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Abstract. In this paper, we study a problem family inspired by a promi-
nent network optimization problem (graph coloring), enriched and ex-
tended towards a real-world application (Wi-Fi channel assignment). We
propose a utility model based on this scenario, and we generate an exten-
sive set of test cases, against which we run both a complete information
optimizer and two nonlinear negotiation approaches —a hill-climber and
an approach based on simulated annealing (SA). We show that, for the
larger-scale scenarios, the SA negotiation approach significantly outper-
forms the optimizer while running in roughly one tenth of the computa-
tion time. Also, we point out interesting patterns regarding the relative
performance of the two approaches depending on the properties of the
underlying graphs.

1 Introduction

In the last years, complex networks have attracted a lot of interest within the
AT community, both due to the inherent challenge of some network-structured
optimization problems (e.g. to be NP-hard) and due to the enormous potential
for real-world applications (many important real-world problems have network
structures). An important sub-class involves autonomous, self-interested entities
(e.g. drivers in a transportation network). The self-interested nature of these
entities cause the network to deviate from socially-optimal behaviour.

Taking this into account, it is not surprising that problems which combine
a networked structure and self-interested parties have been drawing attention
from the AI community. Different fields of research are working on the chal-
lenges these problems raise, but, so far, with only mixed success. Optimization
techniques are especially suited to address large-scale systems with an underly-
ing network structure, usually with a “divide and conquer” approach . However,
their performance severely decreases as the complexity of the system increases
[1], and with the presence of autonomous entities which deviate from the glob-
ally optimal solution, thus harming the social goal. Automated negotiation has
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proven to be valuable to support decision-making process in scenarios where it
is necessary to find an agreement quickly and with conflicting interests involved
[2]. Potential applications of automated negotiation range from e-commerce [3]
to task distribution problem solving, resource sharing or cooperative design [4].
One of the most important advantages of automated negotiation is that it takes
into account the conflict of interests from the beginning. This enables finding
more stable solutions (agreements) which make participating agents less prone
to deviating from the socially optimal solution to favour their privately optimal
solution. Although there is significant work on game theory and bargaining in
complex networks, the nonlinear negotiation community has made only few, very
specific incursions in complex networked problems [5].

We want to explore the possibilities of using non-linear negotiation tech-
niques [6] to solve complex network problems involving self interested parties.
To this end, we are working on the problem of frequency assignment in Wi-Fi
infrastructure networks. In this problem, different Wi-Fi providers have to col-
lectively decide how to distribute the channels used by their APs in order to
minimize interference between nodes and thus maximize the utility (i.e. network
throughput) for their clients. This is a particularly interesting problem, since
it is strongly related to the Frequency Assignment Problem (which has been
extensively studied from the perspective of discrete optimization), to the promi-
nent mathematical graph coloring problem [7], and to distributed constraint
optimization models [8].

More specifically, we want to test the hypotheses that our nonlinear negoti-
ation approaches can be used as an efficient alternative to centralized, generic
optimization tools, and that network properties have an impact on the relative
performance of the different techniques. This work contributes to achieve this
objective in the following ways:

— We model the problem of Wi-Fi channel assignment, using an abstract model
based on a multilayer graph and a nonlinear utility model (Section 2).

— We propose to solve this problem using nonlinear automated negotiation
techniques, and define the corresponding negotiation scenario (Section 3).

— We generate a large set of scenario instances for this problem, we select
a set of metrics based on graph theory to analyze them, and we perform
extensive experimentation on this set of instances, comparing our negotiation
approaches to two reference techniques: a random channel assignment and a
complete-information nonlinear optimizer based on particle swarms (Section

1).

The experimental results (Section 5) show that one of the benchmarked nego-
tiation approaches (single text mediation with simulated annealing) significantly
outperforms the optimizer for the larger-scale scenarios, both in computation
time and social welfare. Also, interesting patterns regarding the influence of net-
work properties on the relative performance of the approaches are identified.
The last section summarizes our contributions and sheds light on future lines of
research.
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Fig. 1. Wi-Fi architecture.

2 Problem Modelling

2.1 Wi-Fi architecture

IEEE 802.11 technology, commercially known as Wi-Fi, is a very popular and
widespread technology, whose most used standard operates commonly in the
2.4 GHz frequency band. Due to the high number of Wi-Fi devices that coexist
in these frequencies, this band is usually congested, a situation often worsened
by other devices like Bluetooth, ZigBee, microwave ovens, baby monitors or
cordless phones. For those reasons, it is of paramount importance that Wi-Fi
devices smartly manage the use of the radio spectrum. The 2.4 GHz band is
divided into 11 partially overlapped channels [9], so it is important to choose the
most advantageous one to minimize interferences.

The most widely deployed Wi-Fi architecture is infrastructure mode, where
there are two types of devices in the network: access points (APs) and wireless
devices (WDs) such as laptops, smartphones... In infrastructure mode, wireless
devices are wirelessly connected to a single AP, which is generally a wireless
router, and are able to communicate to other devices only through that AP.
For that reason, WDs are also called clients. In Fig. 1 we show a graphical
representation of a scenario with 12 APs and 60 WDs.

2.2 Modelling based on a multilayer graph

Graphs are one of the most commonly used tools for modelling the frequency
assignment problems, because of the relation of this problem to the graph color-
ing problem, which has been widely studied by the mathematical community [7].
In graph coloring, an abstract graph is considered, defined by a set of vertices
along with some edges connecting them, and the objective is to assign one color
to each vertex, in such a manner that the minimum possible number of col-
ors should be used, while avoiding monochromatic edges. In the commonly used
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Fig. 2. Multilayer graph model.

model, graph nodes represent elements that should be assigned a frequency while
edges represent element pairs that should not be assigned the same frequency.
This way, colors act as frequencies and hetero-chromatic edges guarantee ele-
ment pairs with different frequencies. Although widely used, Tragos et al. [10]
conclude that the model is not accurate enough, because it does not reflect all
the information. For instance, the authors suggest that the information regarding
adjacent channel interferences should be incorporated into the graph.

To model the Wi-Fi channel assignment problem we propose a multilayer
network graph [11], where each layer represents a different relationship between
network elements, as shown in Fig. 2. In this graph we can distinguish two types
of vertices: APs and WDs. Layer a captures the infrastructure links between
Wi-Fi APs and WDs, i.e. the links shown in Fig. 1. Note that every WD is
associated to its closest AP, and that, since APs are the ones who set the channel
to be used by their associated clients, all nodes connected in layer a will use
the same channel (color) to communicate. On the other hand, layer b captures
the potential interferences between nearby vertices. To be more specific, layer
b links node pairs where the distance between them is below the corresponding
interference radius R (that depends on the sensitivity of the receiver): AP-AP
pairs will be linked provided that the distance condition is met, AP-WD pairs
only when the device is not associated to that AP, and WD-WD pairs only if
both devices are associated to different APs, since the communications among
the elements connected to the same AP are coordinated and do not interfere.
In Section 2.3 we describe the interference model in more detail. Finally, layer
¢ captures the idea that usually there is a small number of communication
providers to which the APs belongs to. This last layer is the key to model the
automated negotiation, since the fact that a provider may choose to sacrifice
the throughput of a given access point in favor of others is what will enable the
existence of utility trade-offs during negotiations.



2.3 Interferences and utility of the solutions

To model interference power between two elements, we weigh each edge of the
interference graph (layer b in the multilayer model) based on three factors:

1. We consider a weight for each color pair ij that we have called the co-
channel index, which can be understood as the interference between color 4
and color j. It is worth noting that the usual coloring problem only takes
into account the particular case of interferences between vertices of the same
color, while our extension of the problem allows considering also interferences
between adjacent colors or colors in a certain distance range, to take into
account the partial overlapping between frequency channels in Wi-Fi. To
model this effect, we have used the values obtained for this index in [9], where
authors provide a matrix where each value (i, j) represents the interference,
as seen in channel 7, motivated by a transmission on channel j.

2. We consider the distance between edge endpoints. This way, the weight as-
signed to a colored edge ij will be different depending on how far apart its
endpoints are, following the propagation model described in [12]. This repre-
sents another extension to the usual coloring problem, because now vertices
have also certain positions and this means that our graph is no longer ab-
stract but geometrical.

3. We include the effect of the amount of data into the weights, including a fac-
tor (called activity index) that accounts for the fact that a higher bandwidth
data flow will occupy the wireless channel a higher fraction of the time. In
other words, higher bandwidth flows will generate more harmful interference
signals, as they will occupy the spectrum for a higher ratio of time.

Once there is a model for interfering signals, the signal to noise ratio for
terminal ¢ (SINR;) can be computed as the ratio between the received desired
signal and the sum of the received undesired interferences. Note that each AP
will have a SIN R value for every terminal that is associated to it. In that case,
we will assume that its STINR will be the minimum of all of them, which is in
fact the worst case.

To quantify the goodness of the different network colorings, we have used
the concept of utility, which is closely related to the perceived throughput and
SINR. According to [13], in a wireless network the throughput equals a maxi-
mum value when the STN R is over a certain value SIN R,,,,, and monotonically
decreases with the reduction of STN R until an insufficient value of SIN R, called
SINR,,in, is reached, when the throughput falls to zero. We can consider the
utility seen by node i (U;) as a normalized throughput, so it can be defined as a
value ranging from 0 to 1, with 0 corresponding to the situations when there is
a very low-quality reception and the devices cannot keep connected (throughput
equals to zero), and 1 corresponding to the case when the signal quality is ex-
cellent (throughput equals to its maximum value). Threshold values for SINR
have been defined from the values presented in [14]. Finally, the utility value for
a specific provider P; (Up,) is computed as the sum of the utility values for all
its APs and the clients associated to these APs.
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3 Automated negotiation techniques for channel selection

In this work, we propose to tackle the network-structured channel assignment
problem in Wi-Fi using automated negotiation techniques. Automated negotia-
tion is a quite wide field [15] but most authors agree that a negotiation problem
can be characterized by a negotiation domain (who negotiates and what to nego-
tiate about), an interaction protocol (which rules govern the negotiation process),
and a set of decision mechanisms or strategies that guide the negotiating agents
through every phase of the interaction protocol [16]. In the following we define
our particular negotiation problem along these three dimensions.

3.1 Negotiation Domain

For the scope of this work, we assume a multiattribute negotiation domain, where
a deal or solution to the problem is defined as the set of attributes (issues),
and each one of them can be in a certain range. In our case, for a channel
assignment problem with n 4 p access points, a solution or deal S can be expressed
as S ={s;li € 1,...,nap}, where s; € {1,...,11} represents the assignation of a
Wi-Fi channel to the i-th access point.

In this work, we assume that there are two network providers (commonly
Internet Service Providers, ISPs), thus APs belong to one of the providers. Each
provider only has control over the channel assignment for its own access points.
According to this situation, P = {p1,p2} will be the set of agents that will
negotiate the channel assignment.

Finally, each one of these agents will compute its utility for a certain solution
according to the model described in the previous section. The problem settings
(high cardinality of the solution space and attribute interdependence) will make
the utility functions highly complex, with multiple local optima.

3.2 Interaction Protocol

There are many interaction protocols for negotiations, from the classical alter-
nating offers model [17] to auction-based protocols [18]. From the assumption
that the negotiation scenarios coming from Wi-Fi channel assignment will be
highly nonlinear, and according to the discussion in [6], we have chosen a simple
text mediation protocol [19]. In its simplest version, the negotiation protocol will
be as follows:

1. Tt starts with a randomly-generated candidate contract (S§). This means to
assign each AP a random channel.
2. In each iteration ¢, the mediator proposes a contract Sy to the rest of agents
(i.e. the providers).
3. Each agent either accepts or rejects the contract Sy .
(&3

4. The mediator generates a new contract S¢, ; from the previous contracts and
from the votes received from the agents and the process moves to step 2.



This process goes on until a maximum number of iterations is reached. The
protocol, as defined, is rather generic and must be completed with the definition
of the decision mechanism to be used by the negotiating agents and the mediator.

3.3 Decision Mechanisms

For the mediator, we have implemented a single-text mediation mechanism [19]
for the generation of new contracts, which works as follows:

— If at time ¢ all agents have accepted the presented contract Sy, this contract
will be used as the base contract S° to generate the next contract Sf,;.
Otherwise, the last mutually accepted contract will be used.

— To generate the next candidate contract SY,, the mediator takes the base
contract S, and mutates one of its issues randomly. In our case of study, this
would correspond to choosing a random access point and selecting a new
random channel for it.

— After a fixed number of iterations, the mediator advertises the last mutually
accepted contract as final.

For the agents, we have considered two different mechanisms to vote about
the candidate contracts S¢:

— Hill-climber (HC): In this case, the agent behaves as a greedy utility maxi-
mizer. The agent will only accept a contract when it has at least the same
utility for her than the previous mutually accepted contract.

— Annealer (SA): In this case, we use a widespread nonlinear optimization
technique called simulated annealing [19]. When a contract yields a utility
loss against the previous mutually accepted contract, there will be a prob-
ability for the agent to accept it nonetheless. This probability P, depends
on the utility loss associated to the new contract Au, and also depends on
a parameter known as annealing temperature 7, so that P, = e=7". An-
nealing temperature begins at an initial value, and linearly decreases to zero
throughout the successive iterations of the protocol.

The choice of these two mechanisms is not arbitrary. Simulated annealing
techniques have yielded very satisfactory results in negotiation for nonlinear
utility spaces [20], and are the basis for several of other works [6]. Furthermore,
as discussed in [19], the comparison between hill-climbers and annealers allows
to assess whether the scenario under consideration is a highly complex one, since
in such scenarios greedy optimizers tend to get stuck in local optima, while the
simulated annealing optimizer tends to escape from them.

4 Scenarios, benchmarks and metrics

4.1 Considered scenarios

In this paper, we make the common assumption that Wi-Fi nodes (APs and
clients) are static elements. As in our problem there is not any element that
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evolves with time, we deal with the problem of evaluating the performance of a
particular channel assignment strategy by means of the computation described
in Section 2.

Moreover, the choice of the configuration parameters for the studied scenarios
has been driven by considering typical or reasonable power transmission and
sensitivity parameters from a realistic point of view [21]. We have also made
the assumption that both APs and clients are randomly distributed throughout
the environment, and that clients associate to the AP which is closer to them.
With these assumptions, we have generated scenarios varying the number of APs
(15, 50 and 100) and the number of clients per AP (1 and 5). For each of these
combinations of parameters we generated 50 different graphs, for a total of 300
scenarios. This allowed us to have a wide range of problem sizes (from tens of
nodes to roughly one thousand nodes), and also a wide diversity (due to the
randomization of node placement). Keep in mind that there is more variability
on the number of APs and clients than the one suggested by the parameter set,
since we removed from the scenario any AP which had no nearby clients, and
vice versa. Finally, for each scenario, we randomly assigned half of the APs to
each provider.

4.2 Analysed techniques

In addition to the negotiation techniques under study, presented in Section 3.3,
we have included a comparison with two reference techniques:

— Random Reference: as a first base line, in this technique each AP chooses a
channel randomly.

— Particle Swarm Optimization (ALPSO): additionally to our negotiators based
on simulated annealing, we wanted to have, as a reference, a nonlinear op-
timizer using complete information. We have chosen a parallel augmented
Lagrange multiplier particle swarm optimizer, which solves nonlinear non-
smooth constrained problems using an augmented Lagrange multiplier ap-
proach to handle constraints [22].

4.3 Graph metrics for performance evaluation

One of the long-term purposes of our work is to study how the network structural
properties of a problem influence the performance of optimization and negoti-
ation approaches used to address it. To this end, we have selected a number
of graph metrics from the literature to analyze our experimental results. The
selected metrics are the following:

— Graph order: the number of nodes in the graph.

— Graph diameter: the longest distance between any pair of nodes in the graph [23].

— Wiener index: gives a measure of graph complexity from the distances in the
graph. It is computed as W(G) = %Zg(l) Zlfi‘o d(ni,nj), where d(n;,n;) is
the shortest distance between nodes [24].



— Graph density: the ratio between the number of edges in the graph and the
maximum possible number of edges (that is, for a fully-connected graph).

— Clustering coefficient: a measure of the degree to which nodes in a graph
tend to cluster together. The cluster coefficient of a graph is computed as
the average of the local clustering coefficient of its nodes, which is the ratio
between the number of links between a node’s neighbors and the maximum
possible number of links between them (that is, if they were fully connected).

— Average betweenness centrality. Centrality metrics measure the importance
of a node within a graph. In particular, betweenness centrality of a node is
the ratio of shortest paths in the graph which traverse the node [25].

One of our long-term hypothesis is that these metrics may be used as a basis
for mechanism selection in networked problems involving self-interested parties.
As a first step in this track, in this paper we have used these metrics to compare
the relative performance of the benchmarked approaches.

5 Experimental Results and Discussion

In this section, we describe and discuss the results of our experiments. For each
of the aforementioned 300 scenarios, we did 20 repetitions with each of the
benchmarked techniques, recording the achieved social welfare (sum of utilities
for both providers) and the computation time.

Firstly, we study the performance of the evaluated techniques in the different
scenario categories according to the scenario generation parameters (number of
APs and number of clients per AP). Table 1 shows the average utility obtained by
each approach for all the graphs in each category. We can see that, for the less
complex scenarios, all approaches but random perform reasonably well, with
a non-significant little advantage for the hill climber (HC). As the scenarios
grow more complex, we can see the performance of the random approach turns
worse, which is reasonable since the size of the solution space becomes larger.
We can also note significant increasing distance between the performances of
the hill climber and the annealer (SA4) negotiators. This confirms our hypothesis
that these scenarios are highly nonlinear [19]. We can also see that, for the
more complex scenarios, the SA negotiator significantly outperforms the particle
swarm optimizer (ALPSO). This is a remarkable result, specially taking into
account that SA reaches the optimum faster than the ALPSO optimizer. Table 2
shows the average computation times for both approaches. We can see that, in
the largest scenarios, the SA negotiator is roughly 10 times faster than the
complete information optimizer.

To account for the diversity of scenarios within each category, we have an-
alyzed the results of the best performing approach (SA) against the complete-
information reference (ALPSO) with respect to the different metrics discussed
in Section 4.3. Figure 3 shows, for each metric, the ratio between the average
utility achieved by SA in the 20 runs for a given graph, and the average utility
obtained by ALPSO for the same graph (hence the dashed line in the figures
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Table 1. Utility for different techniques.

Random HC SA ALPSO

avg std avg std avg std avg std
(15, 15) 12.45 1.90 15.88 0.02 15.86 0.04 15.86 0.03
(15, 75) 30.57 5.18 52.53 1.35 53.85 0.50 52.95 0.93
(50, 50)  29.17 4.15 50.40 0.89 51.08 0.52 50.06 0.98
(50, 250) 60.28 9.44 125.24 4.71 134.96 2.34 125.51 3.80
(100, 100) 45.37 5.48 84.90 2.39 88.33 1.52 83.53 2.25
(100, 500) 86.21 11.68 188.13 7.93 208.23 4.33 191.43 6.25

(APs,WDs)

Table 2. Run time (in seconds) for different techniques.

(APs,WDs) HC SA ALPSO
avg std avg std avg std
(15, 15) 0.53 021 0.64 0.22 0.25 0.19
(15, 75) 579 122 596 1.23 5.86 2.00

(50, 50) 5.22 116 540 1.17 1191 5.02

(50, 250)  69.39 6.44 69.32 6.36 285.89 74.37
(100, 100) 22.01 2.96 22.15 2.99 108.14 31.39
(100, 500) 330.38 17.23 326.90 16.61 3225.63 817.93

corresponds to the ALPSO 1.0 baseline). We can see there is an approximately
linear increasing gain for SA with graph order, with ALPSO doing better for
low-order graphs and SA getting to gains up to 10% for the larger graphs (Fig-
ure 3a). This is coherent with the results in Table 1. We can see an inversely
proportional trend with the average betweenness centrality (Figure 3b). The
SA negotiator performs better for low centrality values, which seems reasonable
because in these graphs there will be more peripheral nodes (i.e. with less inter-
fering nodes) than central nodes (i.e. with more interfering nodes), which should
make negotiations easier. The same reasoning explains the results with respect
to density (Figure 3c). The negotiator fares better in the less dense graphs (i.e.
where there are less interference links).

There are other interesting patterns arising from the metrics analysis. For
instance, Figures 3d and 3e suggest that there may be optimal values of graph
diameter and graph cluster coeflicient, respectively, regarding the performance of
the SA negotiator. However, further analysis would be needed to rule out other
possible explanations. For instance, it is reasonable to expect very little room for
improvement of the negotiator in the extremely high clustering coefficient cases
(almost complete graph, all nodes interfere with each other).
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Fig. 3. Utility of SA relative to ALPSO for different graph metrics.

This paper presents a problem inspired by an extension of the prominent graph
coloring problem, enriched towards a real application domain (Wi-Fi channel
assignment ), which has been extensively studied from the discrete optimization
perspective, but has not received attention from the negotiation community. We
study a negotiated approach to address this problem, which is, to our knowl-
edge, the first attempt to apply nonlinear negotiation techniques to real complex
network scenarios. Experiments show that our approach based on simulated an-
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nealing significantly outperforms the optimizer used as a reference in both social
welfare and computation time. This is a relevant result, since scalability is the
main drawback to apply negotiation approaches to complex systems.

Although our experiments yield satisfactory results, there are still a variety
of avenues for further research. As discussed in the previous sections, a range of
bilateral and multilateral negotiation protocols and agent decision mechanisms
can be studied. A more in-depth metric analysis is needed, specially to determine
if the observed correlations among metrics are inherent or caused by a scenario
generation bias. Finally, we are interested in fully-distributed negotiations, where
the need for mediation can be substituted by a form of distributed social choice.
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