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Towards Prevention of Pipeline Integrity Threats
using a Smart Fiber Optic Surveillance System

Javier Tejedor, Hugo F. Martins, Daniel Piote, Javier Macias-Guarasa, Member, IEEE, Juan Pastor-Graells, Sonia
Martin-Lopez, Pedro Corredera, Filip De Smet, Willy Postvoll, and Miguel Gonzalez-Herraez

Abstract—This paper presents the first available report in the
literature of a system aimed at the detection and classification
of threats in the vicinity of a long gas pipeline. The system is
based on phase-sensitive optical time domain reflectometry (¢-
OTDR) technology for signal acquisition and pattern recognition
strategies for threat identification. The system operates in two
different modes: (1) machine+activity identification, which out-
puts the activity being carried out by a certain machine, and (2)
threat detection, aimed at detecting threats no matter what the
real activity being conducted is. Different strategies dealing with
position selection and normalization methods are presented and
evaluated using a rigorous experimental procedure on realistic
field data. Experiments are conducted with 8 machine+activity
pairs, which are further labeled as threat or non-threat for the
second mode of the system. The results obtained are promising
given the complexity of the task and open the path to future
improvements towards fully-functional pipeline threat detection
systems operating in real conditions.

Index Terms—Pipeline integrity threat monitoring, Distributed
Acoustic Sensing, Fiber optic systems, ¢-OTDR

I. INTRODUCTION

IPELINE transmission is by far the most sustainable and

safest transmission method to transport energy sources
from the producing facilities to the various end-users. Special
attention is paid by the transmission system operators, to
ensure that these infrastructures are safely operated in order
to prevent potential accidents [1], [2]. Since most incidents
involving natural gas transmission infrastructures occur when
pipelines are damaged by third party works in their vicinity,
there is a need for cost-effective solutions allowing for contin-
uous monitoring of potential threats to the pipeline integrity.
Distributed Acoustic Sensing (DAS) technology is specially
well suited for this task [3]-[5].

Within DAS technology, the use of vibration-based sensing
to monitor activities near a pipeline represents a promising
solution as it can detect the vibration associated to potentially
dangerous activities, so that a preventive action can be un-
dertaken. If we also add pattern recognition strategies (PRS)
to further classify the sensed vibration into a set of relevant
activities, we can increase the cost-effectiveness of the system,
as the number of false alarms can be significantly reduced.
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Phase-sensitive Optical Time Domain Reflectometry (¢-
OTDR) has been demonstrated to be a reliable distributed fiber
optic acoustic sensing technology and has been extensively
researched, mainly in the context of long-perimeter intrusion
monitoring. Conventional ¢-OTDR-based sensors can reach
sensing ranges of a few tens of kilometers, with spatial resolu-
tions of a few meters and have been demonstrated to provide
enough sensitivity to allow the detection of people walking
over a buried fiber [3]. With the use of distributed optical
amplification, sensing ranges above 100 kilometers have been
demonstrated [4]-[7]. As for the detection bandwidth, this is
limited by the fiber length, and for short distances (less than
one kilometer), vibrations up to 40 kHz have been detected [8].
Post-processing denoising methods have also been applied
to improve the Signal-to-noise ratio (SNR) and therefore the
limits of detection [7], [9]-[11].

Most of the ¢-OTDR-based reported works rely on directly
measuring changes in the optical trace or are based on energy
to detect perturbations, without employing more advanced
techniques. From the few works that employ pattern classifica-
tion, these present the following issues: no real classification is
conducted [12], no classification results are reported [13], [14],
the classification strategy is not presented [15], the sensing
system is very close to the sensed area [12], the sensed area
is small (20-meter long [16] and 44-meter long [12]), no
enough details of the experimental setup (training and testing
conditions, recording protocol, etc.) are given [14]-[17], or no
real field data are used [16]. Additionally, the classification
tasks in these works only deal with three classes at most.

Regarding the general task of classifying different
types of vehicles/machinery, significant research has also
been conducted by employing different sensing systems, with
various strategies for feature extraction and classification [18]-
[24]. All these works differ from our proposal in the
fundamental fact that the sensing method is based on a
linear transduction mechanism between the vehicle physical
effects (acoustic or seismic) and the acquired signal, while
in ¢-OTDR-based systems, the transduction function is
intrinsically and inherently non-linear, except for very small
perturbations. Additionally, the classification tasks in these
works only deal with between two and six classes at most.

In this paper, we present (to the best of our knowledge) the
first published report on a pipeline integrity threat detection
and identification system that employs DAS+PRS technology
and is evaluated on realistic field data, showing promising
results in terms of accuracy, and thus its potential for real



world applications. To do so, the system supports two oper-
ational modes: (1) The machine+activity identification mode
identifies the activity and the machine that is conducting the
activity along the pipeline. (2) The threat detection mode
directly identifies if the activity is a threat or not. This is also
the first system that is set up for real time monitoring and
classification of different types of (potentially harmful or not)
activities occurring close to a long pipeline, and whose results
are based on a rigorous experimental setup and an objective
evaluation procedure with standard and clearly defined metrics.

The whole system is being developed under a GERG (The
European Gas Research Group) supported project titled PIT-
STOP (Early Detection of Pipeline Integrity Threats using
a SmarT Fiber-OPtic Surveillance System). Compared with
our previous work [25], this paper extends the system with
the machine+activity identification mode, and compares two
signal normalization and selection methods.

The paper is organized as follows: Section II introduces
the DAS system used for signal acquisition and Section III
describes the pipeline integrity threat detection system. The
experimental procedure is presented in Section IV and the
experimental results are discussed in Section V. Finally, the
conclusions are drawn in Section VI along with some lines
for future work.

II. DISTRIBUTED ACOUSTIC SENSING SYSTEM
A. System Description

The distributed acoustic sensing system is a commercially
available ¢-OTDR-based sensor (named FINDAS) manufac-
tured and distributed by FOCUS S.L. [26]. A detailed descrip-
tion of the FINDAS underlying technology (¢-OTDR) can be
found in [8].

In the present work, the FINDAS sensor has an (optical)
spatial resolution of 5 meters (readout resolution of 1 meter)
and a typical sensing range of up to 45 kilometers, using
standard Single-Mode Fiber (SMF). Distributed optical ampli-
fication was not used. The FINDAS sensor was connected to
a standard SMF, which had been previously installed parallel
along the pipeline to be monitored. A sampling frequency of
fs = 1085 Hz was used for signal acquisition, given the ex-
perimental setup. The FINDAS sensor is used to continuously
monitor vibrations along the pipeline. Since the fiber does not
follow a tight parallel path along the pipeline, and in some
points there were fiber rolls (for maintenance purposes), a
calibration between fiber distance and geographical location
was carried out.

B. Signal Behavior

The physical process involved in the signal measurement
along with the mechanical properties related to each sensed
location affect the signal characteristics in a great extent.

Firstly, the propagation of ground vibrations depends mainly
on the machinery distance, the soil characteristics (dry or wet,
compact or soft, earth or concrete, etc.), and the mechanical
coupling of the fiber to the pipe enclosure. Therefore, the
acoustic signal from a certain activity can present variations
from one location to another. Additionally, the background

noise can also vary for different locations (due to the proximity
of roads, factories, etc.).

Secondly, as mentioned in Section I, the transduction
function of a ¢-OTDR-based sensor is non-linear, and it is
particularly relevant in the case of strong perturbations, as in
the scenario considered in this work. In addition, owning to the
random nature of a ¢-OTDR signal, specific points randomly
distributed along the fiber (the so-called fading points [8]) can
present low, or even null sensitivity to vibrations. In practice,
by analyzing several consecutive points, it will be ensured that
a certain acoustic signal is received from a given location, but
the sensitivity of the fiber can vary locally from one point to
another.

Finally, due to the fiber losses, the optical power received
from a fiber location at a distance of d,, meters from the
beginning (i.e., input) of the fiber, denoted as P(d,,) — and
therefore the amplitude of the measured signals — will exhibit
an exponential decay along the fiber. The fiber attenuation
coefficient is given by a &~ 0.0002dB/m at the operating
laser wavelength (1550 nm). For a given optical power at the
input of the fiber P(0), P(d,,) will be P(d,,) = P(0) -
10(=2dm-a/10) " Considering the full round-trip of the fiber
light, this implies a 3 dB decay for every 7.5 kilometers, so that
the effects of the optical losses will be relevant for distances
of tens of kilometers.

III. PIPELINE INTEGRITY THREAT DETECTION SYSTEM

The pipeline integrity threat detection system operates
in two different modes: machine+activity identification and
threat detection. In the first mode, the input acoustic signal
acquired by FINDAS is classified as corresponding to a certain
machine+activity pair, among those considered in the task. In
the threat detection mode, the signal is classified as threat or
non-threat. The first mode is suitable for cases where both the
machine and the activity being conducted must be known. The
second mode is suitable for cases in which just the occurrence
of a threat to the pipeline must be known.

The system is based on a pattern recognition core and
integrates three different stages: (1) feature extraction, which
reduces the high dimensionality present in the acoustic raw
data, while retaining a high discriminative power, (2) feature
vector normalization, to compensate for variabilities in the sig-
nal acquisition process and the sensed location, and (3) pattern
classification, which classifies each feature vector into the most
likely class (machine+activity pair in the machine+activity
identification mode, or threat/non-threat in the threat detection
mode). These three stages are described next.

A. Feature Extraction

The feature extraction employs a Short-Time Fast Fourier
Transform (ST-FFT) to calculate energy over frequency bands
for each acoustic frame (a signal window at any given time),
which are used as the base feature vector components.

The full base feature vector calculated at a given fiber
position located at a distance of d,, meters will be
T = (€m0, €m1,---,emp), Where e,,; is the energy calcu-
lated at position d,,, for band ¢, and P bands are calculated



TABLE I: Recording location details.

LOC1 LOC2 LOC3 LOC4 LOCS5 LOC6
Distance
from FINDAS (km) 22.24 22.49 23.75 27.43 27.53 34.27
. . Concrete, grass & clay . . .
Soil condition Grgss & clay in .Grass in Next to public street Wet clay in . Clay in Grass in
agricultural field | agricultural field - agricultural field | agricultural field forest
Private house nearby
Weather condition Sunny/cloudy Sunny Sunny Rainy Cloudy Sunny

for the considered bandwidth f € [fo, few], with fo and
fBw being the initial and final frequencies respectively, and
fBw < % For the frequency band limit calculation, a
standard Mel scale has been used [27].

B. Feature Vector Normalization

Given the considerations in Section II-B, feature normaliza-
tion is especially important in this application in which we face
strong differences due to the signal acquisition process and
the sensed location. Not all the variabilities can be properly
handled with normalization strategies, but we can effectively
reduce some of them.

The two main normalization strategies that have been ap-
plied on the base feature vectors are related to the sensed
location and are described below.

1) Fiber loss compensation normalization: The objective of
this normalization is to compensate for the signal’s amplitude
exponential decay with the distance due to fiber losses. For
this, a normalization factor 7, in a certain position d,, has
been applied to each acoustic signal, so that its amplitude
along the fiber is normalized with respect to the amplitude of
the signal at the fiber entrance (thus eliminating the attenuation
effect shown in Section II-B). This normalized vector will be
referred to as x},.

2) Sensitivity-based normalization: To compensate for this
effect so that we obtain signals of equivalent sensitivity along
the fiber, we will assume that the variable sensitivity is
frequency independent. Thus, the variability will equally affect
all frequency components, and a normalization factor based
on the energy of the spectral content above the considered
bandwidth (where no relevant information is to be found) will
be applied. The normalized feature vector in this case will be
referred to as x,.

C. Pattern Classification

Our pattern classification system is based on Gaussian
Mixture Models (GMMs), which have been extensively used
for classification and clustering in different research areas
related to speech [28], image [29], and video [30] recognition,
among others.

The motivation of using GMMs relies on the fact that they
require limited amount of resources and have a good pattern
matching performance [31]. In addition, GMMs provide a
straightforward mechanism by which a linear combination of
Gaussian basis functions can be employed to represent a large
class of sample distributions (i.e., training and testing data).

So, given a GMM ), the probability that vector x belongs
to the class represented by A\ can be easily derived and will
be referred to as p(x|)).

Given a subset of acoustic files recorded for a given class &
(the training subset), model training is carried out to estimate
the parameters of each GMM ). Maximum likelihood model
parameters are estimated from the Expectation-Maximization
algorithm [32]. Once the models have been trained, classi-
fication is carried out on an independent subset (the festing
subset), to find the class model ¢ which has the maximum
a posteriori probability for a given input feature vector x as
follows:

Ak)p(A
4 P@AR)P(Ar)
k p(x)
where we have applied Bayes’ rule, and assume a uniform a
priori probability for every class (i.e., p(Ax) = 1/C).

= argmaz{p(@|)}, (D

—— Pipeline

Fig. 1: Recording scenario: Real example at LOC6.

IV. EXPERIMENTAL PROCEDURE
A. Signal Recording and Labeling

An active gas transmission pipeline operated by Fluxys Bel-
gium S.A. was used as the recording scenario, thus operating
in a real scenario. Activities nearby the pipeline were sensed
by monitoring an optical fiber cable installed about 0.5 meters
from the pipeline and parallel to it along several kilometers.

To deal with different acoustic and environmental variabili-
ties, different activities from different machines were recorded
by FINDAS during four consecutive days at six different
locations (LOC1 through LOC6) with varying (optical fiber)
distances from the sensing equipment, and varying soil and
weather conditions (details are provided in Table I). These
differences in terms of location properties make possible to test
the system under different environments and soil conditions



TABLE II: Experimental database. ‘Big excavator’ is a 5 ton Kubota KX161-3. ‘Small excavator’ is a 1.5 ton Kubota KX41-3V.

. .. Duration (in seconds)
Machine Activity LOCI | LOC2 | LOC3 | LOC4 | LOCS | LOC6 || Total | rnreat/Non-threat
Moving along the ground 1100 1100 3540 1740 1620 4160 13260 Non-threat
Big excavator Hitting the ground 120 140 240 220 80 260 1060 Threat
Scrapping the ground 460 460 920 620 200 580 3240 Threat
Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat
Small excavator Hitting the ground 200 180 220 220 80 240 1140 Threat
Scrapping the ground 420 340 780 360 180 520 2600 Threat
Pneumatic hammer Compacting ground 660 0 580 1320 0 1320 3880 Non-threat
Plate compactor Compacting ground 740 0 740 1240 0 1680 4400 Non-threat

which may greatly affect the final system performance. Note
also that at every location, the fiber enclosure pipe is physi-
cally deployed in different ways (physical coupling, enclosure
depth, etc.). In addition, to improve the reliability of the system
performance estimation, and for a better system generalization
on unseen data, the same machine+activity pairs were recorded
every day in different locations and times.

In the recording protocol for each location (see Figure 1),
the first step was defining a reference meter position. This was
chosen manually as the closest to the center of the operation
area with good sensitivity, by real time monitoring of the fiber
response while a well defined activity was being carried out
(in this case a plate compactor carrying out the compacting
ground activity was used). FINDAS equipment was employed
to select this reference position. Taking this reference position
as the middle position for the recordings, 400 meters were
recorded (with a 1 meter readout resolution), 200 meters at
each side of the reference position, so that 400 acoustic traces
were generated for each of the recorded activities (which are
split in chunks of 20 seconds for better signal management
and storage).

Four different machines performing different activities were
used to build 8 machine+activity pairs to be classified (in the
machine+activity identification mode of the pipeline integrity
threat detection system): a 5 ton Kubota KX161-3 (moving
along the ground, hitting the ground, scrapping the ground), a
1.5 ton Kubota KX41-3V (moving along the ground, hitting
the ground, scrapping the ground), a pneumatic hammer (com-
pacting ground), and a plate compactor (compacting ground).
These machine+activity pairs were further labeled as threat
or non-threat depending on whether they were considered
potentially harmful to the integrity of the pipeline (to be used
in the threat detection mode of the system). As can be seen in
Table 11, four pairs are considered as threat: Kubota KX161-3
— hitting and scrapping the ground—, and Kubota KX41-3V
— hitting and scrapping the ground—. The remaining 4 pairs
are considered as non-threat. Therefore, the machine+activity
identification mode involves 8 different classes and the threat
detection mode involves 2 different classes.

B. Database Description

The acoustic database for training and testing was built from
the machine+activity pairs recorded in different locations, as
described in Section IV-A. Full details of the recorded data are
presented in Table II, where the duration per location and the
threat/non-threat label corresponding to each machine+activity

pair are presented. Duration refers to the material available
for a single meter, but take into account that there are 400
simultaneous acoustic traces recorded at any given time.

C. Preliminary Experiments

Given the lack of previous work of the scale approached in
this work, we devoted a lot of effort to thoroughly design and
evaluate different methodologies and strategies to successfully
face the classification task, considering all the system modules,
aiming to deciding a suitable system configuration.

Particularly relevant were the studies related to the actual ef-
fects of location variability. The careful design of the database,
with samples for several machines carrying out various activ-
ities across several locations, allowed us to conduct single-
site (i.e., using data for training and testing from the same
location), cross-site (i.e., using data for training from one
location, and testing from a different location), and multi-site
(i.e., using data for training from several locations, and testing
on a different location) evaluation experiments.

The main conclusion from these experiments was that
modeling location variability is extremely relevant to obtain
good performance. To provide a quantitative comparison for
preliminary experiments, the machine+activity performance
rates for single-site classification were around 40%, and they
dropped to around 18% when cross-site evaluation was carried
out.

So, as it is impossible to gather data from every possible
location along a pipeline (to carry out single-site evaluation),
selecting a reasonable number of locations for multi-site
training is a must.

Much attention was also given to study the effect of the
control parameters for the algorithms used: bandwidth, number
of frequency bands, frequency scaling, number of GMM
components, and acoustic trace selection, among others.

D. System Configuration

The bandwidth of the acquired acoustic signals covers
frequencies up to 542.5 Hz, but experiments were carried
out by analyzing frequencies up to 100 Hz, since frequencies
above 100 Hz do not convey meaningful information. The
low limit of the spectral range was set to 1 Hz, since the
window size in the ST-FFT expands one second. The relevant
parameters related to the energy-in-bands computation in the
feature extraction are: the acoustic frame size (which in the
system is set to 1 second), the acoustic frame shift (set to
5 milliseconds), the number of FFT points (set to 8192) for
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Fig. 2: Examples of spectrograms of the signals generated by different machine+activity pairs. The top row corresponds to
non-threat activities and the bottom row corresponds to threat activities.

the Short-Time Fast Fourier Transform, and the number of
frequency bands that defines the number of components in the
feature vectors (set to P = 100). These values were chosen
based on their best performance in preliminary experiments.

A single GMM component per class has been used for
model training in the pattern classification stage, as a baseline
setup to allow for robust training and easier generalization.

To increase the statistical significance of the system per-
formance estimation, the experiments are carried out using
a leave-one-out cross-validation (CV) strategy, on a location
basis. Since data were recorded in 6 different locations, the CV
comprises 6 folds, where the data recorded in all the locations
except one were used for training, and the evaluation was done
on data of the unused location (thus ensuring full independence
between the training and testing subsets).

Classification is conducted on a frame-by-frame basis.
Therefore, a feature vector (x,,, x;,, or mfn) is calculated for
each 1 second frame within every 20 second length recorded
file. All the vectors are used in the pattern classification stage,
either as training or testing data. Therefore, given the feature
extraction parameters, there are 415 feature vectors for each
recorded file.

E. Highest Energy Meter Selection

During preliminary experiments, it became clear the severe
effect of the strong sensitivity variations across time and
location, even for acoustic traces in contiguous positions.

Therefore, we decided to evaluate a strategy to select the
sensed position (different to the middle position) as that with
the highest energy to be used in the training and testing proce-
dures. The energy calculation is done with the same parameters
as those used in the feature extraction (see Section IV-D).

F. Evaluation Metrics

Classification accuracy has been the main metric to eval-
uate the system performance both for the machine+activity
identification and threat detection modes. For any given class,
the classification accuracy is defined as the ratio between the
number of correctly classified testing frames and the total
number of testing frames for the given class. The overall
classification accuracy is then computed as the ratio between
the number of correctly classified testing frames and the total
number of testing frames.

Additionally, and to provide a full picture of the classifica-
tion performance, we are also showing:

o For the machine+activity identification mode: The full
confusion matrix, this is, a table showing the percentage
of testing frames of a given class that have been classified
as any of the considered classes, being it a powerful
method for performance analysis.

o For the threat detection mode: The threat detection rate
(which corresponds to the percentage of threat testing
frames that are classified as threat, usually referred to
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Fig. 3: Results for the threat detection mode.

as true positives), and the false alarm rate (which cor-
responds to the percentage of non-threat testing frames
that are classified as threat, usually referred to as false
positives).

V. EXPERIMENTAL RESULTS
A. Signal Analysis

An initial analysis was carried out aiming at checking
whether meaningful and discriminative patterns for each ma-
chine+activity pair exist. To do so, spectrograms were com-
puted from randomly selected acoustic files. These acoustic
files are those corresponding to a highest energy meter for
a given machine+activity pair in a certain location according
to the 20-second length duration of each acoustic file in the
database. To provide a general idea on the signal character-
istics, some examples of these spectrograms are shown in
Figure 2, where it can be seen that the signals have a high
level of noise and that, in general, each machine+activity
pair exhibits a reasonably consistent spectral behavior, hence
allowing for the use of pattern classification strategies.
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Fig. 4: Results for the machine+activity identification mode.

B. Results and Discussion

Figure 3 presents the results obtained with the two normal-
ization methods and the two fiber meter selection methods for
the threat detection mode of the pipeline integrity threat detec-
tion system. In the same way, results for the machine+activity
identification mode of the system are presented in Figure 4.

At first sight, the performance rates may seem low, but we
have to take into account the complexity of the task (refer
to Section II-B for details), and that this proposal is just a

first step towards threat detection dealing with fully realistic
conditions.

From Figures 3 and 4, it is clear that the classification
accuracy is much better with the use of the highest energy
meter than with the use of the reference meter. Paired t¢-
tests [33] show that this improvement is statistically significant
for the fiber loss compensation normalization (p < 1073%)
and the sensitivity-based normalization (p < 107*2) in the
machine+activity identification mode. For the threat detection
mode, the improvement in terms of classification accuracy is
also statistically significant for both normalization methods
(p < 10733). The threat detection rate and the false alarm rate
also improve with the use of the highest energy meter. Paired
t-tests show that this improvement is statistically significant
for both normalization methods (p < 1072%). This is because
the highest energy meter agglutinates more discriminative
information of the machine+activity pair and threat/non-threat
represented in the acoustic signal. However, selecting the
reference meter degrades the system performance since fixing
the evaluated position does not allow taking into account
sensitivity variations along time. Since the threat/non-threat
classes are built from these same machine+activity pairs, the
same explanation holds for the threat detection mode.

In terms of the best normalization method, the results
are not that clear. For the machine+activity identification
mode (Figure 4), the sensitivity-based normalization signif-
icantly outperforms the fiber loss compensation normaliza-
tion (p < 107'9). Contrary, for the threat detection mode
(Figure 3), both methods are almost equivalent, and only the
fiber loss compensation normalization weakly outperforms the
sensitivity-based normalization for the overall classification
accuracy (p < 0.04) and for the false alarm rate (p < 0.08).
In the threat detection rate, a paired t-test did not show
any statistical difference between both normalization methods
(p =~ 0.6).

With two possible classes (threat/non-threat in the threat
detection mode), the normalization based on the fiber position
is enough to get the best performance. This means that the
simple normalization considering only the fiber position is
good enough for this binary classification task. However, for
the more complex machine+activity identification mode, the
sensitivity-based normalization is preferable. We consider this
is due to the fact that a much more informed normalization
strategy helps the system to sort out a wider variety of energy
conditions, thus helping to train more robust models.



TABLE III: Confusion matrix of the Sensitivity-based normalization method and highest energy-based meter selection for the
machine+activity identification mode (numbers between brackets indicate the number of frames in each machine+activity pair).

Recognized class

Big excavator

Pneumatic Plate

Small excavator 70

Hammer Compactor

[180870] | [68020]
Moving | Hitting
[ Big [275145]  Moving 49.05
" excavator 21995] Hitting
] 67230]  Scrapping
S [126575]  Moving
3| omal 23655] __ Hitling
[ 53950 Scrapping
Pneumatic hammer | [80510] Compacting
Plate Compactor 91300] Compacting

Table III presents the confusion matrix for the ma-
chine+activity identification mode (we have removed the val-
ues below chance (1/8 = 12.5%) to ease the visualization and
analysis).

It is clear that the values in the diagonal are all above
chance. The best recognized classes are the moving activities
carried out by the excavators (probably due to the fact that their
training subset sizes were the highest ones, thus generating
more robust models), the pneumatic hammer (which had the
clearest and best defined spectral behavior), and the plate
compactor (also with a consistent spectral content).

It can also be seen that confusion is high within all the
activities carried out by the big excavator, and also by the
small excavator. These confusions are reasonable, given that
the machine is the same and the engine vibrations will be
present during all the activities. Within the excavator activities,
confusions are higher for the hitting ones. This may be due to
the fact that the hitting activities have the smallest amount of
training data (see Table II). Having a small number of training
data is an important and well-known issue when building a
pattern recognition system, which derives in a less robust
GMM, thus decreasing its performance rates. Hitting and
scrapping activities also exhibit confusion, as the scrapping
activity also includes hitting when the shovel contacts the
ground.

Confusions between the activities carried out by the big
and small excavators mainly happen for the scrapping activity,
which is also acoustically similar for both machines.

The hitting and scrapping activities carried out by the small
excavator are also confused with the plate compactor (pre-
sumably due to the small amount of training data of the small
excavator-+hitting and small excavator+scrapping classes, and
the previously mentioned similarity between scrapping and
hitting).

Hitting and scraping activity performance is also degraded
due to the fact that they comprise different acoustic behaviors
(moving up the shovel, moving it down, hitting, scrapping,
etc.) but only one GMM component is used, thus making it
more difficult to model them accurately. Their performance
could also be improved if multiple components per GMM are
used.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented, to the best of our knowledge,
the first report on a pipeline integrity threat detection system

[90281]
Scrapping

[109094]

[55429]
Hitting

[94043]
Scrapping

[74171]
Compacting

[68452]
Compacting

that employs a ¢-OTDR fiber optic-based sensing system for
data acquisition. Two different modes have been set in the
system: machine+activity identification and threat detection.
The machine+activity identification mode aims at identifying
the machine+activity pair that is acting on the pipeline, which
can be next employed to decide if this constitutes a threat or
not for the integrity of the pipeline. The threat detection mode
focuses on direct identification of the possible threats that can
occur along the pipeline, no matter the reason by which each
threat was caused.

An evaluation and comparison of different strategies dealing
with position selection and normalization methods has been
presented, using a rigorous experimental procedure on realistic
field data. The results presented in this paper exhibit good
performance in terms of threat detection, since 8 out of 10
threat activities are correctly recognized, and 4 out of 10 times
the system presents a false positive. For machine+activity
identification, given the complexity of the task (8 classes),
the system also obtains reasonable performance.

Even when we can say that the results are promising, there
is still a lot of work to do, especially in what respect to eval-
uating the approach for a wider range of machinery activities
and adopting alternative and more sophisticated classification
strategies. The need to deal with real machinery activities
makes the evaluation more difficult than in related precedents
(such as temperature and strain studies), but the close collab-
oration between implicated industry and academia will surely
alleviate the difficulties. The lessons learnt indicate that the
DAS+PRS approach is suitable to provide realistic solutions
that complement the existing surveillance methods. This work
has also established a thorough experimental methodology
which ensures that future contributions will need to be val-
idated by a rigorous evaluation procedure to accurately assess
the validity of the proposals.
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