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Abstract: This paper presents the first PPG dynamic-based biometric authentication system1

with a Siamese convolutional neural network. Our method extracts the PPG signal’s biometric2

characteristics from its diffusive dynamics, characterized by geometric patterns in the (p, q)-planes3

specific to the 0–1 test. PPG signal diffusive dynamics are strongly dependent on the vascular bed’s4

biostructure, unique to each individual. The dynamic characteristics of the PPG signal are more5

stable over time than its morphological features, particularly in the presence of psychosomatic6

conditions. Besides its robustness, our biometric method is anti-spoofing, given the complex7

nature of the blood network. Our proposal trains using a national research study database with 408

real-world PPG signals measured with commercial equipment. Biometric system results for input9

data, raw and preprocessed, are studied and compared with eight primary biometric methods10

related to PPG, achieving the best Equal Error Rate (ERR) and processing times with a single11

attempt, among all of them.12

Keywords: Biometric system; PPG signal dynamic; 0–1 test; CNN architecture; Pattern analysis13

1. Introduction14

The relentless outbreak of the pandemic in our lives has put the globalized world15

in check. Paralysis to which economies across the globe drive reverse, in many cases, by16

the spread of a latent wave for decades: digitization society. Life will be conditioned by17

new technologies, an entire online ecosystem whose real impact remains a chimera even18

among those experts who timidly venture with hasty forecasts [1–3].19

The role that technology will play in future societies is unquestionable. However,20

this profound metamorphosis carries challenges that digital platforms themselves have21

to face. One of them is to keep the identities of the users of the different services protected,22

that is, to avoid identity theft so that it can unequivocally verify that a user is who they23

say they are and not an impostor intruder with clearly fraudulent purposes. Today, the24

most secure authentication mechanisms are base on biometric methods [4]. Compared25

to traditional access passwords, the different biometric identification systems are reliable26

and free the user from memorizing numerous keys [5]. The only access password lies in27

the user’s anatomical characteristic, supposedly exclusive and non-transferable, whose28

emulation is extremely problematic even for the most seasoned intruders. Face, voice,29

iris, palm, and finger recognition are already a reality that safeguards socioeconomic30

transactions [6–8].31
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The conventional biometric systems focus on the analysis of physical character-32

istics of an individual, in some cases, highly sensitive to involuntary morphological33

disturbances—see, for example, a cut on the fingertip undergoes a fingerprint analysis—.34

By contrast, biological signals lend themselves to a more robust biometric examination.35

Besides morphological details of the biological signal waveform, dynamic peculiarities36

by the expected functional response of the physiological system of interest are evaluated.37

In recent decades, the preliminary diagnostic examination of an individual’s state38

of health and its follow-up has been entrusted on many occasions to the clinical analysis,39

through non-invasive methods, of the biological signals generated by the human body.40

More recently, with Body Sensor Networks (BSN) and thanks to health informatics’s41

rapid development [9,10]. Among the different biological signals usually measured42

today, one particularly deserves special consideration, the photoplethysmographic (PPG)43

signal [11,12].44

Since Alrick Hertzman, an American physiologist, devised the first photoelectric45

photoplethysmograph in 1937 [13], although rudimentary, recent technological advances46

provide devices, as modern pulse oximeters, increasingly smaller, lighter, and with a47

marked tendency to market themselves as wireless devices at a very affordable price48

[14,15]. An essential aspect of the PPG technique lies in its low sensitivity to the sen-49

sors’ location, which gives versatility to photoplethysmography for its application in50

many areas, such as health, sports, or the agri-food industry. Appearance due to the51

electronic simplicity, the cost-benefit ratio, the ease of signal acquisition, and, mainly,52

its non-invasive character [16–18]. Unlike other biological signals that require bulky53

measurement equipment, or even accessories, such as gels (EEG) or electrodes (ECG),54

the PPG signal requires relatively modest electronics. Uncomplicated electronics and55

optoelectronics, encourage the construction of small pulse oximeters, easily integrable56

into smart devices [19]. A pulse oximeter consists of a light emitter and a photodetector.57

The photodetector senses changes in light absorption resulting from arterial blood pulses58

(pulse signal or PPG) when a light beam passes through or reflects in human tissue [20].59

The PPG signal is widely used in clinical settings to monitor physiological param-60

eters related to the cardiorespiratory system [21]. It is complex. It is composed of an61

AC component—peripheral pulse synchronizes to each heartbeat—; and a quasi-DC62

part that varies slowly due to respiration, vasomotor activity, and vasoconstrictor waves63

[22]. The mutual coupling between the different components is intricate and operates at64

different timescales to regulate blood volume based on physiological needs.65

PPG biometric system—State of the art66

The development of biometrics during the 20th century—according to its definition67

in [23]: “Measurable physical characteristics or personal behavioral traits used to identify68

or verify the identity of an individual”—began by conforming to the old paradigm of69

facial recognition and fingerprints. Nevertheless, continued progress in the area of image70

processing and analysis has fostered the exploration of more sophisticated biometric71

system designs [24,25] (for a known review of classical biometric approaches and their72

evolution over time, readers are referred to [26]).73

So far, in the 21st century, the development of biometric pattern recognition systems74

have evolved enormously, broadening its application spectrum in the context of morpho-75

logical analysis, as reflected between the proposal of the anatomical characterization of76

the hand geometry in [8] and the made by [27] concerning 3D palmprint modelling. The77

same is true for other biostructure patterns as disparate as geometric characterization of78

ear [28], of iris [29], of the eye as a multimodal biometric system [30], of face detection79

[31], of the distribution of veins in a finger [32] or on the wrist [33], and also on 3D80

fingerprint identification [34].81

However, in this century particular attention must be paid to the use of biological82

signals like biometric markers, in addition to morphological and behavioral character-83

istics. In this regard, worth highlighting biometrics studies involving the analysis of84
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electrocardiographic (ECG) and encephalographic (EEG) signals [35]; to which could85

be added biometric applications that obtain the biological signals from: galvanic re-86

sponse of skin (GSR), electromyogram (EMG) [10], electrooculography (EOG), and87

mechanomyogram (MMG), among others [36].88

Over the years, technological advances have simplified the acquisition of biological89

data; somehow, traditional biometric systems (TBS) have been increasingly giving way to90

wearable biometric systems (WBS) and, thus, to new methodological approaches to com-91

puting and validating biometric patterns [37]. Accordingly, new biometric technologies92

are gradually abandoning the rigidity imposed by a stationary and static analysis of93

biometric patterns [38] towards biometric patterns adapted to the variations that the94

biological signals may undergo over time—the so-called adaptive biometric systems [39]—.95

In the particular case of the PPG signal, biometric patterns are strongly conditioned to96

physiological alterations, such as physical activity, emotional states, and time intervals97

in which measurements do. An apart from the impact of the different noise sources98

coupled in the PPG signal acquisition procedure [19], mainly when the PPG signal is99

obtained from a camera or of wrist-worn PPG collected in an ambulant environment100

[40].101

Focussing now on the matter at hand, the first documented reference to the PPG-102

based biometric system dates back to Gu et al.’s research work in 2003 [41]. In all the103

works that use the PPG signal as a biometric reference, specific biomarkers correspond to104

features implicitly or explicitly extracted from the signal waveform. For example, time-105

domain features acquired from PPG signal’s first and second derivatives for biometric106

identification [42], or approximating each PPG signal as a sum of Gaussians, and using107

the parameters in a discriminant analysis framework to distinguish individuals [43],108

or also defining the waveform of the PPG signal in five consecutive PPG cycles [44],109

from 22 cycles [45] or from 100 cycles [73] parametrically. One of the latest works is110

related to the non-fiducial and fiducial approaches for feature extraction with supervised111

and unsupervised machine learning classification techniques [46], recently expanded112

with other multifeature classification techniques [71,72]. Another on the simultaneous113

PPG signal acquisition using different wavelengths allows the video camera detectors114

to extract the color segment (e.g., red, green, and blue) [47]. In all PPG-based biometric115

models, a negative aspect is a non-stationary nature of the PPG signal over time, which116

prevents the stable identification of an individual’s biometric patterns.117

PPG biometric system—Proposal118

In this work, we use the PPG signal dynamics as a biometric reference of any119

individual. In this sense, we focus our attention on the geometric distribution of the120

PPG signal’s diffusive behavior, according to the (p, q)-plane proposed by the 0–1 test121

[48–50]. We feel that the PPG signal’s diffusive dynamics are unique to each individual122

since the diffusion constant of blood flow is subject to the structural configuration123

with which each individual has been endowed [51]. A whole complex network of124

arterioles and capillaries transports blood from the heart to the rest of the body thanks125

to the heart’s driving force and synchronized with the respiratory rhythm. Although126

variations in the PPG signal’s diffusive dynamics can indeed hide point or progressive127

pathological abnormalities, such as physiological deterioration resulting from ageing,128

specific congenital characteristics remain practically unchanged.129

Each subject’s credentials and identity are collected in blood flow dynamics through130

the peripheral capillary network. Its falsification is very difficult because of capillary131

network’s intricacy and the complexity which involves blood flow driven by the car-132

diorespiratory system. Furthermore, significant detail is that any biometric system based133

on verifying PPG signal’s diffusive dynamics requires the individual’s vital integrity.134

Someone, not without a negligible effort, could imitate the particular capillary mor-135

phology of an artificial finger. Still, it would be practically impossible to reproduce the136

diffusive dynamics that blood flow undergoes when circulating through that capillary137
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structure, given the contribution of many subsystems that do nonlinearly make up the138

cardiovascular system.139

The paper organizes as follows. Section 2 describes the two fundamental concepts140

that apply for the first time on biometry. The mathematical framework of the 0–1 test,141

which underpins the biometric potential of the geometric patterns traced by the PPG142

signal’s diffusive behavior, is in subsection 2.1; and subsection 2.2 explains our novel143

proposal for a biometric classifier based on convolutional neural networks in detail.144

Section 3 is about the data, optimizer, and logic error employed in the experiment; it145

includes a brief description of the parameters used to evaluate the system. Section 4146

shows the obtained results, both graphically and numerically, for various experimental147

settings. Also, in this section, we analyze and interpret the obtained results. Finally, in148

section 5, we shortly outline the conclusions drawn from this study, which serve as the149

basis for future work.150

2. Method151

In PPG-based biometrics within the deep neural network (DNN) framework, as a152

general concept of the system, we propose a biometric system based on the diffusive153

dynamics of the PPG signal with a DNN design adapted to diffusive images and a154

specific biometrics method. Our proposal technically rests on the 0–1 test [52] and the155

Siamese residual network structures.156

2.1. 0–1 test157

In the analysis of dynamical systems, one of the key aspects is to characterize the158

dynamic behavior present in the physical system’s response under study. The response159

dynamics do not provide direct relevant information on the internal physical structure160

from which the response derives. Still, it does provide at least its operational complexity,161

which is crucial in evaluating its correct functioning and its more or less adaptability to162

unforeseen situations in the context of physiological systems.163

In an experimental setting, observables are usually obtained from the physical164

system under consideration so that the observables are making measurements at regular165

time intervals. An observable is any physical quantity that can be measured. The166

measurements or observations themselves in what is known as time sequences (time167

series), and then each observable gives rise to a scalar time sequence (scalar time series).168

We could define a state vector in phase space if we measured all the observables con-169

tributing to given dynamical system evolution. In physiological systems, it is widespread170

to work with univariate time series or scalar time series, in which only the measurements171

of an observable are available. With a single observable, it is possible to obtain informa-172

tion on the system’s state since each usually contains information from the others, given173

the mutual coupling between them, whether linear or non-linear.174

The 0–1 test’s initial motivation was to have a method applied directly to a scalar175

time series to identify the presence of chaotic dynamics without resorting to other, more176

complicated techniques requiring a deep level of knowledge for its correct application177

and interpretation [48,49,53]. Given its easy implementation, its increasing popularity178

has sparked the interest of countless scientific disciplines in an excessive race to detect179

chaos anywhere [50]. However, beyond the initial scope of the 0–1 test and its many180

applications, one of the steps of the test is surprisingly useful in the field of biometrics;181

specifically, the auxiliary trajectory of the two-dimensional Euclidean group (the Fourier182

transform series), or p-q diagram or (p, q)-plane [52], which underlies the dynamics of the183

physical system.184

The 0–1 test cornerstone construction of an extended dynamic serves a two-dimen-185

sional Euclidean group SE(2) [52]. The elements of SE(2) form rigid displacements, that186

is, a translation and a rotation, in some two-dimensional affine Euclidean plane—the187

(p, q)-plane—that, in principle, it does not relate in topological terms to the state space188

in which the dynamics of the system unfold. However, parameters that characterize189
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rigid transformations depend at all times on the current state of the system. Therefore,190

a certain equivalence relationship itself between the dynamics of the physical system191

under study and the dynamic evolution of the trajectory described by the elements of192

SE(2) in the (p, q)-plane.193

The 0–1 test requires as input a scalar time series of N observations s(n), for n =194

1, 2, . . . , N, where s(n) is a one-dimensional observable of the underlying dynamical195

system. According to the rigid transformations’ parameterization, the extension of the196

dynamics characterized by s(n) forces to define three scalar quantities (p, q, φ). An197

element or point on the (p, q)-plane is defined by its position on the plane, whose198

coordinates are (p, q), although its evolution, a change in coordinates, is driven (forcing199

term) by the dynamic evolution of s(n) according to200

pn+1 = pn + s(n) cos φn,

qn+1 = qn + s(n) sin φn, (1)

φn+1 = c + αs(n),

where parameters c, α ∈ R.201

The evolution of any point on the (p, q)-plane describes a trajectory called the202

auxiliary trajectory since it reproduces an indirect or complementary evolution of the203

true dynamics observed in the system. The auxiliary trajectory involves an angular204

rotation φn with respect to a circumference of radius s(n) centered on the point (pn, qn),205

as shown in Figure 1.206

(p5 , q5)

p

(p1 , q1)

φ1

φ2

(p2 , q2)

φ3

(p3 , q3)

(p4 , q4)

φ4 s(3)
s(2)

s(1)

s(4)
φ5

s(5)

q

Figure 1. Descriptive construction of the auxiliary trajectory in the (p, q)-plane.

Somehow the auxiliary trajectory derives from a diffusive process in which the207

diffusion dynamics are forced or driven by the s(n) observations. In the presence of208

noise, for dynamic simplicity, α usually assigns a value of 0 [49,53] so that Equation (1)209

reformulates as210

pn =
n

∑
k=1

s(k) cos(kc),

qn =
n

∑
k=1

s(k) sin(kc), (2)

φn = cn,
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where the angle of rotation φn increases at a uniform rate governed by the value of c.211

Furthermore, since the parameter c participates in the trigonometric function’s argument,212

it is pertinent that c ∈ [0, 2π).213

Although the theory underlying the dynamic extensions is based on the dynamics’214

asymptotic behavior, an interesting consequence of this focuses on the limited nature215

of auxiliary trajectories in the (p, q)-plane. That is, how the auxiliary trajectory evolves216

spatially in the (p, q)-plane if the trajectory is circumscribed in an area delimited or217

inexorably diffuses in the same way that a Brownian motion unfolds [53]. The 0–1218

test quantifies, by the computation of an indicator, whether the auxiliary trajectory is219

bounded. It reflects the presence of regular dynamics or not sublinearly bounded, which220

manifests chaotic dynamics. This inductive argument is the basis of the 0–1 test; a more221

in-depth description goes beyond this paper’s purpose. Readers are referred to this222

method’s original work, widely referred to in the scientific literature in the last decade223

[48,49,53,54].224

The auxiliary trajectories must be for a range of values of the parameter c that225

prevents the appearance of spurious phenomena, as already stated in another article [51].226

The dynamic richness of the auxiliary trajectories of the PPG signals reveals the inherent227

functional complexity to signal dynamics, to which multiple conveniently coupled228

physiological subsystems contribute. The coordinated action of these subsystems is229

responsible for homeostatic regulation of the cardiorespiratory system at all times.230

However, despite the certain global similarity that the auxiliary trajectories of PPG231

signals may have at first glance, closer scrutiny of each individual shows distinctive232

signs. These signs could hide more or less diagnostic severe pathologies, and, more233

invariably, the inalienable character of the anatomical and functional configuration of234

each subject’s cardiorespiratory system.235

As far as we know, diffusive dynamics, the cornerstone of the 0–1 test, of a biological236

signal have never been used to extract biometric characteristics, which gives this work a237

new operational perspective in physiological biometrics.238

2.2. Classifier239

This paper explores an approach based on convolutional neural networks to identify240

users through their PPG signals. The proposed system receives two-time segments (user241

A and user B) of PPG signals, each time segments with three segments of 1,000 points242

on each (4 seconds), as input. The first-time segment is the standard segment, and the243

second time segment of the user to compare. The system delivers a matching score244

normalized to the interval [0, 1], which defines the degree of agreement between the245

two incoming PPG segments. If the two input segments belong to the same user, the246

matching score is closer to 1; if not, the matching score is closer to 0.247

same weights
User B

(p, q)-planes

User A

(p, q)-planes

User B

PPG segments

User A

PPG segments

0–1 test preprocessing

PPG input

(p, q)-plane output

Similarity function

|Ha −Hb|

La

Lb

Ia

Ib

Recognition
Score

Ha

Hb

C

Siamese network

Figure 2. System’s architecture schematic overview (a zoomed view is shown in Appendix A).

Architecture248

This paper proposes a non-conventional network, as we can see in Figure 2, with an249

architecture based on a Siamese network whose main trunk is characterized by a fully-250

connected encoder. It is a multiscale architecture with residual connections according251

to the guidelines of Szegedy et al. [55]. Fully connected encoder architectures are those252

traditionally used in classification tasks such as [56,57]. It is well-known for its use in253
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one-shot learning and image verification [58] in the Siamese configuration. To these254

layers and architectures, somewhat better known in the field, is adding a layer to the255

system that performs preprocessing based on the diffusive behavior peculiar to the PPG256

signal dynamics [51] highlighted as a new contribution to this paper.257

Table 1. Detailed architecture of the proposed CNN.

Layer number Type Output size Configuration

1A Input (1000, 3) —

1B Input (1000, 3) —

2 0–1 test preprocessing 2 · (299, 299, 3) Siamese

3 Stem 2 · (35, 35, 256) Siamese

4 5× Inception-ResNet-A 2 · (35, 35, 256) Siamese

5 Reduction-A 2 · (17, 17, 896) Siamese

6 10× Inception-Resnet-B 2 · (17, 17, 896) Siamese

7 Reduction-B 2 · (8, 8, 1792) Siamese

8 5× Inception-Resnet-C 2 · (8, 8, 1792) Siamese

9 Similarity function (8, 8, 1792) —

11 Flatten 114688 —

12 Dense 1 —

13 Sigmoidal activation 1 —

The branch of Siamese network architecture is an Inception-ResNet-V1 [55] due to258

its recognized capacity as a classifier and its characteristics compared to its previous259

versions and competing networks:260

• Reduction of architectural bottlenecks [59,60] because the neural network works bet-261

ter if the dimensional input changes are not too drastic. Large dimensional changes262

can cause a significant loss of information called a “representational bottleneck”.263

• Use of factoring methods to reduce the computational complexity of the convolu-264

tions used [61].265

• Use of residual connections between the inputs and outputs of the blocks used [62].266

These connections prevent the loss of information and improve the stability of the267

gradients when training.268

• Use of batch normalization to immunize the network to some extent against scale269

changes, reduce training time, and avoid covariance displacement [63].270

The basic structure of the proposed system takes the form of a network combin-271

ing 1D information (PPG signals) and 2D information ((p, q)-planes of PPG segments).272

This structure contains two distinct phases. The first phase consists of a preprocessing273

layer based on the characteristic (p, q)-planes of the 0–1 test. This phase will have as274

input six segments of the PPG signal from two users, three belonging to a registered275

user Pr1,Pr2,Pr3, and the rest to a candidate user Pc1,Pc2,Pc3, not necessarily differ-276

ent. Once these signal segments enter the 0–1 test preprocessing layer, their signals277

are featured with this process, and six output matrices are obtained Ir1, Ir2, Ir3, and278

Ic1, Ic2, Ic3, which can be represented as an image I = [I1, I2, I3], representing the279

patterns corresponding to the PPG signals of those users.280
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The second phase will use as input these six output matrices obtained in the previ-281

ous phase, in two matrices with three channels each, since each user has three matrices282

assigned to him. This phase consists of a Siamese network whose architecture is based283

on [55]. This network will use a single coding branch to process the two input matrices284

separately, with the same trunk and sharing the same weights. Some coded output fea-285

tures Fr and Fc will be obtained for each of the input matrices. Once features obtain, a286

relation function of these characteristics quantifies the error between them and quantifies287

how similar these users are to each other. This error function represents the L1-norm288

between the vectors of characteristics previously obtained. Once the L1-norm standard289

obtains between the characteristics vectors, these will go through a final fully-connected290

binary classification layer. A sigmoidal activation is used to obtain a final C matching291

score between 0 and 1, quantifying how similar or different the evaluated users are. The292

architecture can observe in detail in Table 1, where the sub-blocks that belong to the293

original Inception-ResNet architecture can be found in the seminal paper [55].294

3. Material and Methodology295

The used database comes from 40 students between 18 and 30 years old, non-regular296

consumers of psychotropic substances, alcohol, or tobacco. The students were selected to297

participate in a national research study to assess how stress reflects in biological signals298

[64,65]. Signals were captured from the middle finger of the left hand and sampled at a299

frequency of 250 Hz [64], with the psychophysiological telemetric system “Rehacor-T”300

version “Mini” from Medicom MTD Ltd [64].301

3.1. Preprocessing302

In practice, the PPG signal is usually impaired by many common noise sources303

during the signal acquisition process, such as motion artifacts, sensor movements,304

breathing, etc., and the discretization error (truncation error) involved in normalizing305

the input signal amplitudes. A common and direct mechanism to mitigate noise is to306

submit the PPG signal to a bandpass filter. For filtered PPG signals, it uses a Butterworth307

bandpass filter tuned to different cutoff frequencies. Anything below 0.5 Hz can be308

attributed to baseline wandering, while anything above 8 Hz is high-frequency noise [66],309

though some studies have reported clinical information up to 15 Hz [16,67]. To examine310

the impact that this early preprocessing has on the learning and the final performances311

of our biometric system, it studies the following variations:312

1. Raw data: in this first mode, the PPG signals are not pre-processed and transferred313

directly, as they were acquired, to the 0–1 test preprocessing layer (see Figure 2),314

where once segmented, they convert to diffusive geometric maps.315

2. Filtered data [0.1–8 Hz]: in this second mode, the PPG signals, before moving to316

the 0–1 test preprocessing layer, are filtered with a Butterworth bandpass filter with317

cutoff frequencies at 0.1 and 8 Hz, and the amplitudes are not normalized.318

3. Filtered data [0.5–8 Hz]: in this third mode, the PPG signals, before moving to the319

0–1 test preprocessing layer, are filtered with a Butterworth bandpass filter with320

cutoff frequencies at 0.5 and 8 Hz, and the amplitudes are not normalized.321

4. Filtered data [0.5–8 Hz] and normalized: in the latter mode, the PPG signals, before322

moving to the 0–1 test preprocessing layer, are filtered with a Butterworth bandpass323

filter with cutoff frequencies at 0.5 and 8 Hz, and the amplitudes normalized to the324

[0, 1] interval.325

3.2. Training326

The used data for training are PPG signals obtained for 10 minutes from different327

individuals with a sampling frequency of 250 Hz in all of them. Each signal separates328

into 150 randomly chosen segments (4 s each, which means 1000 points segment). Each329

segment generates an image with the 0–1 test. If a database of 40 individuals is used,330

there are 6000 different PPG segments with all users, and taking three images per user,331
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results in 6000
3

6000
3 possible training combinations. All PPG segments are divided into332

training, validation, and test sets, composed of 60%, 20%, and 20%, respectively, of the333

database’s data. Division ranges commonly are chosen to ensure that almost half of the334

data uses for evaluation.335

The problem to be solved by this system is a binary classification problem with336

only two possible classes: class 0 indicates that the input PPG segments of branch A and337

branch B do not belong to the same user; class 1 indicates that these segments belong338

to the same user. Each of the predefined training segments, generated with a specific339

output label, links these input segments A and B to an output classification, allowing the340

system to learn how to differentiate or associate the input segments of different users.341

Once in the training process, a random batch generator will use allowing choose 3 PPG342

signal segments belonging to user A from among the 40 PPG signals used and another 3343

PPG signal segments belonging to user B, once again randomized, so that if these two344

users coincide an output label will be applying with class 1. At the same time, if not, it345

will be associated with class 0. This generator allows guaranteeing the highest possible346

variability, greatly enriching the training and providing it with generality. Once the347

batches generate, an Adam optimizer is using to train the system to recognize similar348

users.349

3.3. Optimizer350

The used optimizer is Adam or Adaptive Moment Estimation [68]. This optimizer351

is an excellent alternative to the conventional Stochastic Gradient Descent (SGD). It352

combines the advantages of two previous alternatives [69,70], creating a new approach353

that uses the averages of the first and second moments of the gradient to adapt the354

learning rate dynamically.355

The training ratio parameter, which indicates the learning rate—how much and how356

fast the system learns in each period—is crucial and can produce great learning problems357

if it does not choose correctly. A very high learning rate can produce divergence in358

training, while a meager rate can easily fall into local training minima or take a long time359

to complete. When we talk about Adam’s adaptive capability, we mean that it starts with360

a user-defined learning rate, and after, it modifies the learning rate through unsupervised361

training. This capability allows using an adaptive training ratio that depends strongly362

on the batch size and how noisy the input is. The training ratio initially used is 10−4.363

In addition to Adam’s functionality, a callback called early stopping is employed364

in this training. This tool allows the best weight settings to save that the system has365

achieved throughout the training. In order to achieve this, the training session uses the366

validation metrics and losses obtained after evaluating the model in each period to save367

the better-trained weights of the training and avoid undesired effects, like overfitting.368

We have to recall that the training sessions were carried out using 100 epochs and a369

batch size of 5 samples. However, a predefined number of epochs used, as we have370

commented before, the early stopping will keep the best of them. The total training time371

on a GPU NVIDIA GeForce GTX 1080 has been of 9 hours.372

3.4. Loss function373

The proposed convolutional neural network uses as input two PPG signal seg-374

ments Ia and Ib, while as output, it uses a binary classification vector C. This binary375

classification task’s proposed loss function is the cross-entropy (CE), as indicated in376

Equation (3), which evaluates the differences between Ground Truth and predictions to377

provide an output score associated with the input signals’ similarity. In classical machine378

learning, this loss function has been widely used to solve the problems associated with a379

binary classification between distributions, being d(x) the correct distribution and d̂(x)380

the estimated one, in such a way that it allows to associate a similarity score for those381

distributions.382
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CE
(

d, d̂
)
= −∑

∀x
d(x) log

(
d̂(x)

)
. (3)

Binary cross-entropy measures the classifier’s capacity understudy, whose output383

is a classification level that associates the input to the distribution of interest. The more384

this classification level decreases, the more the cross-entropy losses increase. The perfect385

classifier would have zero cross-entropy with a maximum classification level. Usually,386

this loss function is used in neural networks accompanied by an output activation387

according to it. In binary cross-entropy, the activation is a sigmoid function, which388

places the output score level in the interval [0, 1], with a smooth transition.389

3.5. Metrics390

Once the modalities in which the experimentation will carry out are fixing, the391

metrics used to evaluate the proposed system’s performance are explained:392

• Precision-Recall curve. The precision-recall curve depicts the precision vs. the393

sensitivity (recall) for different operating points (matching score or threshold values).394

The closer the curve is to the upper right corner (the area under the curve is closer to395

1), the more precise and sensitive the system behaves. The accuracy evaluates how396

often the output is correct (positive). An accurate system is very finicky, validating397

a legitimate user, i.e., in an accurate system, it is unlikely that an intrusive user will398

be admitted as valid, but it is also possible that legitimate users will be rejected399

(false negatives). Sensitivity assesses how permissive the system is, i.e., in a highly400

sensitive system, it is improbable that a valid user will be rejected, but it is also401

possible that unregistered users will be admitted as valid (false positives).402

• ROC (Receiver Operating Characteristic) curve. The ROC curve depicts sensitivity403

vs. FPR (false positive rate). The closer the curve is to the upper left corner (the404

area under the curve is closer to 1), the more sensitive the system behaves without405

increasing FPR. In short, the ROC curve graphically represents TPR (true positive406

rate) vs. FPR (false positive rate) for different operating points (matching score or407

threshold values).408

• F1 score-Threshold curve. The F1 score-Threshold curve complements the informa-409

tion provided by the precision-recall curve. F1 score is a joint and overall metric410

that brings together the Precision and Recall values in a unique metric (precision411

and recall harmonic mean) that allows us to estimate the stability of the system’s412

performance for different threshold values. In a stable and high-performance sys-413

tem, the range of threshold values for which the curve remains almost constant and414

close to 1 is virtually a flat line over the whole range.415

• Equal Error Rate (EER). The equal error rate or crossover error rate (CER) is a416

metric concerning biometric authentication systems that determines a working417

threshold where FPR (false positive rate) and FNR (false negative rate) are the same.418

The point where these decision errors cross define the working point, and the lower419

the crossover rate, the higher the system’s accuracy. At the experimental level, EER420

is used as a metric to compare different biometric authentication techniques.421

Usually, a high decision threshold identifies an accurate model with a very low FPR422

(false positive rate); a low threshold value indicates a high sensitivity (too permissive,423

with a very low FNR (false negative rate)). The precision-recall and ROC curves help424

us to find the equilibrium threshold. In our case, the criteria for selecting the optimal425

threshold comes from the EER, but the F1 score-Threshold curve tells us if variations426

of the optimal threshold upwards or downwards would dramatically affect the system427

performance. Based on the results we will see later, the precision-recall and ROC curves’428

equilibrium threshold would not be so critical, as the system’s stability has a wide429

operating margin for a not insignificant range of working thresholds.430
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4. Results and discussion431

In this section, we show the biometric potential of the diffusive dynamics of the432

PPG signal. To do this, we explore its operational feasibility under different experimental433

conditions to mimic its effectiveness in possible real-life scenarios. As an authentication434

mechanism [5], the biometric architecture consists of two stages: in the first phase, the435

enrollment phase, 12 s of PPG signal are acquired from each individual using a pulse436

oximeter. These signal fractions are preprocessing to obtain several (p, q)-planes repre-437

sentative of each subject, PPG signal’s diffusive behavior, obtained from the 0–1 test as438

the biometric pattern. From these (p, q)-planes, the neural network extracts 51,200 char-439

acteristics that encapsulate each individual’s biometric pattern and conveniently store440

them in memory. Afterward, in the verification phase, 12 s PPG signal is acquired from441

anyone who wishes to verify their identity, proceeding to their preprocessing. Through442

a classifier and their comparison with the rest of the registered biometric patterns, it443

authenticates the user’s identity that requests it. The use of 12 s of PPG signal in each of444

the phases of the system is because it is the time necessary to obtain three consecutive445

segments of PPG signal (4 s or 1000 points each one), with their respective (p, q)-planes446

from the user, to be recorded or verified. Additionally, 12 s to verify a user’s identity447

enables applying this system in real environments, since, with this not too long time,448

achieves accuracy above 90%.449

4.1. Experimental conditions450

We present two different modalities of experiments that differ in how the database451

of the PPG signal from various individuals is used for training. We use the whole signal452

in the first modality, with randomized segments, from 60% of users for training and453

the 40% remaining for testing. This approximation allows us to show the system’s454

generalization capacity, with better applicability to real systems, showing its results in455

new user patterns isolated from the trained users.456

The second modality, the most used in the published biometry papers [5,19,42–47],457

uses 60% of all data, with the segments randomly taken between and from all users,458

for training and 40% for testing, and this means that the used patterns are isolated but459

belongs to the same users, which leads to a certain extent to the presence of similarities.460
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Figure 3. Minimum Equal Error Rate (EER) for different input PPG signal preprocessing modalities.
The inset shows the entire EER curves as well as FPR (false positive rate) and FNR (false negative
rate) trends for different threshold values.

4.1.1. Leaving 40% of users out of training461

In this first experiment, the training set is 60% of users, and the testing set the other462

40% of users. In this way, the network is trained with 24 users and tested with 16 users463
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never seen before. This experiment allows us to completely isolate 16 users so that the464

network has never seen a similar pattern in the training phase. Therefore, the register of465

authorized users does not record the biometrics ID of the 16 users who keep out.466
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Figure 4. Functional efficiency curves in case leaving 40% of users out of training. The working
points of the EER curve (see Figure 3) are tagged with the symbol •: (a) Precision-Recall curve; (b)
ROC curve; (c) F1 score-Threshold curve.

Figure 3 shows the different EERs for all the input PPG signal modalities used467

(cf. § 3.1). For raw data and filtered data in the range of 0.1 to 8 Hz, the network’s468

discriminating power is penalized by the noise present in the signal, distorting and blurs469

the diffusive geometrical patterns in the (p, q)-planes. As filtering narrows its bandpass470

in the range of 0.5 to 8 Hz, the impact of noise is attenuated, and the diffusive geometric471
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pattern becomes clearer, allowing the network to discriminate between different users’472

biometric patterns more easily. If besides, PPG signal is normalized to [0, 1] interval, once473

filtered in the range of 0.5 to 8 Hz, the EER has a slight reduction. This effect is because474

the signal’s normalization improves the numerical quantification, and the diffusive475

geometric patterns trace a better structural resolution, making it easier to extract the476

biometric features.477

Table 2. Performance metrics for all the input PPG signals modalities used in case leaving 40% of
users out of training. The thresholds refer to the optimal classification thresholds where EER is
minimal for each modality (preprocessing) considered.

RAW DATA

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.82 0.82 0.82 0.48 0.22

FILTERED DATA [0.1–8 HZ]

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.80 0.80 0.80 0.37 0.23

FILTERED DATA [0.5–8 HZ]

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.89 0.89 0.89 0.40 0.19

FILTERED DATA [0.5–8 HZ] AND NORMALIZED IN [0, 1] INTERVAL

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.90 0.90 0.90 0.73 0.18

From the EER curve can be measured the working points for each of the prepro-478

cessing modes. These working points can use to obtain other performance measures,479

as shown in Figures 4(a)–(c). For raw data and filtered data in the range of 0.1 to 8 Hz,480

the functional efficiency curves, Precision-Recall, ROC, and F1 score-Threshold curves,481

behave quite similarly. However, the filtering in the range of 0.5 to 8 Hz, as illustrated in482

Figures 4(a)–(c), provides a significant enhancement in system operating performance,483

especially about the stability of the working point, pointed out by the F1 score-Threshold484

curve, much higher than the raw data and filtered data in the range of 0.1 to 8 Hz. Unlike485

in terms of the EER curve in functional efficiency curves, the benefit of [0, 1] interval486

normalization, once filtering the data in the range of 0.5 to 8 Hz, is remarkable. On the487

one hand, there is a marked improvement in performance for high thresholds, and, on488

the other hand, in the F1 score-Threshold curve, the working point is much more stable489

than in any other mode.490

Table 2 shows the performance metrics of the experiment whereby 40% of users are491

left out of training.492

4.1.2. Leaving 40% of data out of training493

In the second experiment, the training set is 60% of the total data, including all users494

and all users’ segments. The testing set is with the remaining 40% of the data, which495

means that the network handles (p, q)-planes for all users in the training phase, but in a496

different way than they will be treated for testing, even though they are undoubtedly497

related to the specific users’ biometric patterns.498

This experimental framework establishes a particular environment where the regis-499

tered users’ database is known and new user registrations do not contemplate. All users500

are well known to the network as they have previously registered.501
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The inset shows the entire EER curves as well as FPR (false positive rate) and FNR (false negative
rate) trends for different threshold values.

Figure 5 shows the different EERs for all the input PPG signals modalities used (cf.502

§ 3.1). For raw data and filtered data in the range of 0.1 to 8 Hz, the network’s discrimi-503

nating power is similar to that obtained in the preceding experimental framework (cf. §504

4.1.1, Figure 3). The noise present in the signal, which distorts and blurs the diffusive505

geometrical patterns in the (p, q)-planes, is a critical constraint on the biometrics system’s506

operational capability.507

Nevertheless, contrary to what appears in Figure 3, for filtering in the range of508

0.5 to 8 Hz, the network offers high efficiency, with a significant reduction of EER. If,509

additionally to PPG signal normalization in the interval [0, 1], it applies a filter in the510

range of 0.5 to 8 Hz, it reaches the lowest EER, very close to zero (6%, as indicated in511

Table 3). With such credentials, it is clear how proper preprocessing of incoming PPG512

signals can positively influence the ultimate performance of the biometric system.513

From the EER curve can be measured the working points for each of the prepro-514

cessing modes. These working points can use to obtain other performance measures,515

as shown in Figures 6(a)–(c). For raw data and filtered data in the range of 0.1 to 8 Hz,516

the functional efficiency curves (Precision-Recall, ROC, and F1 score-Threshold curves)517

behave almost identical for classification purposes. Otherwise, when filtering in the518

range of 0.5 to 8 Hz is applied to the input data, a qualitative leap obtains in terms of519

operational performance, notably about the smooth stability of the F1 score-Threshold520

curve (see Figure 6(c)). Additionally, normalizing the data to [0, 1] interval, once filtering521

the data in the range of 0.5 to 8 Hz, enables the network to operate as a quasi-optimal522

behavior similar to a perfect classifier.523

Table 3 shows the experiment’s performance metrics, whereby 40% of data are524

left out of training. Finally, we compare in Table 4 performance metrics with other525

PPG-based biometric methods to consolidate the potential viability attributable to our526

biometric authentication system. Ratings shown in Table 4 are merely indicative and527

are limited to the achievements obtained in different experimental scenarios and with528

different databases. Unfortunately, there is no common roadmap available for the529

different PPG-based methods to communicate the obtained results. However, always530

with the utmost respect for the work carried out by authors, we chose to report the best531

performances when there is not enough information available to conduct a comparison532

that is as fair as possible on equal terms.533

As Spachos et al. noted [44], the performance of PPG signal acquisition equipment534

and the environmental conditions when acquiring the signals impact any biometric535

authentication system’s operational feasibility. So far, most PPG-based biometric sys-536
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tems, as listed in Table 4, extract the representative features of an individual from the537

morphology of the PPG signal, either directly from the acquired PPG signal itself or538

with time or frequency domain transformations. Accordingly, the vulnerability of the539

morphology of the PPG signal to the physical state of the subject and the environmental540

and instrumental conditions in the signal acquisition process restrict its field of applica-541

tion to biometric environments where very stable conditions are guaranteed, namely,542

when PPG signals, in enrollment and testing phases, were collected under controlled543

environment and with accurate sensors.544
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Figure 6. Functional efficiency curves in case leaving 40% of data out of training. The working
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Table 3. Performance metrics for all the input PPG signals modalities used in case leaving 40% of
data out of training. The thresholds refer to the optimal classification thresholds where EER is
minimal for each modality (preprocessing) considered.

RAW DATA

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.86 0.86 0.86 0.53 0.21

FILTERED DATA [0.1–8 HZ]

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.82 0.82 0.82 0.57 0.22

FILTERED DATA [0.5–8 HZ]

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.93 0.93 0.93 0.68 0.11

FILTERED DATA [0.5–8 HZ] AND NORMALIZED IN [0, 1] INTERVAL

Precision Recall F1 score Threshold Equal Error Rate (EER)

0.97 0.97 0.97 0.34 0.06

In the light of the above, the inherent biometric limitations of PPG signal morphol-545

ogy are not reflected in the methods collected in Table 4, where an in-depth analysis546

reveals the high variability experienced by the parameter EER, degrading its expec-547

tations, a priori of the most promising, when PPG signals acquired under different548

conditions.549

Table 4. The performance of recognition systems based on PPG with state-of-the-art methods
compare. Claimed error rates (EERs) involve that in the trial, three attempts were allowed.
Acquisition and processing time refers to the system’s time to identify whether the user is valid or
not.

PPG-based biometric
recognition method

Equal Error Rate
(EER) (%)

Rank-1 accuracy
(%)

Acquisition and
processing time (s)

Yang et al. 2021 [71] 2.36 99.69 600.027

Yang et al. 2020 [72] — 99.92 480.44

Lee et al. 2019 [73] — 99.00 —

Sancho et al. 2018 [5] 6.9 — 21.35

Patil et al. 2018 [47] 23.34 86.67 —

Yadav et al. 2018 [19] 2.82 — —

Karimian et al. 2017 [46] 3.91 99.44 —

Sarkar et al. 2016 [43] — 90.53 14.00

Lee and Kim 2015 [45] 3.7 96.04 —

Kavsaoğlu et al. 2014 [42] — 94.44 13.50

Spachos et al. 2011 [44] 12.75 — —

Our approach 2.02 97.00 12.01
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So, in Yang et al. [71], the best EER is 2.36 with maximum rank-1 accuracy of 99.69%,550

evaluated on different datasets, but 10 minutes of PPG signal are required, against the551

12 seconds of our approach. Moreover, as a reference, in Yang et al. [71] the internal552

computation time for the authentication process, once the data store, is about 27 ms,553

while it is 10 ms in our system. In Yang et al. [72], with 8 minutes of PPG signal required,554

a maximum rank-1 accuracy of 99.92% is achieved on three different datasets, but at555

the expense of an internal computation time for the authentication process of 0.44 s. In556

Lee et al. [73], the maximum rank-1 accuracy is 99%, evaluated on a dataset containing557

42 PPG signals, with roughly 2.5 minutes of PPG signal required. Either way, all three558

proposals do not show analysis on different time-lapses or different states. In this con-559

nection, in Sancho et al. [5], the range of percentage variation of EER is 13.9 (from 6.9 to560

20.8%) when evaluated on different time-lapses. In Yadav et al. [19], the mean EER is 2.82,561

evaluated on different states and datasets, or in Spachos et al. [44], it is 12.75, evaluated562

on different datasets. In the other methods, only the method’s potential is evaluated563

focusing on the research approach, rather than as a feasible real biometric solution, such564

as in Karimian et al. [46], where the proposed solution provides an Error Rate and rank-1565

accuracy of 3.91% y 99.44%, respectively, but 8 minutes of PPG signal are required,566

against the 12 seconds of our approach. Either way, and because all of them use PPG567

individual cycles, exogenous and endogenous factors in the PPG signal’s morphological568

fluctuations may discourage its use in wearable biometric systems, as consistent and569

reliable results with proper operations could not guarantee. Our approach holds the best570

EER of all methods, with a 17% margin over the second-best result [71]. Our method is571

fifth in precision, the best being that obtained in the report of Yang et al. [72]. Finally, in572

terms of acquisition and processing time, from all the available time values reported by573

the studies, our method holds first place with 12.01 seconds. In this sense, it is worth574

highlighting that our approach does not require new training every time a new user575

registers; only the user’s template pattern to register is needed, which only takes 12576

seconds to record.577

The present proposal opens up a new line of work in PPG-based biometry. The578

study of its diffusion dynamics replaces the analysis of the PPG signal’s morphology,579

our (p, q)-planes, highly dependent on the vascular bed’s biostructure, an intricate580

network of tiny blood vessels that branches through body tissues. While deteriorating581

with age and/or with certain cardiovascular diseases, this vascular microstructure is582

unique to each individual and maintains a reasonably regular and stable diffusive583

conductivity over time, making this an excellent biometric marker. Preliminary trials584

with our biometric authentication system yielded similar performance ratings, with EER585

and rank-1 accuracy, with one attempt, in the range of about 6% and 97%, respectively,586

when users, initially registered in a relaxed state, were successfully identified about 30587

days later under stress-induced conditions.588

5. Conclusions589

Over the past ten years, the easily accessible PPG signal has attracted those involved590

in biometric security. Most PPG-based biometric solutions define the biometric signature591

out of certain features of the PPG signal morphology. Nevertheless, the high variability592

of the PPG signal morphology, in reaction to changes in measurement conditions and593

the individual’s psychophysical state, is hampering its adoption as a biometric solution594

in wearable devices.595

In this research work, still in progress, we propose a robust PPG-based biometric596

authentication system based on the diffusive dynamics of the PPG signal, arguably597

very stable in changing environments, instead of morphological aspects of the signal.598

Our biometrics approach is based upon Siamese convolutional neural networks, easily599

integrated into embedded environments that can reach high speeds in the identification600

process. An error rate, rank-1 accuracy, and enrollment time of 2%, 97%, and 12 s,601

respectively, makes our proposal the best among the eleven compared state-of-the-art602
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methods in terms of EER and processing time and the fifth-best proposal in terms of603

rank-1 accuracy, indicating a great significance and potential viability as a real-world604

biometric system.605

With an enrollment time of 12 s, we truly feel that our technical approach can606

become a real low-cost technological solution. Built-in in miniaturized Tensor Processing607

Units (TPUs) customized for particular use in wearable biometric systems since once608

the network has been suitably trained, the authentication methodology does not require609

successive retraining for reliable serving. Moreover, the memory requirements for610

storing users’ biometric templates, around 120 kB, pose no apparent constraints on the611

authorized user database’s portable logistics. With different hardware and software612

solutions, our efforts aim at reducing PPG signal acquisition time, more in step with613

the average comparison time, about 10 ms, verifying a user’s biometric credentials614

requesting access to the system.615

Future work involves expanding the dataset with different physiological condi-616

tions, but preliminary results with the same individuals under stress conditions and on617

different days suggest a good operational consistency in the authentication process.618
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Appendix A. Magnified Figure 2641
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Figure A1. System’s architecture schematic overview (zoomed view of Figure 2).
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