This is an important property when considering the effects of non-linear power amplifiers.

3.3 Novel Generation Algorithm of K|MultCSS � 3 � {4}
Multilevel CSS

As shown in the previous section, the core of the generation algorithm of K|MultCSS = 2

k

uncorrelated and multilevel CSS is the multilevel Hadamard matrix ⇤
(k,q)
j of order 2

k.
In this section we introduce a novel generation algorithm, for any K|MultCSS � 3 � {4}.
Therefore, with both algorithms it is possible to generate multilevel CSS with any number
of sequences in the set and with the same number of uncorrelated sets K|MultCSS.

Observe that the number of sequences in the binary CSS (which is equal to the number
of uncorrelated CSS) generated with the algorithm of De Marziani et al. is given by
K|MultCSS = 2

k, k 2 N� {0}. This limitation is because of the use of Tseng-Liu recursive
method for expanding the CSS set size [Tseng 72], and because binary Hadamard matrices
are only known to exist for orders two and multiple of four [Seber 92].

Nonetheless, there exist multilevel Hadamard matrices of any order. Trinh et al. show
in [Trinh 06] the existence of circulant multilevel Hadamard matrices CK|MultCSS

of any
order K|MultCSS � 2 whose entries have only two real values c1 and c2, and they apply
them to the generation of multilevel ZCZ sequences. This kind of matrices have been
also used for the construction of multilevel perfect sequences over integers [Li 11b]. This
circulant matrix is defined as

CK|MultCSS
=

2

6

6

6

6

6

6

6

6

4

c1 c2 c2 · · · c2

c2 c1 c2 · · · c2
... . . . . . . . . . ...

c2 · · · c2 c1 c2

c2 · · · c2 c2 c1

3

7

7

7

7

7

7

7

7

5

(3.26)

where the entries of CK|MultCSS
have to satisfy the following relationship to be a multilevel

Hadamard matrix:
2 · c1 · c2 +

�

K|MultCSS � 2

�

· c22 = 0 (3.27)
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If the matrix ⇤
(k,q)
j of the recursive generation algorithm 3.17 (generated with the

Tseng-Liu expansion method) is substituted by the multilevel Hadamard matrix of equa-
tion 3.26, the resultant algorithm can generate K|MultCSS multilevel CSS, each of them
composed of K|MultCSS sequences of length L|MultCSS = KQ

|MultCSS; with K|MultCSS �
3� {4}. Notice that for K|MultCSS = 4, with the restrictions on the values of the entries
c1 and c2 imposed by equation 3.27, the resultant Hadamard matrix is binary (c1 = �c2)
or the entry c2 is equal to zero. Moreover, if K|MultCSS = 2, the entry c1 or c2, or both,
are equal to zero. This is a non-valid matrix, as the algorithm will lead to the generation
of a delta of Kronecker.

Therefore, the generation algorithm of a multilevel CSS of K|MultCSS � 3 � {4} se-
quences of length L|MultCSS = KQ

|MultCSS is as follows:

S̆
(0)
j [l] = � [l] ·

h

1 · · · 1

iT

1,K|MultCSS

S̆
(q+1)
j [l] = CK|MultCSS

⇥ D̆(q) ⇥ S̆
(q)
j (3.28)

Notice that we have change the notation of S(k,q+1)
j [l], D(k,q)

[l] and S
(k,q)
j [l] to S̆

(q+1)
j [l],

˘D(q)
[l] and S̆

(q)
j [l] because in this algorithm there are no expansion factor, k. The term

S̆
(q+1)
j [l] is also defined as S̆(q+1)

j [l] = [ s
(q+1)
j,0 [l] · · · s

(q+1)
j,K|MultCSS�1[l] ]

T . The matrix ˘D(q)
[l]

has the same entries of the one of equation 3.20, and K|MultCSS is now K|MultCSS � 3�{4}.
As in the previous section, the delays D(q) are chosen as any permutation of the set
{K0

|MultCSS, K
1
|MultCSS, . . . , K

Q�1
|MultCSS}, although their values will be generalized in the

next section.
Equation 3.28 generates K|MultCSS (K|MultCSS � 3� {4}) multilevel CSS, albeit they

are not necessarily uncorrelated.

Proof. For the sake of clarity it is demonstrated for K|MultCSS = 3 multilevel CSS. If the
matrices of equation 3.28 are multiplied, the generation algorithm is as follows:

S̆
(0)
j [l] = �[l] ·

h

1 1 1

iT

s
(q+1)
j,0 [l] = c1 · s(q)j,0 [l] + c2 · s(q)j,1 [l �D(q)

] + c2 · s(q)j,2 [l � 2 ·D(q)
]

s
(q+1)
j,1 [l] = c2 · s(q)j,0 [l] + c1 · s(q)j,1 [l �D(q)

] + c2 · s(q)j,2 [l � 2 ·D(q)
]

s
(q+1)
j,2 [l] = c2 · s(q)j,0 [l] + c2 · s(q)j,1 [l �D(q)

] + c1 · s(q)j,2 [l � 2 ·D(q)
] (3.29)
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Recalling the definition 2.16 of a CSS (Chapter 2, section 2.3.4), the sum of the
aperiodic correlations of the sequences after Q iterations, must be a Kronecker delta. The
aperiodic correlations of the sequences after iteration q are equal to:

C
s
(q+1)
j,0 ,s

(q+1)
j,0

[⌧ ] =

L|MultCSS�1�⌧
X

l=0

⇣

c1 · s(q)j,0 [l] + c2 · s(q)j,1

⇥

l �D(q)
⇤

+ c2 · s(q)j,2

⇥

l � 2 ·D(q)
⇤

⌘

·
⇣

c1 · s(q)j,0 [l + ⌧ ] + c2 · s(q)j,1

⇥

l �D(q)
+ ⌧
⇤

+ c2 · s(q)j,2

⇥

l � 2 ·D(q)
+ ⌧
⇤

⌘

C
s
(q+1)
j,1 ,s

(q+1)
j,1

[⌧ ] =

L|MultCSS�1�⌧
X

l=0

⇣

c2 · s(q)j,0 [l] + c1 · s(q)j,1

⇥

l �D(q)
⇤

+ c2 · s(q)j,2

⇥

l � 2 ·D(q)
⇤

⌘

·
⇣

c2 · s(q)j,0 [l + ⌧ ] + c1 · s(q)j,1

⇥

l �D(q)
+ ⌧
⇤

+ c2 · s(q)j,2

⇥

l � 2 ·D(q)
+ ⌧
⇤

⌘

C
s
(q+1)
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[⌧ ] =

L|MultCSS�1�⌧
X

l=0

⇣

c2 · s(q)j,0 [l] + c2 · s(q)j,1
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l �D(q)
⇤

+ c1 · s(q)j,2
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l � 2 ·D(q)
⇤

⌘

·
⇣

c2 · s(q)j,0 [l + ⌧ ] + c2 · s(q)j,1

⇥

l �D(q)
+ ⌧
⇤

+ c1 · s(q)j,2

⇥

l � 2 ·D(q)
+ ⌧
⇤

⌘

(3.30)

Then, for the demonstration, the SACF of equation 3.30 after iteration q is expressed
as a function of the aperiodic correlations after the previous iteration q � 1, as

C
s
(q+1)
j,0 ,s

(q+1)
j,0

[⌧ ] + C
s
(q+1)
j,1 ,s

(q+1)
j,1

[⌧ ] + C
s
(q+1)
j,2 ,s

(q+1)
j,2

[⌧ ] =
�

c21 + 2 · c22
�

·
⇣

C
s
(q)
j,0 ,s

(q)
j,0
[⌧ ] + C

s
(q)
j,1 ,s

(q)
j,1
[⌧ ] + C

s
(q)
j,2 ,s

(q)
j,2
[⌧ ]
⌘

+

�

c22 + 2 · c1 · c2
�

· ⇠ [⌧ ] (3.31)

where ⇠[⌧ ] is equal to:

⇠ [⌧ ] =

L|MultCSS�1�⌧
X

l=0

h
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(q)
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⇤

⌘
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(q)
j,1

⇥
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⇣
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(q)
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(q)
j,2

⇥

l � 2 ·D(q)
+ ⌧
⇤

⌘

+ s
(q)
j,2

⇥

l � 2 ·D(q)
⇤

·
⇣

s
(q)
j,0 [l + ⌧ ] + s

(q)
j,1

⇥

l �D(q)
+ ⌧
⇤

⌘ i

(3.32)

In order to cancel the cross-term ⇠[⌧ ], the term c22+2 · c1 · c2 must be zero. Notice that
this condition is the same as stated in equation 3.27 for K|MultCSS = 3. Now, iterating
Q� 1 times more the expression 3.31 it is obtained the SACF as a function of the initial
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conditions as

C
s
(Q)
j,0 ,s

(Q)
j,0

[⌧ ] + C
s
(Q)
j,1 ,s

(Q)
j,1
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s
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·
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j,1 ,s

(0)
j,1
[⌧ ] + C
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(0)
j,2 ,s

(0)
j,2
[⌧ ]
⌘

= 3 ·
�

c21 + 2 · c22
�Q · �[⌧ ] (3.33)

⌅

In general, the SACF for a multilevel CSS of K|MultCSS sequences generated as previ-
ously defined is

K|MultCSS�1
X

i=0

C
s
(Q)
j,i ,s

(Q)
j,i

[⌧ ] =
⇥

c21 +
�

K|MultCSS � 1

�

· c22
⇤Q ·

K|MultCSS�1
X

i=0

C
s
(0)
j,i ,s

(0)
j,i

[⌧ ]

= K|MultCSS ·
⇥

c21 +
�

K|MultCSS � 1

�

· c22
⇤Q · � [⌧ ] (3.34)

where the term [c21 + (K|MultCSS � 1) · c22]Q represents the energy of the sequences of the
set.

Now, for generating K|MultCSS uncorrelated multilevel CSS, the proper initial condi-
tions in the equation 3.28 must be chosen; and we demonstrate that the initial conditions
must be equal to:

h

S̆
(0)
0 [l] S̆

(0)
1 [l] · · · S̆

(0)
K|MultCSS�1[l]

iT

= � [l] · FK|MultCSS
(3.35)

where FK|MultCSS
is an arbitrary Hadamard matrix of order K|MultCSS.

Proof. Again, for the sake of clarity the demonstration is carried out for K|MultCSS = 3

uncorrelated multilevel CSS. As stated in equation 2.17 (Chapter 2, section 2.3.4), two
CSS are uncorrelated if the sum of the aperiodic correlation functions are zero for all time
shifts ⌧ . The aperiodic correlations between the sequences of the j-th complementary set
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and the sequences of the j0-th set (j 6= j0) are as follows:
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(3.36)

The restriction of equation 3.27 in the entries of the Hadamard matrix CK|MultCSS
for

K|MultCSS = 3, implies that c2 = �2·c1. Considering this relation and developing equation
3.36, the sum of cross-correlation functions between the j-th set and the j0-th set after
iteration q can be expressed as a function of the correlations after iteration q � 1 as

2
X

i=0

C
s
(q+1)
j,i ,s
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·
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i=0

C
s
(q)
j,i ,s

(q)

j0,i
[⌧ ] (3.37)

Now, iterating equation 3.37 Q� 1 times, the SCCF is expressed as

2
X

i=0
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s
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j,i ,s
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2 · c22 + c21
�Q ·

2
X

i=0

C
s
(0)
j,i ,s

(0)

j0,i
[⌧ ] (3.38)

Recalling the definition of uncorrelated CSS (refer to equation 2.17), and considering
the initial condition of the i-th sequence of the j-th set as �i,j ·�[l] (0  j, i  K|MultCSS�1)
where �i,j 2 R�{0}, the following expression must be hold to generate uncorrelated CSS:

2
X

i=0

�i,j · �i,j0 = 0 (3.39)
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Notice that the previous expression is held by the entries of any existent Hadamard
matrix of order K|MultCSS = 3 if �i,j is assumed to be the entry of the row i and the
column j with modulus �. ⌅

Here it is assumed that the matrix defined in equation 3.26 is used to determine the
initial conditions. Therefore, in general, the modulus of the initial conditions �i,j are
defined for any K|MultCSS � 3� {4} as follows:
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(3.40)

and the initial conditions of the algorithm must be equal to:
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= � [l] · CK|MultCSS

(3.41)
Hence, the algorithm stated in equation 3.28 is redefined in order to generate K|MultCSS �

3� {4} uncorrelated multilevel CSS of length L|MultCSS = KQ
|MultCSS as

h

S̆
(0)
0 [l] S̆

(0)
1 [l] · · · S̆

(0)
K|MultCSS�1[l]

i

= � [l] · CK|MultCSS

S̆
(q+1)
j [l] = CK|MultCSS

⇥ D̆(q)
[l]⇥ S̆

(q)
j [l] (3.42)

Figure 3.3 depicts the architecture of the proposed algorithm for K|MultCSS � 3� {4}
uncorrelated multilevel CSS.
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Figure 3.3: Architecture of the generation algorithm for K|MultCSS � 3�{4} uncorrelated
multilevel CSS.

3.3.1 Number of Amplitude Levels and Amplitude Values

The number of amplitude levels of the multilevel CSS generated with the algorithm of
equation 3.42 is equal to:

N` = Q+ 2 (3.43)

The previous expression can be demonstrated considering that:

• The number of amplitude levels of the matrix CK|MultCSS
is equal to two (the entries

c1 and c2).

• There is no overlaps in each stage due to the fact that the delay values D(q) are
chosen as any permutation of the set {K0

|MultCSS, K
1
|MultCSS, . . . , K

Q�1
|MultCSS}

• The initial conditions are chosen from the same matrix CK|MultCSS
.

Table 3.3 shows the number of amplitude levels and their values for different K|MultCSS

and number of stages Q. In order to construct multilevel CSS with an integer alphabet,
the entries of the Hadamard matrix CK|MultCSS

(c1 and c2) are chosen as c1 =
(K|MultCSS�2)

2 ,
c2 = �1 for K|MultCSS even and c1 = K|MultCSS � 2, c2 = �2 for K|MultCSS odd.
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K|MultCSS Q N` V`

3

1 3 1 �2 4 � �
2 4 1 �2 4 �8 �
3 5 1 �2 4 �8 16

5

1 3 4 �6 9 � �
2 4 �8 12 �18 27 �
3 5 16 �24 36 �54 81

6

1 3 1 �2 4 � �
2 4 �1 2 �4 8 �
3 5 1 �2 4 �8 16

Table 3.3: Number and amplitude levels for different K|MultCSS-CSS obtained for 1 
Q  3.

Hence, it can be demonstrated that the amplitude values, V` , of the sequences are as
follows:
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for K|MultCSS 6= 3 odd
⇥

2 ·
�

2�K|MultCSS

�⇤�
for K|MultCSS = 3

(3.44)

where � 2 {0, . . . , Q+ 1}, Q � 1.

Example. If we generate K|MultCSS = 3 multilevel CSS of length L|MultCSS = 27 (Q = 3),
obtained with the parameter values c1 = 1, c2 = �2 and initial conditions equal to the ones
shown in equation 3.45, the number of amplitude values are given by the combinations
without repetition of the sets {(1,�2)⇥ (1,�2)⇥ (1,�2)⇥ (1,�2)}. The first set is due
to the initial conditions and the other three because of the number of stages, Q).
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(3.45)

Therefore, the number of levels of the sequences is N` = 5 and their values are V` =

{1,�2, 4,�8, 16} (refer also to Table 3.3). Figure 3.4 depicts the first set S̆(Q)
0 [l] generated

with the previous parameter values and the delay distribution {32, 31, 30}, while Figure
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Figure 3.4: Multilevel complementary set ˘S
(Q)
0 [l] of K|MultCSS = 3 sequences of length

L|MultCSS = 27.

3.5 shows the aperiodic auto-correlations and the SACF of this set and the aperiodic
cross-correlations and SCCF with the multilevel CSS S̆

(Q)
1 [l] (the same SCCF is obtained

with the other multilevel CSS S̆
(Q)
2 [l]).

N

3.4 Feasible Lengths of the Multilevel CSS

In the previous sections we have shown modular architectures for the generation of
K|MultCSS multilevel CSS of length L|MultCSS = KQ

|MultCSS, based on generalizations of
previous algorithms for binary CSS. In those algorithms, the length of the generated
sequences is determined by the entry values D(q) of the matrices D(k,q)

[l] and D̆(q)
[l]

(refer to equation 3.15), which is chosen as any permutation of the set {K0
|MultCSS,

K1
|MultCSS, . . . , K

Q�1
|MultCSS}. In the multilevel case, these entries can be chosen as:

1. Any permutation of the set {K0
|MultCSS, K

1
|MultCSS, . . . , K

Q�1
|MultCSS} in order to avoid

overlaps in the generation process and to generate the complementary set in a
reduced number of stages, Q =

log2(L|MultCSS)

log2(K|MultCSS)
. This is convenient for reducing

computational costs. In fact, this is the basis of the construction of efficient al-
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Figure 3.5: SACF of the multilevel CSS ˘S
(Q)
0 [l] of Figure 3.4 and the SCCF with the

multilevel CSS ˘S
(Q)
1 [l].



Generalization of Efficient Architectures for the Generation and Correlation of Multilevel CSS 71

gorithms for any CSS. In order to reduce the total number of memory bits it is
suggested in [Alvar 04, Perez 07a] for the binary case the permutation {KQ�1

|MultCSS,

KQ�2
|MultCSS, . . . , K

0
|MultCSS}. In this case, the number of levels of the multilevel CSS

generated are defined by equation 3.22 (when the terms A(q) are co-prime numbers)
and equation 3.43.

2. Any delay values D(q), D(q) > 0 so the multilevel CSS generated have a length equal
to L|MultCSS = (K|MultCSS�1)·

PQ�1
q=0 D(q)

+1. Notice that the modular architectures
presented in this chapter generate K|MultCSS uncorrelated CSS, independently of the
entry values D(q) of the matrices D(k,q)

[l] or D̆(q)
[l]. In this case, the number and

value of levels depend on: the overlaps introduced by the delay arrangement, the
parameters A(q) for the generation algorithm of K|MultCSS = 2

k multilevel CSS, and
c1 and c2 for the generation algorithm of K|MultCSS � 3� {4} multilevel CSS. This
approximation can serve as a basis for the search of the optimal parameters that
efficiently generates multilevel CSS with low PAPR, as we will show later.

3. A trade-off solution between the number of stages (Q) and the flexibility of the
generated CSS lengths is to maintain the delays D(q) of the first Q� 1 iterations to
D(q)

= {K0
|MultCSS, K

1
|MultCSS, . . . , K

Q�2
|MultCSS} and to modify the delays of the last

iteration, D(Q�1), in order to hold the following expression:

D(Q�1)
=

&

L|MultCSS �KQ�1
|MultCSS

K|MultCSS � 1

'

(3.46)

where dxe represents the smallest integer larger of equal to x. In equation 3.46 the
difference between the final length L|MultCSS and the CSS length at iteration Q� 1

is divided by K|MultCSS�1 because at a given stage q, the same delay D(q) is applied
to the sequences {s(q)j,0 [l], . . . , s

(q)
j,K|MultCSS�1

[l]}, (refer to equation 3.20). Hence, in the
case that the final sequence length L|MultCSS is not equal to KQ

|MultCSS, the delay
of the last stage is not a power-of-two number and the number of stages of the
algorithm is equal to:

Q =

&

log2
�

L|MultCSS

�

log2
�

K|MultCSS

�

'

(3.47)
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3.5 Multilevel CSS with Low PAPR

In order to demonstrate the feasibility of generating multilevel CSS with low Peak-to-
Average Power Ratio (PAPR) we have carried out a computer search by means of an
evolutionary algorithm. Given a real sequence x[l] of length L, 0  l  L� 1, the PAPR
is defined as [Popov 99b]:

PAPR =

max |x [l]|2

1
L ·

L�1
P

l=0
|x [l]|2

(3.48)

This parameter is commonly used in multi-carrier communication systems to analyze
the linearity requirements of the power amplifiers at the emission stage. In order to
improve the energy efficiency, it is desired sequences with a low PAPR, i.e. sequences the
most uniform as possible.

We have used a genetic algorithm to find the parameters D(q), A(q), W (1,q) and Q

that generates K|MultCSS = 2 multilevel CSS with a reduced PAPR. For that we have
considered values A(q) bounded by �1  A(q)  1, seed values W (1,q) 2 {�1,+1} and
delays D(q), 1  q  Q� 1, which can take the values 1  D(q)  L|MultCSS �Q.

Interestingly, the algorithm is capable to find a combination of parameters D(q), A(q),
W (1,q) and Q, and it turns out that the generated sequences are some of the optimal ternary
complementary pairs found in [Gavis 94, Gysin 01] over the alphabet {+1,�1, 0} up to
normalization. The term optimal is used in the sense that the ternary complementary
pairs have the minimum number of zero elements. Table 3.4 depicts the optimal ternary
complementary pairs up to length 12, generated with the proposed generalized algorithm
for K|MultCSS = 2.

For the sake of compactness, the ternary complementary pairs have been depicted
assuming that the elements with signs + and � have unit modulus. Notice that binary
complementary pairs exist for the lengths 2, 4, 8, and 10 and thus they are not included
in the Table 3.4; observe also that for each given length, the uncorrelated pair can be
generated by changing the sign of the seed value W (1,0). To the best knowledge of the au-
thor, there is only known optimal ternary complementary pairs up to length 22 [Gysin 01],
although it is known the minimum feasible number of zero elements in ternary comple-
mentary pairs for lengths up to 100 [Craig 06]. For lengths larger than 3, the proposed
generalized algorithm for K|MultCSS = 2 generates optimal ternary complementary pairs
in less stages than the standard lattice filter, and therefore with less number of operations
(refer to Chapter 2, Figure 2.15).
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Length Pair Q A

(q)
W

(1,q)
D

(q)

3

+ +�
+0+

2 { 1
2 ,+1} {+1,+1} {1, 1}

5

+� 0 + +

�+ 0 + +

2 {�1,�1} {+1,+1} {1, 3}

6

+ +�0�+

++ 0 + +�
3 {+1,� 1

2 ,+1} {+1,+1,+1} {1, 2, 2}

7

+��0 + 0+

+0 + 0 + +�
3 {+1,� 1

2 ,+1} {+1,+1,+1} {4, 1, 1}

9

+ + +� 0 + +�+

+++� 0��+�
3 {+1,+1,+1} {+1,+1,+1} {1, 2, 5}

11

+��� 000�+��
��+� 000 + + +�

3 {�1,+1,�1} {+1,+1,+1} {7, 2, 1}

12

+�++�+ 00�+++

+�++ 00 + ++���
4 {+1,+1,� 1

2 ,+1} {�1,+1,+1,+1} {1, 2, 4, 4}

Table 3.4: Optimal ternary complementary pairs up to length 12 given in [Gavis 94,
Gysin 01]. They are generated with the proposed generalized algorithm for K|MultCSS = 2.

3.6 Efficient Correlators for Multilevel CSS

With the two previous modular architectures, we can generate K|MultCSS multilevel CSS
for any K|MultCSS > 2. Both architectures are FIR filters whose impulse responses are
the multilevel CSS. Consequently, it is possible to design modular architectures for the
correlation of K|MultCSS multilevel CSS if the proposed generators are modified to gen-
erate the reversed sequences (refer to the definition of aperiodic correlation of equation
2.4 in Chapter 2, section 2.3.4). This is simply done by interchanging the order of the
delays in each stage of the generators depicted in Figure 3.1 and Figure 3.3, resulting
in the correlators of Figure 3.7 and Figure 3.6 respectively, where the terms �

r,s
(q)
j,i
[l] are

intermediate results, different from the aperiodic correlation function, which only appears
at the end of the final stage.

The proposed generalized architectures for multilevel CSS of lengths KQ
|MultCSS permit

to reduce the computational load needed to perform the generation/correlation of the
multilevel CSS in comparison with the Tapped Delay Line (i.e. straightforward) archi-
tecture. This is accomplished thanks to the delay matrix of the Wornell algorithm that
reduces the number of stages needed for a given length KQ

|MultCSS. Table 3.5 shows a com-
parison between the number of operations needed for the generation and correlation of a
multilevel complementary sequence from a CSS of K|MultCSS sequences with a straight-
forward architecture and with the ones analyzed here. To perform the sum of aperiodic
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Implementation Multiplications Additions
Any K|MultCSS

Straightforward K

Q

|MultCSS

K

Q

|MultCSS

� 1

K|MultCSS

= 2

k Efficient Q ·K|MultCSS

Q ·K|MultCSS

· log2(K|MultCSS

)

K|MultCSS

� 3� {4} Efficient K|MultCSS

· (1 + 2 ·Q) Q ·K|MultCSS

· (K|MultCSS

� 1)

Table 3.5: Operations needed for the generation/correlation of a multilevel CSS of
K|MultCSS sequences with the straightforward architecture and with the proposed one
with the delay distribution of [De Ma 07].

correlations functions, it is necessary to replicate the architectures (straightforward and
the proposed) K|MultCSS � 1 times more and to carry out an extra addition.

Additionally, Table 3.6 represents some examples of the required operations for a given
CSS. For example, the number of additions and products needed for the correlation of
K|MultCSS = 6 multilevel CSS of length L|MultCSS = 216 with the proposed architecture
is more than three times lower than those needed with a straightforward correlator. It
is important to notice that the proposed architectures still require less operations than
FFT-based correlations (refer to Chapter 2, section 2.5.2).

The multipliers indicated in Table 3.5 and Table 3.6 can be implemented in an efficient
form, by using the Signed Power-of-Two (SPT) representation [Lim 99], requiring only
shifts and additions for their implementation. This is preferable to the use of dedicated
multipliers, which are limited in number in reconfigurable platforms as FPGAs-based.
Due to the internal operations carried out in these architectures, the data bus width
must be increased in each stage to avoid overflow, and therefore, the total number of
memory bits can be higher than the required in a straightforward architecture [Alvar 04,
Perez 07a]. Nevertheless, it is demonstrated in [Alvar 04] that in these architectures the
total number of memory bits can be minimized if the delay permutation is chosen as
{KQ�1

|MultCSS, K
Q�2
|MultCSS, . . . , K

0
|MultCSS} (notice that this does not happen in the Wornell

algorithm). Additionally, it is demonstrated in [Vaidy 90] that the lattice architectures,
as the ones proposed here, are very robust to severe quantization effects.

3.7 Conclusions

In this chapter we have introduced generalizations of efficient algorithms for K|MultCSS = 2

(generalization of Budišin’s algorithms) and for K|MultCSS = 2

k (k 2 N � {0}) (gen-
eralization of De Marziani’s algorithm). We have also proposed a novel algorithm for
K|MultCSS � 3� {4} by using circulant multilevel Hadamard matrices and certain initial
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Implementation (K|MultCSS , L|MultCSS , Q) Multiplications Additions

K|MultCSS = 2k

Straightforward

(2, 128, 7) 128 127

(4, 64, 3) 64 63

(8, 64, 2) 64 63

Efficient

(2, 128, 7) 14 14

(4, 64, 3) 12 24

(8, 64, 2) 16 48

K|MultCSS � 3� {4}

Straightforward

(3, 81, 4) 81 80

(5, 125, 3) 125 124

(6, 216, 3) 216 215

Efficient

(3, 81, 4) 27 24

(5, 125, 3) 35 60

(6, 216, 3) 42 90

Table 3.6: Examples of the operations needed for the generation/correlation of K|MultCSS

multilevel CSS with the straightforward architecture and with the proposed one for several
lengths.

conditions. Both generalizations permit to generate and correlate efficiently any multilevel
CSS with K|MultCSS > 2.

On the other hand, by penalizing the efficiency of the generalized algorithms, it is
possible to use different delay patterns to generate and correlate multilevel CSS of more
number of lengths than in the binary case. By searching the parameters A(q), D(q),
W (1,q) and Q that generate multilevel complementary pairs with low PAPR, we have
demonstrated for lengths lower than 13, that the generalization of Budišin’s algorithm can
generate and correlate optimal ternary complementary sequences. For lengths larger than
3, the algorithm generates them in less stages than the standard lattice filter. Therefore,
the proposals can be the basis for the search of the parameters that generate multilevel
CSS with low PAPR without changing the architecture of the generator/correlator.



Chapter 4

Efficient Architectures for the
Generation and Correlation of Binary

CSS

In Chapter 2, section 2.7, we saw that the efficient architectures for the generation and
correlation of binary CSS only dealt with K|CSS = 2

k binary CSS of lengths L|CSS = KQ
|CSS

[De Ma 07, Funes 10], with the exception of the architecture proposed by Budišin for
Golay binary sequence pairs (K|CSS = 2) of lengths L|Gol = 2

N · 10M (where N , M are
non-negative integers and k,Q 2 N-{0}) [Budis 11]. Also from Table 2.4 of Chapter 2,
we concluded that efficient architectures could be proposed for lengths L1 · 2N · 10M · 26P ,
where L1 is an integer for which binary CSS of length L1 exist, and N , M and P are
non-negative integers.

This chapter presents the following contributions:

• Firstly, we demonstrate that the Golay kernel 26 has an inner structure by proposing
a decomposition of this kernel.

• Secondly, we propose an efficient generator/correlator for K|CSS = 2 binary CSS
(also known as Golay sequence pairs) of length L|Gol = 2

N · 10M · 26P made up of
Q = N+4·M+12·P stages of a lattice filter. This contribution uses the architecture
introduced in Chapter 2 for the generation/correlation of K|MultCSS = 2 multilevel
CSS, the Golay kernel 10 decomposition introduced by Budišin [Budis 11] and the
decomposition of the Golay kernel 26 proposed also in this chapter.

• Finally, we generalize the previous efficient architecture to K|CSS = 2

k binary CSS
of length L|CSS =

K|CSS

2 · 2N · 10M · 26P by using the Tseng-Liu interleaving method

77
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(equivalent to the generalized Kronecker product with M1 = N1 the dimensions of
a Hadamard matrix generated with Sylvester’s method [Sylve 67]).

These contributions improve the versatility of the previous efficient architectures which
only generate K|CSS = 2

k CSS of length KQ
|CSS in Q = N stages.

4.1 Golay Kernels Decomposition

In [Budis 11] Budišin demonstrates that the Golay kernel has an inner structure by de-
composing it in four stages of an efficient generator. He also suggests that the Golay
kernels 20 and 26 have an inner structure, but he did not decomposed them. Moreover,
in [Budis 11] the decomposition of the Golay kernel 10 was not shown by using a decom-
position method.

In this section we introduce a recursive method for the decomposition of the Golay
kernels and we demonstrate that, the Golay kernel 26 has really an inner structure by
carrying out its decomposition. The Golay kernel 20 is not decomposed for practical
considerations, as the aim of the Golay kernels decomposition is the generation of binary
CSS of lengths L|CSS = L1 · 2N · 10M · 26P , but not the mathematical derivation of all
the existent complementary sequences for a given length. The length L|Gol = 20 can be
generated by choosing the exponents N = 1, M = 1 and P = 0.

For the following demonstrations, it is needed to recall the generation algorithm for
two Pairs of Multilevel Complementary Sequences (PMCS) introduced in the equation
3.5 (refer to Chapter 3, section 3.1). For convenience, in this chapter we will work in the
Z-domain and change the nomenclature of the terms A(q) for A(k,q), with k = log2K|CSS

any integer larger than zero. So, equation 3.5 is expressed as

S
(0)
j,0 (z

�1
) = 1

S
(0)
j,1 (z

�1
) = 1

S
(q+1)
j,0 (z�1

) = S
(q)
j,0 (z

�1
) + A(1,q) ·W (1,q) · S(q)

j,1 (z
�1
) · z�D(q)

S
(q+1)
j,1 (z�1

) = A(1,q) · S(q)
j,0 (z

�1
)�W (1,q) · S(q)

j,1 (z
�1
) · z�D(q) (4.1)

As shown in [Budis 11] for the Golay kernel 10, this algorithm can also generate Golay
binary pairs of length L|Gol = 2

N · 10M . Here we will extend the algorithm to generate
Golay binary pairs of length L|Gol = 2

N · 10M · 26P by using a filter bank approach.
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Any 2⇥ 1 FIR lossless system of degree L� 1 with transfer function S(z�1
) and with

real coefficients, can be factorized as [Vaidy 90]:

S
�

z�1
�

= � ·
0
Y

l=L�1

n

R(l)
�

✓(l)
�

⇥P �z�1
�

o

⇥
"

cos'

�sin'

#

; �,' 2 R (4.2)

where R(l)
(✓(l)) represents the following rotation matrix:

R(l)
�

✓(l)
�

=

"

cos✓(l) sin✓(l)

�sin✓(l) cos✓(l)

#

; ✓(l) 2 R (4.3)

and P(z�1
) is a paraunitary matrix of the form:

P �z�1
�

=

"

1 0

0 z�1

#

(4.4)

Notice that this factorization generates a 2 ⇥ 1 FIR lossless filter regardless of the
values of � and ✓(l) [Vaidy 90]. Therefore, the previous equation 4.2, known as planar
factorization, can be expressed in an equivalent form as

S
(1,Q)
j

�

z�1
�

= ↵ ·
0
Y

q=Q�1

n

R(q)
�

✓(q)
�

⇥P �z�1
�

o

⇥
"

1

1

#

; ↵ 2 R (4.5)

where the rotation matrix, R(q)
(✓(q)) is redefined as [Coker 10]

R(q)
�

✓(q)
�

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>
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2

4

0 sin✓(q)

�sin✓(q) 0

3

5 if ✓(q) = ±⇡

2

2

4

1 tan✓(q)

�tan✓(q) 1

3

5 otherwise

(4.6)

and the matrix P (q)
(z�1

) is expressed in the following form:

P (q)
�

z�1
�

=

"

1 0

0 W (1,q) · z�D(q)

#

(4.7)
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This matrix is also a paraunitary matrix as P (q)
(z�1

) ⇥ [P (q)
(z)]T = I2; D(q) is a delay

lower than L, which maintains the filter as a causal one and W (1,q) is a complex number of
unit magnitude. The generation algorithm of equation 4.1 can be expressed in a matricial
form as follows:

S
(1,0)
j (z�1

) =

h

1 1

iT

S
(1,q+1)
j (z�1

) =

"
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#

⇥ S
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= B
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�D(q)
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where the basic building block is defined as

B
(1)

A(1,q),W (1,q)

⇣

z�D(q)
⌘

=

"

1 A(1,q) ·W (1,q) · z�D(q)

A(1,q) �W (1,q) · z�D(q)

#

(4.9)

The previous building block is equivalent to the product R(q)
(✓(q))⇥P(z�1

) of equation
4.5 and therefore, the Golay kernels can be generated by cascading the basic building
blocks B

(1)

A(1,q),W (1,q)(z
�D(q)

). This factorization leads to a very efficient lattice structure
[Budis 91, Popov 99a].

Example. In Chapter 2, section 2.7 we stated that the generation of antipodal paraunit-
ary matrices is equivalent to the generation of complementary sets of sequences. A de-
tailed demonstration can be found in [Phoon 05]; here for clarity we show this equivalence
with an example. Consider the basic building block of equation 4.9 for the stage q = 0.
The rows of this matrix conform a multilevel complementary pair of sequences of length
L|MultCSS = D(0)

+ 1, for any D(0) � 1 as we concluded in Chapter 3. For the sake of
clarity, we will consider only the delay D(0)

= 1 for q = 0. Hence, the basic building block
to analyze is equal to:

B
(1)

A(1,0),W (1,0)

�

z�1
�

=

"

1 A(1,0) ·W (1,0) · z�1

A(1,0) �W (1,0) · z�1

#
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and the pairs of multilevel complementary sequences are obtained by means of equation
4.8, and they are equal to:

"

S
(1)
j,0 (z

�1
)

S
(1)
j,1 (z

�1
)

#

=

"

1 A(1,0) ·W (1,0) · z�1

A(1,0) �W (1,0) · z�1

#

⇥
"

1

1

#

=

"

1 + A(1,0) ·W (1,0) · z�1

A(1,0) �W (1,0) · z�1

#

It is defined now the aperiodic correlation between two sequences x[l] and y[l], with
Z-transforms equal to X(z�1

) and Y (z�1
), in Z-domain as X(z�1

) · Y (z). Therefore the
SACF of the pair {S(1)

j,0 (z
�1
), S

(1)
j,1 (z

�1
)} is developed as

SACF = (1+A(1,0)·W (1,0)z�1
)·(1+A(1,0)·W (1,0)·z)+(A(1,0)�W (1,0)·z�1

)·(A(1,0)�W (1,0)·z)

and knowing that W (1,q) is a number of unit magnitude we have that SACF = 2 · [1 +
(A(1,0)

)

2
]

Now, if we apply the condition of paraunitary matrix to the basic building block
B

(1)

A(1,0),W (1,0)(z
�1
), we have

"

1 A(1,0) ·W (1,0) · z�1

A(1,0) �W (1,0) · z�1

#

⇥
"

1 A(1,0)

A(1,0) ·W (1,0) · z �W (1,0) · z

#

= [1 + (A(1,0)
)

2
] · I2

where the diagonal elements of the resultant matrix represent the aperiodic auto-correlation
at time shift ⌧ = 0. Hence, SACF = 2 · [1 + (A(1,0)

)

2
].

N

4.1.1 Golay Kernel 2

For the generation of Golay binary pairs of sequences of length L|Gol = 2

N , the coefficients
A(1,q) are equal to A(1,q)

= +1, i.e. ✓(q) = �⇡
4 , the delay values D(q) are any permutation

of the set {20, 21, . . . , 2N�1} and W (1,q) 2 {+1,�1} [Budis 91, Popov 99a]. This is the
case of the algorithms reviewed in Chapter 3, section 3.1.
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4.1.2 Golay Kernel 10 Decomposition

It is known that exist two non-equivalent Golay kernels of length L|Gol = 10. Here, we
consider the first kernel 10 defined in [Golay 61] and decomposed in [Budis 11], whose
polynomial matrix form is shown in equation 4.10 (the same development could be done
if the other kernel were chosen).

s
(Q)
1,0 [l] = {1, �1, �1, 1, 1, 1, 1, 1, 1, �1}

s
(Q)
1,1 [l] = {1, �1, �1, �1, 1, �1, 1, �1, �1, 1}

S
(1,Q)
j =

2

6

6

4

9
P

l=0
s
(Q)
1,0 [l] · z�l

9
P

l=0
s
(Q)
1,1 [l] · z�l

3

7

7

5

(4.10)

Notice that according to the notation s
(Q)
j,i [l] we are assuming that we deal with the

j-th complementary pair j = 1. This is an arbitrary assumption of no consequences.
Now, we carry out the Golay kernel 10 decomposition by proposing a recursive method.
The objective of the decomposition is to express the kernel in the following form:

S
(1,Q)
j

�

z�1
�

= G
(1)
10

�

z�1
�

⇥
h

1 1

iT

(4.11)

where the generation matrix of the Golay kernel 10, G(1)
10 (z

�1
), is defined as the product

of four building blocks and each one has the structure shown in equation 4.9. To compute
the coefficients of each building block, the recursive algorithm of equation 4.8 must be
iterated backwards. Therefore, the next recursive steps have to be followed:

• Step 1 : Find by inspection the monomials s(Q)
1,0 [l] · z�l and s

(Q)
1,1 [l] · z�l of lowest value

of l that hold equation 4.12 for certain values of A(1,q), D(q) and W (1,q).

"

1 A(1,Q�1) ·W (1,Q�1) · z�D(Q�1)

A(1,Q�1) �W (1,Q�1) · z�D(Q�1)

#

=

"

s
(Q)
1,0 [l] s

(Q)
1,0 [l] · z�l

s
(Q)
1,1 [l] s

(Q)
1,1 [l] · z�l

#

(4.12)

In the case of the first non-equivalent Golay kernel 10 (refer to equation 4.10), the
first monomials which hold equation 4.12 are s

(Q)
1,0 [3] · z�3 and s

(Q)
1,1 [3] · z�3 with

parameter values A(1,q)
= 1, W (1,q)

= 1 and D(q)
= 3. Consequently, the building

block at iteration Q� 1 is equal to B
(1)
1,1(z

�3
).
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• Step 2 : Solve the following system of equations to find the pair of sequences
S
(1,Q�1)
j (z�1

):

S(1,Q)
j

�

z

�1
�

= B(1)
A

(1,Q�1)
,W

(1,Q�1)

⇣

z

�D

(Q�1)
⌘

⇥ S(1,Q�1)
j

�

z

�1
�

;

S(1,Q)
j

�

z

�1
�

=

"

1 A

(1,Q�1) ·W (1,Q�1) · z�D

(Q�1)

A

(1,Q�1) �W

(1,Q�1) · z�D

(Q�1)

#

⇥

2

4

s

(Q�1)
1,0 [0] · z�0

+ s

(Q�1)
1,0 [1] · z�1

+ · · ·+ s

(Q�1)
1,0

⇥

L|Gol

�D

(Q�1) � 1

⇤

· z�(L|Gol

�D

(Q�1)�1
)

s

(Q�1)
1,1 [0] · z�0

+ s

(Q�1)
1,1 [1] · z�1

+ · · ·+ s

(Q�1)
1,1

⇥

L|Gol

�D

(Q�1) � 1

⇤

· z�(L|Gol

�D

(Q�1)�1
)

3

5

(4.13)

Solving the system of equation of (4.13) for the Golay kernel 10 (shown in equation
(4.10)) at the stage Q� 1, leads to

S
(1,Q)
j

�

z�1
�

=

"

1 z�3

1 �z�3

#

⇥

2

6

6

4

6
P

l=0
s
(Q�1)
1,0 [l] · z�l

6
P

l=0
s
(Q�1)
1,1 [l] · z�l

3

7

7

5

)

S
(1,Q�1)
j

�

z�1
�

=

"

1� z�1 � z�2
+ z�4

+ z�6

1 + z�2
+ z�4

+ z�5 � z�6

#

(4.14)

• Step 3 : Once the new polynomial matrix S
(1,Q�1)
j (z�1

) is generated, the previous
stages must be repeated until the initial conditions S

(1,0)
j (z�1

) = [

1 1

]

T are ob-
tained. If in any stage q < Q� 1, the matrix S

(1,q)
j (z�1

) has a row with a monomial
equal to zero (that is, a missing monomial, either s

(q)
1,0[l] · z�l or s

(q)
1,1[l] · z�l), for l

lower than that obtained by the application of equation (4.12), then those monomi-
als must be chosen to obtain the parameters A(1,q), W (1,q) and D(q). For example, in
equation (4.14) these monomials are s

(Q�1)
1,0 [1] · z�1 and s

(Q�1)
1,1 [1] · z�1. In this way,

the building block at the iteration Q� 2 is equal to B
(1)
1,�1(z

�1
).

Iterating the previous procedure four times, the generation matrix of the first Golay kernel
10 is the one shown in [Budis 11]:

G
(1)
10

�

z�1
�

= B
(1)
1,1(z

�3
)⇥B

(1)
1,�1(z

�1
)⇥B

(1)
1/2,�1(z

�1
)⇥B

(1)
1,1(z

�4
) (4.15)

Notice that the coefficients A(1,q) are mostly equal to 1 except one of them, which is equal
to 1

2 . This multiplication can be carried out by shifting.
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4.1.3 Golay Kernel 26 Decomposition

The Golay kernel 26 is defined as

s
(Q)
1,0 [l] =

n

+ 1,+1,+1,+1,�1,+1,+1,�1,�1,+1,�1,+1,�1,+1,�1,�1,+1,�1,+1,+1,+1,�1,�1,+1,+1,+1
o

s
(Q)
1,1 [l] =

n

+ 1,+1,+1,+1,�1,+1,+1,�1,�1,+1,�1,+1,+1,+1,+1,+1,�1,+1,�1,�1,�1,+1,+1,�1,�1,�1
o

S
(1,Q)
j

�

z�1� =

2

6

6

4

25
P

l=0
s
(Q)
1,0 [l] · z�l

25
P

l=0
s
(Q)
1,1 [l] · z�l

3

7

7

5

(4.16)

Again, by using the notation s
(Q)
j,i [l] we consider here that j = 1. The Golay kernel 26

can be decomposed by following the recursive procedure explained in the previous section
and generated in 12 stages as follows:

S
(1,12)
j

�

z�1
�

= B
(1)
1,�1(z

�12
)⇥B

(1)
1,1(z

�1
)⇥B

(1)
1/2,1(z

�1
)⇥B

(1)
1/5,�1(z

�1
)

⇥B
(1)
4/13,�1(z

�1
)⇥B

(1)
3/37,1(z

�1
)⇥B

(1)
81/106,�1(z

�1
)⇥B

(1)
3/37,1(z

�1
)

⇥B
(1)
4/13,1(z

�1
)⇥B

(1)
1/5,�1(z

�1
)⇥B

(1)
1/2,1(z

�1
)⇥B

(1)
1,1(z

�3
)⇥

"

1

1

#

= G
(1)
26

�

z�1
�

⇥
"

1

1

#

(4.17)

Table 4.1 depicts all the stages of the generation process of the Golay kernel 26 by means
of the decomposition presented here, whereas Figure 4.1 represents a diagram of the Golay
kernels decomposition, where the blocks B

(1)

A(1,q),W (1,q)(z
�D(q)

) represent the basic building
block at iteration q.

 

 
...

 

 B
A 1,0( ) ,W 1,0( )

1( )
z-D

0( )( )
Sj,0
Q-1( ) z-1( )

Sj,1
Q-1( ) z-1( )B

A 1,Q-1( ) ,W 1,Q-1( )

1( )
z-D

Q-1( )( )
Sj,0
1( ) z-1( )

Sj,1
1( ) z-1( )

Sj,0
Q( ) z-1( )

Sj,1
Q( ) z-1( )

1

1

Figure 4.1: Block diagram of the decomposition of the Golay kernels.
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Initial sequences

s

(0)
1,0[l] {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
s

(0)
1,1[l] {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Zero stage: B(1)
1,1(z

�3
)

s

(1)
1,0[l] {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
s

(1)
1,1[l] {1, 0, 0,�1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

First stage: B(1)
1/2,1(z

�1
)

s

(2)
1,0[l] {1, 1

2 , 0, 1,�
1
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(2)
1,1[l] { 1

2 ,�1, 0,

1
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Second stage: B(1)
1/5,�1(z

�1
)

s

(3)
1,0[l] {1, 2

5 ,
1
5 , 1,�

3
5 ,�

1
5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(3)
1,1[l] { 1

5 ,
3
5 ,�1,

1
5 ,

2
5 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Third stage: B(1)
4/13,1(z

�1
)

s

(4)
1,0[l] {1, 6

13 ,
5
13 ,

9
13 ,�

7
13 ,�

1
13 ,

4
13 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(4)
1,1[l] { 4

13 ,�
1
13 ,�

7
13 ,

17
13 ,�

5
13 ,�

6
13 ,�1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Fourth stage: B(1)
3/37,1(z

�1
)

s

(5)
1,0[l] {1, 18

37 ,
14
37 ,

24
37 ,�

16
37 ,�

4
37 ,

10
37 ,�

3
37 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(5)
1,1[l] { 3

37 ,�
10
37 ,

4
37 ,

22
37 ,�

50
37 ,

14
37 ,

18
37 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Fifth stage: B(1)
81/106,�1(z

�1
)

s

(6)
1,0[l] {1, 45

106 ,
31
53 ,

30
56 ,�

47
53 ,

49
53 ,�

1
53 ,�

24
53 ,�

81
106 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(6)
1,1[l] { 81

106 ,
24
53 ,

1
53 ,

32
53 ,

14
53 ,�

76
53 ,

31
53 ,

45
106 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Sixth stage: B(1)
3/37,1(z

�1
)

s

(7)
1,0[l] {1, 18

37 ,
23
37 ,

21
37 ,�

31
37 ,

35
37 ,�

5
37 ,�

15
37 ,�

27
37 ,

3
37 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(7)
1,1[l] { 3

37 ,�
27
37 ,�

15
37 ,

1
37 ,�

25
37 ,�

7
37 ,

53
37 ,�

23
37 ,�

18
37 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Seventh stage: B(1)
4/13,�1(z

�1
)

s

(8)
1,0[l] {1, 6

13 ,
11
13 ,

9
13 ,�

11
13 ,

15
13 ,�

1
13 ,�

11
13 ,�

7
13 ,

3
13 ,

4
13 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(8)
1,1[l] { 4

13 ,
3
13 ,�

7
13 ,�

3
13 ,�

3
13 ,�

5
13 ,�

3
13 ,

17
13 ,�

11
13 ,�

6
13 ,�1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Eighth stage: B(1)
1/5,�1(z

�1
)

s

(9)
1,0[l] {1, 2

5 ,
4
5 ,

4
5 ,�

4
5 ,

6
5 , 0,�

4
5 ,�

4
5 ,

2
5 ,

2
5 ,

1
5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(9)
1,1[l] { 1

5 ,
2
5 ,

2
5 ,�

2
5 ,�

2
5 , 0,�

3
5 ,�

2
5 ,

6
5 ,�

4
5 ,�

2
5 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Ninth stage: B(1)
1/2,1(z

�1
)

s

(10)
1,0 [l] {1, 1

2 , 1, 1,�1, 1, 0,�1,�1, 1, 0, 0,� 1
2 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

s

(10)
1,1 [l] { 1

2 , 0, 0, 0, 0, 1, 0, 0, 0,�1, 1,

1
2 , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Tenth stage: B(1)
1,1(z

�1
)

s

(11)
1,0 [l] {1, 1, 1, 1,�1, 1, 1,�1,�1, 1,�1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
s

(11)
1,1 [l] {1, 0, 1, 1,�1, 1,�1,�1,�1, 1, 1,�1,�1,�1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Eleventh stage: B(1)
1,�1(z

�12
)

s

(12)
1,0 [l] {1, 1, 1, 1,�1, 1, 1,�1,�1, 1,�1, 1,�1, 1,�1,�1, 1,�1, 1, 1, 1,�1,�1, 1, 1, 1}
s

(12)
1,1 [l] {1, 1, 1, 1,�1, 1, 1,�1,�1, 1,�1, 1,�1, 1,�1,�1, 1,�1, 1, 1, 1,�1,�1, 1, 1, 1}

Table 4.1: Generation of a Golay binary pair of length 26 by means of the proposed
decomposition.
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4.2 Generation of 2-CSS

Following the Turyn’s construction [Turyn 74], the previous generation matrices can be
cascaded in any order and number to generate Golay binary sequence pairs (2-CSS) of
length L|Gol = 2

N · 10M · 26P . Thanks to the Golay kernels decomposition, this is carried
out in Q = N + 4 ·M + 12 · P stages, as depicted in Figure 4.2. Notice that the building
blocks are cascaded in the reverse order of Figure 4.1. A more detailed representation of
the generation algorithm is depicted in Figure 4.3 where each building block is highlighted
with a dashed square.

 

 

Generation Matrix  GL|Gol
z−1( )

...1
 

 BA 1,0( ) ,W 1,0( )

1( )
z-D

0( )( )
Sj,0
1( ) z-1( )

Sj,1
1( ) z-1( ) B

A 1,Q-1( ) ,W 1,Q-1( )

1( )
z-D

Q-1( )( )
Sj,0
Q-1( ) z-1( )

Sj,1
Q-1( ) z-1( )

Sj,0
Q( ) z-1( )

Sj,1
Q( ) z-1( )

Figure 4.2: Diagram of the generation of a 2-CSS by cascading Q building blocks.

...

...

( )1,0A

( )1,0A

−

+
z-D

0( )

1
( )1,0W

Sj,0
1( ) z-1( )

Sj,1
1( ) z-1( )

Sj,0
Q-1( ) z-1( )

Sj,1
Q-1( ) z-1( )

−

+

Sj,0
Q( ) z-1( )

Sj,1
Q( ) z-1( )

 z-D Q-1( )

( )1,Q-1W
( )1,Q-1A

A 1,Q-1( )

Figure 4.3: Modular generator of Golay sequence pairs of length L|Gol = 2

N · 10M · 26P .
The delay values D(q) confers an efficient implementation.

The delays of the generation matrices should be chosen so as to avoid overlaps between
the Golay kernels. Here, firstly N basic building blocks B

(1)

A(1,q),W (1,q)(z
�D(q)

) are used to
generate the lengths 2N ; secondly, M generation matrices G(1)

10 (z
�1
) are used to construct

the lengths 2

N · 10M ; and finally, P generation matrices G
(1)
26 (z

�1
) are used to generate

the lengths 2N · 10M · 26P . Therefore, the final sequence set after the iteration Q� 1, can
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be expressed as

S
(1,Q)
j

�

z�1
�

=

(

0
Y

p=P�1

G
(1)
26

⇣

z�2N ·10M ·26p
⌘

)

⇥
(

0
Y

m=M�1

G
(1)
10

⇣

z�2N ·10m
⌘

)

⇥
(

0
Y

n=N�1

B
(1)

A(1,n),W (1,n)

�

z�2n
�

)

⇥
"

1

1

#

(4.18)

If other cascading orders are selected in equation 4.18, they will generate different com-
plementary pairs.

As we shown in Chapter 3, in order to generate two uncorrelated CSS, i.e. the set
S
(1,Q)
0 (z�1

) and the set S(1,Q)
1 (z�1

), it is only needed to change the sign of the seed at the
first stage (W (1,0)), and to maintain the same values for both pairs at other stages. For
example, set W (1,0)

= +1 for the generation of the complementary pair S
(1,Q)
0 (z�1

) and
W (1,0)

= �1 for the complementary pair S(1,Q)
1 (z�1

).

4.3 Generation of K|CSS-CSS

In this section, the previous generation algorithm for 2-CSS will be expanded to K|CSS-
CSS, with K|CSS = 2

k.
Among the generation algorithms of CSS shown in Table 2.4 of Chapter 2, we will use

the interleaving method proposed by Tseng and Liu [Tseng 72] to expand the generation
algorithm from 2-CSS of length L|Gol = 2

N · 10M · 26P to K|CSS-CSS of length K|CSS

2 · (2N ·
10

M ·26P ). For each expansion factor k, 2 ·K|CSS uncorrelated CSS of length K|CSS ·L|Gol

are obtained from K|CSS uncorrelated CSS of length K|CSS

2 ·L|Gol. The generation matrices
are expanded following this method in Z-domain:

G
(k+1)
K|CSS ·L|CSS

�

z�1
�

=

h

�
(k+1)
left �

(k+1)
right

i

; k 2 N� {0}

�
(k+1)
left =

2

6

4

G
(k)
K|CSS

2 ·L|CSS

(z�2
) +z�1 ·G(k)

K|CSS
2 ·L|CSS

(z�2
)

G
(k)
K|CSS

2 ·L|CSS

(z�2
) �z�1 ·G(k)

K|CSS
2 ·L|CSS

(z�2
)

3

7

5

�
(k+1)
right =

2

6

4

G
(k)
K|CSS

2 ·L|CSS

(z�2
) �z�1 ·G(k)

K|CSS
2 ·L|CSS

(z�2
)

G
(k)
K|CSS

2 ·L|CSS

(z�2
) +z�1 ·G(k)

K|CSS
2 ·L|CSS

(z�2
)

3

7

5

(4.19)
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This expansion method, can be unified and expressed by using the Kronecker product as
follows:

G
(k+1)
K|CSS ·L|CSS

�

z�1
�

=

2

6

4

G
(k)
K|CSS

2 ·L|CSS

(z�2
) +W (k+1,0) ·G(k)

K|CSS
2 ·L|CSS

(z�2
) · z�1

G
(k)
K|CSS

2 ·L|CSS

(z�2
) �W (k+1,0) ·G(k)

K|CSS
2 ·L|CSS

(z�2
) · z�1

3

7

5

= G
(k)
K|CSS

2 ·L|CSS

�

z�2
�

⌦H
(k+1)
2

�

z�1
�

; k 2 N� {0} (4.20)

where the left and the right matrices in equation 4.19 are obtained by changing the
values {+1,�1} of W (k+1,0), and the paraunitary matrix H

(k+1)
2 is determined by the

next expression:

H
(k+1)
2

�

z�1
�

=

"

1 W (k+1,0) · z�1

1 �W (k+1,0) · z�1

#

(4.21)

Notice that W (1,0) was used in 4.8 to generate K|CSS = 2 uncorrelated CSS. Now the
paraunitary matrix H

(k+1)
2 (z�1

) is expressed as the product of Q Hadamard matrices as
follows:

H
(k+1)
2

�

z�1
�

= ↵ ·
(

1
Y

q=Q�1

⌥(q)
�

z�1
�

)

⇥⌥(0)
�

z�1
�

; ↵ 2 R� {0} (4.22)

where

⌥(q)
�

z�1
�

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2

4

1 A(k+1,q) ·W (k+1,q)

A(k+1,q) �W (k+1,q)

3

5 if 1  q  Q� 1

2

4

1 A(k+1,0) ·W (k+1,0) · z�1

A(k+1,0) �W (k+1,0) · z�1

3

5

; if q = 0

(4.23)

In this way, the recursive algorithm for the generation matrix of 2 ·K|CSS CSS (equation
4.20) is expressed as

G
(k+1)
K|CSS ·L|CSS

�

z�1
�

= G
(k)
K|CSS

2 ·L|CSS

�

z�2
�

⌦
(

0
Y

q=Q�1

⌥(q)
�

z�1
�

)

(4.24)
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Equation 4.8 is now generalized to K|CSS-CSS of length K|CSS

2 ·L|Gol, so the complementary
set is generated as

S
(k,Q)
j

�

z�1
�

= G
(k)
K|CSS

2 ·L|CSS

�

z�1
�

⇥
h

1 · · · 1

iT

K|CSS⇥1
(4.25)

Therefore, the set j at the expansion step k + 1 is equal to:

S
(k+1,Q)
j

�

z�1
�

=

✓

G
(k)
K|CSS

2 ·L|CSS

�

z�2
�

⇥
h

1 · · · 1

iT

K|CSS⇥1

◆

⌦
✓

H
(k+1)
2

�

z�1
�

⇥
h

1 1

iT
◆

(4.26)

In the following sections, the generation of 2·K|CSS uncorrelated CSS of length K|CSS ·L|Gol

with equation 4.26 is analyzed for each kernel.

4.3.1 Golay Kernel 2

The generation matrix of equation 4.24 particularized to 2 ·K|CSS of length K|CSS · 2N in
Q = N stages (as M = 0 and P = 0) is equal to:

G
(k+1)
K|CSS ·2N

�

z�1
�

= G
(k)
K|CSS

2 ·2N

�

z�2
�

⌦
(

0
Y

n=N�1

⌥(n)
�

z�1
�

)

=

(

0
Y

n=N�1

B
(k)

A(k,n),W (k,n)

⇣

z�2·D(n)
⌘

)

⌦
(

0
Y

n=N�1

⌥(n)
�

z�1
�

)

(4.27)

By using the property of the mixed product1, the generation matrix is finally obtained
with the expression

G
(k+1)
K|CSS ·2N

�

z�1
�

=

0
Y

n=N�1

⇣

B
(k)

A(k,n),W (k,n)

⇣

z�2·D(n)
⌘

⌦⌥(n)
�

z�1
�

⌘

(4.28)

The basic building block B
(k+1)

A(k+1,n),W (k+1,n)(z
�2·D(n)

) is now defined as

B
(k+1)

A(k+1,n),W (k+1,n)

⇣

z�2·D(n)
⌘

= B
(k)

A(k,n),W (k,n)

⇣

z�2·D(n)
⌘

⌦⌥(n)
�

z�1
�

(4.29)

1Given two sets of arrays {U0,U1, . . . ,UQ�1} and {V0,V1, . . . ,VQ�1} the following property holds:
(U0 ⌦ V0)⇥ (U1 ⌦ V1)⇥ · · ·⇥ (U

Q�1 ⌦ V
Q�1) = (U0 ⇥ U1 ⇥ · · ·⇥ U

Q�1)⌦ (V0 ⇥ V1 ⇥ · · ·⇥ V
Q�1).
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In order to define the basic building blocks for generating 2·K|CSS CSS of length K|CSS ·2N ,
the entries of the matrices ⌥(n)

(z�1
) must be derived by solving the expression shown in

equation 4.22. Depending on the parity of Q (in this case Q = N), it has different
solutions, as it is developed below.

4.3.1.1 Q is an Even Number

Recalling the definition of Hadamard matrix (refer to Chapter 2, section 2.3.1), to solve
equation 4.22, the products of Q matrices ⌥(q)

(z�1
) can be arranged as

↵1 · ↵2 ·
(

2
Y

q=Q�1

⌥(q)
�

z�1
�

)

⇥⌥(1)
�

z�1
�

⇥⌥(0)
�

z�1
�

= H
(k+1)
2

�

z�1
�

(4.30)

where ↵1 and ↵2 are constant real numbers different from zero and ↵1 ·↵2 = ↵. If Q is an
even number, Q� 2 is also an even number. So setting the first Q� 2 matrices ⌥(q)

(z�1
)

to H2 and then using the definition of orthogonal matrix, the product of Q� 2 matrices
is equal to:

↵1 ·
2
Y

q=Q�1

⌥(q)
�

z�1
�

= ↵1 · 2
Q�2
2 · I2 (4.31)

In order to normalize equation 4.31, the value of ↵1 is set to ↵1 = 2

�(Q/2�1), so the product
↵1 · 2(Q/2�1) is equal to 1. Therefore, the product of the matrices ⌥(1)

(z�1
) and ⌥(0)

(z�1
)

should be equal to:

↵2 ·⌥(1)
�

z�1
�

⇥⌥(0)
�

z�1
�

=

"

1 W (k+1,0) · z�1

1 �W (k+1,0) · z�1

#

(4.32)

By using the definition of the matrices ⌥(q)
(z�1

) stated in the previous equation 4.23, the
expression 4.32 can be rewritten as

↵2 ·
"

1 A(k+1,1) ·W (k+1,1)

A(k+1,1) �W (k+1,1)

#

⇥
"

1 A(k+1,0) ·W (k+1,0) · z�1

A(k+1,0) �W (k+1,0) · z�1

#

=

"

1 W (k+1,0) · z�1

1 �W (k+1,0) · z�1

#

(4.33)
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Knowing that W (k+1,0) 2 {+1,�1}, the system of equations has the following valid solu-
tions:

A(k+1,0)
= �A(k+1,1) � 1

A(k+1,1)
+ 1

; ↵2 =
A(k+1,1)

+ 1

(A(k+1,1)
)

2
+ 1

; W (k+1,1)
= �1 (4.34)

Where A(k+1,1) is an arbitrary real number and W (k+1,0) permits to choose the set that is
generated. For convenience, A(k+1,1) is set to A(k+1,1)

= 3, so the values of A(k+1,0) and ↵2

are equal to �1
2 and 2

5 respectively; therefore the constant ↵ = ↵1 · ↵2 must be equal to
2

(2�Q/2)/5.
The parameter values for the other stages, i.e {W (k+1,2), . . . ,W (k+1,Q�1)} and {A(k+1,2),

. . . , A(k+1,Q�1)}, k � 1, must be equal to {±1, . . . ,±1} for all of them.

4.3.1.2 Q is an Odd Number

If Q is an odd number, the product of the Q matrices ⌥(q)
(z�1

) can be arranged as follows:

↵ ·
(

1
Y

q=Q�1

⌥(q)
�

z�1
�

)

⇥⌥(0)
�

z�1
�

= H
(k+1)
2

�

z�1
�

(4.35)

Now Q� 1 is an even number and then, if each of the Q� 1 matrices ⌥(q)
(z�1

) is set
to H2, their product is equal to:

↵ ·
1
Y

q=Q�1

⌥(q)
�

z�1
�

= ↵ · 2
Q�1
2 · I2

= I2 , ↵ = 2

1�Q
2 (4.36)

Therefore, each of the parameter values {A(k+1,0), . . . , A(k+1,Q�1)} and {W (k+1,0), . . . ,W (k+1,Q�1)}
must be equal to {±1, . . . ,±1}.

4.3.2 Golay Kernels 10 and 26

As shown previously, the Golay kernels 10 and 26 can be decomposed as the product of
four and twelve basic building blocks B(1)

A(1,q),W (1,q)(z
�D(q)

), respectively. In both cases, the
number of building blocks involved is an even number, so the decomposition of equation
4.30 is the same that was done for Golay kernel 2 when Q is an even number.
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In general, the generation matrix for 2 ·K|CSS CSS of length L|CSS = K|CSS · 10M is
defined as

G
(k+1)
K|CSS ·10M

�

z�1
�

=

(

0
Y

m=M�1

G
(k)
K|CSS

2 ·10

�

z�2
�

)

⌦
(

↵ ·
0
Y

m=4·M�1

⌥(m)
�

z�1
�

)

(4.37)

In the same form, the generation matrix for 2 ·K|CSS CSS of length L|CSS = K|CSS · 26P

can be expressed as

G
(k+1)
K|CSS ·26P

�

z�1
�

=

(

0
Y

p=P�1

G
(k)
K|CSS

2 ·26

�

z�2
�

)

⌦
(

↵ ·
0
Y

p=12·P�1

⌥(p)
�

z�1
�

)

(4.38)

where the generation matrix of the Golay kernel 26, G(1)
26 (z

�1
), is defined in equation 4.17,

and the interleaving matrices ⌥(p)
(z�1

) are decomposed as stated from equation 4.30 to
equation 4.34.

Example. Consider the generation of a CSS composed of 2 ·K|CSS = 2 ·2k = 4 sequences
of length L|CSS = K|CSS · 10M = 20 (i.e. k = 1, N = 0, M = 1 and P = 0) in Q = 4

stages. Hence, the matrix H
(k+1)
2 (z�1

) is expressed as follows:

H
(k+1)
2

�

z�1
�

= ↵ ·⌥(3)
�

z�1
�

⇥⌥(2)
�

z�1
�

⇥⌥(1)
�

z�1
�

⇥⌥(0)
�

z�1
�

= ↵ ·
"

1 A(k+1,3) ·W (k+1,3)

A(k+1,3) �W (k+1,3)

#

⇥
"

1 A(k+1,2) ·W (k+1,2)

A(k+1,2) �W (k+1,2)

#

⇥
"

1 A(k+1,1) ·W (k+1,1)

A(k+1,1) �W (k+1,1)

#

⇥
"

1 A(k+1,0) ·W (k+1,0) · z�1

A(k+1,0) �W (k+1,0) · z�1

#

=

"

1 W (k+1,0) · z�1

1 �W (k+1,0) · z�1

#
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Following the procedure indicated from equation 4.30 to equation 4.34, the matrix H
(k+1)
2 (z�1

)

is equal to:

H
(k+1)
2

�

z�1
�

=

1

5

·
"

1 1

1 �1

#

⇥
"

1 1

1 �1

#

⇥
"

1 �3

3 1

#

⇥
"

1 �1
2 ·W

(k+1,0) · z�1

�1
2 �W (k+1,0) · z�1

#

=

"

1 W (k+1,0) · z�1

1 �W (k+1,0) · z�1

#

Due to M = 1, we must use the basic building blocks of the Golay kernel 10 decompos-
ition (refer to equation 4.15) and equation 4.37 for the generation of the matrix G

(2)
20 (z

�1
).

Therefore, the generation matrix for 4 CSS of length L|CSS = 20 is as follows:

G
(2)
20

�

z�1
�

=

1

5

·
⇣

B
(1)
1,1

�

z�6
�

⌦⌥(3)
�

z�1
�

⌘

⇥
⇣

B
(1)
1,�1

�

z�2
�

⌦⌥(2)
�

z�1
�

⌘

⇥
⇣

B
(1)
1/2,�1

�

z�2
�

⌦⌥(1)
�

z�1
�

⌘

⇥
⇣

B
(1)
1,1

�

z�8
�

⌦⌥(0)
�

z�1
�

⌘

By doing the Kronecker product in the previous equation and considering only the
generation of the CSS with W (k+1,0)

= 1, the generation matrix is defined as

G
(2)
20 (z

�1
) =

1

5

·

2

6

6

6

6

6

4

1 1 z�6 z�6

1 �1 z�6 �z�6

1 1 �z�6 �z�6

1 �1 �z�6 z�6

3

7

7

7

7

7

5

⇥

2

6

6

6

6

6

4

1 1 �z�2 �z�2

1 �1 �z�2 z�2

1 1 z�2 z�2

1 �1 z�2 �z�2

3

7

7

7

7

7

5

⇥

2

6

6

6

6

6

4

1 �3 �1
2 · z

�2 3
2 · z

�2

3 1 �3
2 · z

�2 �1
2 · z

�2

1
2 �3

2 z�2 �3 · z�2

3
2

1
2 3 · z�2 z�2

3

7

7

7

7

7

5

⇥

2

6

6

6

6

6

4

1 �1
2 · z

�1 z�8 �1
2 · z

�9

�1
2 �1 · z�1 �1

2 · z
�8 �z�9

1 �1
2 · z

�1 �z�8 1
2 · z

�9

�1
2 �1 · z�1 1

2 · z
�8 z�9

3

7

7

7

7

7

5
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Finally, by developing the products in the previous equation and by using equation
4.25, the binary CSS composed of K|CSS = 4 sequences of length L|CSS = 20 is as follows:

S
(2,4)
j

�

z�1
�

=

2

6

6

6

6

6

4

S
(4)
j,0 (z

�1
)

S
(4)
j,1 (z

�1
)

S
(4)
j,2 (z

�1
)

S
(4)
j,3 (z

�1
)

3

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

19
P

l=0
s
(4)
j,0 [l] · z�l

19
P

l=0
s
(4)
j,1 [l] · z�l

19
P

l=0
s
(4)
j,2 [l] · z�l

19
P

l=0
s
(4)
j,3 [l] · z�l

3

7

7

7

7

7

7

7

7

7

7

5

where j can be any value belonging to 0  j  K|CSS � 1. The set {s(4)j,0 [l], s
(4)
j,1 [l], s

(4)
j,2 [l],

s
(4)
j,3 [l]} is equal to:

s
(4)
j,0 [l] = {+1,+1,�1,�1,�1,�1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,�1,�1}

s
(4)
j,1 [l] = {+1,�1,�1,+1,�1,+1,+1,�1,+1,�1,+1,�1,+1,�1,+1,�1,+1,�1,�1,+1}

s
(4)
j,2 [l] = {+1,+1,�1,�1,�1,�1,�1,�1,+1,+1,�1,�1,+1,+1,�1,�1,�1,�1,+1,+1}

s
(4)
j,3 [l] = {+1,�1,�1,+1,�1,+1,�1,+1,+1,�1,�1,+1,+1,�1,�1,+1,�1,+1,+1,�1}

If we carry out the SACF of this set of sequences, it can be demonstrated that it is a
CSS.

N
Now, by using the property of the mixed product and the Turyn’s construction

[Turyn 74], the generation matrices of equations 4.28, 4.37 and 4.38 can be cascaded to
build the generation matrix for 2 ·K|CSS CSS of length L|CSS = K|CSS ·

�

2

N · 10M · 26P
�

in Q stages as

G
(k+1)
K|CSS ·2N ·10M ·26P

�

z�1
�

=

(

0
Y

p=P�1

G
(k+1)
K|CSS ·26

⇣

z�K|CSS ·2N ·10M ·26p
⌘

)

⇥
(

0
Y

m=M�1

G
(k+1)
K|CSS ·10

⇣

z�K|CSS ·2N ·10m
⌘

)

⇥
(

0
Y

n=N�1

G
(k+1)
K|CSS ·2

�

z�K|CSS ·2n
�

)

(4.39)
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This generation matrix can be expressed in terms of the Kronecker product as stated
in the next equation:

G
(k+1)
K|CSS ·2N ·10M ·26P

�

z�1
�

=

("

0
Y
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⌘

#

⌦
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Y

p=Q�1
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z�1
�

#)

⇥
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⇣

z�2(N+1)·10m
⌘

#

⌦
"

N
Y

m=Q�12·P�1

⌥(m)
�

z�1
�

#)

⇥
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0
Y

n=N�1

B
(k)

A(k,n),W (k,n)

⇣

z�2(n+1)
⌘

#

⌦
"

0
Y

n=N�1

⌥(n)
�

z�1
�

#)

(4.40)

Figure 4.4 depicts the first and the q-th stage of the lattice filter for the generation of 4
CSS of length L|CSS = 2

(N+1) · 10M · 26P , whereas Figure 4.5 shows the first and the q-th
stage for the generation of K|CSS-CSS2 of lengths L|CSS =

K|CSS

2 · 2N · 10M · 26P .
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Figure 4.4: First and q-th stage (1  q  Q � 1) of a modular generator of 4 CSS of
length L|CSS = 2

(N+1) · 10M · 26P .

To generate K|CSS uncorrelated CSS, the variations with repetition of the seeds {W (1,0),
W (2,0), . . . ,W (k,0)} 2 {�1,+1} establish the set that is generated. The number of vari-
ations with repetition of the two feasible seed values {�1,+1}, taken from k in k is equal
to K|CSS = 2

k. So the variations of the seed values generate up to K|CSS uncorrelated
CSS. For example, if K|CSS = 4 CSS of length L|CSS = 4 is going to be generated by
using equation 4.28 (where ⌥(0)

(z�1
) = H

(2)
2 (z�1

), A(1,0)
= 1 and ↵ = 1), the generation

2Notice that for generating K|CSS

CSS of length L|CSS

=

K|CSS

2 ·2N ·10M ·26P we have to carry out one
iteration less in equation 4.19 than for generating 2 ·K|CSS

CSS of length L|CSS

= K|CSS

·2N ·10M ·26P .
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matrix is equal to:

G(2)
4

�

z

�1
�

=

"

1 A

(1,0) ·W (1,0) · z�2

A

(1,0) �W

(1,0) · z�2

#

⌦
"

1 W

(2,0) · z�1
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#
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6

6

6

6

4

1 A

(1,0) ·W (1,0) · z�2
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(2,0) · z�1
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(1,0) ·W (2,0) · z�1
W
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3

7

7

7

7

7

5

(4.41)

For the sake of clarity, the generation of K|CSS = 4 CSS of length L|CSS = 4 (N = 1), for
different seed values, is included in Table 4.2.

4.4 Correlation of K|CSS-CSS

The previous generation algorithm for K|CSS represents a lattice filter with an impulse
response equal to the K|CSS-CSS. So, if it is modified to generate the reversed CSS, the
architecture will be equivalent to a filter matched to the direct sequences. Therefore, the
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Table 4.2: Generation matrices of 4 CSS obtained as a combination of the seed values at
the first stage.

correlator is designed by reversing the delays in each stage of the previous generation
algorithm.

Figure 4.6 and Figure 4.7 show the correlator for 2 CSS and 4 CSS respectively. In
this case, the delay elements are placed now in the upper branch when compared to
the generators of Figure 4.3 and Figure 4.4. Moreover, the first stage has a different
delay arrangement compared to the other stages (1  q  Q � 1). This is due to the
interleaving operation carried out to increase the set size. The terms �

R,S
(q)
j,i
(z�1

) are
intermediate results different from the aperiodic correlation function, which only appears
at the end of the final stage.
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Figure 4.6: Modular correlator of Golay pairs of sequences of length L|Gol = 2

N ·10M ·26P .

This can be carried out for K|CSS-CSS in the same form, as depicted in Figure 4.8,
which is the reversed version of the generator of Figure 4.5.
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4.5 Implementation Issues

According to the previous figures, in each k-th expansion step, new seed values W (k,q)

appear at the beginning of the blocks and the seeds of the previous expansions steps
(W (k�1,q), . . . ,W (1,q)

) are shifted to the right. Additionally, the delays of the first stage
for the generation algorithm will be arranged as

⇢

1, z�1, z�2, . . . , z�
K|CSS

2 +1, z�
K|CSS

2 ·D(0)
, z�

K|CSS
2 ·D(0)�1, . . . , z�

K|CSS
2 ·D(0)�

K|CSS
2 +1

�

(4.42)
while in the other stages, half of the branches will have delays equal to (

K|CSS

2 ) · D(q),
q > 0. Table 4.3 shows the number of products and additions needed to perform the gen-
eration/correlation of a complementary sequence with the proposed algorithm and with
a straightforward architecture. To perform the sum of aperiodic correlations functions,
it is necessary to replicate the architectures (both the straightforward and the proposed
one) K|CSS � 1 times more and to carry out an extra addition. Additionally, Table 4.4
includes some examples of the operations required for the generation/correlation of a
complementary sequence for several lengths. Notice that many of the products involved
in the correlations are by 1/2, and they can be implemented by shifting.

Notice that although for certain sequence lengths, the proposed architecture would
require more number of operations than the straightforward one, the proposal computes
K|CSS simultaneous correlations (although only one is used for a given data input). There-
fore, the proposal could be more efficient by transposing it in a similar way as was done in
[De Ma 11]. Then, the architecture would carry out simultaneously the K|CSS aperiodic
correlations needed to perform the sum of aperiodic correlations.
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Proposed

Additions
2

N

N ·K|CSS

· log2(K|CSS

)

10

M

4 ·M ·K|CSS

· log2(K|CSS

)

26

P

12 · P ·K|CSS

· log2(K|CSS

)

Products
2

N

(

2 ·K|CSS

· [log2(K|CSS

)� 1] ifN even \K|CSS

> 2

0 ifN odd [K|CSS

= 2

10

M

(

2 ·K|CSS

· [log2(K|CSS

)� 1] +M ·K|CSS

ifN = 0 \K|CSS

> 2

M ·K|CSS

ifN 6= 0 [K|CSS

= 2

26

P

(

2 ·K|CSS

· [log2(K|CSS

)� 1] + 9 · P ·K|CSS

ifN = 0 \M = 0 \K|CSS

> 2

9 · P ·K|CSS

ifN 6= 0 [M 6= 0 [K|CSS

= 2

Straightforward
Additions K|CSS

2 · (2N · 10M · 26P )� 1

Products 0

Table 4.3: Operations needed for the generation/correlation of K|CSS-CSS as a function of
K|CSS, N , M and P (considering only one sequence for the straightforward architecture).

As stated in Chapter 3 for the generation/correlation architectures of multilevel CSS,
in order to avoid quantization effects, the data bus width has to be increased in each stage.
Fortunately, lattice architectures, as the one proposed are robust to severe quantization
effects [Vaidy 93]. In fact, the efficient architecture for K|Gol = 2 Golay binary sequence
pairs of length L|Gol = 2

N · 10M · 26P has been satisfactorily implemented in [Casti 13] by
using a FPGA Virtex 5 (XC5VLX50T) [Xilin 12a]. The maximum Sidelobe-to-Mainlobe
Ratio (SMR) in the SACF due to quantization errors is equal to 0.422% for a length
L|Gol = 26, by using the following configuration: an input data bus width of 10 bits, an
output data bus width of 24 bits and the Golay kernels coefficients represented by means
of the SPT decomposition [Lim 99]. For clarity we include the Table 4.5, that shows the
SMR in the SACF for different lengths of Golay binary sequence pairs obtained with the
implementation of [Casti 13].

4.6 Conclusions

In this chapter we have presented the Golay kernel 26 decomposition in twelve stages
of a lattice filter, by iterating backwards the generation algorithm for pairs of multilevel
complementary sequences. Then, by using the Golay kernel 10 decomposition proposed
by Budišin [Budis 11] we have proposed an efficient generator/correlator for Golay binary
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K|CSS, N , M , P , L Straightforward Proposed
Additions Products Additions Products

K|CSS = 2, N = 0,
M = 1, P = 1,
L|CSS = 260

259 0 32 20

K|CSS = 4, N = 3,
M = 1, P = 0,
L|CSS = 160

159 0 56 4

K|CSS = 8, N = 1,
M = 2, P = 0,
L|CSS = 400

399 0 216 16

K|CSS = 8, N = 4,
M = 0, P = 1,
L|CSS = 1664

1663 0 384 104

Table 4.4: Number of operations needed for the generation/correlation of K|CSS-CSS for
several lengths (considering only one sequence for the straightforward architecture).

N M P L|Gol SMR(%)
0 0 1 26 0.42
2 2 0 400 0

4 0 1 416 0.15
9 0 0 512 0

1 1 1 520 0.18
3 2 0 800 0

0 3 0 1000 0

Table 4.5: SMR in the SACF for different lengths of Golay binary sequence pairs.

sequence pairs of length L|Gol = 2

N · 10M · 26P (with P > 0) composed of Q = N + 4 ·
M + 12 · P stages of a lattice filter.

Finally, we have generalized the previous efficient architectures [Worne 95, Alvar 04,
De Ma 07] to K|CSS = 2

k binary CSS of length L|CSS =

K|CSS

2 · 2N · 10M · 26P . These
architectures could be improved further by using their transposed version as was done in
[De Ma 11].

The contributions of this chapter allows to increase the versatility of previous efficient
architectures reported in the literature. Moreover, as the CSS are used as basic blocks for
the generation and correlation of several families of GO sequences used in QS-CDMA, the
architectures presented in this chapter also contribute to improve the versatility of the
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efficient generation/correlation algorithms for those GO sequences. This will be shown in
the following chapter.



Chapter 5

Novel Algorithms for the Generation
and Correlation of Generalized

Orthogonal Sequences

As stated in Chapter 2, section 2.3.5, the interest for QS-CDMA systems has boosted
[Suehi 94, Fan 03, Li 03] in the last years. GO spreading sequences are used in many
fields as ranging applications [Perez 09c], channel identification [Kim 06] or MIMO OFDM
communication systems [Jian 07]. These applications demand spreading sequences whose
number, length, and ZCZ can be adapted without constraints. Furthermore, it is also
required to generate and correlate the spreading sequences with a reduced hardware com-
plexity. This is an active field of research with a large number of proposals in the last
decade.

Here, the modular architectures presented in previous chapters are used to improve
the properties of two families of GO sequences: LS and GPC sequences. This chapter
presents three main contributions:

• Firstly, the generation of multilevel LS sequences with flexible ZCZ length.

• Secondly, we introduce an efficient algorithm for the generation and correlation of
GPC sequences.

• Finally, we show the theoretical link between LS and the proposed efficient gener-
ator/correlator for GPC sequences. This relationship permits to propose a novel
efficient algorithm for the generation/correlation of LS sequences which requires al-
most the same hardware resources than a previous efficient architecture [Perez 10].

103
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5.1 Generation Algorithm of LS Sequences

Daoben Li introduced Large Area Synchronized (LAS) CDMA sequences as a candidate
for the 3G standard in 2000 [Li 00, Li 02], and later it was proposed for the novel 4G
standard [Li 03]. LAS codes are generated as a combination of LS sequences and LA
(Large Area) sequences. A set of K|LS ternary sequences of length L|LS, {V[l] = {vk [l]};
0  k  K|LS � 1; 0  l  L|LS � 1} ; vk 2 {�1, 0,+1} are called LS sequences if their
aperiodic correlation functions are as follows:

Cvi, vj [⌧ ] =

L|LS�1�⌧
X

l=0

vi [l] · vj [l + ⌧ ] =

8

>

>

<

>

>

:

Cp, for ⌧ = 0, i = j

0, for 1  |⌧ |  WZCZ , i = j

0, for 0  |⌧ |  WZCZ , i 6= j

(5.1)

Where vi, vj are two LS sequences of length L|LS, Cp is the correlation peak value,
i.e. the energy of the sequence, obtained for the time shift ⌧ = 0, and WZCZ is the ZCZ
length of the LS sequence.

5.1.1 Generation of LS Sequences from Golay Binary Sequence
Pairs

Given a Golay binary sequence pair of length L|Gol = 2

N · 10M · 26P in Z-domain:
{S(Q)

0,0 (z
�1
), S

(Q)
0,1 (z

�1
)} and its mate {S(Q)

1,0 (z
�1
), S

(Q)
1,1 (z

�1
)}, K|LS/2 = 2

a�1
; a 2 N � {0}

LS sequences {V0(z
�1
), V1(z

�1
), . . . , VK|LS/2

(z�1
)} of length L|LS = K|LS ·L|Gol +W|LS are

generated as stated in equation (5.2) [Stanc 01]:

Vk

�

z�1
�

=

K|LS/2�1
X

i=0

hk,i · z�i·L|Gol ·
"

S
(Q)
⇡i,0

�

z�1
�

+ z
�
✓

K|LS
2 L|Gol +W|LS

◆

S
(Q)
⇡i,1

�

z�1
�

#

(5.2)

The notation hk,i refers to the row k and column i of a Hadamard matrix of order
K|LS/2 and ⇡i is the element i of a vector ⇡ = [⇡0, ⇡1, . . . , ⇡K|LS/2�1], ⇡i 2 {0, 1}. The
vector ⇡ represents the binary expansion of an arbitrary integer p, 0  p  2

K|LS/2�1, so

as to p =

K|LS/2�1
P

i=0
⇡i2

i [Stanc 01].
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Another group of K|LS/2 LS sequences {VK|LS/2(z
�1
), VK|LS/2+1(z

�1
), . . . , VK|LS�1(z

�1
)}

is generated if in the previous equation (5.2) the vector ⇡ is changed by its complementary:
⇡⇤

= [⇡⇤
0, ⇡

⇤
1, . . . , ⇡

⇤
K|LS/2�1], with ⇡⇤

i = ⇡i + 1(mod 2).

In order to avoid the overlapping of the Golay sequences S
(Q)
⇡i,0(z

�1
) and S

(Q)
⇡i0 ,1

(z�1
),

(i 6= i0, 0  i, i0  K|LS

2 � 1) a chain of zeros of length W|LS is introduced. The length
of this chain is equal to the ZCZ length if and only if W|LS  L|Gol � 1. This implies
that for a given set size of K|LS LS sequences, the maximum ZCZ length1 is equal to
L|Gol � 1. Moreover, despite of the fact that there is a trade-off between W|LS and the
energy efficiency, W|LS is commonly chosen as W|LS = L|Gol � 1.

Example. Figure 5.1 shows a scheme of the generation of K|LS = 4 LS sequences of
length L|LS = K|LS · L|Gol +W|LS = 5 · L|Gol � 1, according to [Stanc 01]. The vectors ⇡

and ⇡⇤ determine the concatenation order.

 
h0,0 ⋅S0,0

Q( ) z-1( )
 
h0,1 ⋅S1,0

Q( ) z-1( )  
h0,0 ⋅S0,1

Q( ) z-1( )  
h0,1 ⋅S1,1

Q( ) z-1( ) W|LS

 
h1,0 ⋅S0,0

Q( ) z-1( )
 
h1,1 ⋅S1,0

Q( ) z-1( )  
h1,0 ⋅S0,1

Q( ) z-1( )  
h1,1 ⋅S1,1

Q( ) z-1( ) W|LS

 
h0,0 ⋅S1,0

Q( ) z-1( )
 
h0,1 ⋅S0,0

Q( ) z-1( )  
h0,0 ⋅S1,1

Q( ) z-1( )  
h0,1 ⋅S0,1

Q( ) z-1( ) W|LS

 
h1,0 ⋅S1,0

Q( ) z-1( )
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Q( ) z-1( )  
h1,0 ⋅S1,1

Q( ) z-1( )  
h1,1 ⋅S0,1

Q( ) z-1( ) W|LS

Figure 5.1: Scheme of the generation algorithm of 4 LS sequences with ⇡ = [0, 1] and
⇡⇤

= [1, 0], according to [Stanc 01].

To clarify that the maximum ZCZ length for a given set size K|LS is equal to WZCZ =

W|LS = L|Gol�1, consider the generation of K|LS = 4 LS sequences {V0(z
�1
), . . . , V3(z

�1
)}

of length L|LS = 30 bits, generated from Golay binary sequence pairs of length L|Gol = 4

bits and a chain of zeros of length 14 bits. The maximum ZCZ length of this set of LS
sequences is equal to 3 bits, despite of having inserted a chain of 14 zeros.

If we carry out the aperiodic cross-correlation function between any sequence from
the first K|LS/2 sequences of the set (i.e V0(z

�1
) or V1(z

�1
)) with any other sequence of

the second half of the set (V2(z
�1
) or V3(z

�1
)), we can check that the maximum ZCZ

1In what follows, we assume that the ZCZ length is equal to W|LS

= L|Gol

� 1
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length is equal to 3 bits. Figure 5.2 shows sequences V0(z
�1
), V2(z

�1
) and the aperiodic

cross-correlation function among them, i.e. V0(z
�1
) ·V2(z) where l is the time index of the

sequences 0  l  L|LS � 1; as depicted, the ZCZ length is limited by the length of the
Golay binary sequence pairs used for the generation of the LS sequences and the insertion
of more zeros than L|Gol � 1 does not increase the ZCZ.
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Figure 5.2: LS sequences of 30 bits with a chain of zeros of 14 bits and their aperiodic
cross-correlation. The ZCZ length is limited by the length of the Golay binary sequence
pairs used for their generation.

N
LS sequences have been used in numerous applications due to their simplified architec-

tures for their correlation and because they can be transmitted with a simple modulation
scheme, as BPSK [Wei 05, Ullah 10, Perez 11].

5.2 Multilevel LS Sequences with Flexible ZCZ Length

The generation algorithm of LS sequences of equation 5.2 can be generalized to K|MultLS =

K|LS multilevel LS sequences with flexible ZCZ length if the sequences S
(Q)
⇡i,0 (z

�1
) and

S
(Q)
⇡i,1 (z

�1
) are multilevel, i.e. if it is used the generation algorithm of equation 3.5 (refer

to Chapter 3, section 3.1). This is mainly due to two factors:
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1. There are no constraints on the length of the Pairs of Multilevel Complementary
Sequences (PMCS), i.e. on the lengths of multilevel CSS of K|MultCSS = 2 sequences.

2. The ZCZ length is equal to the length of the chain of zeros W|LS if and only if
W|LS  L|Gol � 1. As stated previously it is assumed to be W|LS = L|Gol � 1.

The proposed generation algorithm for multilevel LS sequences uses as a basis the al-
gorithm for generating power-of-two length complementary pairs of sequences (i.e. M

and P are equal to zero). Nevertheless, it is possible to generate multilevel LS sequences
with M and P larger than zero. This straightforward modification allows the generation
of multilevel LS sequences of lengths L|MultLS = K|MultLS ·L|MultLS+W|MultLS; W|MultLS =

L|PMCS � 1. Figure 5.3 shows a diagram block of the generation algorithm of multilevel
LS sequences. This algorithm has the same stages as the one of [Stanc 01, Perez 08] for
binary LS sequences.

In Chapter 3, section 3.4, we have determined the feasible lengths of the multilevel
K|MultCSS-CSS generated with the proposed algorithms. In order to generate PMCS
without constraints on their lengths, the number of iterations of the algorithm, Q, is
defined as was done in equation 3.47. And if it is particularized to K|MultCSS = 2 is
defined as

Q =

⌃

log2
�

L|PMCS

�⌥

(5.3)

The delay distribution is defined as was done in Chapter 3, section 3.4; particularized
to PMCS it is equal to:

D(q)
=

8

<

:

�

2

0, . . . , 2Q�2
 

for 0  q  Q� 2

L|PMCS � 2

Q�1 for q = Q� 1

(5.4)

These parameters have been chosen accordingly for avoiding an excessive number of stages.
In this way, the algorithm generates multilevel LS sequences with a power-of-two length
in the stages {0, . . . , Q� 2}, by choosing any permutation of the delays

�

2

0, . . . , 2Q�2
 

.
In the last iteration Q� 1, the algorithm adjusts the delay D(Q�1) to generate PMCS of
the desired length. The value of D(Q�1) is shown in equation 5.4, A(q) can be any real
number and the seed values W (1,q) are the same as the ones for Golay binary sequence
pairs for 0  q  Q� 1.

By using this algorithm, there exist multilevel LS sequences for more lengths than for
the binary LS ones. In fact, the length of binary LS sequences depends on the number of



108 Novel Algorithms for the Generation and Correlation of Generalized Orthogonal Sequences

0 
1 
0 
1 
0 
1 !!!!  z

-
K|MultLS

2 -1⎛
⎝⎜

⎞
⎠⎟⋅L|PMCS

 z
−L|PMCS

!!!! 0 
1 
0 
1 
0 
1  z

- K|MultLS-1( )⋅L|MultLS-W|MultLS

!!!!!! 
 z

-
K|MultLS

2 -1⎛
⎝⎜

⎞
⎠⎟⋅L|MultLS-W|MultLS

 z
−

K|MultLS
2

⎛
⎝⎜

⎞
⎠⎟⋅L|PMCS-W|MultLS

!!!!!! 
1

PMCS 
Generator 

 

 

 W
1,0( ) =1

PMCS 
Generator 

 

 

 W
1,0( ) = -1

 
S0,0

1,N( ) z−1( )

 
S0,1

1,N( ) z−1( )

 
S1,0

1,N( ) z−1( )

 
S1,1

1,N( ) z−1( )

 
πK|LS

2 -1

 π1

 π0

  
πK|LS

2 −1

  π1

  π0

 
Vk z-1( )

 hk,0

 hk,1

 
h

k,
K|MultLS

2 -1

 hk,1

 hk,0

 
h

k,
K|MultLS

2 -1

Figure 5.3: Diagram block of the generation of multilevel LS sequences.

LS sequences in the set, K|LS, and on the known lengths of Golay binary sequence pairs,
L|Gol, whereas the length of multilevel LS sequences only depends on the set size K|LS.

Figure 5.4 shows a multilevel LS sequence of length L|MultLS = 34, generated from
PMCS (equivalent to two multilevel CSS of K|MultCSS = 2 sequences) in 3 stages with the
parameters A(q)

= {1, 1, 2}, D(q)
= {1, 2, 3} and W (1,q)

= {1, 1, 1}.
For the sake of better understanding the advantages of this new construction, consider

the example of having a LPS working with four LS sequences, i.e. K|LS = 4, and with
maximum differences in the time of arrival between users (in sequence bits) of 85 bits.
Therefore, to minimize ISI and MAI, the ZCZ length must be ZCZ � 86 bits and the
length of Golay pairs, L|Gol, should be W|LS + 1 = 87 bits. As there no exist Golay
binary pairs of length 87 bits, it is needed complementary pairs of sequences of length 100
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Multilevel LS sequence of 34 bits

Figure 5.4: Multilevel LS sequence of length L|MultLS = 34, generated with A(q)
=

{1, 1, 2}, D(q)
= {1, 2, 3} and W (1,q)

= {1, 1, 1}.

bits, as this is the next available length greater than 87 that can be obtained with the
efficient generation algorithm of [Budis 11]; therefore, the shortest binary LS sequence
which accomplishes the condition ZCZ � 86 is L|LS = 4 · 100 + 127 = 527 bits.

If we use multilevel LS sequences instead, as there are no limitations in the length of the
PMCS, we can generate two PMCS of length L|PMCS = 87. Consequently, the multilevel
LS sequences will have a length of L|MultLS = 4 · 87 + 86 = 434 bits. So we can construct
the shortest multilevel LS sequence which accomplishes the system requirements.

This reduction in the sequence length to meet the systems requirements implies a
shorter emission time. This is of great importance when there are significant Doppler
shifts [Pared 11].

In practice, the spreading sequences should be modulated and fed into independent
power amplifiers to transmit them through the channel. If the modulated signals do not
have a constant envelope, the power amplifier will not work efficiently, as it will radiate less
power to avoid the distortion of the signal. As stated in Chapter 3, section 3.5, a common
parameter used to evaluate the envelope of the signal is the PAPR [Popov 99b], which
depends on the modulation scheme and, for multilevel LS sequences, on the values of A(q),
W (1,q) and D(q). If DS-CDMA is used to transmit them, the use of multilevel sequences
implies an increase in the PAPR. For example, for K|LS = 4 binary LS sequences of
length L|LS = 639 bits, the PAPR is equal to 1.25, while for K|MultLS = 4 multilevel LS
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sequences of the same length it is equal to 1.99 (for A(q)
= {1, 1, 1, 1, 1, 1, 2}, seeds W (1,q)

=

{±1,�1, . . . ,�1} and delays D(q)
= {64, 32, . . . , 1}). So sequences with flexible ZCZ are

obtained at the cost of an increase in the PAPR. Different delays D(q), seeds W (1,q) and
weight values A(q), generate multilevel LS sequences with different amplitude distributions
and PAPR. By selecting the previous parameters, the computational complexity is reduced
in spite of not having the lowest PAPR.

If we use the optimal ternary complementary pairs generated in the previous Chapter
3, section 3.5, the obtained LS sequences will have a lower PAPR and then, will have
more energy efficiency. Figure 5.5 shows a LS sequence of length L|MultLS = 89, generated
with the values A(q)

= {1, 1, 1, 1}, seeds W (1,q)
= {1, 1, 1, 1} and delays distribution

D(q)
= {9, 1, 2, 5}. The PAPR of this LS sequence is equal to 1.39.

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

l

A
m

p
lit

u
d
e

Figure 5.5: LS sequence generated from optimal ternary complementary pairs of length
9.

Another alternative is to increase the lineal region of the power amplifier to transmit
more power and to have the same processing gain as the binary sequence.

An energy efficient solution is the use of MC-CDMA, where each level is assigned to an
specific carrier. Nevertheless, this solution requires a larger bandwidth (i.e. less spectral
efficiency), which could not be feasible and it introduces more complexity in the system.
Figure 5.6 shows the diagram blocks of the MC-CDMA solution when the weight values
are A(q)

= {1, 1, . . . , 1} for 0  q  Q � 2 and A(q)
= 2 for q = Q � 1 and the delay

distribution is the one shown in equation 5.4.
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Consequently, there is a trade-off between system complexity, energy efficiency and
spectral efficiency.

1/ 2 

1/ 3 

Splitter 

Multilevel LS 

± 1 

± 2 

± 3 

Σ 
Shaping Filter 

Fc1 

Shaping Filter 

Fc2 

Shaping Filter 

Fc3 

PA 

2 

3 

To the efficient 
correlator Σ 

Shaping 
Filter 

Fc1 

Shaping 
Filter 

Fc2 

Shaping 
Filter 

Fc3 

LNA 

LPF 

LPF 

LPF 

Figure 5.6: MC-CDMA scheme to avoid an increase in the PAPR.

5.3 Generation Algorithm of GPC Sequences

Chen et al. proposed GPC sequences to improve the correlation properties of LS and T-
ZCZ sequences [Chen 06]. T|GPC pairs of sequences of length L|GPC , U(j)

[l] = {u(j)
k,0[l], u

(j)
k,1[l]};

0  l  L|GPC � 1; 0  k  G� 1, with Z-transforms {U (j)
k,0(z

�1
), U

(j)
k,1(z

�1
)}, are a family

of GPC sequences if their SACF and their SCCF hold the properties shown in equation
5.5 and equation 5.6 respectively. The term j 2 {0, 1} represents the group of the family
set {U(0)

[l],U(1)
[l]}; T|GPC = 2 ·G and G = 2

a
; a 2 N� {0}.

SACF [⌧ ] =

L|GPC�1�⌧
X

l=0

u
(j)
k,0[l] · u

(j)
k,0[l + ⌧ ] +

L|GPC�1�⌧
X

l=0

u
(j)
k,1[l] · u

(j)
k,1[l + ⌧ ]

=

8

<

:

Cp if ⌧ = 0

0 if 1  |⌧ |  W|GPC

0  k  G� 1; j 2 {0, 1} (5.5)
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SCCF [⌧ ] =

L|GPC�1�⌧
X

l=0

u
(j)
k,0[l] · u

(j0)
k0,0[l + ⌧ ] +

L|GPC�1�⌧
X

l=0

u
(j)
k,1[l] · u

(j0)
k0,1[l + ⌧ ]

=

8

<

:

0 if 0  |⌧ |  W|GPC ; j = j0

0 if j 6= j0; 8⌧
0  k, k0  G� 1; k 6= k0

; j, j0 2 {0, 1}

(5.6)

Where Cp is the energy of the pair of GPC sequences; W|GPC = 4 ·L|CC �1 is the ZCZ
length and L|GPC = 4·G·L|CC is the length of the GPC sequences. The double-sided ZCZ,
(IFW) is 2 ·W|GPC + 1 = 8 · L|CC � 1 and the number of sequence pairs is T|GPC = 2 ·G.
Therefore, a family of GPC sequences can be defined as GPC(T|GPC , L|GPC , IFW), i.e.
GPC(2 · G, 2 · T|GPC · L|CC , 8 · L|CC � 1). Figure 5.7 shows the SACF and the SCCF of
a set GPC(4,32,31). The sidelobes of the SACF are sparsely distributed and located at
shifts |⌧ | = 4 · L|CC ·�1, with �1 2 {1, . . . , 2a � 1}, while the sidelobes of the intra-group
SCCF (j = j’), are distributed at shifts |⌧ | = 4 · L|CC · �2 with �2 2 N� {0} [Chen 06].
Therefore, the larger number of available GPC sequences (T|GPC), the larger number of
sidelobes will appear in the correlation functions.

In the case of inter-group SCCF, the sum of aperiodic cross-correlation functions is
zero for all shifts ⌧ .

GPC sequences can be combined in the emitter by means of any orthogonal modulation
scheme. For example, Figure 5.8 shows a generic block diagram where a GPC pair is
transmitted by using an I/Q modulation. At the receiver front-end, each demodulated
sequence is fed into a Matched Filter (MF). If an ideal channel with AGWN is considered,
where N(z�1

) is the AWGN term, the output
P

C(z�1
) is as follows:

X

C
�

z�1
�

= OI

�

z�1
�

+OQ

�

z�1
�

(5.7)

Where OI (z
�1
) and OQ (z�1

) are defined as

OI

�

z�1
�

= C
RI ,U

(j)
k,0

�

z�1
�

+ CN,RI

�

z�1
�

OQ

�

z�1
�

= C
RQ,U

(j)
k,1

�

z�1
�

+ CN,RQ

�

z�1
�

(5.8)
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Figure 5.7: Aperiodic correlation functions of GPC(4,32,31) sequences.

The terms CN,RI
(z�1

) and CN,RQ
(z�1

) represents the noise factor due to the AWGN.
As it has been shown from the matched filter theory [Proak 00, Leave 09] and from its
application to pairs of sequences [White 92, Diaz 02], in this kind of systems, the SNR is
improved by a factor twice the sequence length at the final output, with the addition of
the corresponding output of both correlators.
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Figure 5.8: Block diagram of a QS-CDMA link using GPC sequences with an I/Q modem
and two matched filters.

The generation algorithm of GPC sequences [Chen 06] is based on the properties
of Generalized Even-Shift Orthogonal (GESO) sequences, constructed from Complete
Complementary sequences (CC) [Suehi 88, Chen 01]. The CC sequences used in [Chen 06]
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are in fact K|CC =

p

L|CC uncorrelated CSS2 of length L|CC = 4

b
; b 2 N�{0} generated by

means of non-recursive methods [Chen 07]. The generation algorithm of GPC sequences
can be divided into three steps:

Step 1 : Generation of GESO sequences. Without loss of generality, the generation
of GESO sequences is explained here for K|CC = 2 CC sequences of length L|CC =

4, Scj(z
�1
) = {Scj,0(z�1

), Scj,1(z
�1
)}, being Scj(z

�1
) the j-th CC set, formed of the

sequences {Scj,0(z�1
), Scj,1(z

�1
)}. The CC sequences Scj,i(z

�1
), 0  i  1, in Z-domain

are defined as

Scj,i
�

z�1
�

=

L|CC�1
X

l=0

scj,i [l] · z�l (5.9)

Consider a Hadamard matrix of order K|CC = 2, H2 = [h1 h2]
T (hi is the i-th row

of the matrix), and generated from any known construction method [Seber 92], then the
GESO sequences, E j (z

�1
) ; 0  j  1, are generated as follows:

Ej
�

z�1
�

=

1
X

i=0

L|CC�1
X

l=0

�

scj,i [l] · z�l ⌦ hi

�

·z�i·2·L|CC (5.10)

The GESO sequences Ej(z�1
) generated in this form, have aperiodic correlation func-

tions with zero sidelobes at even shifts and a length L|GESO = 4 ·L|Gol. Figure 5.9 depicts
the correlation functions of K|GESO = 2 GESO sequences of length L|GESO = 16.

Step 2: In order to enlarge the sequence set, the Walsh-Hadamard expansion of order
G, G = 2

a; 8a 2 N�{0}, is used. The recursive method for the generation of the Hadam-
ard matrix is the same as the explained in Chapter 2, section 2.3.1 for the generation of
OVSF sequences and it is expressed as

H1 = [1]

H2 +1 =

"

H2 H2 

H2 �H2 

#

; 2 {0, 1, . . . , a� 1} (5.11)

Then the Walsh-Hadamard expansion is carried out as follows:

2Observe that the number of CSS, T|CSS

, and the number of sequences in each set, K|CSS

, are the
same.
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Figure 5.9: Aperiodic correlation function of a GESO sequence of length L|GESO = 16.

U
(j)
k,0(z

�1
) =

G�1
X

i=0

hk,i · z�i·4·L|CC · Ej(z�1
) (5.12)

Where hk,i are the entries of the Hadamard matrix HG and U
(j)
k,0(z

�1
); 0  k  G� 1

is the first GPC sequence of the pair k, which belongs to the subgroup j. The length
of the GPC sequence is equal to L|GPC = 4 · G · L|CC , so both the length of the GPC
sequence and the number of them are increased in a factor G with the Walsh-Hadamard
expansion. The sequences are divided into two groups {U(0)

(z�1
),U(1)

(z�1
)}, each of

them composed of G sequences. Figure 5.10 shows the aperiodic correlation function of
the sequence U

(0)
0,0 (z

�1
) of length L|GPC = 32, i.e. G = 2 and L|CC = 4. As depicted, the

aperiodic auto-correlation of the sequence U
(0)
0,0 (z

�1
) is zero at even shifts except at shifts

|⌧ | = 4 · L|CC · �1, with �1 2 {1, . . . , 2a � 1}, due to the Walsh-Hadamard expansion.
Step 3: Elimination of odd shift interferences. To eliminate the interferences at odd

shifts, the second GPC sequence of the pair k is generated as follows:

U
(j)
k,1(z

�1
) =

L|GPC�1
X

l=0

(�1)

l · u(j)
k,0[l] · z

�l (5.13)

Notice that with this construction, the GPC sequences have interferences sparsely
distributed and the ZCZ length is equal to 4 · L|CC � 1 [Chen 06]. Figure 5.11 shows
the aperiodic correlation function of the sequence U

(0)
0,1 (z

�1
) of length L|GPC = 32. This

sequence has been generated by negating the even bits of U (0)
0,0 (z

�1
). If we carry out the
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Figure 5.10: Aperiodic auto-correlation function of the sequence U
(0)
0,0 (z

�1
) of length

L|GPC = 32.

sum of the aperiodic correlation function of the sequences U
(0)
0,0 (z

�1
) (Figure 5.10) and

U
(0)
0,1 (z

�1
) (Figure 5.11), we obtain the SACF depicted in Figure 5.7.
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Figure 5.11: Aperiodic auto-correlation function of the sequence U
(0)
0,1 (z

�1
) of length

L|GPC = 32.



Novel Algorithms for the Generation and Correlation of Generalized Orthogonal Sequences 117

5.4 Efficient Generation Algorithm of GPC Sequences

The properties of the T|GPC = 2·G GPC sequences generated with the proposed generation
algorithm are: IFW = 4 ·L|Gol�1; L|GPC = 2 ·G ·L|Gol, i.e. now the GPC set is defined as
GPC(2·G, T|GPC ·L|Gol, 4·L|Gol�1). Notice that the generation algorithm of [Chen 06] and
the proposed here, are equivalent as they have the same L|GPC/IFW relationship. The
algorithm is based on the properties of E -sequences [Taki 69], ej[l], with Z-transform
equal to Ej (z

�1
), obtained from Golay pairs of sequences instead of GESO sequences,

Ej(z�1
), generated from CC sequences.

The proposed generation algorithm for GPC sequences, expressed in Z -domain, is as
follows:

U
(j)
k,0(z

�1
) =

G�1
X

i=0

hk,i·z�i·2·L|Gol ·Ej(z
�1
)

U
(j)
k,1(z

�1
) =

L|GPC�1
X

l=0

(�1)

l · u(j)
k,0[l] · z

�l (5.14)

Where U
(j)
k,⇢(z

�1
) with ⇢, j 2 {0, 1} and 0  k  G� 1 refers to the sequence ⇢ of the

pair k belonging to the subgroup j; hk,i are the entries of a Hadamard matrix of order G;
L|Gol is the length of the Golay sequences pairs and Ej(z

�1
) is an E -sequence obtained

by interleaving the Golay pair j.
An efficient generator for GPC sequences is obtained by following the steps indicated

below. The first step includes the modifications to the original algorithm of [Chen 06].
Step 1 : For generating the E -sequences it is necessary to interleave the Golay sequence

pairs of length L|Gol = 2

N ·10M ·26P , with N , M , P non-negative integers. To accomplish
that, three sub-steps are required: First, we use the efficient generation algorithm presen-
ted in Chapter 4 for the Golay pairs S(1,Q)

j (z�1
) = {S(Q)

j,0 (z�1
), S

(Q)
j,1 (z�1

)} in Q iterations,
Q = N +4 ·M +12 ·P . Later, the Golay pairs must be zero-padded by inserting one zero
between every two bits of both sequences, obtaining the sequence pairs of length 2 ·L|Gol,
dS

(1,Q)
j (z�1

) = {dS(Q)
j,0 (z�1

),d S
(Q)
j,1 (z�1

)}. Finally, we have to delay one bit the sequence
dS

(Q)
j,1 (z�1

) and add it with the sequence dS
(Q)
j,0 (z�1

) to obtain the E -sequence Ej(z
�1
).

Fig. 5.12 depicts a block diagram of the Efficient Golay Generator (EGG). In order to
generate the pairs dS

(1,Q)
j (z�1

) = {dS(Q)
j,0 (z�1

),d S
(Q)
j,1 (z�1

)} with the architecture of Figure



118 Novel Algorithms for the Generation and Correlation of Generalized Orthogonal Sequences

5.12, the delays D(q) of each stage have to be multiplied by two. This is a straightforward
modification and it does not affect to the architecture of the EGG.

1

 z-2⋅D 0( )
( )1,0W ( )1,0A

 
dSj,0

1( ) z-1( )

 
dSj,1

1( ) z-1( )

...

...

 
dSj,0

Q-1( ) z-1( )

 
dSj,1

Q-1( ) z-1( )  
dSj,1

Q( ) z-1( )
 
dSj,0

Q( ) z-1( )
( )1,Q-1W

 z-2⋅D Q-1( )
+

− −
+

( )1,0A

( )1,Q-1A

( )1,Q-1A

Figure 5.12: Efficient Golay Generator for the sequence pairs in Z-domain {dS(Q)
j,0 (z�1

),
dS

(Q)
j,1 (z�1

)}.

Therefore, the Golay pairs {dS(Q)
j,0 (z�1

), dS
(Q)
j,1 (z�1

)} are generated by duplicating the
EGG memory elements in each stage and they are equal to:

2·L|Gol�1
X

l=0

ds
(Q)
j,⇢ [l] · z�l

= 0; for l even; ⇢ 2 {0, 1} (5.15)

The pairs of sequences dS
(1,Q)
j (z�1

) = {dS(Q)
j,0 (z�1

), dS
(Q)
j,1 (z�1

)} are interleaved by delay-
ing one bit the sequence dS

(Q)
j,1 (z�1

) and then adding both sequences of the pair j as follows:

Ej(z
�1
) =

dS
(Q)
j,0 (z�1

) + z�1 · dS(Q)
j,1 (z�1

) (5.16)

The sequences generated in this form, for j = 0 and j = 1, are E -sequences of length
2 · L|Gol and their correlation functions are zero for all even shifts [Taki 69].

As stated in Chapter 4, the pairs of sequences can be matched to the 8-QAM alphabet
{a+ i · b; (a, b) 2 (±1,±3)⇥ (±1,±3})} by setting all the multipliers A(n) to 1 except one
of them, which is arbitrarily selected, in this case with the value 3. In the case that all
the multipliers A(n) were fixed to A(n)

= 1, the Golay pairs of sequences would be binary.
Step 2 : The same Walsh-Hadamard expansion as the proposed in [Chen 06] has to be

carried out to enlarge the set size:

U
(j)
k,0(z

�1
) =

G�1
X

i=0

hk,i · z�i·2·L|Gol · Ej(z
�1
) (5.17)

Where hk,i are the entries of a Hadamard matrix of order G, G = 2

a; 8a 2 N � {0},
obtained by using the Sylvester’s construction, stated in equation 5.11. Notice that the
entries hk,0, 0  k  G� 1, are equal to +1 when the Sylvester’s construction is used.
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Step 3 : Finally, to generate the sequence U
(j)
k,1(z

�1
), the sign of the even bits of

U
(j)
k,0(z

�1
), [Chen 06] must be changed i.e.:

U
(j)
k,1(z

�1
) =

L|GPC�1
X

l=0

(�1)

l · u(j)
k,0[l] · z

�l (5.18)

Figure 5.13 shows the described steps in a block diagram. As depicted, the change of
sign at the even bits of U (j)

k,0(z
�1
) is managed by the signal CLK/2 (the half of frequency

of the system clock).

!!!!!!!!!!!!!!!!!!!!!!!!!!            Step 1            Step 2             Step 3 

-1 0 
 

1 

CLK/2 

 z
-2⋅L|Gol

 z
-2⋅L|Gol

 z
-2⋅L|Gol

1 
hk,1 

hk,G-2 
hk,G-1 

… 
EGG 

 

 
  
dS j

1,Q( ) z-1( ) -1z

 
dSj,0

Q( ) z-1( )

 
dSj,1

Q( ) z-1( )
 
Ej z-1( ) Uk,0

j( ) z-1( )

Uk,1
j( ) z-1( )

Figure 5.13: Efficient generator for GPC sequences in Z-domain.

Notice that the main contribution of the efficient generator is the Step 1, where E -
sequences are used instead of GESO sequences. This modification permits to use the
efficient generator of Golay pairs of sequences of length L|Gol = 2

N · 10M · 26P instead of
the CC sequences which have a reduced flexibility in the sequence length, and therefore
in the ZCZ length.

5.5 Efficient Correlator of GPC Sequences

Due to the relationship between convolution and correlation, if the generation algorithm
is modified to build the reversed sequences, it will be equivalent to a correlator matched to
the sequences {U (j)

k,0(z
�1
), U

(j)
k,1(z

�1
)} that has the same impulse response as the straight-

forward correlator. To accomplish this, it is necessary to carry out the modifications to
the generation algorithm for GPC sequences pointed out in the following steps:

Step 1 : The Walsh-Hadamard expansion of the input signal R(z�1
), must be per-

formed by reversing the delay orders to generate the signal Re(z
�1
) as follows:
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Re(z
�1
) = R(z�1

) ·
"

z�(G�1)2L|Gol
+

G�1
X

i=1

hk,i·z�(G�1�i)·2·L|Gol

#

(5.19)

As all the entries hk,0 are equal to +1 when using the Sylvester’s construction, they
have been omitted in equation 5.19.

Step 2 : The order of the delays in the EGG must be reversed to correlate the signal
Re(z

�1
) with the zero-padded Golay pairs dS

(1,Q)
j (z�1

) = {dS(Q)
j,0 (z�1

),d S
(Q)
j,1 (z�1

)}. Figure
5.14 shows a block diagram of the Efficient Golay Correlator (EGC) for zero-padded Golay
pairs.

...

...

 
φ

Re,d Sj,0
Q-1( ) z-1( )

 
φ

Re,d Sj,1
Q-1( ) z-1( ) C

Re,
dSj,1

Q( ) z
-1( )

C
Re,

dSj,0
Q( ) z

-1( )
( )1,Q-1W ( )1,Q-1A

 z-2⋅D Q-1( )

+
−

( )1,Q-1A z-2⋅D 0( )

( )1,0W

( )1,0A
 
φ

Re,d Sj,0
1( ) z-1( )

−
+( )1,0A

Re z
-1( )

 
φ

Re,d Sj,1
1( ) z-1( )

Figure 5.14: Efficient Golay Correlator (EGC) for zero-padded Golay pairs in Z-domain.

Step 3 : Finally, the delay z�1 at the output of the EGG for the zero-padded Golay
pairs must be applied to C

Re,dS
(Q)
j,0

(z�1
) to obtain the aperiodic correlation between the

input signal, R(z�1
), and the sequence U

(j)
k,0(z

�1
):

C
R,U

(j)
k,0
(z�1

) = z�1 · C
Re,dS

(Q)
j,0

(z�1
) + C

Re,dS
(Q)
j,1

(z�1
) (5.20)

And the aperiodic correlation between the signal R(z�1
) and the sequence U

(j)
k,1(z

�1
)

is:

C
R,U

(j)
k,1
(z�1

) = z�1 · C
Re,dS

(Q)
j,0

(z�1
)� C

Re,dS
(Q)
j,1

(z�1
) (5.21)

Figure 5.15 shows a block diagram of the efficient correlator for GPC sequences, ob-
tained by following the previous steps.

5.5.1 Implementation Aspects

Table 5.1 shows a comparison of the necessary resources for the efficient generator/correl-
ator for binary GPC sequences proposed here, and for a straightforward correlator that
can be used for implementing the generator proposed in [Chen 06], as in this case an effi-
cient generator is not known. Notice that the resources needed for the efficient generator
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Figure 5.15: Efficient correlator for GPC sequences in Z-domain.

are the same as those needed for the efficient correlator (each one is the time reversed
version of the other). An important difference between the generator and the correlator
in a real implementation is related to the data bus width needed: in the generator the
input is just a bit while in the correlator the input is normally the output of an ADC (e.
g. 8 bits).

Resources Straightforward Generator/Correlator Efficient Generator/Correlator

Products � 2 · (M + 9 · P )

Additions T|GPC

· L|Gol

� 1 2 ·Q+ T|GPC

/2

Delays T|GPC

· L|Gol

� 1 T|GPC

· L|Gol

� 1

Table 5.1: Resources Required for the Proposed Generator/Correlator and for the
Straightforward Generator/Correlator (considering only one sequence).

For example, consider a set of T|GPC = 8 pairs of GPC sequences of length L|GPC =

4096, generated from two uncorrelated Golay pairs of length L|Gol = 512, GPC(8, 4096,
2047), with N = 9, M = 0 and P = 0, i.e. Q = 9. In that case, the architecture only
needs 22 additions to carry out the correlation of a GPC of the pair. For the case of
the straightforward correlator, the number of additions is 4095. Regarding the number of
delays needed to carry out the aperiodic correlations for both cases is 4095. Nonetheless, in
the proposed correlator, the data bus width is larger than the case of the straightforward
correlator. So, the number of operations in the proposed correlator is reduced at the
expense of increasing the number of memory bits.
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The reduction in the number of operations with the correlator proposed here, in com-
parison with the straightforward one, allows real-time implementation (using reconfigur-
able hardware) in cases in which high frequencies or long sequences are involved. Fur-
thermore, the use of long sequences can benefit from larger IFW and set size.

5.6 Theoretical Relationship between GPC and LS Se-

quences

GPC sequences and LS sequences are closely related to each other. In fact the efficient
generation algorithm of GPC sequences introduced previously can be used, with minor
modifications, for the generation of a set of K|LS LS sequences. Given T|GPC sets of GPC
sequences {U(j)

[l] = {u(j)
k,0[l], u

(j)
k,1[l]}; 0  l  L|GPC�1; 0  k  G�1}, j 2 {0, 1}, with Z-

transform {U (j)
k,0(z

�1
), U

(j)
k,1(z

�1
)} it is possible to generate a set of K|LS = 2·G LS sequences

{V[l] = {vk [l]}; 0  l  L|LS � 1; 0  k  K|LS} of length L|LS = 2 ·L|Gol · (2 ·G+ 1)� 1

by concatenating the pairs of GPC sequences, which expressed in the Z-domain, is as
follows:

Vk

�

z�1
�

= U
(j)
k,0

�

z�1
�

+ U
(j)
k,1

�

z�1
�

· z�(2·L|Gol·G+W|LS) (5.22)

where W|LS is now W|LS = 2 ·L|Gol � 1. Figure 5.16 shows a scheme of the generation
algorithm of a set of K|LS = 4 LS sequences. Notice that in the generation algorithm of
Stanczak [Stanc 01], Golay binary sequence pairs are concatenated with different polarities
(see Figure 5.1). In the proposed generation algorithm, it is used E-sequences instead.

 
h0,0 ⋅E0 z-1( )

 
h0,1 ⋅E0 z-1( )  

h0,0 ⋅E0
* z-1( )  

h0,1 ⋅E0
* z-1( ) W|LS

 
h1,0 ⋅E0 z-1( )
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h1,0 ⋅E0
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h1,1 ⋅E0
* z-1( ) W|LS

 
h0,0 ⋅E1 z-1( )

 
h0,1 ⋅E1 z-1( )  

h0,0 ⋅E1
* z-1( )  

h0,1 ⋅E1
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h1,1 ⋅E1
* z-1( ) W|LS

Figure 5.16: Scheme of the proposed generation method of a set of K|LS = 4 LS sequences.
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Claim. The LS sequences generated with equation 5.22 have a length L|LS = 2 ·L|Gol ·
K|LS +W|LS; W|LS = 2 · L|Gol � 1 and an IFW = 2 ·W|LS + 1 = 4 · L|Gol � 1. Also they
have the same L|LS/IFW relationship as the LS sequences generated with the algorithm
of [Stanc 01].

Proof. From the properties of GPC sequences it is known that C
U

(j)
k,0,U

(j)
k,0
(z�1

) = �C
U

(j)
k,1,U

(j)
k,1
(z�1

)

except for |⌧ | = 2 · L|Gol · �1; �1 2 {0, . . . , 2a � 1}; a = log2 G [Chen 06]. Also from the
properties of the E -sequences, the following equations hold:

CEj ,Ej

�

z�1
�

+ CE⇤
j ,E

⇤
j

�

z�1
�

= 4 · L|Gol (5.23)

CEj ,Ej0

�

z�1
�

+ CE⇤
j ,E

⇤
j0

�

z�1
�

= 0; j 6= j0 (5.24)

where E⇤
j (z

�1
) is equal to E⇤

j (z
�1
) =

2·L|Gol�1
P

l=0
ej[l] · z�l · (�1)

�l, which implies that

the E -sequence E⇤
j (z

�1
) is equal to the E -sequence Ej(z

�1
) with the even bits negated.

Notice that this is the same operation carried out for obtaining the sequence U
(j)
k,1(z

�1
)

(refer to equations 5.14 and 5.18). So the generation algorithm stated in equation 5.22
can be expressed as

Vk

�

z�1
�

=

G�1
X

i=0

hk,i·z�i·2·L|Gol ·Ej(z
�1
) +

 

G�1
X

i=0

hk,i·z�i·2·L|Gol ·E⇤
j (z

�1
)

!

· z�(2·L|Gol·G+W|LS)

(5.25)
Consider now the aperiodic auto-correlation function for 0  ⌧  2 · L|Gol � 1; due to

the chain of zeros W|LS of length 2 · L|Gol � 1, the left part of the sequence (U (j)
k,0(z

�1
))

and the right one (U (j)
k,1(z

�1
)) do not overlap for displacements 0  ⌧  2 · L|Gol � 1,

consequently the aperiodic auto-correlation for 0  ⌧  2 · L|Gol � 1 is

Vk

�

z�1
�

· Vk (z) =

G�1
X

i=0

hk,i · Ej

�

z�1
�

· z�i·2·L|Gol ·
G�1
X

i0=0

hk,i0 · Ej (z) · zi
0·2·L|Gol

+

G�1
X

i=0

hk,i · E⇤
j

�

z�1
�

· z�i·2·L|Gol ·
G�1
X

i0=0

hk,i0 · E⇤
j (z) · zi

0·2·L|Gol

=

⇣

CEj ,Ej

�

z�1
�

+ CE⇤
j ,E

⇤
j

�

z�1
�

⌘

·
G�1
X

i=0

hk,i · z�i·2·L|Gol ·
G�1
X

i0=0

hk,i0 · zi
0·2·L|Gol

for 0  ⌧  2 · L|Gol � 1 (5.26)
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Due to the window of interest is defined by 0  ⌧  2 ·L|Gol�1, the term z(�i+i0)·2·L|Gol

must be equal to +1, so i = i0. This implies that the aperiodic auto-correlation function
within the window of interest is equal to:

Vk

�

z�1
�

· Vk (z) =
⇣

CEj ,Ej

�

z�1
�

+ CE⇤
j ,E

⇤
j

�

z�1
�

⌘

·
�

h2
k,0 + · · ·+ h2

k,G�1

�

for 0  ⌧  2 · L|Gol � 1 (5.27)

By using the property of equation 5.23 and knowing that the order of the Hadamard
matrix is G, the aperiodic auto-correlation of the LS sequence Vk(z

�1
) for 0  ⌧ 

2 · L|Gol � 1 is equal to:

Vk

�

z�1
�

· Vk (z) = 4 · L|Gol ·G; for 0  ⌧  2 · L|Gol � 1 (5.28)

Due to the symmetry properties of the correlation function, the IFW is equal to
IFW = 4 · L|Gol � 1. Analysing now the aperiodic cross-correlation of the LS sequences
Vk(z

�1
) and Vk0(z

�1
), k 6= k0 for 0  ⌧  2 · L|Gol � 1 it is shown that
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for 0  ⌧  2 · L|Gol � 1; k 6= k0 (5.29)

Again, the term z(�i+i0)·2·L|Gol must be equal to +1, as the window of interest is 0 
⌧  2 · L|Gol � 1. Hence, the aperiodic cross-correlation function within the IFW is equal
to:

Vk

�

z�1
�

· Vk0 (z) =
⇣

CEj ,Ej

�

z�1
�

+ CE⇤
j ,E

⇤
j

�

z�1
�

⌘

· (hk,0 · hk0,0 + · · ·+ hk,G�1 · hk0,G�1)

for 0  ⌧  2 · L|Gol � 1; k 6= k0 (5.30)

Due to the rows hk of the Hadamard matrix HG are pairwise orthogonal, i.e. Chk,hk0 =

0; for ⌧ = 0, and because of the property of equation 5.23, the aperiodic cross-correlation
function within the window of interest is
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Vk

�

z�1
�

· Vk0 (z) = 0; for 0  ⌧  2 · L|Gol � 1; k 6= k0 (5.31)

Now, if the aperiodic cross-correlation among LS sequences of different subgroups j is
considered, we have:
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for 0  ⌧  2 · L|Gol � 1; k 6= k0 j 6= j0 (5.32)

Within the IFW, the aperiodic cross-correlation is equal to:

Vk

�

z�1
�

· Vk0 (z) =
⇣

CEj ,Ej0

�

z�1
�

+ CE⇤
j ,E

⇤
j0

�

z�1
�

⌘

· (hk,0 · hk0,0 + · · ·+ hk,G�1 · hk0,G�1)

= 0 for 0  ⌧  2 · L|Gol � 1; k 6= k0 (5.33)

As the terms CEj ,Ej0 (z
�1
)+CE⇤

j ,E
⇤
j0
(z�1

) are equal to zero (refer to equation 5.24) and
the rows of the Hadamard matrix HG are pairwise orthogonal.

The L|LS/IFW relationship of the proposed LS sequences is equal to 2·L|Gol·(K|LS+1
)

�1

4·L|Gol�1 ,
which is the same of the LS generated with the algorithm of [Stanc 01]. ⌅

The novel approach for the generation of LS sequences is represented in the diagram
block of Figure 5.17. The correlator of these sequences is equivalent to the generator
with the delays arranged in a reversed order, as depicted in Figure 5.18. Interestingly,
the proposed correlator for binary LS sequences requires similar hardware resources than
the previous optimised architecture of [Perez 10] as stated in Table 5.2. Notice that for
comparison purposes only has been considered binary LS sequences generated from power-
of-two Golay binary pairs (i.e. M and P are zero).

The proposed generation/correlation architecture can be optimized further if the
Walsh-Hadamard Expansion (WHE) block (Step 4 in the diagram blocks) is replaced
by one of the butterfly architectures shown in [Regal 89]. These structures allow the sim-
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Figure 5.17: Diagram block of the efficient generator of LS sequences obtained from GPC
sequences.
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Figure 5.18: Diagram block of the proposed LS sequences correlator.

ultaneous generation/correlation of the first of K|LS

2 LS sequences. In order to correlate
a complete set of K|LS sequences with the proposed architecture, two EGC are needed.
Figure 5.19 shows the complete architecture for the correlation of a set of K|LS LS se-
quences. The upper branch, (which uses the EGC for dS

(1,Q)
0 (z�1

)) correlates the first
K|LS

2 sequences and the lower one (which uses the EGC for dS
(1,Q)
1 (z�1

)), the remaining
K|LS

2 sequences. Further optimizations of this proposal may be accomplished by using the
EGC architecture of [Donat 09a].

5.7 Conclusions

In this Chapter we took advantage of the efficient architectures proposed in Chapter 3
and Chapter 4 for CSS for introducing multilevel LS sequences, which allow the selection



Novel Algorithms for the Generation and Correlation of Generalized Orthogonal Sequences 127

Resources Products Additions Delays

Straightforward � K|LS
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� 1 2 · (K|LS
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)� 1

ELSC [Perez 07b] � 4 · log2(L|Gol

) +K|LS
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� 2 +
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� 1)
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· L|Gol

+ L|Gol

)� 1

Proposed � 2 · log2(L|Gol

) +

K|LS

2 + 1 2 · (K|LS

· L|Gol

+ L|Gol

) + 1

Table 5.2: Comparison of hardware resources required for the generation/correlation of
LS sequences for different methods (only one LS sequence is considered).
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Figure 5.19: Complete architecture for the correlation of a set of K|LS LS sequences.

of the LS sequence length with less constraints than the binary ones. Due to the fact
that there is no limitations on the length of the PMCS, the maximum ZCZ for a given
LS sequence length can be adjusted to accomplish the particular system requirements.

Nonetheless, the use of multilevel LS sequences has the limitation of the energy ef-
ficiency. Depending on the values A(q), W (1,q) and D(q) of the PMCS generator, the
resultant LS sequences can have a reduced energy efficiency. This can be coped with an
appropriate encoding scheme as MC-CDMA or by using the values A(q), W (1,q) and D(q)

that provide energy efficient LS sequences.
In this chapter we have also proposed a novel and efficient correlator for GPC se-

quences, which have a very promising correlation properties. Finally, we have shown the
theoretical link between GPC and LS sequences. This helps us to introduce a novel gener-
ation algorithm of LS sequences and to correlate them with a similar number of hardware
resources than with previous efficient architectures.





Chapter 6

Application to Ultra-Wideband
Ranging Systems

In this chapter, we propose a CDMA-based Ultra-Wideband (UWB) Local Positioning
System (LPS) with Commercial Off-The-Shelf (COTS) components; also the perform-
ance of two spreading sequences in this LPS is evaluated. We have compared Kasami
[Kasam 66] sequences (which are unitary sequences with good aperiodic correlation func-
tions and used previously in several ultrasonic indoor positioning systems [Villa 13], refer
to Appendix A) with LS sequences [Stanc 01]. These GO sequences, have been also em-
ployed satisfactorily in an ultrasonic LPS under the presence of near-far effect [Perez 09c];
also the use of LS sequences has the advantage of using the architectures presented previ-
ously. In contrast to other positioning systems as ultrasound-based LPS, UWB LPS has
to cope with the following challenges:

1. As an electromagnetic wave, in LOS conditions it propagates at the speed of light,
c = 3 · 108 m/s (which is more than 877, 000 times faster than propagation speed of
ultrasound in the air at 20

oC); this requires high sampling frequencies to increase
time resolution.

2. Due to the high propagation speed and the sampling frequency, the beacons must
be separated enough to obtain TDOAs with significative values, and avoid inde-
terminations in the positioning algorithm. This accentuates the near-far effect.

3. Because of the severe restrictions on power emissions it is needed receivers with a
high sensitivity. In CDMA-based systems, as the one used here, it implies the use
of spreading sequences with high immunity to noise.

4. The frequency-dependent UWB channel introduces additional distortions to those
caused by the antennas. This effect and the signal propagation characteristics make

129
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very difficult the detection of the first arriving path in Non-Line-of-Sight (NLOS)
conditions with the presence of multipath.

With the application of the spreading sequences to the UWB LPS we can determine firstly
the goodness of LS sequences (and by extension of GO sequences) in harsh conditions and
secondly, the importance in practice of the proposed length extensions for the efficients
binary LS correlators.

This chapter is divided into five subsections: first the global structure of the experi-
mental system is described; later the emitter architecture and the receiver platform are
explained; then the results of the ranging test are shown and finally some conclusions
from the results are derived.

6.1 Global Structure of the Experimental System

The design of the UWB experimental system is privacy-oriented, i.e. the mobile device
computes its position. Also it is CDMA-based, which has important implications in the
overall system. Typical UWB systems use TDMA in order to manage the multiple access
and to avoid undesired phenomena’s as MAI and near-far effect, but the developed UWB
system uses DS-CDMA instead. In this way, the UWB channel is accessed simultan-
eously by the beacons, relying on the properties of the spreading sequences to cope with
those undesired effects. It is important to consider that the signal acquisition of designed
UWB-LPS is asynchronous, and consequently if TDMA is used, a very large buffer must
be acquired to ensure at least the acquisition of a complete frame from each transmit-
ted beacon. Furthermore, the buffer size increases with the number of the transmitting
beacons. This makes difficult the UWB signal detection in digital domain for a large
number of beacons. Fortunately, the use of CDMA requires a smaller input buffer size
and it is independent of the number of beacons in the LPS.

The main features of the experimental system are:

• Four beacons placed in the positions shown in Table 6.1 and determined with a
tape measure. Each of them transmit periodically a spreading sequence (Kasami
or LS) with a measured bandwidth at �10 dB of 577 MHz and center frequency of
3.5 GHz. The sequences emitted by each beacon are spaced-out in time to avoid
ISI of successive emissions, 2 µs when transmitting LS sequences and 2.02 µs when
transmitting Kasami sequences. The repetition period is equal to 4.08 µs for both
sequences.
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Beacon x y z

B1 �0.28 4.19 2.80
B2 �0.22 �1.39 2.80
B3 7.14 �1.38 2.81
B4 5.84 2.09 2.82

Table 6.1: Beacon positions in the test area (in metres).

Figure 6.1: Environment used to perform the ranging test.

• The working area is approximately equal to 38 square metres. The ground truth is
achieved thanks to the equally spaced floor tile of size 40 cm. Figure 6.1 shows the
environment where the experimental system has been deployed.

• A receiver, placed in a known position acquires a signal frame that contains the
signals from the four beacons, and determines the TDOAs.

Next subsections present a detailed description of the system components.

6.2 Emitter Module

The emitter of the UWB system is composed by the following elements:

• FPGA Virtex II-pro [Xilin 07]. It transmits the four sequences in base-band through
dedicated differential ports RocketIO [Xilin 07] with a bit rate of 500 Mbps. The
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(a) (b)

Figure 6.2: PCB for referencing the RocketIO signals to ground: (a) PCB for SATA
connectors (b) PCB for SMA connectors.

sampling frequency of the digital RocketIO ports are 1.5 Gsps, so each sequence bit
is oversampled by a factor of 3. The FPGA has four accessible RocketIO ports: one
through a pair of SMA connectors and the other three through SATA connectors.

• RF Transformers JTX-4-10T+ from Mini-circuits [Mini 13]. It has the task to
convert the differential RocketIO signals to single-ended mode. Figure 6.2 shows
the designed circuits with the RF transformer. Differences between PCBs traces
and parasitic effects caused by soldadures make that, at the output of the PCB
circuits, the coded signals are not synchronized. The relative delays among base-
band signals have been quantified and compensated in the receiver. The relative
delays, referred to the fourth RocketIO port, are equal to 1.8 ns for the first port, 0.6
ns for the second one and 0.2 ns for the third RocketIO port. Each port is assigned
to a beacon that follows the same numeration.

• PLL Frequency synthesizer evaluation board EVAL-ADF4350 from Analog Devices
[Analo 13]. It allows to configure the frequency of the Local Oscillator (LO) through
a PC from 137.5 MHz to 4.4 GHz.

• Power splitter ZB4PD-42+ from Mini-circuits. It divides, with minimum power
unbalance, the LO into four ports.

• Frequency mixers ZX05-43LH+ from Mini-circuits. They multiply each of the base-
band signals coming from the RocketIO ports with the splitted LO to up-convert
the base-band signals to 3.5 GHz.
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Figure 6.3: Power Spectral Density of the radiated signal measured with a spectrum
analyzer.

• Wideband Power Amplifiers (PA) ZX60-V83+ from Mini-circuits. The four UWB
RF signals coming from the frequency mixers are fed into the wideband amplifiers.
They operates in the frequency range from 20 MHz to 4.7 GHz and have a gain of
15 dB at 3 GHz.

• RG-174 coaxial cables of length 30 feet. The cables introduce an estimated atten-
uation of 16 dB at 3.5 GHz [Times 13] that allows to be compliant with the FCC
PSD mask.

• UWB Fractus planar antennas [Fract 13]. They have an operational frequency range
from 3.1 GHz to 5 GHz with an average efficiency of 84%.

Figure 6.3 shows the PSD of the emitted UWB signals. The bandwidth measured at �10

dB is approximately equal to 577 MHz and centred in 3.5 GHz. Integrating over the
available bandwidth, each emitter transmits approximately 13.1 µW. This is roughly 76

times lower than the maximum allowed output power for Bluetooth class 3 devices [p. 46,
IEEE 05] and 763 times lower than the power output of UMTS class 5 [Europ 98].

The antennas have been characterized in a semi-anechoic chamber (Figure 6.4) result-
ing in the radiation patterns of Figure 6.5. As depicted, the planes x�z and z�y are not
completely omnidirectional. Therefore, the transmitted power signal (and the received
one) will depend on the relative angle between emitter and receiver. This is a fundamental
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(a) (b)

Figure 6.4: Probe (a) measuring the radiation in the z�x plane of the FRACTUS antenna
(b).

issue in UWB ranging systems where the transmitted power is strictly limited to �41.3

dBm/MHz in the working frequency range of the UWB test-bed (refer to Figure 6.3).
Figure 6.6 shows a photograph of the UWB transmitter, while Figure 6.7 depicts the

architecture of the emitter platform. Contrary to IR-UWB systems, which emit narrow
pulses in base-band, without the necessity of up-conversion [Wentz 06], the employed
UWB system uses a more complex homodyne architecture. Nevertheless, it confers more
flexibility in the selection of both the center frequency and modulation [Segur 10].

6.3 Receiver Module

The receiver module has the following elements:

• UWB Fractus planar antenna. This antenna is the same as those used for the UWB
signal transmission.

• Bandpass Filter (BPF) VBFZ-3590+ from Mini-circuits. It has a loss lower than 2

dB in the passband (3 GHz-4.3 GHz) and a rejection loss larger than 20 dB in the
stopbands.

• Low Noise Amplifier (LNA) ZX60-3800LN+ from Mini-circuits. It has a noise figure
of 0.9 dB and a bandwidth from 3.3 GHz to 3.8 GHz.
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Figure 6.5: Radiation Pattern of the FRACTUS planar antennas measured on different
planes.



136 Application to Ultra-Wideband Ranging Systems

Figure 6.6: Complete UWB transmitter module.
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Figure 6.7: Diagram block of the UWB emitter.
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• Quadrature demodulator ADL5375-05-EVALZ with an operating RF and LO fre-
quency from 400 MHz to 6 GHz. This demodulator will permit in future versions of
the UWB LPS to work with quadrature modulations, adequate for pair of sequences
as GPC or T-ZCZ. In the following tests it is only used the in-phase (I) output.

• PLL Frequency synthesizer evaluation board EVAL-ADF4350 from Analog Devices.
The same LO than the one employed in the emitter side has been used in the receiver.

• Low Pass Filter (LPF) VLF-1000+ from Mini-circuits. It has a loss lower than 1

dB in the passband (0-1 GHz) and a rejection loss of 30 dB in the stopband.

• Power Amplifier ZX60-3018G+ from Mini-circuits. This PA has a a noise figure of
2.7 dB and a wide bandwidth, 20 MHz-3 GHz.

• Digital Sampling Oscilloscope (DSO) DL9140L from Yokogawa [Yokog 13]. The
main features of this oscilloscope are an input sampling frequency of 5 GSps, a
bandwidth of 1 GHz and a large input buffer size of 6.25 mega-words. This im-
plies that the oversampling factor is equal to 10 samples per sequence bit and that
the ranging resolution is equal to 6 cm (i.e. one digital sample represents 6 cm).
The UWB signal is acquired and stored in a USB flash memory stick to offline
determine the TDOAs in a PC with MATLAB. In spite of using an oscilloscope
for the signal acquisition in the tests carried out, the final version of the receiver
uses a 5 GSps FMC126 10 bits resolution ADC, from 4DSP [4DSP 13] attached to
a Virtex VI FPGA (with a 100 MHz frequency clock) [Xilin 12b] via a PCM bus
for data acquisition. The use of an oscilloscope previously, allows the validation of
the UWB system, for the later implementation of the signal processing techniques
in the FPGA. This implementation has been successfully done recently, obtaining
similar ranging errors than the ones presented here.

Figure 6.8 shows a diagram block of the UWB receiver. It is important to notice that the
receiver is asynchronous, so neither the carrier phase nor the frequency is tracked.

Although longer sequences could be transmitted if the oscilloscope is used for acquis-
ition purposes (it has a large input buffer size), it has been used sequences of the largest
length lower than the input buffer size instantiated in the FPGA platform: Kasami se-
quences of length L|Kasami = 1023 and LS sequences of length L|LS = 1039. Notice that
with this constraints, for binary LS sequences without the proposed generalization, the
largest LS sequences length that could be used with an efficient correlator is L|LS = 639.
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Figure 6.8: Diagram block of the UWB receiver.

The ZCZ length of the LS sequences used is equal to 207 bits which is larger than the
maximum theoretical TDOA that can be obtained due to the geometrical configuration
of the beacon and the coverage area (approximately 107 samples, and consequently the
minimum theoretical IFW is equal to 215 samples).

An analysis of the link budget has been done resulting in an approximate maximum
range (without considering body effects) of 9 metres. The receiver has a noise figure of
7.57 dB and a sensitivity of �88.74 dBm.

First arriving path detection for both types of spreading sequences is carried out as
depicted in the algorithm 6.1. Notice that, in contrast to ultrasound ranging systems, in
UWB systems the maximum correlation peak does not necessarily means that it is the
TOA; as UWB signals can penetrate certain materials, the first arriving path can be more
attenuated than multipath components.

Firstly, the detection algorithm computes the correlations between the received signal
and the sequences transmitted by each beacon; later the absolute value of the correlation
amplitudes is done; then the relative delays between the base-band signals are com-
pensated by delaying individually each correlation; afterwards the absolute maximum of
the correlations is worked out to determine an initial searching window, with length SW

equal to 300 samples for the four correlations centred around this maximum value. This
value is larger than the minimum theoretical IFW to ensure that the correlation peaks
are within the window of 300 samples. Later, for each correlation the algorithm searches
the first arriving path in the 100 first samples that precede its maximum correlation value
(an smaller window whose length we will call ZCZleft). This smaller window is the same
for the four aperiodic correlations and it has been established to detect the first arriving
path, that could be more attenuated than the maximum correlation value.
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Algorithm 6.1 MATLAB pseudo-code for first arriving path detection.
Entry: received: received signal; template: spreading sequences with zero padding
for i=1 to 4 do

corr(i,:)=absolute_value(correlation(received,template(i,:)));
correlations_adjusted(i,:)=Compensate_Delays(corr(i,:));

end

initial_position=(max(max(correlations_adjusted)));
left_margin=initial_position - SW

2 ;
right_margin=initial_position+ SW

2 ;

for i=1 to 4 do
large_SearchWindow(i,:)=correlations(i,left_margin : right_margin);
MaxValue_SearchWindow=max(large_SearchWindow(i,:));
threshold(i)=0.4*Max_Value_SearchWindow;
search_windowZCZleft=
correlations(i,MaxValue_SearchWindow-ZCZleft : MaxValue_SearchWindow);
Leading_Edge(i)=find_first_sample(search_windowZCZleft(i,:)>=threshold(i));
FirstArrivingPath(i)=FindFirstPeak(Leading_Edge(i),search_windowZCZleft(i,:));

end
Return: FirstArrivingPath

For each correlation and within the previous window of length ZCZleft, the algorithm
searches for the first correlation peak that exceeds a given threshold. This threshold
is unique for each correlation and equal to the 40% of the maximum correlation peak,
independently of the type of sequences used. The threshold values have been determined
experimentally and are specific for the working environment.

Notice that there are more robust (but complex) UWB TOA detectors in the literature
than can be applied instead [Guven 05, Falsi 06, Kuhn 10]. Nevertheless it is beyond the
scope of this thesis.
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Figure 6.9: Cramér-Rao Lower Bound of the UWB LPS for different SNR.

6.4 Results

Recalling the Cramér-Rao Lower Bound (CRLB) for the estimation of TDOA in LOS
conditions and without multipath, we have

RMSETDOA � c

2 · ⇡ · B ·
p

SNR
; B =

1
R

�1
f 2 · |St (f)|2 df

1
R

�1
|St (f)|2 df

(6.1)

where B is the effective bandwidth and St(f) is the spectrum of the transmitted signal.
The CRLB will permit to compare the system precision with the best achievable in theory.
Figure 6.9 shows the lowest Root Mean Square Error (RMSE) in centimetres that can be
achieved with the described UWB LPS for different SNR conditions.

Where dTDOA is defined as dTDOA= TDOA/c. The previous UWB LPS has been
evaluated with two different spreading sequences: Kasami and LS sequences. In this sec-
tion, a comparative analysis of the performance for both types of sequences is carried out.
First, the ranging errors of the UWB LPS with Kasami sequences are obtained; then it
is shown the improvements achieved when used LS sequences. The TDOA measurements
could be used to position the receiver by using certain hyperbolic positioning algorithms
as Gauss-Newton [Sirol 10] or Cayley-Menger [Ruiz 11].
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6.4.1 Kasami Sequences

The received signal is processed by using the algorithm 6.1; once detected the first arriving
path for each correlation, three measurements dTDOA are obtained: dTDOA1-2, dTDOA2-3
and dTDOA3-4, where the term dTDOAi�j refers to the difference in the measured distances
receiver-beacon i and receiver-beacon j, i.e. dTOA i - dTOA j. Figure 6.10 shows the RMSE
values in each test position for the three dTDOA measurements (100 measurements have
been carried out for each position and the RMSE values larger than 1 m have been clipped
to that value). The low power transmissions and the near-far effect, make the first arriving
path of the furthest beacon undetectable in positions close to other beacons. For example,
this happens for beacon 1 in positions 8 to 16. This also happens with beacons 3 and 4

for positions 17 to 23, 29 and 30 and for beacons 2 and 3 for positions close to beacon 1.
For a more detailed information, Table 6.2 includes the RMSE values for each test

position and the first (25%), second (50%) and the third (75%) quartiles, expressed as
Q1 �Q2 �Q3 in metres.

Firstly it is analyzed the ranging errors in the position (3.20, 0.80, 1.57) (position
number 2), which is located in the center of the coverage area. Figure 6.11 shows the Cu-
mulative Distribution Function (CDF) in the test position (3.20, 0.80, 1.57). The quartiles
(in metres) are equal to 0.06� 0.12� 0.54 for dTDOA1-2, 0.12� 0.24� 3.18 for dTDOA2-3,
and 0.18� 0.24� 3.36 for dTDOA3-4.

Figure 6.12 depicts the aperiodic correlation functions computed for a given meas-
urement in this location, where the purple markers represent the estimated first arriving
paths. Although there is a large amount of multipath components and the signals emit-
ted by beacon 1 and beacon 4 are obstructed (i.e. there is NLOS), the algorithm 6.1
estimates the dTDOA1-2, dTDOA2-3 and dTDOA3-4 in this particular measurement instance
with errors (in samples) of 3, 4 and 3 samples respectively. Also it is noteworthy that
the RMSE values of dTDOA2-3 (2.78 metres) and dTDOA3-4 (2.85 metres), are much larger
than the RMSE value of dTDOA1-2 (0.44 metres).

Now the test position 10, whose coordinates are (5.20, 0.40, 1.57), is analyzed. This
test position will illustrate both, near-far and radiation pattern effects. Figure 6.13 shows
the CDF in this location. Quartiles (in metres) are equal to 3.18�3.90�4.68 for dTDOA1-
2, 5.40 � 6.00 � 6.18 for dTDOA2-3, and 0.12 � 0.18 � 0.24 for dTDOA3-4. Notice that
the dTDOA1-2 and dTDOA2-3 errors are much larger than the errors of dTDOA3-4. The
reasons of these errors become more clear, if we take a look into the aperiodic correlations
functions.
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Figure 6.14 shows the aperiodic correlation functions obtained in the location (5.20,
0.40, 1.57) for a given measurement instance. As depicted, the first arriving path of the
signals emitted by beacons 1, 2 and 4 are undetectable. The highly attenuated signals
emitted by beacons 1 and 2 are masked by MAI. Also, it is interesting to note the poor
correlation values obtained for beacon 4. Although the analyzed position is close to it, the
radiation pattern of the antennas makes that the received signal is severely attenuated for
certain relative angles between emitter and receiver (refer to Figure 6.5) and thus being
affected by near-far effect.

The large errors obtained with Kasami sequences are mainly due to near-far effect
and MAI. Notice that algorithm 6.1, searches for the maximum peak value in each of
the four correlations to determine a searching window. This peak does not have to be
a first arriving path and it could be a large multipath component. When the algorithm
searches ZCZleft samples backwards for the first arriving path, it can lock into noise.
Also the high propagation speed of the UWB signals makes that small errors in samples
in the TOA estimation implies large errors in the distance estimation. In fact, with the
frequency acquisition of 5 Gsps used in the tests, an error of one sample in the TOA
estimation is translated to a ranging error of 6 centimetres.
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Figure 6.10: RMSE values in each test position for the three dTDOA measurements when
using Kasami sequences.
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Figure 6.13: Empirical Cumulative Distribution Function for the test position (5.20, 0.40,
1.57).
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Figure 6.14: Aperiodic correlation functions in the test position (5.20, 0.40, 1.57).
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6.4.2 LS Sequences

Figure 6.15 depicts the RMSE values (in metres) in each test position for the three dTDOA

measurements. In the same form as was done for Kasami sequences, 100 measurements
have been carried out in each position. Again, the RMSE values larger than 1 m have
been clipped to that value. For a more detailed information, Table 6.3 includes the
RMSE values for each test position and the first (25%), second (50%) and the third
(75%) quartiles, expressed as Q1 �Q2 �Q3 in metres.

Notice that now, ranging errors in positions susceptible to near-far effect, as positions
8 to 16, positions 17 to 23, position 29 or position 30 have lower ranging errors than in
the previous case with Kasami sequences. The source of errors in those zones are due to
the path loss.

We analyze in detail two test positions: position 2, which corresponds with the co-
ordinates (3.20, 0.80, 1.57) and the position 10, in the coordinates (5.20, 0.40, 1.57). The
first one, is approximately in the center of the coverage area; the CDF for each dTDOA

measurement in the position (3.20, 0.80, 1.57) is shown in Figure 6.16.
As Figure 6.16 depicts, the quartiles (in metres) are equal to 0.06 � 0.12 � 0.48 for

dTDOA1-2, 0.06�0.06�0.21 for dTDOA2-3, and 0.12�0.18�0.24 for dTDOA3-4. Figure 6.17
shows the aperiodic correlation functions in the coordinates (3.20, 0.80, 1.57) for a certain
measurement instance. The purple markers depicts the first arriving path estimated by
the peak detector algorithm. Observe in the correlation with the LS emitted by beacon 1
(which is the furthest beacon to the receiver) that in spite of being the first arriving path
highly attenuated, i.e. there is NLOS, it is correctly detected. It is also noteworthy the
large amount of multipath components in the received signal. This makes an idea of the
complex environment in which the UWB system is deployed. The differences between the
estimated and the theoretical dTDOA are mostly due to:

• Propagation through obstacles (NLOS condition), which reduces the propagation
speed and consequently introduces a positive bias in the ranging estimation [Darda 09].

• Not having a strictly synchronization between beacons because of different hardware
delays (refer to Figure 6.2).

• Discretization errors due to sampling.

• Errors in the measurement of the beacon positions.
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Now we analyze thoroughly the test position 10. Figure 6.18 shows the CDF in this
test position for the three dTDOA measurements. The quartiles (in metres) are equal to
1.20�1.26�2.25 for dTDOA1-2, 0.18�0.24�0.30 for dTDOA2-3, and 0.12�0.18�0.24 for
dTDOA3-4. Notice from Table 6.3 that the RMSE value for the measurement dTDOA1� 2

is much larger than the other two. This will become clear by analyzing the aperiodic
correlation functions.

Figure 6.19 shows the aperiodic correlation functions in the test position 10. As
depicted, the correlation peaks of beacon 1 and beacon 2 are highly attenuated due to
propagation loss, causing that the first arriving path estimator fails. Again, it is interesting
to note that the correlation of beacon 4 is highly attenuated for the real distance to the
receiver. This is because the radiation pattern of the antenna (refer to Figure 6.5).
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Figure 6.15: RMSE values in each test position for the three dTDOA measurements when
using LS sequences.
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Figure 6.16: Empirical Cumulative Distribution Function for the test position (3.20, 0.80,
1.57).
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Figure 6.18: Empirical Cumulative Distribution Function for the test position (5.20, 0.40,
1.57).
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Figure 6.19: Aperiodic correlation functions in the test position (5.20, 0.40, 1.57).
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6.5 Conclusions

We have proposed a CDMA-based UWB LPS with COTS components. This LPS has
been used to analyzed the performance of two types of spreading sequences: Kasami
and LS sequences. The ranging test previously shown demonstrates the accuracy and
robustness improvement achieved by using LS sequences instead of Kasami sequences.
The large separation needed between UWB beacons increases the importance of near-far
effect. As Kasami sequences do not have a ZCZ, and due to there is no power control
in the emissions, Kasami sequences are very vulnerable to this undesired effect in UWB
systems.

If LS sequences are used instead, the ZCZ length is adapted to the maximum feasible
TDOA in the working environment. Hence, the presence of a ZCZ in LS sequences and its
length larger than the maximum theoretical TDOA, allows to effectively mitigate near-far
effect and increases the system robustness in the coverage area.

Furthermore, the use of an adaptive first peak detector is fundamental in practical
UWB systems. The UWB channel, the relative angle and the distance between beacons
and mobile device, hardware constraints and limited power emissions make very challen-
ging the accurate detection of UWB signals.
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Chapter 7

Application to Ultrasonic Ranging
Systems

In this chapter we compare the performance of several GO spreading sequences in a real
scenario. The objective is to analyze the trade-offs in the design of spreading sequences,
specifically between the flexibility of the sequence length, the ZCZ size or set size, the
energy efficiency and hardware simplicity. Furthermore the use of a mismatched filter is
proposed in the experimental system. The use of GO spreading sequences jointly with
this filter achieves ranging errors in the millimetre range.

7.1 Global structure of the experimental system

The ultrasonic LPS is composed of an emitter module, formed of a computer, three arbit-
rary waveform generators and five emitting beacons placed on the ceiling. The ultrasonic
LPS has also a receiver module which is composed of an ultrasonic microphone, an amp-
lifier, an acquisition board and a computer. In the tests, the receiver module is placed
on known positions of the coverage area. It receives the ultrasonic signals synchronously
emitted by the beacons and computes the TDOAs. The ground truth is achieved by a
handmade grid of dimensions 3 ⇥ 3 metres in steps of 0.5 metres. Figure 7.1 shows the
environment in which the ranging tests have been carried out.

7.2 Emitter module

The emitter module is composed of the following elements:

• Five beacons (Ba, 1  a  5), placed on the ceiling and arranged as depicted
in Figure 7.2. The position of the beacons are calibrated by using the algorithm

157
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B1 
B4 

B5 

B3 
B2 

Transmission 
cables 

Ground truth 

Figure 7.1: Environment used to perform the ranging tests.

proposed in [Ruiz 11] and their positions are shown in Table 7.1. These beacons were
originally designed to work with TDMA and Kasami sequences [Villa 13]. For the
ranging test developed here, the emitter module has been modified in order to work
with CDMA and easily change the spreading sequence transmitted. Each beacon
has an ultrasonic ceramic transducer Prowave 328ST160, with an aperture angle of
±80

o. According to the manufacturer, this transducer has a resonance peak at 32.8
kHz, a bandwidth of 2.5 kHz measured at �6 dB and it is capable of transmitting
120 dB Sound Pressure Level (SPL) at the resonance frequency. Nevertheless, this
transducer has been characterized for larger frequencies and Figure 7.3 shows the
frequency response experimentally obtained.

The cross mark situated at 32.8 kHz and the intersection of the horizontal line at
115 dB SPL with the frequency response correspond with the resonance peak and
the frequency bandwidth given by the manufacturer, respectively. The intersection
of the horizontal line at 96 dB SPL with the frequency response, represents the
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Beacon x y z

B1 0.200 �0.029 3.484
B2 0.533 �0.401 3.463
B3 0.564 0.305 3.474
B4 �0.1657 �0.378 3.460
B5 �0.141 0.333 3.447

Table 7.1: Beacons position in the test area (in metres).

B1 

B2 

B3 

B4 

B5 

Figure 7.2: Beacons used to perform the ranging test.

lower and upper frequency at �6 dB when we choose a center frequency of 40 kHz.
Consequently, in this case the bandwidth is approximately equal to 18 kHz.

• Arbitrary waveform generators Tabor WW5062 [Tabor 13]. Each generator has two
programable outputs with a maximum sampling frequency of 50 MSps and has a
maximum output of 10 V peak-to-peak. Since the emitter system is composed of
five beacons, we have used three synchronized arbitrary waveform generators. The
output of these generators are directly connected to the transducers, without using
power amplifiers. The sampling frequency used for all the tests is equal to 400

kHz. Considering that the transducers have a center frequency of 40 kHz, each
modulation symbol will have 10 samples to fit in the transducer bandwidth.

• Laptop used for sending the signals to the arbitrary waveform generators. For the
sake of clarity, Figure 7.4 shows a scheme of the emitter module.
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Figure 7.3: Experimental frequency response of the Prowave 328ST160.
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Figure 7.4: Scheme of the emitter module.

7.3 Receiver module

The receiver module is formed of the following elements:

• Ultrasonic microphone Brüel&Kjær 4939 [Brüel 13]. It has a sensitivity of 4mV/Pa
in the frequency range that goes from 4 Hz to 100 kHz. For each GO sequence, this
microphone will be placed on 21 known positions of the grid and at height of 11.85
centimetres.

• Avisoft 1/4” preamplifier [Aviso 13]. It amplifies the received signal with a gain of
30 dB in the frequency range from 20 Hz to 200 kHz. It also has a high-pass filter
with a cut-off frequency of 15 kHz.
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Avisoft 
UltraSound Gate 

USB 
¼’’ Preamplifier + 

Filter 

Microphone 

Figure 7.5: Scheme of the receiver module.

• Avisoft UltraSound Gate 116Hm. It has a maximum sample rate of 1 MHz. It also
has an adjustable gain up to 40 dB. The sampling frequency selected for the tests
is 400 kHz.

• Laptop for storing and processing the received signals. Figure 7.5 shows a scheme
of the receiver module.

The received signal is non-coherently demodulated, and passed through a mismatched
filter. Later, this output is correlated with each sequence to be detected. Afterwards, the
absolute value of the filtered correlation output is carried out and finally the first arriving
path detection algorithm proposed in [Perez 09a] is employed. It is similar to the one used
in Chapter 6, with the exception that now the threshold is equal to the maximum peak
value within the window, whose length is adjusted for each correlation signal. Figure 7.6
shows the signal processing stages carried out in the laptop.

Mismatched filter Non-coherent 
demodulation 

Laptop 

Matched filter 
Digitized  
Signal | · | TDOA estimator 

Figure 7.6: Scheme of the stages involved in the signal processing.

As stated previously, in the following tests we propose the use of a mismatched filter
(traditionally employed in the radar field) to minimize non-desired effects due to the
non-coherent demodulation and the non-ideal response of the transducers. This proposal
provides highly precise ranging measurements as it will be shown later.

To compute the filter coefficients, we capture an ultrasonic transmission, then we
correlate it with the appropriate sequence and introduce into the minimization algorithm
a window of 255 samples centred around the maximum correlation peak (and therefore
it must be correctly centred to avoid the introduction of a bias in the TOA estimation).
The coefficients of the mismatched filter have been worked out by following the least
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Figure 7.7: Coefficients of the mismatched filter of 255 taps.

square minimization method explained in Chapter 2, section 2.2.4 (refer to equation 2.8).
The coefficients derived from this minimization method are shown in Figure 7.7. The
same coefficients have been used for all the tests, independently of the spreading sequence
transmitted.

Figure 7.8 depicts how the mismatched filter copes with the undesired sidelobes due
to the non-coherent demodulation and the non-ideal behaviour of the transducers. The
first graph represents a simulated scenario where the correlation signal has been obtained
without considering the transducer or channel effects. The second plot depicts the correl-
ation signal obtained in a real scenario, whereas the third graph represents the correlation
signal obtained by adding a mismatched filter in cascade with the matched filter in a real
scenario. Observe how the correlation sidelobes have diminished by using the mismatched
filter and the ringing artefacts almost disappear.

The mismatched filter minimizes the energy sidelobes by using a weighting matrix and
a Least Squares minimization (refer to Chapter 2, section 2.2.4). Figure 7.8 shows how
the output of the mismatched filter has changed the sign of the correlation peak. This is
because in the optimization process, we have selected a correlation peak with a negative
sign (i.e. with a phase change due to the transducers response), so when the input of the
mismatched filter is a correlation with a phase change, the product of negative numbers
leads to a change of the correlation peak sign. This does not happened if we select for
determining the filter coefficients a correlation with a positive peak (i.e. without phase
change).
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Figure 7.8: Comparison of the aperiodic correlations obtained in different scenarios.

7.4 Results

We have carried out ranging tests for five different GO spreading sequences. For all of
them, the sequences are modulated by using two carrier cycles per sequence bit, in order
to accommodate the transmitted signals into the transducer bandwidth. Figure 7.9 shows
the test positions and the projection of the beacons on the working area. For each one
of the 21 positions and for each GO sequence, we have measured four TDOAs at 100

different time instances: TDOA 1-2, TDOA 2-3, TDOA 3-4 and TDOA 4-5. The term
TDOA a � b represents the Time Difference of Arrival between beacon a and beacon b

(i.e. TOA a - TOA b).
Due to geometrical restrictions, the maximum theoretical TDOA (in bits of the spread-

ing sequence) in the ground truth is equal to 64 bits (considering a room temperature of
20

oC). To ensure that all TOAs are within the IFW we have established a minimum ZCZ
length of 79 bits. Table 7.2 depicts the spreading sequences used for the ranging test. It
also indicates the number of sequences in the set (K), ZCZ length, their processing gain,
their energy efficiency and the modulation used to transmit each sequence.

1Notice that the number of transmitted signals is five (one per beacon).
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Figure 7.9: Test positions and beacon projections on the ground.

Sequence Binary LS Multilevel LS Binary CSS Multilevel CSS GPC
# Spreading bits 640 680 64⇥ 8 85⇥ 5 416⇥ 2

K

1
8 8 8 5 8

ZCZ 79 84 84 84 103

Total length (bits) 719 764 1100 761 416

Processing Gain (dB) 27.55 24.01 23.72 17.75 29.20

Efficiency 89% 37% 46% 7.8% 100%

Modulation BPSK BPSK BPSK BPSK QPSK

Table 7.2: GO sequences and modulations used in the ranging tests.
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Figure 7.10: Aperiodic correlation functions of a binary CSS with the concatenation
method indicated in [Perez 12].

For the transmission of the CSS, we have carried out the same method shown in
[Perez 12]. The sequences j (0  j  K � 1) of a set i (si,j[l]) have been concatenated
by inserting WZCZ zeros between them, so the new sequence is equal to

PK�1
j=0 si,j [l] ·

z�j·(L+WZCZ) and has a length equal to K · L + (K � 1) ·WZCZ , where L is the number
of spreading bits of the sequence si,j[l] (i.e. its length). Figure 7.10 shows the aperiodic
correlation functions of a given binary CSS of 8 sequences of length 64 bits, concatenated
with the previous method. Observe that with this method the aperiodic correlation
functions have a ZCZ of length equal to WZCZ , i.e. the concatenated sequences have GO
properties.

Figure 7.11 depicts the reduction in the transmitted power when the energy efficiency
is lower than 100%. Given a real sequence s [l] of length L, the energy efficiency is defined
as

" =

L�1
P

l=0
|s [l]|2

L · [max (s [l])]2
(7.1)

Considering that the energy of a binary sequence is equal to its length (L), and by
normalizing the real sequence s [l] to its maximum, i.e. max(s[l]) = 1, we have that
the reduction in the transmitted power when multilevel sequences are used is equal to
4Power = 10 · log10 ("). The normalization of the sequence s[l] is carried out considering
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Figure 7.11: Reduction in the transmitted power when the energy efficiency is lower than
100%.

that the same power amplifier is used for both binary and multilevel sequences and that
both sequences use the maximum linear range of the amplifier.

Finally, Figure 7.12 depicts the CRLB for the estimation of TDOA for different SNR
and two effective bandwidths (defined by the kind of modulation employed) and a room
temperature of 20oC. As stated, the best theoretical precision is in the millimetre range
for both effective bandwidths.

The following sections show the ranging test results for each spreading sequence, rep-
resented by the RMSE values of each TDOA measurement and by the first (25%), second
(50%) and third (75%) quartile, expressed as Q1 � Q2 � Q3. All the errors are given in
millimetres.

7.4.1 Binary LS Sequences

Figure 7.13 shows the RMSE values in millimetres of four TDOA measurements (refer to
Table 7.3 for their specific values and distributions). Observe that most of these errors
are lower than 8 millimetres, even in those positions where there is near-far effect and
that are situated far away from the beacons.
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Figure 7.12: CRLB for two different bandwidths.
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Figure 7.13: RMSE values obtained in each test position for the four TDOA measurements
when using binary LS sequences of 719 bits.

7.4.2 Multilevel LS Sequences

We have transmitted five multilevel LS sequences of length 764 bits and with a ZCZ length
of 84 bits. These sequences have been generated by using the following parameter values:
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Q = 7, A(q)
= {1, 1, 1, 1, 1, 1, 2}, W (1,q)

= {±1,�1,�1,�1,�1,�1,�1} and the delay
distribution D(q) defined in Chapter 5, equation 5.4, (0  q  Q� 1). If we compare the
efficiency of the multilevel LS sequences with the one of binary LS sequences, it turns out
that with these sequences we are transmitting 3.54 dB less of power. Figure 7.14 shows
the RMSE values of the TDOA measurements in millimetres (for a detailed analysis of
the errors refer to Table 7.4). Observe how the errors are very similar to those with
binary LS sequences, even in positions that are far away from the beacons. The error
differences can be mainly due to two factors: the first one is the lower power transmitted
with multilevel LS sequences; the second factor is that the differences in the TDOA errors
are so low that they can be caused by errors in the positioning of the microphone in the
ground truth. The use of these parameters Q, A(q), D(q) and W (1,q) leads to an efficient
hardware implementation (reduced number of stages and only one multiplier that can
be implemented by shifting). Nonetheless, if other parameter values were chosen, the
multilevel LS sequences generated could have a larger energy efficiency and thus transmit
both sequences almost the same power for a given length, with the additional advantage
of having a flexible ZCZ length.
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Figure 7.14: RMSE values obtained in each test position for the four TDOA measurements
when using multilevel LS sequences of 764 bits.
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7.4.3 Binary CSS Sequence

Five sets of eight binary sequences of length 64 bits have been concatenated following
the procedure indicated in this chapter and have been transmitted simultaneously by the
ultrasonic beacons. The processing gain of the concatenated sequences is only 0.29 dB
lower than the one of multilevel LS sequences; both of them have the same ZCZ length
but the concatenated binary CSS have a total length of 1100 bits, instead of the 764

bits of multilevel LS sequences. It has been demonstrated experimentally in [Pared 11]
that this difference in length has important implications when there are Doppler shifts
due to the relative movement emitter-receiver. The longer the length of the sequence the
larger its sensitivity to Doppler shifts. Figure 7.15 shows the RMSE values in the TDOA
estimation for each test position, whereas Table 7.5 includes the RMSE values and their
quartiles (both of them in millimetres). As depicted, the errors are in the same order of
magnitude than the previous sequences.
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Figure 7.15: RMSE values obtained in each test position for the four TDOA measurements
when using K = 8 binary CSS of 64 bits.

7.4.4 Multilevel CSS Sequences

Five multilevel CSS have been transmitted by using the same concatenation method
than binary CSS, and they have been generated in Q = 3 stages by using a circulant
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Hadamard matrix CK|MultCSS
defined by the first row [

3 �2 �2 �2 �2

], a delay
distribution defined in Chapter 3 equation 3.46 and initial conditions defined also by the
same matrix CK|MultCSS

. Contrary to the binary case, the use of multilevel CSS allows
to have a set size adapted to the number of beacons, which gives more flexibility to the
system. Nevertheless, the energy efficiency of the concatenated multilevel CSS generated
with the previous parameters are very low. Maybe there exist other parameter values
for generating multilevel CSS sequences with both flexible length and set size, and a
larger energy efficiency, but it is needed an exhaustive search. Figure 7.16 shows the
RMSE values in millimetres for each test position. Due to the high SNR conditions,
these errors are in the same range of those obtained with binary sequences (for a detailed
representation of these errors and their distribution refer to Table 7.6)
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Figure 7.16: RMSE values obtained in each test position for the four TDOA measurements
when transmitting K = 5 multilevel CSS of 85 bits.

7.4.5 Binary GPC Sequences

These sequences have been transmitted by using a non-coherent QPSK modulation to
avoid the carrier phase recovery. Figure 7.17 depicts a scheme of the modulation-demodulation
used to transmit GPC sequences.
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Figure 7.17: Scheme of the signal processing scheme used with GPC sequences.

Figure 7.18 shows the RMSE values in millimetres for each test position. In the second
and twentieth positions, the RMSE values are larger than 10 millimetres for measurements
TDOA 2-3, TDOA 3-4 and TDOA 4-5 (refer to Table 7.7 for their specific values), while in
the other positions these values are below 8.85 millimetres. Notice that despite the large
processing gain, GPC sequences have a worse performance than the previous spreading
sequences. This is mainly due to the non-coherent demodulation process, which degrades
the IFW. Nevertheless, with an appropriate modulation scheme, GPC sequences are very
promising as they have the largest ZCZ length for a given sequence length and the largest
energy efficiency.

Figure 7.19 will help to understand what happens in the second and twentieth posi-
tions. This Figure shows the sum of aperiodic correlation functions for each of the GPC
spreading sequences transmitted by the beacons. As stated in section 7.3, a very similar
first arriving path estimation algorithm to the one of Chapter 6 is employed [Perez 09a],
where the maximum correlation peak among all the aperiodic correlations is used to de-
termine a searching window. As depicted in Figure 7.19, there are sidelobes that are of
the same magnitude than the largest correlation peak (i.e. the one situated at zero time
shift ⌧ = 0). This implies that the algorithm could search the first arriving path in an
erroneous window centred around a sidelobe.
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Figure 7.18: RMSE values obtained in each test position for the four TDOA measurements
when transmitting GPC sequences of 416 bits.
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when transmitting GPC sequences of 416 bits.
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7.5 Conclusions

We have analyzed the trade-offs of five different spreading sequences in a real scenario:
binary LS, multilevel LS, binary CSS, multilevel CSS and GPC sequences. The energy
efficiency of the multilevel signals can be improved with a different modulation scheme,
as MC-CDMA, by assigning each level of the sequence to a particular carrier. Nonethe-
less, this solution increases the energy efficiency at the expense of reducing the spectral
efficiency. This solution is only feasible in systems with a large bandwidth, which is not
the case of ultrasonic ranging systems. Multilevel sequences are a promising solution only
if the efficient architectures proposed in this thesis are used as a basis for the search of
near-binary CSS (and therefore near-binary LS). This would permit the efficient gener-
ation of high energy efficient sequences with both flexible length and flexible number of
sequences (in the case of multilevel CSS).

On the other hand, GPC sequences have both the highest energy efficiency and the
largest ZCZ length for a given sequence length. Nevertheless the use of an appropriate
modulation-demodulation scheme is a fundamental issue. We have used non-coherent
QPSK modulation to avoid the recovery of the carrier frequency and phase, but this
scheme degrades the correlation properties and it hinders the TDOA estimation. The
ranging errors obtained with GPC sequences are in some positions larger than those
obtained with other sequences that have lower processing gain.

The high SNR in the system, makes the errors on the TDOA estimation to be very
similar for all the spreading sequences used. Nonetheless, in low SNR conditions, the
value of the processing gain would make a difference between multilevel and binary se-
quences. Moreover the use of a mismatched filter reduces the correlation sidelobes caused
by transducer effects and therefore, it increases the precision of the TDOA estimation.

To sum up, the ranging tests performed in this chapter allows to illustrate the trade-
offs between energy efficiency, spectral efficiency, hardware complexity, ZCZ length and
sequence length.
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Chapter 8

Conclusions and Future Works

In this chapter we analyze the most significant conclusions derived from this thesis. Fur-
thermore, we include the papers published (or in review for publication) in indexed inter-
national journals and international conferences about the work carried out in the thesis.
Finally, we propose some novel research lines which could be tackled with the contribu-
tions of the thesis.

8.1 Conclusions

Due to the intensively use of CSS in a broad range of applications, a great effort has been
made to find both CSS with more different lengths and set sizes and efficient architectures
for their generation and correlation. Nevertheless, the majority of contributions to the
efficient generation/correlation of CSS available in literature (with the notable exception of
the recent contribution by Budišin for K|CSS = 2 binary CSS of lengths L|CSS = 2

N ·10M)
focuses on K|CSS = 2

k binary CSS of length L|CSS = KQ
|CSS. This thesis contributes to

the study of the efficient generation/correlation algorithms of CSS with flexible length
and set size. The most significant contributions of this thesis can be summarized as

1. The existence of both multilevel Hadamard matrices of any order and multilevel
CSS for more lengths than binary CSS have led us to propose generation/correlation
architectures for multilevel CSS. We have proposed two architectures for the genera-
tion/correlation of multilevel CSS, the first one for K|MultCSS = 2

k CSS (k 2 N�{0})
and the second one for K|MultCSS � 3 � {4} CSS. The parameters of these archi-
tectures can be tuned to generate/correlate efficiently multilevel CSS with a low
PAPR.

179
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2. The proposed architecture for K|MultCSS = 2 multilevel CSS has allowed the decom-
position of the Golay kernel 26. By using this decomposition and the one proposed
by Budišin for the Golay kernel 10, we have proposed an efficient generation/correl-
ation algorithm of K|CSS = 2

k binary CSS of lengths L|CSS = (

K|CSS

2 ) ·2N ·10M ·26P .

3. Generalization of the previous generation algorithms of LS sequences to multilevel
alphabet. This proposal permits to design energy efficient multilevel LS sequences
with many more length than the binary ones, by finding the appropiate parameter
values of the architecture.

4. Proposal of an efficient generator/correlator of GPC sequences. We have taken
advantage of the modular architecture for the correlation of Golay binary pairs of
lengths L|Gol = 2

N · 10M · 26P and the easy generation of E-sequences to propose
a generator/correlator of GPC sequences. We have also shown the theoretical link
between GPC sequences and LS sequences and interestingly it derives to a very
efficient generator/correlator of LS sequences. From the real test performed in an
ultrasound ranging system with asynchronous detection, we conclude that GPC
sequences are promising only with an appropiate modulation scheme, which does
not introduces ISI. The non-coherent QPSK demodulation carried out, degrades the
IFW due to ISI.

5. The design of an UWB-based indoor positioning system which has been used as
test-bed for the performance comparison of Kasami and LS sequences. We conclude
that the use of CDMA in UWB is only feasible if there exists a power control in the
emission, which would increase the system complexity, or if GO sequences (as LS
ones) are used and their ZCZ length is large enough to ensure that the maximum
TDOA is within the IFW. In spite of the good aperiodic correlation properties of
Kasami sequences, they are sensitive to near-far effect. It is noteworthy that near-
far effect in UWB is much more severe than in other local positioning systems as
the ones based on ultrasound. Finally, the use of an adaptive first arriving path
estimator, robust to NLOS conditions is necessary in UWB positioning systems for
accurate measurements.

8.2 Publications Derived from the Thesis

The following papers has been derived from the proposals of this thesis:



Conclusions and Future Works 181

8.2.1 International Journals

1. E. García, J. J. García, J. Ureña, M. C. Pérez, A. Hernández, “Generation algorithm
for multilevel LS codes,” Electronics Letters, vol. 46, no. 21, pp. 1465-1467, Oct.
2010.

2. E. García, J. Ureña, J. J. García, M. C. Pérez, D. Ruiz, “Efficient generator/correl-
ator of GPC sequences for QS-CDMA,” IEEE Communications Letters, vol. 16, no.
10, pp. 1676-1679, Oct. 2012.

3. E. García, J. Ureña, J. J. García, D. Ruiz, M. C. Pérez, J. C. García, “Efficient
filter for the generation/correlation of Golay binary sequence pairs,” International
Journal of Circuit Theory and Applications, available online, DOI: 10.1002/cta.1901,
2013.

4. E. García, J. Ureña, J. J. García, M. C. Pérez, “Efficient architectures for the gen-
eration and correlation of CSS derived from different kernel lengths,” IEEE Trans-
actions on Signal Processing, in review.

5. E. García, J. Ureña, J. J. García, “Generation and correlation architectures of mul-
tilevel complementary sets of sequences,” IEEE Transactions on Signal Processing,
in review.

8.2.2 International Conferences

1. E. García, J. J. García, J. Ureña, M. C. Pérez, D. Ruiz, “Multilevel complement-
ary sets of sequences and their application in UWB,” IEEE Conference on Indoor
Positioning and Indoor Navigation (IPIN), 2010.

2. E. García, S. Holm, J. J. García, J. Ureña, “Link budget for low bandwidth and
coded ultrasonic indoor location systems,” IEEE International Conference on Indoor
Positioning and Indoor Navigation (IPIN), 2011.

3. E. García, J. Ureña, J. J. García, M. C. Pérez, D. Ruiz, C. Diego, J. Aparicio,
“Multilevel LS sequences with flexible ZCZ length and their application to local
positioning systems,” IEEE International Instrumentation and Measurement Tech-
nology Conference (I2MTC), 2012.
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4. E. García, J. Ureña, J. J. García, M. C. Pérez, D. Ruiz, D. Gualda, R. Gutiérrez, F.
J. Álvarez, “Genetic algorithm for searching a doppler resilient multilevel comple-
mentary waveform,” IEEE International Symposium on Intelligent Signal Processing
(WISP), 2011.

8.3 Future Works

This thesis has contributed to the efficient design of flexible CSS and GO sequences.
Nevertheless, there is still a large amount of effort to be made, as

1. Find the parameters of the proposed architectures that reduce the PAPR of the
multilevel CSS. In this way, we could generate and correlate efficiently near-binary
CSS of flexible length. Particularly, it would be interesting to find more multilevel
2�CSS kernels with low PAPR and with a prime-number length, so as to combine
with the Golay kernels of lengths 2, 10 and 26 and to generate near-binary CSS of
flexible length.

2. One of the limitations in the use of OFDM in mobile communications is the large
PAPR, which constraints the system portability. In the last years, one of the main
objectives of some researchers (mostly mathematicians and communication engin-
eers) is to reduce PAPR in OFDM communications systems. One promising solu-
tion is the use of complementary sequences directly mapped in the QAM alphabet
[Lee 06, Chang 10, Huang 11]. This approach bounds the PAPR and gives error-
correcting capabilities due to the connection to Reed-Muller codes found by Davis
and Jedwab [Davis 99]. An interesting approach would be to consider seed values
W (k,q) in the unitary circle (and not limited to the real axis) in order to propose
efficient architectures for CSS mapped in the QAM alphabet.

3. Analyze further novel spreading sequences with good correlation properties, that
cope with undesired effects. We propose the study of mismatched sequences for
QS-CDMA, as LS and GPC ones to increase the ZCZ size. Mismatched sequences
for the generation of flexible CSS have been recently proposed in [Bi 12].

4. Study methods to increase the number of GO sequences in a set. This directly
depends on the orthogonal matrix construction employed.
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5. Propose new architectures for CSS-based signatures. From the theoretical and prac-
tical point of view it would be interesting to unify in the same architecture the gen-
eration of CSS and Z-complementary sequences, which are a suboptimal solution
with ZCZ and flexible length [Fan 07, Li 11a].

6. The performance of the UWB test-bed can be improved by implementing more
advanced TOA estimators as the ones shown in [Guven 05, Falsi 06, Kuhn 10] and
by combining the use of TDOA with AOA.

7. The application of GPC sequences to other fields such as QS-CDMA based sensor
arrays, that would minimize interferences between pairs of sensors, or to Power-
Line-Communication (PLC) systems.





Appendix A

Other Spreading Sequences

A.1 Pseudo-Random Sequences

This group of sequences, also known as Pseudo-Noise (PN) sequences, are periodic se-
quences, with a random-like behaviour but generated deterministically and with proper-
ties similar to AWGN. To evaluate the randomness of a sequence, it is defined the following
criteria [Fan 96]:

• Correlation property: A sequence s [l] , 0  l  L|PN ; s [l] 2 {+1,�1} of length
L|PN should have the following periodic auto-correlation function:

Rs,s [⌧ ] =

L|PN�1
X

l=0

s [l] · s [l + ⌧ ] =

8

<

:

L|PN for ⌧ = 0

" for ⌧ 6= 0

(A.1)

where " is a constant " 2 R, which represents the sidelobes of the periodic auto-
correlation function.

• Balance property: In a PN sequence, the number of +1 should not exceed the
number of �1 in more than one element.

• Run property: In a PN sequence, half of the consecutive identical bits (runs) have
length 1, one-quarter of the block have length 2, one-eighth have length 3 and so
on. The number of runs of �1 are the same as the number of runs of +1 and the
total number of consecutive identical bits in a sequence should be an integer.

In the following subsections, it is briefly review the properties of the most commonly used
PN sequences.
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…

…

[ ]h 0 =1 [ ]h 1 [ ]h 2 [ ]h m- 2 [ ]h m-1 [ ]h m =1

[ ]s l
[ ]s l -1 [ ]s l -m+1[ ]s l - 2 [ ]s l -m

Figure A.1: Linear Feedback Shift Register.

A.1.1 m-Sequences

m-sequences have good pseudo-random properties as they satisfy the three previous ran-
domness criteria. They are easily generated by means of a Linear Feedback Shift Register
(LFSR) [Golom 82] as the one depicted in Figure A.1, where the values {s(0) [m� 1] , s(0) [m� 2] ,

. . . , s(0) [0]} are the initial state of the LFSR and the symbol � represents a modulo-2 ad-
der. A LFSR is composed of a set of m flip-flops and a feedback function which generates
in each step the most significant bit. At each step (i.e. clock event), all the bits stored in
the flip-flops are shifted one place to the right and the entry of the most significant bit is
generated by means of the feedback function. This function is controlled by the primitive

polynomial of degree m, h (x) =
m
P

i=0
h [i] · xm�i

; h [i] 2 {0, +1}, with h [0] and h [m] equal

to +1, in such a way that the terms h [i] are modulo-2 added and back-propagated to the
left. The terms h [i] manages the feedback of each cell. So a value of h [i] = +1 means
that there is feedback at the output of the cell i; on the contrary, a value of h [i] = 0

means that there are no feedback at the tap i. Consequently, the generated m-sequence
can be expressed as follows:

s [l] =

8

>

<

>

:

s(0) [l] for 0  l  m
m
P

i=1
h [i] · s [l � i] for l � m

(A.2)

If the LFSR is composed of m stages, the maximum period of the resultant m-sequence
(without repeating the sequence and avoiding the state “all-zeros”, i.e. its length) is equal
to L|m�seq = 2

m � 1. For this reason, m-sequences are also known as maximal length
sequences.
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The periodic auto-correlation function of m-sequences is given by equation A.1 where
" = �1. Unfortunately, the periodic cross-correlation function of two m-sequences are
not favourable. Nevertheless it is possible to find preferred pairs of m-sequences with
reasonably good periodic cross-correlation properties. A pair of m-sequences, s1 [l] and
s2 [l], are a preferred pair with a three-level periodic cross-correlation function if the
following conditions hold [Fan 96]:

• m is not divisible by 4.

• The sequence s2 [l] can be obtained by decimating s1 [l] by a factor d: s2 [l] = s1 [d · l],
with d = 2

k
+ 1 or d = 2

2·k � 2

k
+ 1

• The great common division of l and k, which is equal to gcd (l, k), has a value so
as to m/gcd(l, k) is odd.

In this way, the levels of the periodic cross-correlation function of the preferred pair,
Rs1,s2 [⌧ ] are {�1, �1 � 2

m+1
2 , �1 + 2

m+1
2 } for m odd and {�1, �1 � 2

m+2
2 , �1 + 2

m+2
2 }

for m even.
If the first condition does not hold, i.e. m is a multiple of 4, there no exist preferred

pairs with three-level periodic cross-correlation functions, but it is possible to find them
with four-level periodic cross-correlation functions if the decimating factor d is equal to d =

�1+2

(

m+2
2 ). In this case the values of Rs1,s2 [⌧ ] are {�1, �1+2

m+2
2 , �1+2

m
2 , �1� 2

m
2 }.

Finally, m-sequences can be generalized to non-binary sequences of length L|m�seq =

`m � 1 by using a primitive polynomial of degree m over GF (`). The periodic auto-
correlation properties of the non-binary m-sequences are the same as those of binary
ones.

Despite of the fact that there exist sets of m-sequences where all the sequences of the
sets are preferred pairs between them, the major drawback of m-sequences is the lim-
ited number of sequences with reduced periodic cross-correlation functions, which makes
difficult their use in multi-user environments.

A.1.2 Gold Sequences

Gold sequences are derived from a preferred pair of m-sequences and cope with the lim-
itation that have m-sequences in the number of sequences with reduced cross-correlation
levels. Unfortunately, the increase in the number of sequences with reduced periodic cross-
correlation levels is accomplished at the expense of increasing the sidelobe levels of the
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periodic auto-correlation functions. Notice that this implies that Gold sequences do not
satisfy the first randomness criteria. In practice, it is difficult that the three randomness
criteria are satisfied at the same time. However, Gold sequences as other sequences (as
Kasami ones, discussed latter) are broadly admitted as pseudo-random sequences.

Given a preferred pair of m-sequences, s1 [l] and s2 [l], of length L|m�seq = 2

m � 1, it
is possible to generate a set G[l] = {g0 [l] , g1 [l] , . . . , gK|Gold�1 [l]} of K|Gold = 2

m
+1 Gold

sequences of length L|Gold = 2

m � 1 [Gold 67]. The set G[l] is formed of the following
sequences:

G[l] =
�

s1 [l] , s2 [l] , s1 [l]�D1s2 [l] , s1 [l]�D2s2, . . . , s1 [l]�DL|Gold�1s2 [l]
 

(A.3)

Where the symbol � is the modulo-2 addition and Dks2 [l] is the cyclic shift of k

bits to the sequence s2 [l]. The periodic auto-correlation properties of Gold sequences,
represented in equation A.4, are not as good as those of m-sequences, as the sequences of
the set G[l] are not maximal length sequences, with the exception of the sequences s1 [l]

and s2 [l].

Rgi,gj [⌧ ] =

8

<

:

L for ⌧ = 0

" for ⌧ 6= 0

(A.4)

Where " is equal to {�1, �1�2

m+1
2 , �1+2

m+1
2 } for m odd and {�1, �1�2

m+2
2 , �1+

2

m+2
2 } for m even not divisible by 4[Fan 96]. So the periodic cross-correlation values and

the sidelobes of the periodic auto-correlation functions of Gold sequences are the same as
those of the preferred pairs of m-sequences, with m not divisible by 4.

A.1.3 Kasami Sequences

Kasami sequences are normally classified into two groups according to the set size, namely:

• Small sets of Kasami sequences [Kasam 66]: The sidelobes of the periodic correlation
functions of the small set of Kasami sequences are lower than those of the Gold
sequences but the set size of this group of Kasami sequences is smaller. Given a
m-sequence s1 [l], of length L|m�seq = 2

m�1, with m even, and another m-sequence
s2 [l] of length L|m�seq = 2

m�1, generated by decimating s1 [l] by a factor d = 1+2

m
2

and concatenating it d times, the small set of Kasami sequences is defined as follows:

F[l] =
n

s1 [l] , s1 [l]� s2 [l] , s1 [l]�D1s2 [l] , . . . , s1 [l]�D
2·m
2 �2s2 [l]

o

(A.5)
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Figure A.2: Periodic correlation functions of the small set of Kasami sequences of length
63.

The sidelobes of the periodic correlation functions of the small set of Kasami se-
quences are equal to {�1, �1 � 2

m
2 , �1 + 2

m
2 }, which are almost two times lower

than the periodic correlation sidelobes of the Gold sequences. Moreover, despite of
the fact that the correlation properties deteriorate when the sequences are emitted
in an aperiodic mode, the small set of Kasami sequences still have good aperiodic
correlation functions [Lahto 95, Sun 11] and are commonly used in aperiodic CDMA
schemes [Diego 11, Villa 07]. For the sake of clarity, Figure A.2 depicts the periodic
and Figure A.3 shows the aperiodic correlation functions of Kasami sequences.

• Large sets of Kasami sequences: This group of Kasami sequences have the small
set of Kasami sequences and the Gold sequences as a subset. They have a set size
equal to K|LargeKasami = 2

m
2 · (2m + 1) when generated from Gold sequences but

the periodic correlation sidelobes are the same as those of the preferred pairs of
m-sequences.

In general, the term Kasami sequences refers to the small set of Kasami sequences
[Perez 09a, Diego 11]. Finally, remark that Kasami sequences have also an algorithm
for its generalization to non-binary alphabet [Liu 92].
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Figure A.3: Aperiodic correlation function of small set of Kasami sequences of length 63
bits.

A.2 Chaotic Sequences

In the last years, there has been a great interest in the analysis of the dynamical systems.
This interest boosted in the 60s, mainly due to the publication of the paper “Predictability:
Does the Flap of a Butterfly’s Wing in Brazil Set Off a Tornado in Texas?”. In this paper,
the importance of the effects of the initial conditions in the weather forecasting (modelled
as dynamical systems) was demonstrated.

For given parameter values of certain dynamical systems (and deterministics), small
changes in the initial conditions can generate completely uncorrelated solutions. Those
solutions are known in the signal processing field as chaotic sequences, which have an
infinite period and a noise-like behaviour. The former properties (sensitivity to initial
conditions and noise-like behaviour) make chaotic sequences interesting for their use as
spreading sequences in CDMA, as theoretically it is possible to obtain infinite uncorrelated
sequences of infinite length. In what follows, some definitions are introduced for a better
understanding of the chaotic sequences and their advantages and limitations as spreading
sequences for CDMA systems.
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A.2.1 Definitions

Dynamical systems are those whose behaviour change with time and can be continuous
or discrete. The first one are described by differential equations, and the second one
by difference equations. Given a state vector x (t) = (x1 (t) , ..., xn (t)) and a vectorial
function, (also known as vector field in continuous systems) f (f1, ..., fn), which ascertains
the evolution of the system, the continuous dynamical system is defined as stated in
equation A.6 [Garci 06]:

dx (t)

dt
= f (t, x (t)) (A.6)

The components of the state vector x (t) are the dependent variables of the differential
system and determine in a given instant the state of the dynamic system, whereas the
vectorial function f (f1, ..., fn) determines the evolution of the system.

If the dynamic system is discrete, it is represented as difference equations (equation
A.7), and the functions f are known as maps.

x [n] = f (x [n� 1] , n) (A.7)

• Space State: Represents all the feasible values of a dynamical system for an infinite
set of initial conditions.

• Orbit : It is the trajectory that follows the state vectors and they are obtained by
iterating the map f . That is to say, it is the domain of definition of all the feasible
values of the state vectors for a given initial condition. The objective of the Chaos
Theory is the asynthotic analysis of the infinite orbits that follows a dynamical
system.

• Chaotic System: In accordance with the most accepted definition [Devan 89], a
dynamical system defined by a map f , has a chaotic behaviour if the following
conditions are held:

1. The map f has a strong dependency to initial conditions. That is to say,
initially close orbits, leads to uncorrelated states when they separate at the
iteration n.

2. The map f is topologically transitive. This means that the map has states
which are moving from a local point to another in an arbitrary form. So the
map can not be decomposed into two disjointed open sets that stay invariant.
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3. Despite of the complexity of the map f , it presents a regularity.

• Attractor : According to [Sobot 06], they are the regions of the state space towards
the orbits of the map converge. If the orbits tends to a region of f , they are known
as attractor basin. When the regions of the state space are formed by the points of
a periodic orbit, the attractor is known as limit cycle of the map f . Furthermore,
if the regions towards the orbits converges are composed by an unique point of the
map f , the attractor is known as equilibrium point. Finally, if the attractor has a
regular structure in the state space, with a pseudo-random behaviour in the time
domain, the attractor is known as fractal or chaotic.

A.2.2 Statistical Analysis of Chaos

• Ergodicity : A map f (x), with probability density function p (x) is ergodic if the
average over the time of an integrable function, g (x) is equal to its mathematical
expectation [Berli 92], i.e.

lim

N!1

1

N

N�1
X

i=0

g
�

f i
(x)
�

=

Z

g (x) p (x) dx (A.8)

A fundamental consequence of this property is the feasibility of computing the stat-
istics of the maps for only one orbit (i.e. one iteration of a given initial condition)
and independently of the initial condition chosen. A priori demonstrations of the
ergodicity of a dynamical system is difficult and it is commonly assumed the ergodi-
city and then it is checked that the probability density function of a map for a large
number of iterations and a given initial condition is the same than the probability
density function of the same map at a given iteration for a large number of initial
conditions.

• Lyapunov exponent : The Lyapunov exponent is an indicator of the system sensitivity
to the initial conditions [Berli 92]. It is defined as depicted in equation A.9.

�x0 = lim

T!1

T�1
X

k=0

log

�

�

�

�

df (xk)

xk

�

�

�

�

(A.9)

This parameter quantifies the level of chaos as it represents the level of separation
between orbits when varying the initial conditions a quantity dx0. Therefore, the
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Figure A.4: Sensitivity to the initial conditions of the Logistic map.

larger the Lyapunov exponent �x0 , the larger degree of chaoticity in the dynamical
system. On the contrary, if the Lyapunov exponent �x0 is lower than zero, the
dynamical system will have a regular behaviour.

A.2.3 Chaotic Maps

The most known dynamical systems used for the generation of chaotic sequences are the
logistic map, Lorenz map and Rössler map. In what follows, these maps are presented in
order to analyse the performance of the chaotic sequences generated with them.

• Logistic Map: Logistic map in one the most studied maps due to its simplicity. This
map is a discrete unidimensional function and it was designed to model how the
population grows. It is expressed as stated in equation A.10.

x [t] = µ · (1� x [t� 1]) · x [t� 1] 0 < x < 1 (A.10)

Where µ is a parameter whose value must be 3.45 < µ < 4 in order to obtain a
chaotic behaviour. Figure A.4 depicts the sensitivity to the initial conditions of the
logistic map. A slight variation of the initial condition implies a completely different
behaviour. In Figure A.5 the bifurcation diagram, or state space of the logistic map
is shown. Notice the chaotic behaviour for values of the parameter µ > 3.45.
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Figure A.5: Bifurcation diagram of the Logistic map.

In order to show the ergodicity of the logistic map and for better understanding of
the ergodicity concept, the histogram of the logistic map for 4000 iterations with
the initial condition x [0] = 0.1 and µ = 4 has been computed. Also the histogram
of the map at iteration 2000 for 4000 initial conditions, with x [0] 2 {0.1, . . . , 0.5}
and µ = 4 has been derived. As shown in Figure A.6, the histogram for both cases
are quite similar, independently of the initial condition chosen, and therefore the
map is ergodic [Berli 92].

• Rössler Map: Wang and He propose the use of the Rössler map to generate chaotic
sequences and their use in UWB communications [Wang 08]. Rössler dynamic sys-
tem is defined as stated in the equation A.11.

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ẋ = �y � z

ẏ = x+ ay � du

ż = bxz � cz + k

u̇ = exu� fz + g

(A.11)

Where a, b, c, d, e, f , g, and k are the system parameters. For values a = 0.2,
b = 28/13, c = 7, d = 1.5, e = 0.01, f = 0.1, g = 0.18 y k = 0.2, the dynamical
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Figure A.6: Ergodicity of logistic map. (i) Histogram of the map for 4000 iterations,
with x [0] = 0.1 and µ = 4. (ii) Histogram of the map at iteration 2000 for 4000 initial
conditions x [0] 2 {0.1, . . . , 0.5} and µ = 4.

system has a chaotic behaviour as it presents two positive Lyapunov exponents.
Figure A.7 shows the state space and the chaotic attractor of the Rössler map.
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Figure A.7: State space and attractor of the Rössler map.

• Lorenz Map: One of the most known chaotic maps is the Lorenz one, introduced
by Lorenz in 1963 as an approximate model of the dynamic of the terrestrial atmo-
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sphere. This map is expressed in equation A.12.
8

>

>

>

>

<

>

>

>

>

:

ẋ = ��x+ �y

ẏ = Rx� y � xz

ż = �Bz + xy

(A.12)

Where �, R and B are constant parameters. Figure A.8 shows the projection of
the Lorenz map in the plane x� z. The constants used to plot the projection have
been equal to � = 10, R = 28, B = 8/3. For these values, all the orbits tends to
the attractor known as “The Butterfly”.
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Figure A.8: Projection in the plane x� z of the Lorenz map.

.

Refer to [Garci 06] for a comprehensive analysis of further chaotic maps.

A.2.4 Design of Chaotic Maps by Means of Genetic Programming

Varadan and Leung carries out an exhaustive search of functions that generates op-
timum chaotic sequences for certain work conditions by means of Genetic programming
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[Varad 02]. In this way, for a sequence length of L|Genetic = 1023 and 10 users, the
optimum map is represented by equation A.13.

x [n+ 1] = mod1 [mod1 (2x [n])�mod1 [(40.6681 + 8.6655 · x [n]) ·mod1 (2x [n])]]

(A.13)
For this map, the auto-correlation bound is equal to ✓AC = 0.0898, while the cross-

correlation bound is ✓CC = 0.0965. The search of an ad-hoc map for its use in given
conditions results in a better performance when compared to the typical chaotic maps
used, as the Logistic map. Table A.1 presents a comparison of the correlation bounds
between the chaotic map of [Varad 02] and the Logistic map.

Map ✓ ✓AC ✓CC

[Varad 02]L|Genetic = 1023, K|Genetic = 10 0.0965 0.0898 0.0965
Logistic L|Logistic = 1023, K|Logistic = 10 0.1144 0.0978 0.1144

Table A.1: Comparison between the correlation bounds of Kasami sequences and the
chaotic map of [Varad 02].

Furthermore, if the chaotic map of [Varad 02] is compared with a set of 8 Kasami
sequences of length L|Kasami = 1023, in terms of the correlation bounds, the results are
very similar. Table A.2 shows the correlation bounds of both sets of sequences.

Map ✓ ✓AC ✓CC

[Varad 02]L|Genetic = 1023, K|Genetic = 10 0.0965 0.0898 0.0965
Kasami L|Kasami = 1023, K|Kasami = 8 0.0626 0.0626 0.0587

Table A.2: Comparison between the correlation bounds of Kasami sequences and the
chaotic map of [Varad 02].

A.2.5 Transmission of Chaotic Sequences

An advantage of chaotic sequences is that, theoretically, they are not limited both in
the number of uncorrelated sequences or in the length. The sequences generated by the
chaotic maps are real sequences, which can imply the necessity of highly-linear amplifiers
to avoid the distortion of the sequences and a reduction of the energy efficiency of the
system. For that reason, chaotic sequences are binarized to obtain a constant envelope
signal. This implies a degradation of the correlation properties as can appear periodicities
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in the sequence. So multilevel quantization is sometimes assumed as a trade-off between
the correlation properties and complexity of implementation.

Quantization

The methods commonly used to quantize chaotic sequences are:

1. Thresholding [Sando 98]: The binary sequence sk is generated from the chaotic
sequence, by defining the following function sk = g {x (t)� Et (x [t])} |t=kT . Where
g (x) = 1 for x > 0 and g (x) = �1 for x < 0. Et (x [t]) represents the mean value of
the real chaotic sequence and T is the period of x [t].

2. Multilevel thresholding [Sando 98]: The previous discretization can be generalized
to `n levels by introducing n� 1 thresholds levels �i, 1  i  n� 1 as follows:

g (x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

`1 �1 < x  x

`2 �2  x < �1

...

`n x < �n�1

(A.14)

According to [Sando 98], the number of binary chaotic sequences obtained with this
method for a given correlation bound is larger than the previous method.

3. Direct binarization of the sequences [Wang 05] by means of the method of equation
A.15:

M (n) = int [x (n) · 10µ]mod (2⌫)

K (n) = bin [M (n)] (A.15)

Where � is the number of bits used in the data conversion, µ is an integer that
represents the number of decimals used in the quantization and K (n) is the binarized
version of M (n). The drawback of this method is that the computer precision is
finite, and consequently the correlation properties of the chaotic sequences will be
degraded.

Another common option is the use of Direct Chaotic Communication (DCC) methods.
This method consists on the direct transmission of the real sequences, i.e. without any
kind of quantization nor up-conversion. They are generated and transmitted in baseband
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by means of analog circuits that model the dynamical system. One of the most common
circuits is the one designed by Chua [Chua 92]. Due to the fact that these sequences,
in chaotic regimen, are noise-like sequences (they have an almost flat power spectrum).
Therefore, in DCC, chaotic sequences are passed through a band-pass filter to use only the
required spectrum. The filtering process has the drawback of degrading the correlation
properties of the chaotic sequences. Nonetheless, DCC method gives priority to simple
implementation over performance. In fact, DCC receivers are in practice non-coherent,
as they are based on envelope detection [Chong 05]. This implies lower accuracy and
robustness in the position estimation in a LPS.
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Useful Tables

L|CSS

N M P K|CSS = 2 K|CSS = 4 K|CSS = 8 K|CSS = 16 K|CSS = 32

1 0 0 2 4 8 16 32

2 0 0 4 8 16 32 64

3 0 0 8 16 32 64 128

0 1 0 10 20 40 80 160

4 0 0 16 32 64 128 256

1 1 0 20 40 80 160 320

0 0 1 26 52 104 208 416

5 0 0 32 64 128 256 512

2 1 0 40 80 160 320

1 0 1 52 104 208 416

6 0 0 64 128 256 512

3 1 0 80 160 320

0 2 0 100 200 400

2 0 1 104 208 416

7 0 0 128 256 512

4 1 0 160 320

1 2 0 200 400

3 0 1 208 416

8 0 0 256 512

0 1 1 260

5 1 0 320

2 2 0 400

4 0 1 416

9 0 0 512

Table B.1: CSS lengths up to 512 bits generated with the proposals of Chapter 4.

201
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K|LS = 4 K|LS = 8 K|LS = 16 K|LS = 32

L|CSS; (K|CSS = 2) L|LS ZCZ L|LS ZCZ L|LS ZCZ L|LS ZCZ

2 19 3 35 3 67 3 131 3

4 39 7 71 7 135 7 263 7

8 79 15 143 15 271 15 527 15

10 99 19 179 19 339 19 659 19

16 159 31 287 31 543 31 1055 31

20 199 39 359 39 679 39 1319 39

26 259 51 467 51 883 51 1715 51

32 319 63 575 63 1087 63

40 399 79 719 79 1359 79

52 519 103 935 103 1767 103

64 639 127 1151 127

80 799 159 1439 159

100 999 199 1799 199

104 1039 207 1871 207

128 1279 255

160 1599 319

200 1999 399

Table B.2: LS sequences parameters for L|LS < 2000 generated with the algorithm pro-
posed in Chapter 5.
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K|GPC = 4 K|GPC = 8 K|GPC = 16 K|GPC = 32

L|CSS; (K|CSS = 2) L|GPC ZCZ L|GPC ZCZ L|GPC ZCZ L|GPC ZCZ

2 8 3 16 3 32 3 64 3

4 16 7 32 7 64 7 128 7

8 32 15 64 15 128 15 256 15

10 40 19 80 19 160 19 320 19

16 64 31 128 31 256 31 512 31

20 80 39 160 39 320 39 640 39

26 104 51 208 51 416 51 832 51

32 128 63 256 63 512 63 1024 63

40 160 79 320 79 640 79 1280 79

52 208 103 416 103 832 103 1664 103

64 256 127 512 127 1024 127

80 320 159 640 159 1280 159

100 400 199 800 199 1600 199

104 416 207 832 207 1664 207

128 512 255 1024 255

160 640 319 1280 319

200 800 399 1600 399

208 832 415 1664 415

256 1024 511

260 1040 519

320 1280 639

400 1600 799

416 1664 831

Table B.3: GPC sequences parameters with L|GPC < 2000 generated with the algorithm
proposed in Chapter 5.
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