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Abstract

In the last decade the number and frequency of large-scale disaster events has in-
creased sharply, mainly due to the devastating phenomena derived from worldwide
climatological paradigms (e.g. global warming). Floods, hurricanes and earthquakes
are among those disasters whose severity has grown significantly during this period:
as to mention, in 2001 more than 20.000 casualties resulted from a massive earth-
quake in the state of Gujarat (India), whereas this fatal indicator went up to approxi-
mately 230.000 and 316.000 casualties in the earthquakes occurred in Indonesia and
Haiti in 2004 and 2010, respectively.

The scope of this Thesis focuses on a particular class of disasters with an equally con-
cerning increase of its severity and frequency in the last few years: wildfire events,
understood as those large-sized fires not voluntarily initiated by the human being.
Despite the variety of initiatives, procedures and methods aimed at minimizing the
impact and consequences of wildfires, several fatalities occurred in the last few years
have put to question the effectiveness of current policies for the allocation of fire-
fighting resources such as aircrafts, vehicles, radio communication equipment, supply
logistics and fire brigades. A clear, close exponent of this noted deficiency is the death
of eleven firefighters occurred in a 130 km? forest wildfire in Guadalajara (Spain)
in 2005, which was officially attributed to a proven lack of coordination between the
command center and the firefighting crew on site, ultimately resulting in radio iso-
lation among the deployed teams. The reason for this missed coordination in the
management, of firefighting resources can be questioned by authorities and involved
stakeholders, but it undoubtedly calls for the study and development of algorithmic
tools that help operations commanders optimally perform their coordination duties.

Unfortunately, the economical crisis mostly striking on countries from the Southern
Europe has reduced significantly national budgetary lines for wildfire prevention and
suppression to the benefit of deficit-reduction programs. As a consequence of these
budget cuts, cost aspects have lately emerged as necessary, relevant criteria in opera-
tions planning: from an optimization perspective, firefighting resources are allocated
so as to achieve the maximum effectiveness against wildfires, subject to the available
budget upper bounding the overall economical cost associated to the decisions taken
by commanders and decision makers. Although the cost constraints in this problem
are obvious and well-reasoned, in practice management procedures for firefighting
resources do not follow cost-aware strategies, but are instead driven by the limited
capacity of the human being to dynamically perform decisions in complex, heteroge-
neous scenarios.

This Thesis builds upon the above rationale to propose modern meta-heuristic algo-
rithms for solving optimization problems modeling different firefighting resource allo-
cation paradigms. This family of solvers efficiently explores the solution space of a
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given problem by iteratively applying intelligent explorative and exploitative mecha-
nisms, yielding solutions that trade optimality for a reduced computational complexity
with respect to exhaustive search methods. In particular, the dissertation gravitates
on the adoption of Harmony Search algorithm as the meta-heuristic technique lying
at the core of the proposed resource allocation schemes, which are contextualized in
two different scenarios:

* The first studied setup addresses the optimum design of wireless relayed commu-
nication networks deployed over large-scale disaster areas. In this scenario the
so-called dynamic relay deployment problem consists of finding the optimum
number of deployed communication relays and their location aimed at simul-
taneously maximizing the number of nodes covered and minimizing the cost of
the deployment. This problem formulation is further extended by considering di-
verse relay models characterized by different coverage radii and associated costs.
To efficiently tackle this problem a novel hybrid scheme is derived comprising 1)
a Harmony Search based global searching procedure; and 2) a modified version
of the K-means clustering algorithm as a local search technique. Single- and bi-
objective approaches are proposed for emergency and strategic communications
planning, respectively. Numerical experiments are run over an emulated sce-
nario based on real statistical data from the Castilla La Mancha region (center
of Spain) to show that the proposed scheme provides an intelligent tool capable of
simultaneously determining the number and models of the relays to be deployed.

¢ The second scenario focuses on the optimal deployment of aerial firefighting air-
crafts based on predictive fire risk estimations over a certain geographical area.
The underlying optimization problem can be formulated as how to properly allo-
cate firefighting resources to capacity-constrained aerodromes in such a way that
the utility of the deployed resources with respect to fire forest risk predictions is
maximized and the overall cost of performing the resource allocation is mini-
mized. The problem formulation is further complemented by considering the
relative distance between the aerodrome, the wildfire and water pump resources
(sea, rivers and lakes) in the metric definition. From the algorithmic standpoint,
single- and bi-objective Harmony Search heuristics are proposed jointly with a
greedy local method that accounts for the imposed capacity constraints. The per-
formance of the developed solvers is assessed through experiments run in syn-
thetic scenarios and a realistic setup over the Spanish peninsula, including prac-
tical estimations of the Fire forest Weather Index (FWI) and real geographical
locations of water resources and aerodromes. The satisfactory results obtained
therefrom shed light on the applicability of the derived techniques to the pre-
emptive management of aerial resources under cost and effectiveness criteria.

To sum up, this Thesis elucidates, from a case-based approach, that modern meta-
heuristics embody a computationally efficient algorithmic solution for solving cost-
constrained communications and firefighting resource allocation paradigms arising
from the management of wildfire events.




Resumen

La dltima década ha sido testigo de un aumento vertiginoso de la cantidad y frecuen-
cia de desastres a gran escala, principalmente debido a los fenémenos devastadores
derivados de paradigmas climatolégicos y ambientales a gran escala como el calen-
tamiento global. De entre ellos son las inundaciones, huracanes y terremotos los de-
sastres de mayor frecuencia de apariciéon y fatales consecuencias durante este periodo,
tal como certifican los mas de 20.000 muertos a consecuencia de un terremoto en la
region de Gujarat (India) en 2001, o las 230.000 y 316.000 pérdidas humanas de los
terremotos de Indonesia y Haiti en 2004 y 2010, respectivamente.

En este contexto, el enfoque de esta tesis se centra en una casuistica concreta de de-
sastre a media-gran escala cuya frecuencia y severidad han crecido de manera igual-
mente preocupante en los tltimos tiempos: los incendios, definidos como un fuego de
grandes dimensiones no voluntariamente iniciado por el ser humano, y que afecta a
aquello que no esta destinado a quemarse. Pese a la diversidad de iniciativas, cam-
paiias y procedimientos orientados a la minimizacién del impacto y las consecuencias
de los incendios, varios sucesos fatales acontecidos en los tltimos afios han puesto en
duda la efectividad de las politicas actuales de gestion de recursos contra incendios
como aeronaves, vehiculos terrestres, equipamiento de comunicaciones radio, logis-
tica de abastecimiento y las brigadas desplegadas en el area afectada. Un ejemplo
manifiesto de esta falta de eficacia es la muerte de once bomberos ocurrida en un
incendio de 130 kilémetros cuadrados en la zona de Guadalajara (Espafia) en 2005,
oficialmente atribuida a una deficiente coordinacién entre el puesto de mando y los
equipos de extincién debida, fundamentalmente, a problemas de cobertura en los sis-
temas de radiocomunicacién. Aunque la causa de esta falta de coordinaciéon ha sido
cuestionada por las autoridades y los agentes involucrados desde entonces, lo cierto es
que este suceso supone un ejemplo evidente de la necesidad de estudiar y desarrollar
herramientas algoritmicas que ayuden al personal de comandancia a ejecutar 6ptima-
mente sus tareas de coordinacién y control.

Desafortunadamente la coyuntura de crisis econémica mundial que azota con espe-
cial fuerza los paises del Sur de Europa ha mermado dramaticamente las partidas
presupuestarias para la prevencién y extincién de incendios en beneficio de progra-
mas nacionales de reduccion de déficit. A consecuencia de estos recortes, el coste ha
irrumpido con fuerza como un criterio de extrema relevancia en la planificacién opera-
tiva de este tipo de desastres: desde la perspectiva de un problema de optimizacion,
los recursos contra incendios son actualmente gestionados con el objetivo fundamen-
tal de maximizar su efectividad contra incendios, sujeto a la restriccion de que el coste
agregado asociado a las decisiones tomadas no supere un determinado umbral pre-
supuestario. Pese a que estas restricciones de coste estan bien acotadas, en la practica
la mayoria de los procedimientos de gestién de recursos contra incendios estan fuerte-
mente determinados por la capacidad limitada del ser humano para tomar decisiones
agiles en escenarios de elevada complejidad y heterogeneidad.
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Por los motivos anteriormente expuestos, la presente Tesis doctoral propone la adop-
cién de algoritmos meta-heuristicos para solventar eficientemente problemas de opti-
mizacién que modelan procesos de gestion de recursos contra incendios. Esta familia
de algoritmos de optimizacion es capaz de explorar el espacio solucién de un problema
dado merced a la aplicacion iterativa de mecanismos inteligentes de busqueda explo-
rativa y explotativa, produciendo soluciones que sacrifican calidad por una compleji-
dad computacional menor en comparacion con la resultante de procesos deterministi-
cos de busqueda exhaustiva. En particular la Tesis plantea la busqueda por harmonia
(del inglés Harmony Search) como la técnica meta-heuristica de optimizacién comuin
a las herramientas disefiadas para la gestion de recursos en dos escenarios diferentes:

¢ El primer escenario analizado contempla el despliegue 6ptimo de redes de comu-
nicacién inalambrica para la coordinaciéon de equipos de extincion en incendios
forestales de gran escala. Desde el punto de vista formal, el problema del des-
pliegue dindmico de retransmisores que caracteriza matematicamente este es-
cenario consiste en estimar el nimero y localizacién de los retransmisores radio
que deben ser desplegados en el area afectada por el incendio, de tal modo que
el nimero de nodos méviles (i.e. recursos) con cobertura radio es maximizado a
un coste minimo del despliegue. A fin de reflejar la diversidad de equipamiento
de retransmision radio existente en la realidad, este problema es reformulado
para considerar modelos de retransmisor con diferentes caracteristicas de cober-
tura y coste. El problema resultante es resuelto de manera eficiente mediante
sendos algoritmos mono- y bi-objetivo que conjugan 1) la Basqueda por Harmonia
como método de busqueda global; y 2) una versiéon modificada del algoritmo de
agrupacion K-means como técnica de bisqueda local. El desempeiio de los méto-
dos propuestos es evaluado mediante experimentos numéricos basados en datos
estadisticos reales de la Comunidad de Castilla la Mancha (Espana), merced
a cuyos resultados queda certificada su practicidad a la hora de desplegar in-
fraestructura de comunicacion en este tipo de desastres.

¢ El segundo escenario bajo estudio se concentra en el despliegue y planificacién
optima de vehiculos aéreos de extinciéon de incendios basados en estimaciones
predictivas del riesgo de incendio de una cierta area geografica. De manera
enunciativa, el problema subyacente busca la asignacion de recursos a aerédro-
mos y aeropuertos con restricciones de capacidad que maximice la utilidad de
dichos recursos en relacion al riesgo de incendio y minimice, a su vez, el coste de
ejecutar dicha asignacién. La formulacion de este problema también considera,
dentro de la definicién de dicha funcién de utilidad, la distancia relativa entre
aeropuerto, punto de potencial riesgo de incendio y el recurso acuifero (lago, rio
0 mar) mas cercano. Para su resolucion eficiente se propone el uso de algoritmos
de optimizacién basados, de nuevo, en la Busqueda por Harmonia, incorporando
ademaés métodos voraces de reparacion capacitiva. La aplicabilidad practica de
estos métodos es validada mediante experimentos numeéricos en escenarios sin-
téticos y un caso practico que incluye valores reales del riesgo de incendio, posi-
ciones de recursos acuiferos e instalaciones aeroportuarias.

En resumen, esta Tesis evidencia, desde un punto de vista practico, que la meta-
heuristica moderna supone una solucién algoritmica computacionalmente eficiente
para tratar problemas de gestiéon de medios y recursos contra incendios sujetos a res-
tricciones de coste.
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CHAPTER 1

INTRODUCTION

“The key to growth is the introduction of higher dimensions
of consciousness into our awareness.”

-Lao Tzu

In its unstoppable race towards levels of more advanced development, evolution has gravitated
on several aspects of the human kind. To begin with, it is of undoubted certainty that human
beings have undergone severe biological changes due to several interrelated reasons, ranging
from the essential survivability of the species themselves to the inherent complexity of different
challenges encountered during History. Examples are clear as evidenced by consecutive speed
and height records in Olympics, and significantly decreased occurrence rates of diseases that
more than a century ago were known to be epidemic and fatal partly as a consequence of an
enhanced resilience of human organisms. Such evolutionary changes also spread to the beha-
vioral patterns shown up by humans either in isolation or more remarkably, when collaboratively
connect to each other towards a certain goal. No matter if human kind has collectively worked
towards colonization, organization, exploration or conquest: socio-cultural models have evolved
dramatically to yield a humankind strongly upheld on the purpose of survivability, sustainability,
efficiency, freedom, leadership or progress. Most archaeologists and cultural anthropologists work
within the framework of modern theories of sociocultural evolution in an attempt at unifying
diverse approaches and beliefs on this matter.

A common factor featured by both biological and socio-cultural evolution lies on the exploita-
tion of the available natural resources as a necessary substrate to support the evolution itself.
Worthy is to mention the relevance and impact of wood and steel furnishing, land ownership,
fishing, silicon fabrics and outer space navigation in several episodes of History featuring sig-
nificant advances towards higher levels of prosperity. By natural resource it is meant any asset
derived from undisturbed environments that offer potentiality to be exploited for the survival or
profit of the humankind, such as land, water, soil, plants and animals. Beyond their primary use,
many other criteria are often utilized to classify natural resources: their bioticity (if it arises from
living, organic material) their potentiality, availability and timeliness. This Thesis will be par-
ticularly concerned with the renewability of any given natural resource, understood as its ability
to replenish naturally and seamlessly when consumed or exploited by the human being. Luckily,
Nature has been generous in what relates to the renewability of natural resources with a strong
impact on the survivability of the humankind such as wood, sunlight, wind or water. Other natu-
ral resources with more technological implications such as fossil fuels or silicon are nowadays
exploited at the pace dictated by their low, almost null renewability.
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Among such renewable natural resources wood will grasp the thematic scope of this Thesis.
In essence wood is made of a composite of cellulose fibers embedded and strongly compressed
into a matrix of lignen. This naturally appearing combination of substances and elements gives
rise to a robust, durable material traditionally employed in construction and organic propelling,
with further uses in transport, furniture fabric and medicine, among others. Wood is obtained
from forests from which, once it has been collected, is taken to lumber camp so as to elaborate
boards, frames and other finished products alike. However, the motivation of this Thesis does not
ground on the multiplicity of applications and uses of this natural resource, but rather capitalizes
on the vulnerability of wood against fires and the technical and operational difficulties when
extinguishing them in such a flammable environment. Due to its composition, wood is by itself a
highly propagative material for fire which, in case of a massive forest fire event, requires strict
yet quick preemptive countermeasures to minimize its impact and ultimately, avoid deforestation
and soil desertification. Needless to highlight that such countermeasures are necessitated for a
far more primary rationale than the importance of wood in different industrial sectors: forests —
and plants in general — play a crucial role as a catalyst of the natural conversion from light to
chemical energy and oxygen therefrom, which is of utmost necessity and a sine qua non condition
for life in planet Earth.

Risk consequences in forest fire management also scale down to smaller, albeit equally avoida-
ble granularities. Unfortunately, in addition to the fire itself, firefighting brigades deployed on
site also undergo diverse life-threatening hazards ranging from heat stress to fatigue, smoke,
dust and other injuries including burns, cuts and scrapes. Part of these hazards arise as a direct
consequence of the work developed by the brigades for extinguishing the fire. However, in some
other cases the promptness and urgency under which decisions are taken in these situations cause
a lack of coordination between sparsely deployed teams, which may ultimately lead to isolated
individuals and groups subject to carbon monoxide or direct exposition to flames. In regards to
the former, carbon monoxide can be found at the highest concentration at close proximity to slow
burning fires. This fact reveals that health hazards are not only a matter of wide-area disasters,
but also underlie latently beneath smoldering, apparently low-risk fire events.

From an operational perspective, health risks should be reason enough to allocate as much
financial resources as available so as to minimize its likelihood and severity. However, the world-
wide economical context of the last few years has restricted stringently national budget items al-
located to fire prevention strategies and disaster management methodologies by institutions and
governments. This being remarked and in light of several evident facts discussed in forthcoming
sections, there is a noted necessity for explicitly considering cost aspects in the management of
firefighting resources in such a way that expenditure is properly balanced with respect to the
available budget and the risk level of the scenario itself. Therefore, the design and adoption of
cost-efficient processes, tools and methods to preserve the integrity of forests by increasing their
resilience against fires and minimizing their catastrophic effects, as exposed in the remainder of
this introducing Chapter.

1.1 Motivation and Research Hypothesis

Any formulated research hypothesis finds its raison d’étre in facts and evidences extracted from
reality. Accordingly, the above claimed need for cost efficiency when managing firefighting re-
sources against forest fires emerges from a noted lack of correlation between the expenditure and
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resources allocated to a certain fire disaster and the life and economic losses resulting therefrom.
Intuitively, leaving aside other factors such as the characteristics of the soil one could intuitively
expect a clear correspondence between such indicators, in such a way that a forest fire should
be assigned enough financial and firefighting resources so as to minimize the risk of suffering
casualties subject to a positive balance between economic losses and expenditure. This eventual
correspondence would pinpoint an efficient management of the resources allocated to the event at
hand.

However, data do not unveil a so clear correlation between such factors. This assertion is
supported by the indicators on the forest fire events over one hundred hectares of devastated
woodland occurred in Spain registered and published by the Ministry of Agriculture, Nutrition
and Environment (Ministerio de Agricultura, Alimentacién y Medio Ambiente) in the period 2001-
2011 [1]. In this data set several attributes and factual aspects related to such fire events are
listed, including the area affected by every registered fire event, the number of fatalities and
wounded individuals and the used resources (personnel, vehicles and aircrafts), among several
other features. These factors are depicted in Figure 1.1 by scattering the devastated area versus
the amount of firefighting resources with markers directly proportional to the number of human
casualties due to every such fire event.
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Figure 1.1: Number of firefighting resources versus devastated area for all wildfires over 100 ha
occurred in Spain from 2001 to 2011. Square gray markers correspond to those wildfires with no
casualties, whereas the radii of circled markers are set proportional to the number of casualties of the
fire they represent. The embedded plot magnifies the region bounded by a dashed rectangle.

Several conclusions of significant relevance in the scope of this Thesis stem from its analy-
sis. First of all, notwithstanding what could have been intuitively expected, the plot evinces
no apparent correlation between the number of allocated resources and the casualties for the
wildfire event involved in the figure. It can be observed that there are wildfire events with few
allocated extinguishing resources and varying number of personal losses, whereas an increase of
the number of allotted resources does not guarantee a consequent minimization of the number of
casualties, as clearly exemplified by the wildfires in Teruel and Guadalajara occurred in 2011 and
2005, respectively.
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This noted lack of correlation between casualties and dedicated resources is not be insightful
by itself if the study focuses only in these two features, as none of them results to be representative
of its intensity and extension. This is the reason why the plot considers in its horizontal axis
the area devastated by every wildfire measured in hectares. Intuitively one expects that the area
affected by any given fire results to be inversely proportional to the number of resources dedicated
to its extinction, i.e. the more resources are allocated, the smaller the affected are by the fire will
be. However, the same conclusion holds: data does not support this expected inverse relationship
between both variables.

Although other hidden factors (i.e. weather conditions) may also play their role when wrap-
ping up conclusions from the depicted data, the study so far suggests that the allocated resources
have not been managed properly in all the fire events under consideration. This last statement
becomes further buttressed when the three depicted variables are jointly analyzed: there are no
means to infer from the data the amount of casualties from the number of allocated resources and
the devastated area of a given wildfire. In other words: the number of casualties is not related
anyhow to the amount of resources and the devastated area by the fire.

Summarizing, this data-based study puts to question the effectiveness of decisions taken to
assign and deploy resources for the extinction of wildfires. Decisions in this context are driven by
well-specified procedures and protocols based on the passive reaction triggered by circumstantial
conditions (e.g. a given number of firefighting resources for every hectare of terrain affected by the
fire). Unfortunately, there are three evidences for which these resource management procedures
result to be far from optimal:

¢ Governmental investments for the acquisition, renewal and maintenance of firefighting re-
sources are progressively decreasing as a result of the worldwide economical context. For
instance, the environmental forum of the Castilla La Mancha region (center of Spain) de-
nounces, in their report published in October 2013 [2], that there are only 5 light vehicles
in the region with the legally required equipment to combat wildfires (one per province),
which incur in delays and an increased risk when performing their duty. Besides, in this
same report it is claimed that regional firefighting brigades have undergone significant re-
ductions — reaching up to 50% — in the number of effective hours dedicated to the preven-
tion, surveillance and extinction of wildfires. More exemplifying datum: at a national level
the Spanish firefighting campaign for 2013 has dedicated 267 aircrafts for the extinction
of wildfires during summertime, 8 units less than in 2012 as a consequence of the funding
reductions in the Ministry for Agriculture, Fisheries and Food. Cost, therefore, is called
to play an essential role when allocating resources nowadays and in the present future.
Current resource allocation procedures, on the contrary, do not take into account any cost
related criteria in decision making.

* Decisions to combat wildfires are not made pro-actively nor preventively, but rather reac-
tively in the form of countermeasures to taken risks. Examples of this lack of strategic
preemption when organizing firefighting resources abound in practice, such as the wildfires
occurred in the Spanish regions of Levante (Cortes de Pallds and Andilla, June 2012 [3]) and
Galicia (Fragas do Eume, March-April 2012 [4]). In these examples wind bursts hindered
significantly the coordination of the resources involved in extinguishing tasks, even though
weather forecasts had anticipated this risk several days in advance. Consequently, reports
made by expert committees highlighted the need for more effective preventive initiatives so
as to minimize the impact of side eventualities on the management of resources. Weather
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also took a fatal role in the death of 11 members of the brigades involved in the wildfire that
took place in Guadalajara in July 2005 [5]: an outdoor temperature of 33 Celsius, turbulent
wind blowing at 20 kilometers per hour heading South east, a relative air humidity of 22
%, and 50% less rainfall than the same period of 2011. It is true that this wildfire has been
proven to be human caused (i.e. a barbecue in a forbidden area); but equally certain is to
state that more resources could have been allocated to this region should weather forecasts
had been taken into account by authorities and decision makers.

¢ An underlying potential risk in the management of resources is the human intervention
itself'. In disasters such as wide area wildfires commanders must assess and weight lots
of data received from different means so as to effectively yet safely organize and deploy
the firefighting brigades on site. However, cases such as the wildfire happened in a brush-
choked canyon north of Phoenix (Arizona, USA) in June 2013 shows up the fact that human
decision making is subject to errors and assumptions that may lead to fatalities: in this
wildfire 19 elite firefighters perished while commanders thought the crew was in a safe place
[6]. No extreme had heard each other for 33 minutes until just before the fire overwhelmed
the brigade. Certainly decision support tools would have been extremely useful to deploy
communication resources in a more effective, active, monitored fashion, discarding any non-
supported assumptions from the commanding forces.

Based on these observations, the research scope of this Thesis gravitates on designing al-
gorithmic tools that help decision makers and commanders allocate firefighting resources in a
optimal yet cost-efficient manner. To this end, it is essential to understand beforehand how the
allocation of resources breaks down into the formal mathematical statement of a optimization
problem, as done in the following subsection.

1.1.1 General Formulation of Resource Allocation Problems

Generally speaking, resource can be defined as any asset that can be exploited so as to yield some
measure of benefit for a given process. If process is mapped to fire extinction and measure of benefit
corresponds to any positive metric quantifying effectiveness when extinguishing fire, it should be
clear that resource may refer to a wide spectrum of assets reactively (vehicles, brigades, aircrafts,
hoses, axes, water, etc) or preventively (surveillance patrols, bulldozers for opening firebreaks,
forest cleaning teams) operating on the purpose of suffocating fire.

From a mathematical standpoint, resources can be modeled as variables whose values deter-
mine their joint effectiveness when combating a wildfire. At a first approach one could intuitively
think of an allocation strategy where each variable (namely, resource) is optimized to its best
effectiveness disregarding how the rest of assets have been allocated. Nonetheless, the overall
effectiveness of all assets against a given wildfire does not decompose into the individual contri-
butions of each of such resources; all become mutually correlated since they are used in the same
scenario and share underlying variables such as time, space, cost or any other alike. For example,
one could not command bulldozers and forest cleaning teams to operate on the same geographical
area since 1) there is a risk for the human crew; and 2) cleaning forest areas next to firebreaks is

IInterestingly this third point is succinctly linked to the concept of integrative complexity, which stands for a pro-
tocol to measure how complexly people think about an issue, and how every person recognizes complex connections
among different dimensions of an issue [7].
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not as effective against eventual wildfires as distributing geographically the available resources.
In summary: the allocation of resources must be challenged from a global perspective, by casting
effectiveness metrics implicating all the resources to be managed in a non-necessarily decompo-
sable fashion.

Technically the above argued metric function is also referred to as objective function, which is
to be maximized or minimized by varying the values of the participating variables (correspond-
ingly, resources). Let the set of resources be denoted as a K-dimensional vector R = {R1,...,Rx},
where Rj € Ry, is the variable representing the k-th resource to be optimized. The composition
itself and alphabet R, for R; depend roughly on both the parameter of the resource to be allo-
cated (position, time, capacity, etc) and the encoding approach used for its representation, which
is strongly linked to the characteristics of the algorithm used for its solving. Having these defi-
nitions in mind, a resource allocation strategy (2 establishes an effectiveness metric, fitness or
objective function fo(R,S) to be maximized (e.g. area covered by firefighting brigades) or mini-
mized (e.g. attendance delay by ground vehicles, economical cost required for establishing the
allocation policy Q2). Arranged as a single mathematical formulation, resource allocation can be
formulated as

Optimize fo(R,S), (1.1)

R
subject to  g;(R,8)=Gj,i=1,...,N,, (1.2)
RoeRy, k=1,...,K, (1.3)

i.e. as the conventional formulation of an optimization problem where Expression (1.2) corres-
ponds to the N, equality or inequality constraints set by the scenario at hand or the resource
allocation strategy itself. For instance, in cost-constrained policies for wildfire prevention the com-
mander may set a maximum monetary cost for the allocation process due to budget restrictions.
Likewise, optimal positioning strategies for firefighting brigades can be subject to geographical
constraints (e.g. very steep slopes in mountains or rocky wastelands where fires is not likely to
propagate). In reference to the above expression S denotes the set of static variables involved in
the definition of the metric that are not to be optimized, e.g. fixed costs, nominal coverage of radio
communication devices or water tank capacity in firefighting crafts.

1.1.2 Complexity Aspects and Algorithmic Alternatives

Once the mathematical formulation of resource allocation problems has been exposed, the leit-
motiv of this Thesis is in the position to show that the challenges arising from the efficient solving
of large-scale optimization paradigms also apply in the context of asset coordination in wildfire
extinction campaigns. Inherent properties of this scenario such as the erratic fire dynamics and
the heterogeneity of firefighting resources get further involved by the ever-increasing scales of
wildfire events and the need for inter-agency coordination in a scenario demanding fast, reliable,
multi-criteria optimization tools. Several clarifying facts and data from studies follow:

* A number of studies have quantitatively predicted the scales, magnitudes and consequences
of wildfires based on weather forecasts, soil dryness, vegetation and other related factors,
for which analytical indices and long-term climate models have been developed and used as
a measure of the possibility of fires of a certain severity occurring in an area [8]. In this
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context exemplifying is to highlight the recent report presented at the annual meeting of
the American Geophysical Union in San Francisco (USA) in late 2012, where the burned
area from wildfires in the USA was predicted to double in size by 2050 due to warmer and
drier conditions in coming decades [9]. Besides this envisaged increase of wildfire scales, the
record of incidences in such a year of intense activity as 2012 (with massive fires affecting
Colorado and New Mexico [10]) suggests that fire events take place in nearby locations and
very close in time, i.e. they are strongly correlated in both time and space. This ultimately
leads to the certainty that commanders will encounter higher difficulties in the future when
allocating their managed resources due to simultaneous, co-located and necessarily inter-
connected wide-area wildfires, ultimately heading to an increased complexity of the opti-
mization problem that models the decision making.

* Asexplained before in this chapter, there is an increasing concern by authorities and govern-
ments about the cost implications of fire prevention and suppression. In particular, the
case of USA has gained visibility in the last decade, with expenditures regularly beyond
10000 millions dollars per year in this period [11]. In light of this expended budget his-
tory and its growing trend, the Federal Land Assistance, Management and Enhancement
Act (FLAME Act) of 2010 enforced the national stakeholders in charge for managing fire-
fighting resources (specifically, the U.S. Department of Agriculture, the U.S. Department
of the Interior, and the U.S. Department of Homeland Security) to coordinately elaborate
a Cohesive Wildfire Management Strategy to derive cost-effective, sustainable policies for
allocating and managing fire resources [12]. When transferred to the algorithmic realm,
the consideration of cost-driven criteria in the management of fire assets gives rise to an
optimization problem subject to additional cost-related constraints that jeopardize the ap-
plication of straightforward, deterministic solvers. Alternatively the problem might be re-
formulated by including a second cost-representative objective function in Expression (1.1)
to be simultaneously minimized along with fo(R,S). However, this bi-objective optimiza-
tion model calls for advanced optimizers capable of efficiently balancing both interrelated
metrics and incorporating further methods to deal with the rest of constraints.

* When issuing commands from decision makers to the firefighting crew deployed on site,
the heterogeneity of fire extinguishing resources may unchain suboptimal decisions due to
the pattern-driven way of thinking of human beings when facing problems of this nature.
In such cases human reasoning tend to oversimplify the decision making by searching for
patterns among the assets. However, not all e.g. ground vehicles feature the same water
and transporting capacity, autonomy and distance from their actual location to the wildfire
at hand. By way of illustration INAER, a Spanish private company specialized in aerial
emergency services and aircraft maintenance for mission critical operations has a portfolio
of more than 150 aircrafts corresponding to 18 different helicopter models and 7 airplanes
[13]. Differences become obviously more acute when comparing firefighters to each other,
as physical conditions arise as a fundamental factor to drive any person’s potential perfor-
mance to extinguish fires. In conclusion, the heterogeneity of resources becomes one of the
most challenging issues for making decisions in wildfire management procedures, and is
envisaged to become specially unmanageable as the scales of the wildfire at hand increase.

Thus, there is a need for algorithmic tools to allocate limited yet heterogeneous resources so
as to cost-efficient mitigate wildfire events of increased scales, intensity and propagability. As
a consequence of the high dimensionality of the optimization problems modeling such scenarios,
black-box techniques result to be particularly suitable since they ground on a blind (or semi-blind)
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trial-and-error learning strategy. Only the computation of values of the objective function and the
constraints are required disregarding their mathematical structure, continuity, differentiabili-
ty, convexity and/or analytical decomposability. Within this category, meta-heuristics have been
traditionally utilized in a plethora of problem formulations arising in different disciplines charac-
terized by complex, non-smooth search spaces. By virtue of specialized stochastically-driven ope-
rators, meta-heuristic solvers iteratively refine a candidate solution — or a set of them — with
regard to a given quality measure by learning from experience and without making any assump-
tions about the optimization problem under consideration. Moreover, their searching procedure
can be extended to address optimization paradigms where multiple, conflicting objective functions
are to be optimized simultaneously. A byproduct of this class of black-box optimization techniques
is the lack of guaranteed optimality on the produced solution: by filtering out bad intermediate so-
lutions, meta-heuristics only certify that the likelihood of being trapped in local optima decreases
along iterations, but nothing can be claimed about the metric-defined distance of the remaining
solutions with respect to the global optimum.

All the above rationale considered, this Thesis hypothesizes meta-heuristic algorithms as
suitable optimization techniques for the allocation and management of firefighting resources in
large-scale wildfire events, and hinges on the proven search efficiency, flexibility and robustness
of these solvers to conduct research towards assessing their performance in different use cases.

1.2 General and Specific Objectives

Bearing in mind the established research hypothesis and in light of the motivating facts exposed
in the previous section, the main contribution of this Thesis focuses on studying and validating
the applicability of modern meta-heuristic algorithms for the efficient solving of complex opti-
mization problems lying underneath the allocation of firefighting resources in the management
of wildfires. As claimed before, meta-heuristic solvers allow for a balanced trade-off between
the optimality of the produced solutions and the computational complexity required during the
search process. This property makes this class of algorithmic optimizers specially promising for
solving combinatorial and mixed integer optimization paradigms subject to multiple constraints,
and possibly involving several conflicting objectives. As will be shown throughout this research
work, problem formulations featuring these characteristics arise when managing resources of
different nature in wildfire extinguishing campaigns.

The above main objective of the Thesis breaks down into the following set of specific goals:

¢ First an insight on meta-heuristic algorithms, their general classification, searching prin-
ciples is provided, along with a survey on their historical applicability to the management
of disaster situations and in particular, wildfire events. The scope of this study will mainly
concentrate on population-based evolutionary algorithms, since they have been shown to
perform well in complex problems arising in fields as diverse as engineering, biology, eco-
nomics, marketing, genetics, robotics, physics, chemistry and telecommunications, among
many others. This will permit to properly put the contributions of the Thesis in context
and to make the dissertation sufficiently self-contained. As a result of this analysis, the
so-called Harmony Search (hereafter, HS [14]) algorithm will be selected as the core meta-
heuristic solver of subsequent resource allocation approaches due to its proven flexibility
and outperforming behavior with respect to other evolutionary schemes in the literature.




1.3. Methodology 9

¢ Next the applicability of HS-based meta-heuristic optimization algorithms is exemplified
in two different wildfire management scenarios. The first one essentially hinges on the so-
called dynamic relay deployment problem, which consists of finding the optimum number of
deployed relays and their location aimed at simultaneously maximizing the overall number
of covered mobile nodes and minimizing the cost of the deployment. This problem is ex-
tended by considering relay models characterized by different coverage radii and associated
costs. To efficiently tackle this problem a novel hybrid scheme will be derived comprising 1)
a Harmony Search (HS) based global optimization procedure; and 2) a modified version of
the well-known K-means clustering algorithm as a local search technique. Single- and bi-
objective formulations of the algorithm will be sketched targeting emergency and strategic
operational planning, respectively. Simulations will be performed over a emulated scenario
based on real statistical data from the Castilla La Mancha region (center of Spain).

* The second scenario under study focuses on optimally deploying firefighting aircrafts on
the existing aerodromes and airports over a certain geographical area based on predictive
fire risk estimations. The problem will be mathematically formulated as 1) a capacity-
constrained resource allocation problem where a measure of the utility or impact of the
deployed resources with respect to fire forest risk predictions is to be maximized based
on different aircraft and airport models; and 2) a multi-objective problem where cost and
utility are to be jointly optimized and simultaneously considering their mutually conflicting
nature. In the latter formulation, the initial location of airplanes and the operational cost of
their reassignment is also taken into account. Likewise, the impact of the relative distance
from the eventual wildfire to the closest water resource is also quantified and included in
the definition of the utility function. On the purpose of efficiently tackling this optimization
problem, a family of meta-heuristic solvers inspiring from the aforementioned HS algorithm
will be derived, implemented and in a set of synthetically generated scenarios and a real
case for the Iberian peninsula.

As can be guessed from the above description, both analyzed scenarios ground on the formu-
lation of single- and bi-objective optimization problems subject to a set of constraints, which are
then tackled via harmony search heuristics hybridized with local methods designed ad-hoc for the
scenario at hand. This technological coherence throughout the Thesis is accomplished by virtue
of a consistent, well-defined research methodology, as exposed in the next section.

1.3 Methodology

This Thesis will follow an example-based methodology by which two instances of such problems
will be addressed, involving communication and aerial resources to be optimally allocated when
combating a wide-area fire event. The procedure to address each of such studied cases departs
from the high-level formulation of the research hypothesis contextualized in an specific optimiza-
tion problem (e.g. radio communication relaying in field operations during wildfire extinction
campaigns): to this end, related concepts, theories and literature are compiled, ordered and care-
fully examined towards finding meaningful connections to the application scenario at hand. This
previous stage not only allows exploring the best algorithmic options for the formulated problem,
but also permits to identify and highlight the novel ingredients of the proposed research.
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Next, the problem under consideration is formally posed in conventional mathematical nota-
tion. Theretofore in this second stage the variables and parameters to be considered in the defini-
tion of the problem will be listed and described in detail. Once the formulation is completed jointly
with the description of its participating variables, an insight on the complexity requirements of
the problem itself will be discussed so as to argue the selection of meta-heuristic algorithms spe-
cially tailored to alleviate the computational burden of the search procedure at the possible cost of
optimality. Modifications of the naive version of the Harmony Search meta-heuristic from which
the proposed resource allocation procedures inspires will be thoroughly discussed, along with the
local methods inserted in the algorithm thread to efficiently tackle possible constraints featured
by the problem.

Stage 1 Stage 2 Stage 3
Problem hypothesis Literature review
and contextualization and novelty highlighting Problem statement
Stage 6 Stage 5 Stage 4
Experimental validation Experimental validation . o
. . . Algorithm derivation
(emulated scenarios) (synthetic scenarios)

Figure 1.2: Methodology adopted in the Thesis.

As for the validation of the proposed algorithms, numerical computer experiments will be
carried out over synthetically generated and emulated simulation scenarios. The first refers to
setups which do not reflect any connection to real situations and scenarios, but instead are built
up artificially by means of analytical functions. On the contrary, the latter stands for scenarios
which, even if they are still computer-generated, the functions lying beneath the generation of
scenarios rely on real statistical data for their definition. This permits to validate the perfor-
mance of the derived algorithms in artificial hence controlled simulation setups, and to shed light
on their applicability by emulating a real problem composition. In both cases a range of perfor-
mance indicators will be averaged by means of a Monte Carlo simulation methodology [15], which
consists of randomly sampling the space of possible realizations of the algorithm under study for
inferring meaningful statistics about the optimality, stability and mean behavior of the provided
solutions.

1.4 Structure of the Thesis and Notation Generalities

According to the specific research objectives enumerated before, this Thesis is structured in two
different technical chapters, which are backgrounded by a third gravitating on essentials of meta-
heuristics and their application to resource allocation in disaster events. Figure 1.3 illustrates the
storyline undertaken in this dissertation: first, Chapter 2 corresponds to the aforementioned in-
troduction to the fundamentals of optimization algorithms, which stresses on meta-heuristics as
a family of computationally efficient, flexible solvers in the context of large-scale resource alloca-
tion. This technical backdrop serves as a solid starting point to Chapters 3 and 4, each including
a literature review of the recent activity around the two resource allocation problems addressed
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in this Thesis, together with their corresponding formal problem statements, derived algorithms
and a discussion on the obtained results. Chapter 5 wraps up all the conducted research by dra-
wing the main conclusions extracted therefrom and by motivating and sketching several lines of
future research. Appendix A serves as a complementary yet insightful support to Chapter 4. The
reader should notice that Chapter 2 is not deemed mandatory, but recommendable for grasping
an overall outlook of the entire research work.

Chapter 1

Introduction

Y

Chapter 2
Background Material

I N

Optimal relay deployment Optimal aircraft deployment

.

Chapter 3 Chapter 4

Chapter 5 Appendix
Conclusions and Future Research Lines The FWI index

Figure 1.3: Structure of the Thesis. Dashed arrows indicating the optionality of the pointed chapter.

Unless otherwise stated, the following mathematical convention will be used: capitalized bold
font (e.g. X) will represent variable vectors, whereas sets will be typeset in calligraphic case
(e.g. alphabets X), except for the sets Z (integer numbers) and R (real numbers), respectively. Any
given variable vector breaks down into its enumerated compounding variables as X = {X71,...,Xg},
X={X k}le or X={X (k)}ff:l. As can be noted from the previous convention, unity-starting inde-
xing will be adopted for all enumerative variables and parameters. Greek letters will stand for
user-defined parameters in the definition of the proposed algorithms. All acronyms and symbols
are gathered at the beginning of the Thesis for the reader’s perusal, which may be found redun-
dant — yet understandable from the context — among different chapters of the dissertation.
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CHAPTER 2

BACKGROUND MATERIAL

“The proof of evolution lies in those adaptations that arise from improbable foundations.”

- Stephen Jay Gould

As has been anticipated in Chapter 1, this dissertation mathematically formulates the allo-
cation of resources in the management of large-area disaster situations (in particular, wildfires)
as a conventional optimization problem which, from a general standpoint, can be understood as
the discovery of the best among a set of possible solutions subject to certain fitness criteria and
imposed constraints. Formally enunciating the different resource allocation paradigms resulting
from the characterization of the scenarios under study comes along with a number of substan-
tial benefits. To begin with, the computational effort required for its resolution can be assessed
by analyzing the convexity and linearity of the considered metric(s) and constraints, as well as
the combinatorial nature of the search space defined by the alphabet of the involved variables.
Likewise, the inspection of all such peculiarities may unveil the family of solvers best suited to
efficiently deal with the problem at hand, as well as the eventual need for punctual modifications
in the nominal definition of such solvers to handle particularly involved hard constraints.

Based on the above rationale, an interested reader of the Thesis should conveniently feature
a solid background on the foundations of optimization problems and related solving approaches,
with an emphasis on stochastically-driven algorithms. For the sake of completeness this chapter
provides a formal introduction of the basic concepts of single- and multi-objective optimization
problems, followed by a justification of the need for stochastically driven approximative solving
methods and a overview on meta-heuristic algorithms as one of the most widely used portfolios of
approximative optimizers in the literature. This review ends by delving into the Harmony Search
algorithm on which the resolution of the optimization problems described in subsequent chapters
is based. At this point it should be made clear that the contents of this Chapter aim at overlooking
different practical approaches used for solving continuous and discrete optimization problems.
The reader interested in further details of approximative and exact solving techniques is referred
to the recent yet thorough surveys and reviews by Glover, Boyd and Nocedal in [16, 17, 18].

2.1 Fundamentals of Optimization Problems

Optimization problems arise in many disciplines and various knowledge domains. Researchers,
practitioners, companies and public institutions face with decision processes in a daily basis,

13
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most involving tens or even hundreds of alternatives whose expected or estimated impact on the
process at hand is in essence the evaluation criteria that permits to assess the benefit of choosing
an option or another. Besides the inherent difficulty of handling lots of interrelated decision
variables, in practice users and companies are not free to select any possible option, but instead
those that fulfill constraints that restrict the number of available alternatives, as exemplified by
political decision making processes being recently impacted by budgetary and law limitations.
Therefore, a decision alternative must be selected that complies with all the existing constraints,
and that maximizes (e.g. power saving, speed, time, efficiency) or minimizes (correspondingly,
money, time, risk or error) a fitness evaluation function.

In this context, this Thesis builds upon the conception of the allocation of firefighting resources
as an optimization problem, which can be formally defined as the paradigm of finding the best
feasible solution — in terms of a certain measure of fitness that must be either maximized or
minimized — over a possibly constrained search space. Such imposed constraints can be implicit
in the definition of the vocabulary for each compounding variable of the candidate solutions or,
alternatively, may be set explicit as bounded function set of such variables. From a more formal
approach an optimization problem can be defined as to find the best solution

X*£{Xy,....XgleX, (2.1)

with X* denoting the solution of the problem, X}, its compounding decision variables, and X = XX
the search space for X, such that

Optimize [ (X), (2.2)
X
subject to h;(X)Z H;,i=1,...,N,, (2.3)

where [ : X — R is the so-called fitness or objective function, and {%;(-),H;} establish the N, con-
straints imposed on the problem formulation that restrict the search space X to a certain feasible
subspace. The alphabet of the decision variables {X (k)}f:1 constituting the solution vector X can
be either continuous (X} € R) or discrete (X € Z). Consequently, problem models for optimiza-
tion paradigms are coined as continuous when the alphabet of all decision variables is defined
on the real set, i.e. X € RE, as opposed to combinatorial problems where decision variables are
drawn from a finite, discrete set Z such that X € R€. Mixed problem formulations combine real
and discrete decision variables jointly related through the fitness function f(X). For instance, the
problem formulation tackled in Chapter 3 is mixed as the number of relays is a discrete integer

variable, whereas their positions are regarded as continuous optimization variables.

It should be made clear that a problem formulation may render distinct feasible solutions,
where feasibility must be understood as the thorough fulfillment of the N, imposed constraints
by the solution at hand. However, an optimization problem aims at achieving an optimum decision
on the values for a set of variables in a global sense. In other words, any solving attempt at an
optimization problem seeks the derivation of the globally optimum solution, which denotes the
vector X that provides, among all feasible vectors in X, the best value for the fitness function f(-).
This statement does not imply that the global optimum is always unique, as the cardinality of this
set of optimum solutions may be even infinite in problems characterized by a high modality of its
fitness metric. Seen in another way: optimality requires feasibility, but the reciprocal statement
does not necessarily hold.

In line with the above definition of global optimum, a locally optimal solution denotes a fea-
sible vector X¥ € X whose optimality holds for a certain subset of the solution space X, i.e. a
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feasible vector X¥ will be locally minimum if there exists an open neighboring set Nxe of X¥ such
that f(X®) < f(X) VX € Nxe (a clarifying bi-dimensional fitness function is depicted in Figure 2.1).
When confronting a given optimization problem one of the most involved challenges from the al-
gorithmic point of view is to avoid declaring a local optimum as the global solution to the problem
under consideration: indeed, first-order gradient descent methods [19] are known to get trapped
in local optima if no further adaptations are done. In such a case it is desirable to devise strate-
gies for escaping from locally optimal regions of the search space towards areas of increased (and
hopefully, dominating) optimality.

Global maximum { X“]"max,Xim“X}
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Figure 2.1: Example of a two-dimensional (i.e. |X| = 2) function f(X) with multiple local optima and
isolated global optima X8™a* = (X8™ X 5™} and X8™in = {x¥™" X5™"}. The function is built by
translating, scaling and sampling an aggregation of 2-dimensional Gaussian distributions.

In this context it is important to point out the notion of optimality when tackling an opti-
mization problem with a given solver. The term optimality stands for the relative quality of the
produced solutions (which is given by their fitness value) with respect to the global optimum of
the problem at hand. As such, near-optimal solutions will refer to those candidates which are po-
tentially close to the overall optimum without any further guarantee that they may coincide. The
relevance of the near-optimality concept is paramount in the literature related to meta-heuristics
and in general, approximative optimization methods; due to their iterative search behavior (which
often relies on stochastic processes), this class of optimization techniques does not guarantee that
the globally optimum solution is ever achieved, but only ensures that progressively better fitness
values are iteratively attained. Therefore, the optimality of any optimization algorithm depends
roughly on its capability to efficiently examine the solution space X by combining explorative and
exploitative search procedures, which will be later discussed in this Chapter in the scope of the
Harmony Search optimization algorithm.

2.1.1 Multi-Objective Optimization

The introduction has heretofore inspected the formalities of optimization algorithms when their
definition is based on a single fitness function f(X), which may be driven by a single optimization
variable —i.e. |X| =1 or, equivalently, K =1 in Expression (2.1) — or a multidimensional candidate
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vector, correspondingly |X| > 1 or, equivalently, K > 1. However, in practice a myriad of optimiza-
tion problems involve several fitness functions to be optimized. If such metrics are independent of
each other by featuring orthogonal solution spaces, the problem formulation can be broken down
into separate optimization problems that can be solved in isolation. However, it is often the case
that many — if not all — such metric functions share a common set of optimization variables that
makes the overall problem non decomposable. Notwithstanding the increased complexity derived
from this non-decomposability, multi-objective optimization finds its rationale from the fact that
such shared variables may drive the metric values towards different directions which, in some
cases, may not be sought in the problem formulation. In words, the fitness functions involved
in a multi-objective optimization problem may be conflicting through the values of their shared
variables. For instance, in a conventional telecommunications deployment problem an area is to
be covered by means of base stations with circular coverage and an associated economic cost.

One could establish a cost-constrained single-objective problem definition where the metric to
be maximized is the area covered by the base stations, with their number and positions inside the
area as optimization variables. Alternatively, an bi-objective formulation would consider the area
covered and the overall economic cost of the deployment as the fitness functions to be maximized
and minimized, respectively. It should be intuitively clear, however, that an increase of the cove-
red area would come along with a worse (higher) economic cost, since in the limit where the base
stations have been optimally positioned there is no other way to increase the area covered than
to deploy another base station, which necessarily unchains a higher cost. Hence, “optimizing” a
multi-objective problem must be conceived as finding a value for the solution vector X that renders
values for all objective functions acceptable to the designer [20].
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Figure 2.2: Example of the estimated Pareto front for a bi-objective minimization problem. In the
plot bold circle markers @ correspond to Pareto optimal solutions, whereas the fitness values of Pareto
suboptimal values of X are labeled with O. An example of an unfeasible solution is marked with OJ: it
happens to be Pareto dominating, but possibly by not fulfilling one or several imposed constraints.

This being said, there are different algorithmic ways to deal with a multi-objective optimiza-
tion problem. The most straightforward approach is to properly normalize and aggregate the
objective functions into a single one. However, most of the research done in the specific field of




2.2. A Rationale for Meta-Heuristics and Soft Computing 17

meta-heuristic multi-objective optimization has gravitated on estimating the so-called Pareto set.
Proceeding further with the technical particularities of Pareto-based methods, a multi-objective
optimization problem under this approach can be formally defined as finding the vector of candi-
date solutions X* = X1,X5,..., Xy} with X7 € X Vn €{1,...,N} that optimizes the vector function

£X) = {/1X), foX), -+, FL X}, (2.4)

each of whose compounding candidate vectors X, (with n € {1,...,N}) fulfills the constraints
h;(X,) z H; for i =1,...,N.. Expressed differently, the goal of a multi-objective optimization
problem is to determine among all such solution sets satisfying the above N, constraints, the
specific set of solution vectors X* that attains the optimum value of the L objective functions de-
fined in Expression (2.4). As opposed to its single-objective formulation counterpart the notion
of optimality differs from the paradigm of achieving a unique solution that simultaneously meets
the constraints and provides the best value for the objective function at hand. Multi-objective
optimization coins the so-called Pareto optimality under which the aforementioned X* € XV is
declared Pareto optimal in a minimization problem if there does not exist another set of candidate
solutions X such that f;X) < fiX*) Vi€ {l,---,L} and f;(X) < fi(X*) for at least one I’ € {1,...,L}.
That is to say, X* is Pareto optimal if no feasible vector of decision variables can be found to de-
crease any metric function without causing a simultaneous increase in at least another criterion.
Consequently, the union of the metric values for all non-dominated vectors in the optimal Pareto
set is referred to as Pareto front, as shown in Figure 2.2 for a bi-objective minimization problem.

Operationally speaking, the multi-objective formulation of an optimization problem does not
involve any dramatic change in the concepts of continuity of the solution space (i.e. combinatorial
and continuous multi-objective optimization problems can be found throughout the literature).
However, the optimality of multi-objective solvers changes radically as this concept must em-
brace Pareto dominance and solution diversity of the estimated front. To this end, several quality
indicators have been developed in the literature to evaluate different multi-objective approaches
[21, 22], among which it is worth to mention:

* The hypervolume indicator, which measures the volume of the objective function space cove-
red by the members of a non-dominated set of solutions. For a two-objective optimization
problem, it is given by the sum of all rectangular areas bounded by a reference point.

¢ The e-indicator which, given two Pareto sets X4 and Xp, quantifies the smallest amount
¢ € R that should be employed to shift the set X4 so that every point in Xp is covered.

To end with, it should be pinpointed that if a multi-objective formulation of a multiple-metric
optimization problem is established, knowledge about the produced estimation of the Pareto opti-
mal set helps designers and decision makers when choosing the compromise solution trading one
metric function for another, i.e. solvers tackling a multi-objective formulation should recreate the
set of optimal trade-offs between all metrics, which is the first step in design procedures arising
in any discipline (from Telecommunications to Engineering, Medicine, Logistics and Economics).

2.2 A Rationale for Meta-Heuristics and Soft Computing

When dealing with optimization problems characterized by continuous search spaces X, the car-
dinality of the solution space becomes infinite, hence increasing the computational complexity of
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exhaustive search techniques focused on enumerating and sorting all the compounding solutions
of the search space under exploration. What makes continuous-variable problems even more
involved is the inclusion of constraints in the formulation: although a priori the search space
becomes restricted by virtue of the feasibility imposed on the solution space, in practice the con-
sideration of multiple constraints comes along with the need for further algorithmic derivations
indeed devoted to ensuring that the solutions proposed by the primary solver are feasible. Con-
sequently, off-the-shelf optimization algorithms specially prescribed for continuous problems (e.g.
gradient descent methods) are not directly applicable, but instead demand for side repair proce-
dures well suited to deal with constrained optimization. This approach comes along with either
radically new analytical optimizers with a very sharp applicability after long research times, or
an increased computational burden of the overall solver due to the incorporation of the aforemen-
tioned repair procedure in its algorithmic thread. This observation becomes critical when dealing
with multi-modal fitness landscapes, term that stands for the presence of multiple local optima
in the fitness functions involved in the problem definition. In these cases the aforementioned side
procedures should also help the overall optimization algorithm avoid premature convergence to
local optima.

Fortunately, it is often the practical case that fitness functions happen to feature low moda-
lity and reasonably analytical differentiability, the latter paving the way to the application of
optimizers relying on derivative information (e.g. gradient and Hessian) for guiding their pro-
gression to the global optima. The convexity, decomposability and linearity of the fitness function
at hand and its associated constraints also eases the relaxation and simplification of the problem
towards its efficient solving by means of techniques such as linear programming and its variants
[23], interior-point methods [24, 25], Lagrange multipliers [26] and least squares [27], among
others. This empirical statement motivates the general thought that continuous problems are
often solved more easily than their discrete counterparts. However, not all problem-solving me-
thods exhibit a clear differentiability, nor are their fitness functions analytically stated in a closed-
form expression. Constrained combinatorial problems are among the most clear exponents of the
insufficiency of derivative-guided solving methods to cope with complex optimization paradigms
with uncertain differentiability: despite the existence of techniques that can be used to solve this
class of problems to optimality (e.g. the so-called cutting plane [28] or branch and bound [29]
methods), their computational complexity and scalability becomes compromised with as few as a
couple of dozens of variables.

In light of the above rationale, the interest in derivative-free optimization algorithms has
lately resurrected in the research community as means to efficiently solve optimization problems
by only requiring the fitness of a proposed solution to be evaluable, i.e. disregarding the deriva-
bility, linearity, convexity or decomposability of the problem at hand. This category of solvers
do not approach an optimization problem in a principled, mathematically formal yet computa-
tionally costly way, but instead resort to iterative heuristic methods to yield solutions whose qua-
lity is satisfactory for problems where the global optimality of the solution is not critical (or even
attainable, due to the scales of the problem and its solving complexity via analytical methods).

Within this class of computationally-efficient derivative-free schemes, meta-heuristic opti-
mization algorithms have lately emerged as the primary subfield of stochastic optimization, which
gather all such algorithms and techniques utilizing some degree of randomness through their
search procedure to solve computationally hard problems. Following the argument in [30], meta-
heuristic algorithms are applied to I-know-it-when-I-see-it problems: 1) paradigms when the de-
signer possesses very few helpful information in advance; 2) problems where there is no a priori
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intuition about what the optimal solution looks like; 3) problem instances whose analytical ap-
proach may lead to costly, involved and often inconclusive mathematical derivations; and 4) cases
where brute-force schemes are impractical due to the large dimensionality of their search spaces.
On this purpose, meta-heuristic algorithms imitate behaviors, processes and phenomena occur-
ring in Nature and Social Sciences in the computer design of their searching procedure. Formally
speaking and despite not unique, the literal definition of Stiitzle [31] may serve as a good baseline
for the interpretation of meta-heuristics:

' N
“Meta-heuristics are typically high-level strategies which guide an underlying,
more problem specific heuristic, to increase their performance. The main goal is
to avoid the disadvantages of iterative improvement and, in particular, multiple
descent by allowing the local search to escape from local optima. This is achieved
by either allowing worsening moves or generating new starting solutions for the
local search in a more intelligent way than just providing random initial solu-
tions. Many of the methods can be interpreted as introducing a bias such that high
quality solutions are produced quickly. This bias can be of various forms and can
be cast as descent bias (based on the objective function), memory bias (based on
previously made decisions) or experience bias (based on prior performance). Many
of the meta-heuristic approaches rely on probabilistic decisions made during the
search. But, the main difference to pure random search is that in meta-heuristic
algorithms randomness is not used blindly but in an intelligent, biased form.”

This procedure builds upon a set of intelligent stochastically-driven operators imitating diffe-
rent particularities of the observed process that allows controlling the degree of exploration (di-
versification) and exploitation (intensification) of the algorithm at hand. Optimization algorithms
attaining improvements within the vicinity of their proposed solutions — by e.g. profiting from
partial local gradient information — are known to be exploitative, whereas algorithms cruising
randomly over the search space are referred to as explorative. Explorative strategies are ne-
cessary when handling large multi-modal search spaces, but exploitative algorithms permit to
attract intermediately produced solutions closer to optimality. Indeed meta-heuristics are often
hybridized with local methods that provide additional exploitative capabilities to the global search
procedure for local optima avoidance and constraint handling, such as Iterated Local Search [32],
Variable Neighborhood Search [33], Greedy [34], GreedyExp [35], Large Neighbourhood Search
[36], Hill Climbing [37] or simplified meta-heuristics [38].

2.3 Soft Computing and Evolutionary Optimization

From a general perspective meta-heuristics belong to Soft Computing [39], a Computer Science
field that tolerates and leverages imprecision, uncertainty, partial truth, and approximation to
infer inexact solutions to computationally hard paradigms for which there is no algorithm that
can compute an exact solution within a technologically affordable time. Soft Computing is a key
part of Artificial Intelligence, and many of its methods also belong to the area of knowledge called
Natural Computing, which refers to the spectrum of algorithms inspired by the way Nature solves
extremely complex problems. It draws inspiration from Evolution (leading to Evolutionary Com-
putation), Physics (Simulated Annealing), social living being networks (e.g. social insects, coining
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the Ant Colony Optimization solver and the subfamily of Swarm Intelligence methods), Neural
Networks (capitalizing on the capability of the human brain to perform reasoning in complex en-
vironments) and Immune Systems, among many others. This classification is flexible in the sense
that some algorithms may belong simultaneously to different groups: for instance, a Genetic Al-
gorithm (GA) is a population-based meta-heuristic optimization method (similar to Ant Colony
Optimization), but it can also be regarded as an evolutionary algorithm. Another example: a
fuzzy neural network or neuro-fuzzy system is a learning machine that finds the parameters of a
fuzzy system (i.e. fuzzy sets, fuzzy rules) by exploiting approximation techniques from neural net-
works. It thus belongs to the intersection between Neural Computation and Computation based
on Fuzzy concepts.

. Soft Computing
Hard Computing
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Figure 2.3: General taxonomy of Soft Computing approaches.

Figure 2.3 represents the four basic algorithmic pillars of Soft Computing, some of them
exhibiting non-null intersection: Neural Computation, Computation based on Fuzzy Concepts,
Probabilistic Reasoning and Evolutionary Computation. A brief introduction on these branches of
Soft Computing will be next provided in an attempt at making this chapter self-documented and
insightful on the roots of Soft Computing.

2.3.1 Neural Computation

Neural Computation is a branch of Soft-Computing which includes algorithms inspired by the hu-
man brain metaphor, and also other approaches, mainly devoted to classification and regression
problems. The portfolio of neural computing techniques is huge, hence this section focuses on
the most widely used Neural Computation approaches: the Multi-Layer Perceptron (MLP). The
MLP is a particular kind of neural network, in essence a massively parallel and distributed in-
formation processing system that has been successfully applied to a large variety of nonlinear
classification and regression problems [40, 41]. Put it simple, an MLP consists of an input layer, a
number of hidden layers, and an output layer. The leftmost one represents the input layer, which
receives data usually arranged as an input vector. On the other side, the rightmost ouput layer
produces an output signal. Those layers between the input and output layers are the so-called
hidden layers. In turn, all layers forming an MLP are basically composed of a number of especial
processing units, called neurons, whose internal behavior will be described below. As important
as the processing units themselves is their mutual connectivity: the neurons within a given layer
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are connected to those of other layers by means of weighted links. These weights are just the pa-
rameters that determine to what extent a neuron is connected to other. In this respect, the value
of each weight is related to one of the most important properties that an MLP can exhibit: the
ability to learn and generalize from a sufficiently large number of examples under what is called
a supervised learning process.

Such a learning process demands a database containing a variety of input examples (also
referred to as patterns) and their corresponding known outputs. The weight values for the con-
nection between neurons are those that minimize the error between the output generated by the
MLP when fed with input patterns in the database and the expected one already contained in
the database. In other words, the weights of the links are adjusted to learn the function rela-
ting the input samples to the corresponding known output in the database. In this regard, it is
well known that MLPs (similarly to most of the neural networks) are universal approximators
of a wide range of functions, which gives them a great versatility [42]. For instance, in many
regression problems and the prediction of time series, MLPs with a single hidden layer are pro-
fusely used: as a matter of fact, the number of neurons in the hidden layer is a parameter to
be optimized when using this type of neural networks [40, 41]. In what relates to the learning
procedure of MLP, the well-known Levenberg-Marquardt algorithm is often used [43], which was
originally designed to attain second-order training speed without having to compute the Hessian
matrix. This matrix is estimated by using the Jacobian matrix, which can be computed through
a standard back-propagation technique much less complexly than the Hessian matrix.

MLPs have been successfully applied to many different classification and regression problems
in science and engineering applications. However, its main drawback is the lack of a general rule
to come up with an optimal network structure to solve a given problem. Deriving the optimum
number of hidden layers and the number and type of neurons in this layer for a given problem re-
mains an open challenge, which has been tackled thoroughly in the literature. The training algo-
rithm is another open question: though the existing approaches provide good results, research in
this field is still active, yielding alternative training approaches — some of them hinging on meta-
heuristics — that have gained momentum in classification and regression paradigms. One of such
training procedures is the Extreme Learning Machine (ELM), a fast learning method based on the
structure of MLPs recently proposed in [44] and applied thereafter to a large number of classifi-
cation and regression problems [45, 46, 47]. The ELM structure is similar to that of the MLP, but
with the exception that neurons are trained just by randomly setting the network weights, and
then obtaining the inverse of the hidden-layer output matrix. This makes the training algorithm
extremely fast and simple, and results to perform better when compared to other established
approaches such as classical multi-layer perceptrons or support vector machines. Moreover, the
universal approximation capability of the ELM network, as well as its classification capability,
have been already proven [48, 49]. Due to this noted outstanding performance and their extreme
fast training time, ELMs are perfect for fast classification or regression tasks [50, 51, 52].

2.3.2 Computation based on Fuzzy Concepts

Fuzzy Logic (FL) based computation is inspired by the fact that humans exhibit the extraordinary
capability to reason and make decisions in an environment of uncertainty, incomplete informa-
tion, and partiality of class membership. The original concept of Fuzzy Logic was first proposed
by Zadeh [53], and is based on the concept of fuzzy sets, which plays a central role in fuzzy logic.
Classical set theory has a crisp concept of membership: an element either belongs to a set or it
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does not. However, fuzzy set (F'S) theory differs from the traditional one in the fact that partial
membership is allowed (that is, an element can belong to a set with a certain degree). This de-
gree of membership is commonly referred to as the membership value and is represented by using
a real value in [0,1], where 0 and 1 correspond to full non-membership and membership, res-
pectively. Usually, triangular or trapezoidal functions are used as membership functions because
of their simplicity, although, however, smoother or complex shapes can be used if necessary [54].
Based on these ideas, predicates in fuzzy logic can have partial degrees of truth, in the same way
as elements can have partial membership in fuzzy set theory. The degree of truth of a predicate
is represented using a real number in [0,1]. These ideas allow introducing two basic concepts
in FL: graduation and granulation [565], which lie at the very core of FL, and are the mayor dis-
tinguishing properties of fuzzy logic [54] when comparing to classical reasoning schemes. In FL
everything is allowed to be granulated: for example, the concept size is granulated when its values
are described as “small”, “medium” and “large”. Thus, the principal contributions of fuzzy logic
consist of the concept of a linguistic variable (using words instead of numbers [54]), the machi-
nery of fuzzy “if-then” rules, and the capability to compute with information described in natural
language. The interested reader is recommended the illustrative review in [54] for further de-
tails. Fuzzy logic makes it possible to construct better models of reality in human-centric science
such as economics, medicine, psychology and linguistics [57, 58, 59, 60]. In particular, FL-based
computation plays a relevant role in insurance-related problems [61].

2.3.3 Probabilistic Reasoning

Probabilistic Reasoning denotes those mechanisms used to update and guess the outcome of sys-
tems affected by randomness or other types of probabilistic uncertainty by conditioning it with
newly available evidence. Probably one of the most evident exponents of this class of Soft Com-
puting methods can be found in the so-called Bayesian Belief Networks, which build upon the
well-known Bayes Law to graphically represent the probabilistic conditional relationships bet-
ween different random variables by means of a graph [65, 66]. Based on this graphical repre-
sentation algorithms such as Belief Propagation [67] and later evolved Sum-Product Algorithm
[68] for cyclic graphs allow performing inference and learning efficiently over this family of proba-
bilistic frameworks. Another trend in this Soft Computing subfield lies on the Dempster-Shafer
theory [69, 70], whose original purpose was to compute the degree of belief of statements made by
different sources from a subjective probability of the reliability of the sources themselves, hence
establishing the theoretical foundations for data fusion schemes subject to communication fai-
lures or any other origin of uncertainty [71].

2.3.4 Evolutionary Computation

Techniques under the Evolutionary Computation category are inspired by the principles of Ge-
netics and Natural Selection. The most representative strategy in this subset is the concept of
Genetic Algorithm (GA, [72]), although there are also other paradigms that have been recently
introduced such as the social computation by swarms as in e.g. the Particle Swarm Optimiza-
tion approach (PSO, [73]). There is a plethora of optimization algorithms belonging to the family
of evolutionary computation, as is next exemplified by an outlook on genetic evolutionary ap-
proaches, techniques inspiring from swarm intelligence and physics, and the solver mimicking
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the music composition process of an orchestra that lies at the core of the algorithms proposed in
this dissertation: Harmony Search.

2.3.4.1 Genetic and Evolutionary Algorithms

By inspiring on concepts borrowed from natural evolution and survival of the fittest individuals
in Nature, Evolutionary Computation gained momentum in the research community by virtue of
the seminal findings on Evolution Strategies by Rechenberg [74] and Schwefel [75], and evolution-
based schemes stemming therefrom such as Evolutionary Programming [76], Differential Evolu-
tion (DE) [77] and Estimation of Distribution Algorithms (EDA) [78]. Generally speaking, this
class of meta-heuristic optimization techniques has been widely used for solving combinatorial
optimization problems! by encoding the problem through strings of numbers. All genetic and evo-
lutionary algorithms are based on the evolution of a population of candidate solutions by applying
an encoding strategy and a series of evolutionary operators, which are next outlooked in the con-
text of the most frequently utilized evolutionary algorithm in the related literature, the Genetic
Algorithm [62, 63]:

¢ Encoding of the candidate solutions: in nature, all of the genetic information which encodes
and causes the external characteristics of a living organism (or individual) is referred to as
genotype. Any particular characteristic produced by a piece of this genetic information is
encoded by a gene, a chromosome being hence the set of these genes. Each gene is located at
a particular position on the chromosome and may have different values, called allele. This
strategy can be regarded as a transformation of the real search space into another where
the exploration and exploitation is much easier. From a mathematical point of view, if F
denotes the set containing all the candidate solutions and G is the set of chromosomes that
encodes them, there is a bijection { : F — G such that any solution X € F is represented by
an unique chromosome ((X) € §. Roughly speaking, the terms chromosome and individual
are interchangeable.

¢ Generation of an initial population of candidate solutions: the size of the set of individuals
to which the evolutionary operators are applied is a crucial issue for the search performance
of the algorithm itself. On the one hand, a large population size ¥ may cause more genetic
diversity (and thus, a higher search space?), and consequently suffer from slower conver-
gence. On the other hand, with a very small population only a reduced part of the search
space is potentially explored, thus increasing the risk of prematurely converging to a local
extreme.

¢ Application of evolutionary mechanisms: in Nature, the random creation of new genetic in-
formation with respect to the ancestors of the individual at hand may lead to the ability to
survive. The better an individual is suited to the environment, the higher its probability
of survival results to be. This is the idea of the so-called survival of the fittest principle:
the longer the individual’s life is, the higher its chances of having descendants will be. In
this procreation process, the parent chromosomes are combined (recombination) to produce

IDespite their original application to combinatorial problems, evolutionary optimization approaches are also utilized
for efficiently solving continuous problems by redefining their constituent evolutionary mechanism.

2Not to be misunderstood as solution space, which mainly depends on the problem definition and the alphabet
characteristics of its compounding variables.
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a novel chromosome. Sporadically, and because of unavoidable errors in copying genetic in-
formation or external factors (for instance, radiation), mutations (random variations) occur.
The consequence is the creation of a generation of living beings with some novel characte-
ristics that make them slightly different from those of their progenitors. If the new attribute
makes the offspring better suited to the varying environment, the probabilities of both sur-
vival and procreation also increase. Part of the offspring could inherit the modified genes
and the corresponding external characteristic. In this manner, the population of individuals
evolves and, for a number of generations, the described process results in the creation of
individuals better adapted to the environment and in the extinction of those worst suited.

This brief introduction on evolutionary computing enables a better understanding of the fun-

damentals of the standard genetic algorithm established in [64], which features crossover and
mutation operators, binary encoding and selection by means of the Roulette Wheel method. As
motivated before, the genetic algorithm is based on a number of evolution operators, which will be
detailed below, implemented in a loop process. The algorithm starts by initializing the individuals
— usually at random based on the alphabet of their constituent genes — and the calculation of fit-
ness values associated with each individual. A loop is then entered in which evolution operators
are applied until either a certain stopping condition is fulfilled: usually a predetermined number
of generations (sequences of the loop) is used, but alternative criteria are also used, e.g. stop when
no improvements are observed in the results after a number of generations set beforehand. The
aforementioned evolution operators work as follows in reference to Figure 2.4:

* A selection operator aims at selecting those individuals (population components) that will

be part of the population for the next generation. In the standard implementation of the
algorithm, each individual has a probability of survival for the next generation proportional
to its associated fitness value, which is given by the objective function to be optimized.
Specifically, if f(Xy) denotes the fitness value of individual Xy, in a ¥-sized population, its
probability p, of being selected is given by

w -1
py=fXy)- ( > f(Xw)) : (2.5)
y=1

with v € {1,...,¥}. This particular selection procedure is referred to as the Roulette Wheel
method [62], and is considered the most conventionally utilized selection procedure for Ge-
netic Algorithms. However, other well-known selection methods are also utilized in the
literature such as the probabilistic tournament [79], the ranking selection [80] and schemes
inspired from Monte Carlo simulation [81] or statistical geometry [82].

* A crossover operator, whose goal consists in generating novel individuals from existing ones.

In the standard implementation, individuals are paired at random, and crossed (by ex-
changing parts of the binary string) with a probability called crossover probability, which
is usually around 60% (that is, 60% of pairs of individuals are crossed in each generation).
Each pair then leads to another pair of offspring individuals, replacing parents in the next
generation. There are different types of crossover methods: one point, two-point or multi-
point, depending on whether the parents are crossed by exchanging parts in one, two or
more points in their binary string.

The mutation operator aims to mimic the following fact in Nature: the chromosomes (which
contain genes that encode the physical characteristics of an individual - genotype -) can un-
dergo random changes called mutations. They may be due to external causes (e.g. radiation)




2.3. Soft Computing and Evolutionary Optimization 25

or internal (a simple failure to copy the material). These mutations can generate individuals
with novel external physical characteristics (phenotype) that may allow them (or not) adapt
to the changing environment. If advantageous, the feature can be spread with a certain
probability to later generations. In a Genetic Algorithm, the mutation operator generates
a new individual from an existing one. This process is performed by changing at random
certain bits from 0 to 1 and vice-versa, with very low probability (usually the mutation like-
lihood for a given individual is about 1%). It differs from the previous one in that the bits
change occurs within the same individual and not with another of its generation.

(soar) s

Population update Fitness evaluation
Initialization
No
Fitness evaluation Selection Crossover Mutation
X
1 Yes

Return best chromosome

Figure 2.4: Generic flow diagram of a genetic algorithm.

For non-binary implementations of algorithms, the crossover and selection operators can be
kept as defined for the standard algorithm, whereas only the mutation operator would change,
which should suit the implemented encoding selected for the specific problem. For a complete and
comprehensive outlook on genetic algorithms, the reader is referred to the bibliography on this
matter available in [72, 63, 83, 84].

At this point it is also noteworthy to mention the potentiality of evolutionary algorithms to effi-
ciently solve multi-objective optimization problems, which was originally pinpointed by Rosenberg
in [85] and thereafter unchained a flurry of mostly genetically inspired multi-objective solvers
such as the Vector Evaluation Genetic Algorithm (VEGA, [86]), Weight-based Genetic Algorithm
(WBGA) [87], Multi-Objective Genetic Algorithm (MOGA, [88]), Niched Pareto Genetic Algorithm
(NPGA) [89], Non-Dominated Sorting Strategy (NSGA, [90]), Pareto Archived Evolution Strategy
(PAES, [91]) and Multi-Objective Evolutionary Algorithm (MOEA, [92]), among others. By virtue
of their population-based search strategy, evolutionary algorithms are able to produce an entire
set of solutions at a single iteration of their working procedure which, by intelligently modifying
their solution archiving criteria, renders an estimated Pareto set in a single run of the algorithm.

This is indeed the rationale of the fast non-dominated sorting approach followed by the im-
proved version of the NSGA algorithm previously cited, coined as NSGA-II [93]: at each iteration
each solution 2 within the W-sized population is assigned two different measures of its Pareto
quality: 1) the number of solutions that dominate the solution y at hand; and 2) the set of solu-
tions which the w-th solution dominates. If no other vector results to dominate the -th solution,
it is declared to belong to the first non-dominated front, ranking 1 for the first parameter. The
solutions belonging to the first front are set apart and the procedure iterates on the remaining so-
lutions by assigning increasing rank values for subsequently non-dominated fronts, and so forth.
This imposes the ordering criteria for assessing the Pareto optimality of the archived solutions
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through the iterations: candidate vectors with rank equal to 1 will be kept in the population
preferably than those with higher rank or equivalently, less relevant in the context of Pareto
dominance.

However, there is still a need for establishing a sorting strategy for those solutions sharing the
same Pareto dominance rank. To this end, NSGA-II establishes the so-called crowding distance as
a measure of the diversity and span of a front, which is defined as the average distance of the two
neighboring solutions of a particular solution % € {1,...,V}. Intuitively this parameter provides an
estimation of the density of solutions surrounding a point of the front at hand. This being said,
solutions with large crowding distance are preferred to solutions with small crowding distance.
Consequently, the population is filled iteratively by considering first the rank order criteria among
the fronts (lower rank values are preferred), followed by the ordering among the solutions driven
by their crowding distance values.

2.3.4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based meta-heuristic technique developed by
Kennedy and Eberhart in [94], inspired by social behavior of bird flocking and fish schooling. A
PSO system is initialized with a population of random solutions, and searches for the optimal one
by updating the population over several generations. PSO has no evolution operators, such as
crossover and mutation as genetic algorithms do, but potential solutions instead, called particles,
which fly through the problem search space to look for promising regions on the basis of their own
experiences and those of the whole group. Thus, social information is shared, and also individuals
profit from the discoveries and previous experiences of other particles in the search.

Mathematically, given a swarm of WV particles, each particle v € {1,..., ¥V} is associated with a
position vector X, = {X w,X;’/ ,oe ,X%)}, with K being the number of parameters to be optimized
in the problem. Let X:;, be the best previous position that particle ¢ has ever found, i.e. Xj, =
(X f’*,X;’/ ’*,...,X;g’*}, and X% be the group’s best position ever found by the algorithm, i.e X% =
{X{,X5,..., X2} At each iteration step i + 1, the position vector of the y-th particle is updated by
adding an increment vector AXy, (i + 1), called velocity V(i + 1), as

V/i+ D)=V @) +e1riX)"" = X))+ cara(Xy — X (D)), (2.6)
V/(i+1)-vmas
ViGi+n =tk if V(i + 1) > Vs, 2.7)
VY G+ 1)l
X/G+D)=X]@)+V] (i +1), (2.8)

where k € {1,...,K}, c1 and c9 are two positive constants, r; and rg are two random parameters
which are found uniformly within the interval [0,1], and V"% is a parameter that limits the
velocity of the particle in the k-th coordinate direction. This iterative process will continue until
a stop criterion is fulfilled, this forming the basic iterative process of the standard PSO algo-
rithm first formulated in [94], subsequently extended in [95, 96] by including concepts such as
the inertia weight and the constriction factor for a better balance between the intensification and
diversification capabilities of the algorithm.
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2.3.4.3 Simulated Annealing

Proposed by Kirkpatrick in [97], Simulated Annealing (SA) is essentially a stochastic optimization
algorithm inspired by the physical process of annealing in metallurgy. As opposed to gradient-
based search methods, which employ the idea of steepest descent at each iteration, SA allows
random uphill perturbations, thus preventing the search process from getting stuck in local mi-
nima by accepting worse candidate solutions based on probabilistic parameters. SA can be seen
as a single-point evolutionary algorithm in which crossovers are disabled and only mutations are
used. This is also a global search strategy and can work in very high-dimensional searches given
enough computational resources.

The search procedure of this solver is based on the analogy with the physical process of an-
nealing: a lattice structure of a solid is achieved by heating up the solid to its melting point, and
then slowly cooling until it solidifies to a low-energy state characterized by a robust molecular
structure. To this end SA simulates this heating process by establishing a temperature variable
that is initially set at a high value and progressively decreased as the algorithm runs to recreate
the cooling stage of annealing. A high value of the temperature variable will allow the algorithm
to accept frequently solutions worse than that proposed as the best candidate solution up to the
given iteration, which contributes to the capability of the solver to escape from any local optima
found in early stages of its execution. As the temperature variable goes down, so does the proba-
bility of accepting worse solutions, which makes the algorithm gradually focus on local areas of
the search space. In other words, intensification is progressively favored in the simulated cooling
process of SA. Traveling salesman problems are known to be efficiently solvable by this heuristic.

2.3.4.4 Other Meta-heuristic Algorithms

Many other algorithms are actually inspired by natural phenomena and have been developed
by mimicking the intelligence characteristics of biological and physical agents. Noteworthy is to
briefly mention Ant Colony Optimization (ACO, [98]), which mimics the behavior of ants when
laying down pheromone trails once food has been found after wandering randomly. Artificial
Immune algorithms [99], on the other hand, focus on imitating the behavior of the immune system
in vertebrates when detecting the presence of strange elements in the body in order to eliminate or
neutralize the foreign invaders. In this same line of research, Artificial Bee Colony [100] imitates
the behavior of bees when locating and bringing food to the hive, whereas other recently proposed
techniques inspire from Physics such as the Gravitational Search Algorithm [101], which hinges
on the notion of mass interactions and the theory of Newtonian physics. Other meta-heuristic
algorithms grounding on the observation of biological behaviors include the Monkey Algorithm
[102], which imitates the behavior of a monkey climbing trees in its search for food; the Intelligent
Water Drops algorithm [103], which emulates the dynamics and interactions of natural water
drops moving in riverbeds, lakes and seas; the Invasive Weed Optimization Algorithm [104], based
on the growth pattern and invasive properties of weed colonies; the Hunting Search [105], which
simulates how groups of animals behave when hunting; the Biogeography-Based Optimization
algorithm [106], based on the geographical distribution of living organisms; optimization based on
virus infection [107], on colonies of bacteria [108, 109]; the so-called Cuckoo search approach [110],
built upon the reproduction and breeding of the cuckoo bird; and the recently published Coral
Reefs Optimization (CRO, [111]), based on the algorithmic simulation of the coral reproduction
and reef formation processes.
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In this context, this dissertation gravitates around one of the meta-heuristic algorithms that
can be classified within the above general class of bio-inspired random solvers: Harmony Search
(HS, [112]), for which a separate section within this chapter is allocated.

2.4 The Harmony Search Algorithm

The algorithmic core of the resource allocation algorithms for wildfire proposed in this Thesis will
gravitate on the Harmony Search (HS) algorithm, which is a meta-heuristic solver first proposed
by Geem et al. in [112], and thenceforth applied to a wide spectrum of optimization problems in
very diverse fields such as road routing [113, 114], Sudoku puzzle solving [115], water network de-
sign [116], dam operation [117], vehicle routing [118], multicast routing [119], multiuser detection
[120, 121], design of Telecommunication networks [122, 123], indoor localization [124, 125] and
radar code design [126], among many other application scenarios thoroughly surveyed in [127].
HS is inspired by the improvisation process of an orchestra in their attempt to compose the most
harmonious melody under an aesthetic point of view. During this process musicians improvise
different pitches of their instruments to produce a melody whose aesthetic quality is expected to
improve progressively as the improvisation process evolves. Following the fundamentals of music
composition it is known that the aesthetic quality of a certain melody relies mainly on the fre-
quency ratios between the played pitches (which, as a matter of fact, keep an interesting, succinct
connection to the Theory of numbers and the Golden mean [128]): as such, two notes playing one
octave apart have been proven to sound pleasantly, similarly to other simple ratios such as 3:4 or
2:3. By contrast, pitch gaps of 7 semitones (e.g. “DO” and “SI”) are dissonant.

Musicians
(optimization variables) Improvisation process
1) Focus on note values played in the past
and associated to high aesthetic quality har-
monies (bad harmonies are forgotten)
> 4?
e

DORERE4/>$ , —— > Time
-~ RE--4-- RE---4-- RE- ” o tl 2) Try note values close to the last played note
DO DO DO % = _—r .
. - V4 ! T o B P § N4
MI FA SOL : €
Je© —'soL
MI FA SI > ¢ .
3) Improvise a completely random pitch
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Figure 2.5: General overview of the improvisation process of a music band composed by K = 3 musi-
cians and a harmony memory of size ¥ = 8.

If the aesthetic quality of music is used to measure the fitness of a certain produced harmony,
the mapping between the process of music composition of an orchestra or band results straightfor-
ward if one notices that each musician denotes a decision variable X, being K their total number.
On the other hand, the pitch range of the instrument played by a musician represents the alpha-
bet X of the decision variable X} ; the harmony or melody improvised at a certain time stands for
a solution vector X at a given iteration; and the aesthetic impression of the audience is indeed
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the fitness function of the optimization problem at hand. Since musicians improve progressively
the melody through time by varying the pitch of their instruments and checking whether an aes-
thetic enhancement has been achieved, the HS algorithm improves the fitness of the solution
vector iteratively by applying a set of intelligent stochastically-driven operators, similar to other
meta-heuristic algorithms described previously (e.g. genetically inspired approaches). The defini-
tion and design of these operators is based again on the behavior of musicians when improvising
new melodies, as shown in Figure 2.5 and explained in what follows.

HS is a population-based algorithm where the W-sized archive of candidate solutions is re-
ferred to as Harmony Memory (HM), which can be thought of as resembling the archive of har-
monies that the musicians of the orchestra remember as aesthetically good during the composition
process. Similarly to the manner in which the population of chromosomes is handled in genetic
algorithms, at every iteration a set of operators is applied to each of the candidate vectors or har-
monies of the HM, each generating a newly improvised vector every time. A reader experienced
in the essentials of meta-heuristic optimization would at this point unveil clear connections bet-
ween HS and classical evolutionary optimization, in the sense that the former incorporates key
ingredients from the latter such as polygamy (each offspring may become from several parents)
or incremental evolution. However, there is a subtle, yet paramount difference with respect to
naive genetic optimizers: HS applies such operators to each of their compounding elements or
notes separately based on independent probability distributions. This per note application and
the definition of the operators permit to easily balance the trade-off between the explorative and
exploitative behavior of the HS heuristics in a generally® more efficient fashion than other solvers.

HM sorting . .
<7 —
& Filtering Fitness evaluation ‘

Initialization

v

Fitness evaluation

No

Termination
criteria met?

Return best harmony

Figure 2.6: Generic flow diagram of the HS algorithm. Dashed arrows correspond to optional stages
aimed at controlling the level of randomization of the search process independently from the nominal
operator of the algorithm.
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The above being said, the flow diagram of the HS algorithm comprises four steps as depicted
in Figure 2.6: 1) initialization of the Harmony Memory; 2) improvisation of a new harmony vec-
tor; 3) update of the memory with those newly generated harmonies better — as dictated by the
fitness function — than any of the currently solutions in the HM; and 4) return to step 2 until a
termination criteria is met. A maximum of three probabilistic operators drive the search behavior
of this algorithm:

31t is known that no algorithm rendering the best performance in all optimization problems exists [129], but the
HS algorithm has certainly in practice to outperform other meta-heuristic methods in a diversity of scenarios. This
empirical fact buttresses the general statement on the claimed supremacy of HS made at this point.
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* The Harmony Memory Considering Rate emulates the exploitation — or consideration —

of the archive of good harmonies by the musician: when improvising a new pitch in the
played instrument, each musician should recall which pitches led to a aesthetically plea-
sant melody. To emulate this in the search process, this operator establishes a probabilistic
parameter HMCR € [0,1] that sets when the new value for a certain note is drawn uni-
formly from the values of this same note in all the remaining melodies. Otherwise (i.e. with
a probability 1-HMCR), the new value is randomly chosen from their alphabet X, which in-
creases the diversity of the solutions towards optimality. Following the notation introduced
in this chapter, if the HM is denoted as {X(z//)}:f]’:1 with X(y) £ {X1(w), Xa2(y),..., Xg (W)}
representing the y-th archived harmony, and K the number of notes, then

HMCR £ Pr{X () ~> Oscx)} » (2.9)
where wyycr 18 a discrete random variable uniformly distributed in

{Xp(),... . Xy -1, Xp(y+1),..., X (P}

This operator operates in a per note basis through the different harmonies of the HM, i.e.
the above operation is repeated for every k£ € {1,...,K} and v € {1,..., 'V} by properly varying
the support of wyyce. It should be also remarked at this point that some contributions
consider the random consideration as a separated operator (RSR, Random Selection Rate)
with its own probabilistic parameter, rather than statistically driven by the complementary
of the HMCR probability. Disregarding its implementation, randomization would reflect the
creativity of the musician to improvise new notes in a more radical and explorative manner
than through the pitch adjustment next explained.

The Pitch Adjusting Rate imitates the way a composer varies subtly the pitch of the played
instruments when detecting that the improvised melody is close to a good aesthetic quality.
To this end, the PAR operator poses a probability PAR € [0,1] that the new value X (y) for
a given note value X () is given by a random perturbation centered on X (), namely

PAR 2 Pr{X,(y) ~ X (w)}, (2.10)

where
Xk(w):{ Wpar if |X| < oo,

Xp(w)+p-z otherwise, (2.11)

with § € R* representing the pitch bandwidth, and z denoting a continuous random variable
following an uniform distribution with support [—1,1]. As for the case of discrete alphabets,
wpar 18 a random binary variable with equal probability of taking the neighboring values on
X (w) in X. When handling discrete alphabets for the compounding notes of the harmony,
wpar denotes a random binary variable with equal probability of taking the neighboring va-
lues on X () in X: when this is the case, the best search strategy is to define a vicinity
relationship criterion between the components of X, which is usually driven by the implica-
tions of such alphabet values on the fitness function f(-) to be optimized.

As mentioned earlier, these parameters balances the diversification and intensification capa-

bilities of the HS solver. For instance, the combination of a high PAR value and a narrow band-
width f may hinder the exploratory behavior of the algorithm in favor of a deeper intensification
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around intermediately discovered solutions. Contrarily, a low pitch adjusting rate and/or high va-
lues of f may push the algorithm away from local areas featuring solutions of potential optimality.
On the other hand, the consideration of the information contained in the harmony memory can
be regarded as a probabilistically driven exploitative search method embedded within the overall
thread of the solver: high values of the HMCR parameter will force the algorithm to draw new
note values from the already improvised ones at the risk of trapping the algorithm into local op-
tima, whereas configurations with low HMCR values will delegate most of the randomized search
capability of the algorithm to the RSR operator, through which regions of the search space far
apart from each other are examined. Interestingly, a recent contribution has proposed a simple
yet insightful mathematical framework that unveils the exploratory principles of HS [130].

Several differences between Harmony Search and other evolutionary meta-heuristics can be
found beyond the pure interpretation and simile of HS to the process of music composition in
groups. Clearly similarities arise in what relates to its population-based nature and e.g. genetic
algorithms, but HS combines polygamy in a probabilistic basis that make any newly improvised
harmony potentially inherit characteristics of the entire memory. Besides, the note-wise applica-
tion of the improvisation operator unchains a search process of finer granularity, allowing for a
more flexible randomized refinement of the produced solutions. Finally, its simplicity and flexi-
bility to accommodate hybrid meta-heuristic approaches in combination with other heuristics has
ignited a flurry of modified versions of the original HS algorithm in [112] with no specific applica-
tion scenario, as has been recently reviewed in [131]. Such modifications include hybridizations
with Hill Climbing and a global-best Particle Swarm Optimization [132], as well as stochastic
derivatives supporting HS when tackling combinatorial optimization problems [133].

2.5 Meta-heuristics for Resource Management in Disaster Scenarios

The optimization of operations in disaster events have grasped the interest of the research com-
munity with special intensity during the last couple of decades. The classification of the produced
literature can be driven by several non-overlapping criteria. If the classification is made at first
based on the type of resource involved in the operations, it should be first emphasized that the
provision and distribution of material goods in disaster scenarios (also referred to as logistics) has
been often modeled as variants of the vehicle routing problem (VRP). This optimization model
essentially consists of the discovery of optimal routes for vehicles starting and finishing at a given
depot so as to deliver goods to a set of scattered nodes under different criteria (e.g. distance, time
or cost minimization). This seminal definition of the vehicle routing problem has evolved to a
wide spectrum of alternative formulations and extensions such as the Capacitated VRP (CVRP),
the Vehicle Routing Problem with Pick-up and Deliveries (VRPPD), the Multiple Depot VRP (MD-
VRP), the Periodic VRP (PVRP) and the Split Delivery VRP (SDVRP), as well as hybridizations
of these extensions with soft and hard time constraints.

In particular, the SDVRP, first defined in [134] as an instance of the VRP where the demand
can be satisfied by more than one-time delivery or by two or more vehicles, has been mainly
tackled via Tabu Search (TS, [135, 136]), which is a meta-heuristic solver that hinges on the
construction of memory structures that describe the visited solutions during the search process.
A new logistics model encompassing soft time windows, multi-period routing, and split delivery
strategies has been recently proposed in [137] and solved via genetic heuristics. This model builds
upon previous work in [138], where the delivery of relief supplies in disaster areas was approached
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via a similar model, but subject to hard timing constraints (i.e. the demand of supplies must be
served immediately after the occurrence of the disaster). As for the rest of VRP variants there
are myriads of contributions dealing with the application of evolution strategies [139, 140], Ant
Colony Optimization [141, 142], Greedy Randomized Adaptive Search Procedure (GRASP, [143,
144, 145]), Simulated Annealing [146, 147, 148] and Variable Neighbor Search (VNS, [149, 150]),
among others. For the sake of space, the reader is referred to the comprehensive survey in [151]
for further details on the state of the art around meta-heuristics for vehicle routing problems.

One of the most profusely addressed problems in operational research capitalizing on the
above literature focuses on the dispatching and routing of emergency vehicles after the occurrence
of the disaster at hand. For instance, a line of research related to the allocation and routing of
emergency vehicles aims at finding the optimal assignment between casualties of a certain disas-
ter and the set of available transport vehicles, and qualified physicians, such that all casualties
can be medicated as good and quickly as possible with respect to the severity and triage categories
of their individual injuries. To efficiently solve this combinatorial assignment paradigm, a meta-
heuristic approach combining a local greedy method with a modified version of the Simulated
Annealing algorithm is proposed in [152], which is proven to outperform current casualty assign-
ment policies (D’Hondt). In this same context, Yi and Odamar in [153] considered a optimization
model combining two different yet related objectives: the minimization of the delay in the arrival
of commodities and health-care for injuries, and a second criterion based on the assignment of
loading and unloading schedules to each itinerary of the deployed vehicles. A similar formulation
was undertaken in [154] to include the evacuation of injuries to medical centers as an objective
criterion. In both references the formulated problem is tackled by means of a decomposition of
the model in two sub-models, which are solved in an iterative fashion via Ant Colony Optimiza-
tion. Recent contributions resorting to meta-heuristics to solve VRPs in the context of emergency
operations include [155, 156, 157] and references therein.

Another paradigm considers the road network itself as the central variable of the optimization
problem at hand: as such, the allocation task reduces to the elaboration of the optimal repair plan
for a devastated road network after the occurrence of a natural disaster, which can be regarded as
a combinatorial network design problem driven by distinct fitness criteria. For instance, the maxi-
mization of the accessibility to the road infrastructure has been considered in [158, 159, 160], the
latter two focusing on rural areas for developing countries for which GRASP and VNS heuristics
are utilized. Road reconstruction is also addressed via genetic algorithms in [161] by formulating
a fuzzy triple-objective problem: 1) minimization of the travel time over the road during its recons-
truction; 2) minimization of the time taken by any individual work team in their reconstruction
duties; and 3) the minimization of the idle time between team shifts. Similarly, genetic optimizers
have been used for the cost-constrained reconstruction of bridges after natural disasters with
real test data from Athens, Greece [162]. Alternative multi-objective formulations incorporating
real simulation cases (the Chi-Chi earthquake in Taiwan, Asia, in 1999) were also reported in
[163, 164], the latter interestingly considering the minimization of the risk for rescuers as one of
the optimization criteria. More recently, logistical support scheduling for emergency repair works
has been studied in [165], which is modeled as the minimization of the short-term operating
cost of the support planning subject to time constraints and other related operating conditions.
Ad-hoc heuristics are designed for a decomposed formulation of the optimization problem, and
subsequently validated for the Chi-chi Taiwanese earthquake mentioned above.

When the optimization scope targets the deployment of supply depots, field hospitals and in
general, infrastructure supporting emergency operations, the corresponding problem falls within
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the broad category of facility location problems. In this class of optimization paradigms the objec-
tive is to determine the position — and eventually, number — of service nodes in a certain geogra-
phical area so as to either maximize the demand covered by such nodes or minimize the time taken
to satisfy such demands [166]. The literature around this paradigm contextualized in emergency
services abounds since the early 80s, specially in regards to problem extensions imposing multi-
plicity in the service from the deployed nodes to the demanding locations [167, 168], probabilistic
models to account for busy call centers [169, 170] or several service types [171]. Meta-heuristics
have been extensively utilized for their resolution, such as Tabu Search [168, 172], Genetic Al-
gorithms [173, 174], Simulated Annealing [175, 176], Particle Swarm Optimization [177, 178]
and Ant Colony Optimization [179, 180]. Scenarios where the facility location problem has been
shown to overlap and interact with vehicle routing aspects have been also handled via heuristic
methods [181].

Historically the activity in regards to the specific application of meta-heuristics to resource
allocation problems in wildfire disasters has mainly gravitated on the problem of sitting fire sta-
tions in urban areas, which has been put to practice in several geographical locations such as
Bristol, UK [182], Denver, USA [183], Rotterdam, Netherlands [184] and Dubai, UAE [185]. Ho-
wever, despite the noted suitability of meta-heuristic algorithms for the management and preser-
vation of forest landscapes [186], research around this particular disaster has lately tilted towards
the allocation of emergency management systems and ground vehicles [187, 188], thus leaving
aside other resources of relevance for the operations in such scenarios. An exception within the
scarce contributions found beyond facility location and ground vehicle routing is the work by Bar-
barosoglu et al. in [189], where a mathematical framework is presented for the scheduling of
helicopters tasks for disaster relief operations. Specifically the assignment problem was divided
in two sub-problems: the tactical allocation of helicopters from the air force facilities to the com-
mand center, and operational routing and loading decisions, both of which are solved by means of
an interactive bi-objective heuristic procedure. On the other hand, optimal route planning of un-
manned aerial vehicles for wildfire detection and surveillance has been recently tackled in [190]
by considering distance and coverage criteria and collision avoidance constraints, being solved via
multi-objective genetic optimizers.
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CHAPTER 3

OPTIMAL DEPLOYMENT OF WIRELESS
RELAY COMMUNICATIONS OVER
LARGE-SCALE WILDFIRES

“The single biggest problem in communication is the illusion that it has taken place.”

- George Bernard Shaw

When a wide-area disaster such as a big forest fire occurs, it is likely that wired communica-
tion infrastructures in the affected area — if any — become severely damaged or even destroyed
[191]. To effectively deal with this problem there exist different technological solutions incorpo-
rating emergency contingency mechanisms in the development of diverse communication services,
such as standard mobile telephony networks [192]. From the operational point of view different
location problems can be formulated towards minimizing the impact of the affected communica-
tion service in an area devastated by a given disaster, as exemplified by the optimization of the
location of fire stations [187] or other paradigms related to the deployment and routing of vehi-
cles for emergency services [193, 188]. Non-technological approaches have been also exploited to
alleviate the effect of damages in the communications infrastructure [194, 195]. In forest fires,
however, none of such existing solutions are useful due to the peculiarities of the affected wild
zones which are, in the majority of cases, far away from inhabited zones with developed services.

In such cases it is crucial to deploy alternative ad-hoc wireless communication networks as
quickly and efficiently as possible in order to guarantee the communication and security of the
emergency teams (correspondingly, firefighters). In this way, emergency teams will be informed
of their location with respect to any other teams, as well as of the progress of the disaster (fire
front, for example). Historically there is a plethora of cases that exemplify the fatal consequences
of team isolation and lack of coordination in emergency situations (especially fire events), e.g. the
death of eleven firefighters occurred in a 130 km? forest wildfire in Guadalajara (Spain) in 2005,
or the 74.18 km? fire on the Liineburg Heath in Lower Saxony (Germany) in 1975, killing five
firefighters [196].

Generally speaking the main characteristics of this emergency telecommunications network
should be the ease of deployment, its independence with respect to fixed wired infrastructures
and its capacity to be rapidly reconfigured. In this context, dynamic wireless relay networks are
gaining momentum in such catastrophic scenarios: as schematically shown in Figure 3.1, relays

35



36 Chapter 3. Dynamic Relay Deployment over Large-scale Wildfires

offering satellite communication capabilities are usually carried by mobile nodes (e.g. airplanes,
helicopters or unmanned aerial vehicles), allowing them to rapidly move from one position to
another and hence, adapting the wireless network coverage to the mobility of emergency teams.
Technologically speaking, nowadays there is an upsurge of dynamic relaying commercial equip-
ment based on VSAT (Very Small Aperture Terminal) relays: as to mention, specialized products
within the portfolio of companies such as SELEX, TRIAGNOSYS, TELTRONIK and AGIOSAT
provide interoperability for high-speed voice, image and video communications between local,
infrastructure-less networks based on conventional wireless protocols (e.g. 2G/3G/4G, Private
Mobile Radio - PMR and WLAN) and satellite links. As a matter of fact, the earthquake oc-
curred in Haiti in 2010 hit massively the telecommunication network of the whole country, whose
eventual collapse affected the Haitian population, the operations and planning activities of emer-
gency teams and essential services like radio stations and airport communications. In this large-
scale disaster scenario relay devices such as those exemplified above excelled at providing hybrid
satellite-wireless coverage thanks to the initiative of telecommunications companies and non-
governmental organizations.

Figure 3.1: Schematic example of a dynamic relay deployment scenario.

This chapter focuses on the deployment of any kind of relaying equipment by withdrawing
from any specific relay technology in favor of a general formulation of the underlying optimiza-
tion problem. This being said, the paradigm of optimally deploying relays in a disaster area is
closely related to the so-called Dynamic Relay Deployment Problem (DRDP), which consists of
establishing the number and optimal position of an indeterminate set of relays, to ensure commu-
nication between the emergency teams deployed over the area at hand and the backbone network.
This initial formulation of the problem can be regarded as a modification of the well-known disk
cover problem, which was first formulated by Zahn in [197]. The objective of the problem is, given
a unit disk, to find the smallest radius required for a given set of equal disks to completely cover
the unit disk. Johnson in [198] showed that the disk cover problem is a NP-hard problem. Later,
Houchbaum and Maass in [199] presented a set of approximated local semi-exhaustive schemes
for solving a modification of the disk cover and packing problem that focused on points to be
covered rather than areas. Houchbaum inspired from the observation that in order to maximize
the number of points covered by a disk of a certain radius, at least two points must be on its
border, concluding that the number of non-covered points can be bounded by applying a divide-
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and-conquer approach, iteratively selecting the best solution at each iteration. More recently,
and focusing on disaster wireless networks, Guo et al. in [200] adapt three different algorithms
to deal with the aforementioned modified disk cover problem: the two-vertex square covering
(TVSC), the circle covering algorithm [201] and the binary integer programming algorithm (BIP
[202]). All these algorithms are based on greedy strategies: from a given initialization, and follo-
wing a local semi-exhaustive search procedure, these schemes provide the best deployment of a
given set of disks in order to maximize the number of covered points distributed over a plane. It is
important to remark that in these references a set of possible relay locations is a priori assumed,
and thus the search space is significantly reduced with respect to the case when the relay loca-
tions are unconstrained. Another related contribution addresses the specific problem of covering
points on a single-dimensional straight line with a set of sensors [203].

Alternatively, the DRDP can also be considered as a clustering problem, where a set of mobile
users must be associated to a given set of relays, under geometrical and cost constraints. There-
fore, this clustering problem may be solved by resorting to e.g. the K-means algorithm [204].
The K-means algorithm has been applied to a wide variety of clustering problems [205]. This
algorithm follows a search strategy rather different than the previous algorithms, but both share
essentially the same shortcomings when dealing with this optimization problem: 1) both strate-
gies have to be adapted in order to deal with spatial restrictions (coverage radius); 2) their results
strongly depend on the initialization; and 3) the number of clusters must be a priori assumed (or
at least, estimated), and kept fixed while the algorithm is working.

This chapter extends further the set of assumptions taken in the formulation of the DRDP in
[200], aimed not only at optimizing the location of the relays to ensure maximum communication
coverage, but also at properly estimating their number and model (radius, cost), based on the
number and position of emergency teams working on the area at a given time. We have coined
this new paradigm as the Modified Dynamic Relay Deployment Problem (MDRDP). Note that in
the MDRDP the number of relays to be deployed is not assumed to be known a priori, but will
be adapted — jointly with the model of relay deployed — to the scenario at hand. To this end,
relays will be assumed to have a circular coverage area of variable radius, which are associated
to different costs due to e.g. power consumption or price of the equipment itself. In light of these
assumptions, an optimal relay network deployment reduces to determining the number, locations
(geographical coordinates over the area affected by the disaster) and models of the relays, in or-
der to set a balance between the number of covered emergency teams (depending not only on the
number of relays but also on their respective models) and the corresponding overall cost of the
deployment. Since 100 % coverage may not be pursued, this single-objective formulation of the
problem represents the case when an initial emergency deployment must be set, being conserva-
tive with respect to the use of the available communication resources (and ultimately, the overall
cost). Once the dimension of the disaster has been assessed on site, a wider relay deployment with
enhanced coverage (at a relaxed cost limit) could be done or discarded, e.g. if the emergency was
solved by the initial exploring teams or a false alarm was triggered. On this purpose a second for-
mulation of the MDRDP regards coverage and cost as two interrelated yet conflicting, separated
criteria, which jointly describe a Pareto set of available network deployments. This permits to
perform a cost-efficient, scalable emergency deployment once their occurrence has been verified.

To efficiently deal with the above defined hard optimization problem, a novel meta-heuristic
hybrid approach is herein proposed, which combines the global search capabilities of the HS al-
gorithm with an adapted version of the K-means algorithm acting as a local search procedure.
The proposed scheme is able to provide a good balance between the explorative and exploitative
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searching strategy, not only on the relays’ coordinates but also on their respective models. Specifi-
cally, HS is the responsible for determining the coordinates (x,y) at which the relays have to be
deployed, its number and their correct radius or model. On the other hand, K-means greedily
exploits a certain fraction of the potential solutions (i.e. number of relays, radii and locations)
produced by Harmony Search to perform a fine-grained adjustment of the relays’ positions, in
order to maximize the whole network coverage. Besides the lack of previous schemes tackling
this specific optimization problem, the reasons for specifically selecting the K-means clustering
algorithm are threefold: 1) it is widely used for any general-purpose application; 2) its results
are usually efficient and accurate when dealing with unsupervised clustering problems; and 3) its
lightweight implementation. In line with the dual-stage deployment strategy outlined previously,
single- and bi-objective versions of the algorithm are described and discussed. In order to assess
the performance of the proposed algorithms, simulations are carried out on a synthetic tool exam-
ple and an emulated scenario based on real statistical data of the fire events in the Castilla La
Mancha region (center of Spain). The obtained results verify that the proposed scheme is able to
outperform naive K-means based strategies by jointly optimizing the number of relays and their
models towards better cost-coverage ratios at a reduced computational cost.

The rest of the chapter is structured as follows: the novel extension of the dynamic relay de-
ployment (MDRDP) is posed in Section 3.1, whereas Section 3.2 delves into the main characteris-
tics of the proposed meta-heuristic hybrid algorithm. Finally, Section 3.3 discusses a comparison
study between the proposed approach and a standard K-means algorithm.

3.1 Problem Formulation

In reference to Figure 3.2, the MDRDP can be defined as follows: let N be the number of emer-
gency teams deployed over a disaster area A c R%, and {pi}?i 1 2 {(x;, yi )}?i , their respective loca-
tions. The goal is to find the optimal relay deployment in order to ensure cost-effective commu-
nications among the emergency teams deployed over the disaster scenario. In this chapter each
relay deployment D can be specified by using three variables, which gives rise to a three-fold
optimization problem:

* The number M of relays to be deployed. This parameter is assumed not to be known a
priori, but its value is limited to a certain set M € [M,,;;, M ,4x], which may represent the
range of available relay resources in the emergency management facilities.

e The relay locations {(xZ, yan)}%zl over the affected zone A.
* Their corresponding models {([)(m)}ﬁ‘n’[:1 = {(R(m),C(m))}%zl, selected from a set {®;};_; =

{(R¢,Cy)};_; of possible models, where 7 stands for the total number of relay models, R; the
radius and C; the cost for model ¢. Clearly, ¢(m) € {q)t};ﬂ Vm e {1,...,M}. Intuitively, the
larger the coverage radius R; is for a given model, the higher its associated cost C; will be.
The model alphabet {<1),5}§:1 is sorted in ascending order of radius and cost, i.e. Ry > R; and
Cy>Ciift' >t.

A binary N x M coverage matrix X is further defined with entries x; ,, given by

Xim =1 (\/(xi — xR+ (i - yR)2 <R(m)|, (3.1)
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where [(-) is an indicator function taking value 1 if its argument is true. This matrix X can be com-
puted stralghtforward from {(x;, yl)}L 12 {(xm, yR )}M , and the coverage radii implicitly expressed
by {p(mWM m—1- Having this notation in mind, the s1ng1e-0bj ective formulation of the MDRDP aims
at finding the optimum deployment

D* = {M* G, ym WAL (9" L | (3.2)

that satisfies

D* = arg min

N M M
Z (Z Xi,m =0) + ) C(m)] : (3.3)
=1 m=1

{(xm,ym)}M -

{p(mMM_

In words, this metric quantifies the fitness of each deployment: the first term represents the
total number of emergency teams not covered by any of the relays deployed, and the second term
takes into account the overall cost associated to the relay deployment.
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Figure 3.2: Example of an MDRDP instance with M =2 relays and N = 2 nodes to be covered.

It is important to point out that the above metric targets the connection of every team to
a deployed relay rather than inter-team communications; in practice this simplified approach
guarantees that communication links are established between the relay and the covered teams
in a star-like topology, as tree-like network layouts might bring about error interdependencies
between mutually connected links that would made the network deployment significantly more
involved. Nevertheless, from the algorithmic point of view this observation and the link redun-
dancy that several commercial relay equipment incorporates nowadays suggest an interesting
line of future research aimed at extending the MDRDP problem here tackled with routing aspects
in multi-hop emergency communications, which could eventually help extending the coverage
area of single relay nodes far beyond their nominal radio coverage. This research line and its
implications in the design of the optimization solver will be further developed in Chapter 5.

The bi-objective formulation of the problem at hand is straightforward by decoupling both
terms in the metric of Expression (3.3), i.e.

M
{D],D3,..., Dy} = argmln {Z”(Z xlm=0), > C(m)}, (3.4)
= m=1

{(«F yE )}M

{p(m)_




40 Chapter 3. Dynamic Relay Deployment over Large-scale Wildfires

where the output is a family of ¥ network deployments differently balancing coverage and cost.
This family will serve as a decision substrate for the operations commander to a posteriori span
or reduce the initially deployed network in light of the severity of the disaster.

3.2 Description of the Proposed Hybrid Heuristic Algorithm

As previously introduced in Chapter 1, the MDRDP formulated above will be efficiently tackled
by means of a novel hybrid heuristic scheme based on the combination of two algorithms: the
Harmony Search algorithm on which the algorithmic core of the overall Thesis is rooted; and a
modified approach of the K-means clustering algorithm. On the one hand HS is the responsible, as
a global search scheme, for determining the optimum number of relays to be deployed by resorting
to a variable-length solution encoding strategy, as well as their respective types {(/)(m)}ﬁ‘n"’:1 and
coordinates {(xffz, yﬁ)}%zl. Due to the complexity of the three-dimensional problem defined in
Section 3.1, the HS global search (explorative) strategy is hybridized with a modified version of
the K-means algorithm, which takes as inputs the potential solutions produced by the HS, and

refines only the set of coordinates contained therein.

3.2.1 Proposed Global Search Algorithm

As mentioned before, the HS algorithm will be adopted as the global search approach that itera-
tively estimates the number, type and position of the set of relays to be deployed. Chapter 2 has
previously introduced the foundations of this meta-heuristic solver, which deals with a set of ¥
candidate solutions or harmonies (Harmony Memory or HM) that are processed through a set
of stochastically-driven operators. The resulting refined harmonies or solutions are evaluated at
each iteration by means of the fitness function defining the optimization problem at hand.

In the proposed scheme, two different harmony memories are kept during the iterative pro-
cess: the first contains the iteratively refined coordinates of the relays, whereas the second repre-
sents their respective models. Both memories are of the same size ¥ x M(y) (i.e. M(y) varies
from harmony to harmony) and their harmonies are associated note by note, i.e. each note of one
memory is linked to the note located at the same position in the other memory. It is important to
notice that the solution space associated to coordinates and models are both of different cardinali-
ty (continuous alphabet for the locations, and discrete alphabet for the relay model). Therefore,
the improvisation operators applied to each HM are different, and will be remarked by subscripts
M (models) and € (coordinates).

At the first iteration, both memories are initialized with 1) random number of relays M(y)
uniformly from the set {M,in,...,Mnqay}; and 2) values picked uniformly at random from their
respective alphabets. Based on the description of HS detailed in Chapter 2, the HS improvisation
operators are ruled by three probabilistic parameters:

* Harmony Memory Considering Rate: HMCRM ,HMCRC € R[0, 1], which sets the probability
that the newly improvised value for a given note is taken from the values of this same note
in all the other W — 1 harmonies existing in the considered Harmony Memory. Since the
number of notes M(y) for a given v € {1,...,V} depends on v, this operator may involve,
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besides the refinement of the coordinates/models, the deletion or addition of relays in the
corresponding memories (hence, M(y) is affected).

e Pitch Adjusting Rate: PARM ,PARC € R[0, 1] establish the probability that, for a given note, a
fine adjustment of its value is applied based on the neighboring values of its corresponding
alphabet. Due to the aforementioned differences between alphabets of the two constituent
harmony memories, different neighborhood definitions are considered. In the case of coor-
dinates (continuous alphabet), and by denoting the new improvised coordinate for relay m
in harmony v as (xﬁ’O(w), yﬁ“}(w)), the operational procedure of PARC is given by

R0 R0 (xﬁ(lll ), y,,R;(tll ) +2zp with probability PARC,
(e ymew) =1 r . AR
(22 (), ¥k () with probability 1 - PAR",

where zg is the vector realization of a two-dimensional uniform random variable Zg with
continuous support in the range [-f, 8] x [- 8, 8], with € R* standing for the pitch adjust-
ment bandwidth. On the other hand, considering the discrete alphabet for the harmony
memory containing the estimated models, PARM defines the probability that the new value
is taken from its closest neighbor discrete value in the model alphabet {1,...,7}, where 7
stands for the number of relay models considered.

* Random Selection Rate: RSR™ RSRC € R[0,1] pose the probability that a new value for a
note will be selected uniformly at random from its corresponding alphabet. As opposed to
PAR, no alphabet neighborhood considerations are taken in this operator.

These operators are sequentially applied to each note of every harmony included in both har-
mony memories. Once they have been applied over the entire set of notes, the newly produced
harmonies are then passed to the local search procedure explained in the next subsection.

3.2.2 Proposed Local Search Algorithm

The local search procedure is applied once a new set of ¥ harmonies have been generated by
applying the above set of operators, and aims at further refining the set of relay position estimates
produced by the HS solver. This algorithm is basically a modification of the K-means algorithm,
which is a widely-known clustering algorithm that minimizes the inter-cluster sum of squared
distances between each point and its associated centroid.

Let {x1,...,X,} denote the set of points! to be disclosed into S < n sets. K-means works se-
quentially by assigning, one by one, each point x; to one of the iteratively defined centroids with
associated points {xg}le. First, a user-specific value for the number of clusters S is set, and then
their associated points {xsc}‘sg:1 are randomly distributed over the considered region. At each ite-
ration, one point x; is added to each cluster. The cluster to which each point is assigned is the
one with the closest mean of its constituent points. Once the point has been assigned, the mean
value (centroid) of the augmented cluster is updated. The iterative process is repeated until all
points (x1,...,X,) have been assigned to a cluster. The K-means algorithm can be regarded as a
greedy strategy, and implies a semi-exhaustive search not considering any coverage constraints.
For these reasons its nominal form is adapted to the problem at hand by modifying its iterative
working procedure as follows:

1 Any dimensionality of the points holds.
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¢ Initialize the number of centroids S and locations {xg}f , with the information M(y) and

{(xfz(w),yfl(w))}M(w) coming from harmony v € {1,...,¥}.

m=1

* Assign each of the set of points to be clustered {(x;, yi)}?i ; (i.e. the coordinates of the emer-

gency teams) to the closest point in the coordinate set {(xﬁ(w), yﬁ(w))}%(:i), and recalculate

the position of every relay once a new point has been assigned to it. The assignment and re-
calculation is done point by point, similarly to the original K-means algorithm. No coverage
constraints are imposed at this step, since the global HS algorithm adjusts the best model
(and hence, radius) for every relay in the solution at hand.

* Repeat this process until all points are assigned to a given centroid or until the distance
between two relays falls below than the sum of their respective radius (i.e. their coverage
radii start to overlap with each other).

By repeatedly applying the above modified K-means procedure to the whole set of newly pro-
duced harmonies, the exploitative behavior of the algorithm is favored with respect to its explo-
rative nature, and thus the proposed hybrid scheme might prematurely converge to local optimal
points. To avoid this, the proposed K-means local search approach is applied to a user-defined
percent of the new ¥ harmonies included in the harmony memory. Besides, it is applied not at
each iteration of the global iterative process, but only at some given iterations J, € {1,...,I}, where
I denotes the overall number of iterations of the proposed hybrid algorithm.

3.2.3 Extension to Bi-objective Optimization

As sketched in the introduction of this chapter, the single-objective formulation and the hybrid
heuristic designed towards its efficient solving can be extended to a bi-objective approach where
cost and coverage are considered as conflicting, separated optimization criteria. As a result and
following Expression (3.4), the commander is supplied with a family of possible network deploy-
ments, each featuring a different balance between coverage and cost, on which to make subse-
quent decisions about the size, spread and resource allocation of the network deployment. Algo-
rithmically speaking, this is accomplished by replacing the selection method of the hybrid tech-
nique — i.e. survival of those ¥ harmonies with lowest value of the sum metric in Expression
(3.3) — with the ordered dual selection based on rank and crowding distance exposed in Chapter
2. As such, each current and improvised harmony is associated with a numerical rank equal to
its non-dominance level (namely, 1 for the best non-dominated level, 2 for the next best level, and
so forth). Once all fronts have been identified and ranked, a measure representing the sum of
distances to the closest harmony along each metric establishes an ordering among the solutions
belonging to a certain rank: harmonies with large crowding distance are preferred to solutions
with small distance so as to span the overall metric space. Thus, the harmony memory is filled by
selecting the best ¥ harmonies (considering first the ordering among the fronts and then the one
among the harmonies).

3.3 Experiments and Results

In order to evaluate the performance of the proposed algorithms, several simulations have been
run over a synthetic toy example and an emulated relay deployment based on statistical data
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of the Castilla La Mancha region (center of Spain). First, it is important to remark that to the
knowledge of the authors, no previous work in the related literature has addressed a similar
problem formulation to the one posed in Expressions (3.3) and (3.4). Therefore, we compare the
performance of the proposed method with that of:

A. Two different wrapping techniques operating around the K-means algorithm aimed at esti-
mating the number of relays M (namely, X-means [206] and G-means [207]), along with a
random selection of their models. Both of these wrappers resort to different distance-based
scores of successively partitioned clustering models. On one hand, X-means relies on the
Bayesian Information Criterion BIC(-) as a score to choose the best among a set of models
{A1,...,Aj} corresponding to clustering solutions with different values of M (i.e. {M j}}jzl)-
This index approximates the posterior probabilities of the models given the positions of the
nodes to be covered (namely, firefighting crew) by assuming that they are spherically Gaus-
sian distributed, yielding

BIC(A) £ LL(ipi}Y, ) - % 1ogN, (3.5)

where LL ({pi}Ji\i 1) denotes the log-likelihood of the data subject to the j-th clustering model
Aj;. In this formula, also known as the Schwarz criterion [208], p; is the number of parame-
ters in A;j computed as p; = 3- M, which results from the sum of M; —1 class probabilities,
2M; centroids coordinates and one variance estimate required for the computation of the
aforementioned log-likelihood. Leaving aside further mathematical foundations of the BIC
score (a thorough explanation can be found in [206]), the X-means algorithm starts with the
lower bound of the range [M,,;in, Mq4x], and adds up centroids in those regions where the
aforementioned BIC criterion results to be minimum; in words, clusters whose distribution
fits worst to spherical Gaussians are selected to split in two children clusters. This proce-
dure is repeated until the effective number of clusters reaches M,,,,.: the estimated number
of clusters is then given by the value of M for the model A; featuring the globally highest
value of the BIC score.

On the other hand, G-means resorts to a similar constructive procedure where the Anderson-
Darling statistic [209] is utilized to estimate the number of clusters based on the best sco-
ring model. The main difference between both scores is that the BIC score used by X-means
is formulated to maximize the likelihood for spherically-distributed data, which makes the
overall clustering algorithm overestimate the number of true clusters in non-spherical data
spaces. In both cases these schemes produce single network deployments to be compared to
the single-objective approach of the proposed hybrid algorithm.

B. An exhaustive search over the 7™ possible relay-model combinations of the topology pro-
duced by the K-means algorithm for a given value of M. The coverage-cost value pair
featured by each of such combinations can be compared to the proposed single-objective
approach.

C. An exhaustive search over all possible relay-model combinations and values of M, i.e. with
no a priori setting of the number of clusters. As for the previous scheme, comparisons with
this method can be established with the bi-objective formulation of the proposed hybrid
solver.

It is important to observe that for a given M, the overall complexity (measured in terms of
the number of relay-model combinations) of the MDRDP grows exponentially with the number
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of models 7; this dependence makes the problem particularly complex as the number of relays
M increases. Also interesting is to remark that since the performance of K-means is strongly
biased by its initialization, simulation results must be understood statistically. Therefore, all the
compared algorithms will be run several independent times (realizations, hereafter denoted by
@) over a given scenario. The comparative study aims at demonstrating that the adoption of a
heuristic procedure as a global search method, hybridized with the local greedy modified version
of K-means algorithm, entails a suitable combination for dealing efficiently with the MDRDP.
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Figure 3.3: Synthetic scenario used to evaluate the performance of the proposed schemes. Circles
represent the points to be covered.

In the first set of simulations, the synthetic tool scenario in Figure 3.3 is used. Although
the setup is very simple, at the same time it becomes very easy to check visually the quality
of the proposed solutions. In this scenario, N = 100 points representing emergency teams are
distributed along the two diagonals of a 100 x 100 square area. Three (1t = 3) different relay
models {@t}?zl are considered with radii {Rt}f’:1 ={7,9,11} and costs {Ct}‘:’:1 = {5, 8,12} (quantified
in monetary units). The number of relays of the proposed scheme is initialized uniformly at
random between M,,;, = 10 and M,,,, = 50. In the case of the approaches under category A,
the models for the relays are selected randomly (again, uniformly) among the three different
defined options. A harmony memory of ¥ = 20 harmonies is considered with the set of parameters
specified in Table 3.1 obtained from a previous optimization study. During the iterative process
(consisting of I = 200 iterations), the modified version of the K-means algorithm, described in
subsection 3.2.2, is applied twice over the first 5 harmonies included in the harmony memory, at
iterations Jy, = {20,100}

Table 3.1: Values of the HMCR, PAR, RSR and bandwidth g for relay models and coordinates, denoted
with superscripts  and ©, respectively.

HMCRM | PARM | g™ | RSR™
0.5 0.2 1 | 001

HMCRC | PARC | g€ | RSRC
0.7 01 | 10 | 0.01

The metric values averaged over @ = 20 different realizations of Algorithms A and the herein
proposed solver are presented in Figure 3.4 and Table 3.2. Focusing first on the figure, the points




3.3. Experiments and Results 45

with circle (O, @) and square (O) markers represent the metric value — Expression (3.3) — split
in cost (horizontal axis) and coverage (vertical axis) obtained for each experiment. Note that the
coverage provided by the X-means algorithm (0) is, on average, higher than the one provided by
the proposed hybrid heuristic scheme, but at a higher deployment cost. On the other hand, the
[cost, coverage] pairs obtained by G-means (O) concentrate on the low coverage region, as the
Anderson-Darling normality test utilized therein for estimating the number of relays does not
take into account any cost or coverage criteria. Neither does the Bayesian information criterion
used in X-means, but the overestimated number of clusters by this approach allows attaining
higher coverage values at a significant cost penalty. This can be also noticed by taking a closer
look at the statistics of this Figure in Table 3.2, where the extreme values obtained with the
three schemes in coverage (maximum) and cost (minimum) are reflected. In the coverage extreme
point (maximum coverage of 98%) X-means requires a minimum total deployment cost of 153
monetary units, whereas for the cost extreme point (minimum cost of 94 monetary units) 78% of
the emergency teams deployed is covered by the relays. On the other hand, the proposed hybrid
algorithm balances between deployed resources and coverage, producing a maximum coverage of
88% at a considerably smaller cost (82 monetary units). Correspondingly, a minimum cost of 60
units corresponds to 65% of coverage. As anticipated earlier, G-means produces poor [coverage,
cost] statistics.

Table 3.2: Statistical results provided by the proposed single-objective hybrid scheme and Algorithm
A (X-means and G-means) in terms of coverage and cost (mean + standard deviation) and extreme
values for the synthetic scenario of Figure 3.3, assuming relay costs {Ct}i1 =1{5,8,12}.

Method Coverage (%) | Cost (m.u.) Extreme values
Proposed Single-Objective 77+6 82+13 1\1\//1[?; zc()):::g)s(scofv(:si%z%;))
T e | s | e Mo

Crmenns 31| 26| e ovore10%)

When assessing the performance of Algorithm B in this synthetic scenario, one obtains @ - ™
pairs of [cost, coverage] values corresponding to each model combination, whose scatter plot for
a given M is simplified by each of the convex hulls represented in Figure 3.4. The output of
Algorithm C can be realized by merging all convex hulls for M =1,...,M,,,,. Notice that for
this simple setting (7 = 3, M, = 50) the number of model combinations to be computed and
evaluated by Algorithm C is @Z?no:l 7™ =2.1537-10%%, which evinces the need for the bi-objective
solver proposed in this chapter. The dominant Pareto front estimation produced by the proposed
bi-objective approach is given in the same figure with triangular markers (A), computed by using
I =500 iterations, ® = 20 realizations and a ¥ = 50-sized harmony memory. This amounts up to
I x¥ x®=500-103 evaluations of model combinations, which are significantly less than those
of algorithm C. As shown in the plot, the bi-objective approach of the proposed algorithm is able
to produce a wide Pareto front estimation that can be utilized a posteriori to refine the network
deployment once the disaster area has been explored. Relevantly, this estimated front dominates
all solutions produced by its single-objective counterpart and Algorithms B and C, which adds to
the reduced number of model combinations mentioned previously. As for Algorithm B (exhaustive
search for a given M) the number of evaluated model combinations for the range M € {10,11,12}
where the results of the proposed single-objective approach are located are @™ =1.181-108 (M =
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10), 3.543-10% (M =11) and 10.628-10% (M = 12), which are significantly higher than that of the
single-objective algorithm (@WI = 80-102), and are even dominated in some realizations by the
proposed approach.
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Figure 3.4: Scatter plot of the [cost,coverage] value pairs obtained by the algorithms under considera-
tion over the synthetic scenario in Figure 3.4. Every convex hull determines the geometric space in the
plane containing the [cost,coverage] points computed by Algorithm B for a given M (i.e. conventional
K-means followed by exhaustive search over all possible model combinations). In the plot O, O, @ and
A markers correspond to Algorithms A (X-means, G-means), and the proposed single- and bi-objective
approaches, respectively.

In order to make the considered algorithms comparable in the extreme values of the coverage
metric, the previous study is replicated by changing costs to {Ct}f’:1 = {2,3,4} (the radii is kept
unchanged). This relaxes the overall cost in the considered fitness, and enables the compared
algorithms to achieve 100% coverage. Figure 3.5 shows that in this cost-relaxed case, the pro-
posed single-objective hybrid scheme attains coverage levels close to 100%. Expectedly, when cost
constraints are relaxed the coverage values achieved by X-means get closer to (but still lower
than) those of the proposed scheme at similar cost values. As it is not driven by any cost crite-
ria, G-means again underestimates the number of relays M and therefore, yields very low [cost,
coverage] pairs in this second study.

The conclusions drawn in this cost-relaxed scenario and their joint interpretation with those
from the first study demonstrate that the proposed single-objective algorithm is very useful if a
trade-off between coverage and the number of relays is sought. This is an important aspect when
an emergency network should be deployed in a scalable fashion, because if there exists a limited
number of relays, an initial overestimation of resources in the early stages of the deployment may
affect dramatically subsequent distributions. Thus, in the proposed scheme the relays’ cost can
be regarded as a trade-off factor which conservatively avoids the overestimation of the number
and relay model to be deployed at early stages of the disaster. In other words: if the costs are kept
higher then a smaller number of relays will be deployed, hence saving resources for a posterior
deployment. Likewise, if the costs are reduced then potentially full coverage would be attained at
the expense of incrementing the number of deployed relays. This is the rationale for proceeding,
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Figure 3.5: Scatter plot of the [cost,coverage] value pairs obtained by the algorithms under consider-
ation over the same synthetic scenario in Figure 3.4, but at a reduced cost for the relay models.

once the disaster has been inspected, with a second network planning stage where the bi-objective
version of the proposed hybrid scheme unfolds a whole portfolio of deployments featuring different
cost-coverage trade-offs. As for the derived bi-objective solver similar conclusions hold in this
cost-reduced setup: strict Pareto dominance over Algorithm C at a reduced number of model
evaluations.

Table 3.3: Statistical results provided by the proposed single-objective hybrid scheme and Algorithms
A (X-means and G-means) in terms of coverage and cost (mean + standard deviation) and extreme
values for the synthetic scenario of Figure 3.3, assuming relay costs {Ct}fz1 =1{2,3,4}.

Method Coverage (%) | Cost (m.u.) Extreme values
Proposed Single-Objective 97 +2 52+5 1\1/{/?; C:::;i::; (22;7:)7;;?;; ‘f;o(;)
T wme | me | e | oo

In the second set of simulations, an emulated, yet realistically-modeled massive forest wildfire
scenario has been generated based on the fire risk data from the “Plan Especial de Emergencias
de Incendios Forestales de Castilla La Mancha” [210] published by the regional Spanish Govern-
ment of Castilla La Mancha (center of Spain). In this case N = 200 firefighter teams are deployed
over the entire region based on this forest fire risk, imposing that more firefighters are located
in regions where the forest fire risk is higher (red zones in Figure 3.6). Correspondingly, less
firefighters will be assigned to (green) zones where the forest fire risk is lower. In this scenario,
three different relay models have been considered with costs {C,f}?:1 = {5,8,12} monetary units,
and radii {Rt}?zl =1{8,15,21} kilometers. As in the previous scenario, 20 different runs of the al-
gorithm are carried out to obtain statistics on the obtained results based on the stochastic nature
of the algorithms.
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As first shown in Table 3.4, in this scenario the proposed single-objective hybrid scheme pro-
vides a mean coverage of 69 +4% with an associated cost of 97 + 7 monetary units. On the other
side, the mean coverage provided by X-means and G-means is clearly lower (30+6 % and 15+4 %,
respectively), as a result of the fact that these schemes do not consider the limited coverage radii
of relays when estimating M. As a result, a reduced number of relays is always deployed at a
consequently low cost disregarding the available budget for the operations commander. The pro-
posed hybrid schemes, however, are flexible enough to produce 1) well-balanced deployments for
initial inspections of the disaster at hand (single-objective); and 2) a wide range of deployments
that permit to find the maximum-covering deployment under cost constraints (bi-objective).
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Figure 3.6: Fire risk map over the Castilla La Mancha region (center of Spain) extracted from [210].

Table 3.4: Statistical results provided by the proposed single-objective hybrid scheme and Algorithms
A (X-means and G-means) in terms of coverage and cost (mean + standard deviation) and extreme
values for the emulated scenario of Figure 3.6, assuming relay costs {Ct}‘;’: ;1 =15,8,12}.

Method Coverage (%) | Cost (m.u.) Extreme values
Proposed Single-Objective 69+4 9717 1\1/{;):1 (i:(::t}i;; E(;:/;(,Z:S;DZ: ;3)
L | Xomens 306 | 4326 | e ovone0)
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This remark is further complemented by Figures 3.7 and 3.8 (a) to (c), where a similar scatter
plot to the ones analyzed for the synthetic case and realization examples of the network topologies
produced by the proposed bi-objective solver are correspondingly depicted. For problems of higher
dimensionality (i.e. higher M and/or 7) the performance of procedures based on the conventional
K-means is expected to degrade further due to the fact that they can get trapped in local optima,
fact that the hybrid schemes here proposed circumvent thanks to their incorporated HS-based
global search procedure.
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Figure 3.7: Scatter plot of the [cost,coverage] value pairs obtained by the algorithms under considera-
tion over the emulated scenario in Figure 3.6.

(a) (b) (c)

Figure 3.8: Examples of relay deployments featuring different [cost,coverage] ratios computed by the
proposed bi-objective approach on the emulated scenario based on Figure 3.6. White circular markers
denote firefighters, whereas black circles represent the coverage area of the deployed relays. These
deployments correspond to (a) [coverage, cost]=[24.5%, 20 m.u.]; (b) [coverage, cost]=[74%, 96 m.u.]; (c)
[coverage, cost]=[95%, 177 m.u.].
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CHAPTER 4

OPTIMAL PREDICTIVE DEPLOYMENT OF
FIREFIGHTING AIRCRAFTS

“Human development is a form of chronological unfairness,
since late-comers are able to profit by the labors of their
predecessors without paying the same price.”

- Alexander Herzen

So far the main motivational argument of this Thesis has been buttressed by many references
and factual indicators evidencing that many regions around the world have undergone intensive
and seasonally severe forest wildfire periods during the last years. Wildfires may occur on every
continent (except Antarctica), but they have been notably frequent in the southern part of Europe
where, unfortunately, the intensity and spread of such wildfires has occasionally lead to casualties
and extensive damages to civil infrastructures [212]. In this context, intensive efforts are being
taken in the research community on novel advances that enhance the speed and effectiveness of
prevention, detection and suppression techniques, in a technological attempt at minimizing the
severity and frequency of wildfires (as done, for instance, in the EFFMIS [213] and FIRESENSE
[214] European initiatives).

One of the most widely adopted fire combating strategies relies on the direct human interven-
tion in the form of firefighting brigades, which have traditionally shown to be effective in small-
to-moderate wildfires over areas with scarce vegetation density. However, fighting to extinguish
wildfires may become deadly dangerous due to life-threatening hazards including disorientation,
heat stress, fatigue, smoke and dust, as well as the risk of other injuries such as burns, cuts and
scrapes. Other side dangers in human intervened fire suppressing campaigns include faults in
communication facilities and issues in the logistics and operational procedures, as exemplified by
the Australian Victorian bushfires in 2009 (where 173 people died and over 2000 homes and 3500
structures were destroyed due to fire ambush [215, 216]). This motivates the use of fire retardants
and water dropped onto wildfires by planes and helicopters, by virtue of which the risk for human
casualties is dramatically decreased.

Similarly to the research presented in Chapter 3, of particular interest for the scope of this
chapter is the natural wildfire happened in Guadalajara (Spain) in July 2005, where 11 fire-
fighters died due to a confessed lack of effectiveness in the timing and deployment of the necessary
aerial firefighting vehicles [217]. From the operational perspective, the preventive emergency de-
ployment of fire combating fleets over aerodromes happens to be in general uncoordinated with

51



52 Chapter 4. Optimal Predictive Deployment of Firefighting Aircrafts

respect to well-known and accurate predictive numerical methodologies for assessing the fire risk
of a certain geographical area. Such quantitative forecasts may rely on different information
sources that ultimately allow for diverse prediction horizons. For instance, the so-called Social
and Infrastructure Flood Vulnerability Index (SIFVI, [218]) focuses on flood disasters at a county
level in Germany to quantitatively assess the social vulnerability associated to this particular
class of fatalities. This index has been developed by selecting and aggregating demographic sta-
tistical data; therefore, it can be regarded as a stable risk indicator based on which long-term
strategic decisions on the geographical allocation of firefighting resources can be made. Many
other indicators of similar stability can be found such as the Earthquake Disaster Risk Index
(EDRI [219]), the social vulnerability index for hurricane-induced storm surges [220] or the in-
dex to evaluate socio-economic vulnerability to drought exposed in the Mediterranean Drought
Preparedness and Mitigation Planning [221], among many others.

However, when the utility of any computed indicator is intended to aim at optimizing the ef-
fectiveness of preventive deployment strategies for firefighting resources, it becomes of utmost
importance to capitalize any predictive method quantifying the fire risk in a shorter term. The
spontaneous and particularly fast evolving characteristics of this class of disasters usually re-
quires more dynamic resource allocation policies, far beyond strategic decisions guided by steady
information such as demographic statistics, the location of urban areas and forest vegetation. To
this end, this chapter proposes to exploit the short-term accurate predictability of atmospheric
phenomena as a risk-based guiding criteria for the preventive deployment of firefighting vehi-
cles. Indeed, weather information is known to play a central role in the probability of occurrence
of wildfires: for instance, fire potential can be measured by the Keetch-Byram Drought Index
(KBDI [222]), which is determined by daily maximum temperature and precipitation. Evapotran-
spiration — soil water transfer to the atmosphere — is determined by temperature and annual
precipitation, which is used in this index as a surrogate model for estimating the vegetation cover
(areas with higher annual rainfall are assumed to support more vegetation). Another index based
exclusively in weather-related parameters is the FWI (Fire forest Weather Index [223]), which is
exemplified in Figure 4.1 for the Spanish Peninsula and further detailed in Appendix A. In short,
the FWI quantifies, in a user-defined scale, the fire risk of a certain geographical coordinate based
on the temperature, relative humidity, wind speed, and 24-hour accumulated precipitation, whose
influence in the fire ignition, intensity and durability of different forest soil layers is estimated
and aggregated through a series of regressed models. The accurateness and fine granularity of
current weather models yield an equally good predictability of the fire potential for a given area
by virtue of the exclusively meteorological input information to indexes like the ones above.

Such weather indexes theoretically indicate solely the probability of fire ignition of a geo-
graphical point, but their computation also produces information about the virulence or severity
of an eventual fire. Indeed the computation of the FWI system relies on the intermediate esti-
mation of the Initial Spread Index (ISI) and the Build Up Index (BUI), which indicate the rate
of fire spread immediately after ignition and the total amount of fuel available for consumption,
respectively. This rationale supports the hypothesis that a tool capable of dynamically matching
the deployment of aerial firefighting fleets (helicopters and air-tankers) with the risk predictions
offered by national weather services would eventually entail an improved speed and effectiveness
when dealing with massive wildfires, as well as reduce the number of casualties due to the mini-
mum human intervention necessitated in land. This chapter addresses this need by elaborating
on the formulation of an optimization problem with cost constraints that blends together predic-
tive fire weather risk quantification and operational fleet deployment over available aerodromes.
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In its simplest form, the derived formulation takes into account the amount of aerial vehicles,
the number and position of existing aerodromes, available operational budget and the predicted
fire weather risk metrics of the area under study, based on which a fitness function assessing
the utility of a fleet deployment with respect to all the geographical coordinates with predicted
risk is described and maximized. To the knowledge of the author of this Thesis, this operational
logistics field has not been so far tackled from an analytical, formal standpoint, nor even under
this simplistic approach.

In order to lessen the computational complexity incurred when solving the aforementioned
problem in a nation-wide scale, the HS meta-heuristic solver will be utilized to trade optimality
of the produced solutions for a lessened complexity required for the resolution of the formulated
problem. Specifically, the designed evolutionary approach incorporates a solution encoding strat-
egy representing the airport to which each aerial firefighting vehicle is assigned. Besides, an
iterative greedy local method is designed to repair those solutions not fulfilling with imposed ca-
pacity constraints at every aerodrome, which model practical situations where the dimensions of
hangars, the use of the airport facilities for other duties (e.g. commercial flights) or budgetary
limitations restrict the number of firefighting aircrafts deployable therein.

44

43

42

41

40

Latitude

9%
\=}

38

37

36

-8 -6 -4 -2 0 2 4
Longitude

Figure 4.1: FWI for the Spanish mainland and Balearic Islands, corresponding to July 26th, 2012.
Dark red colored regions delimit those areas featuring a higher wildfire risk, whereas dark blue de-
notes null probability of fire ignition (France and Portugal are not taken into account in the computa-
tion).

Once the satisfactory performance and scalability of the proposed optimizer have been verified
over a number of synthetic scenarios, the chapter proceeds by extending this first simplistic pro-
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blem formulation by incorporating realistic factors impacting on the firefighting potential of the
deployment strategy: heterogeneous aircraft models and airports, the relative position of water
resources with respect to any given wildfire, and cost implications derived from the consumption
of fuel in the reallocation of aircrafts from one aerodrome to another and utilization fees imposed
by commercial airports and regional authorities. The resulting extended problem models are
approached via multi-objective heuristics grounding on an HS algorithmic core, which produces
a set of different reallocation strategies differently balancing fire combating potentiality and the
economical cost associated to the preventive reassignment of aircrafts to aerodromes. Numerical
experiments will be performed using real FWI estimations computed over the Spanish mainland
and the Balearic Islands, as well as technical specifications of the aircraft fleet operated by the
Ministry of Agriculture, Nutrition and Environment (Ministerio de Agricultura, Alimentacién y
Medio Ambiente). The Pareto trade-off between cost and fire combating potentiality traced by the
deployments produced by the algorithm evinces the practical applicability of the proposed suite
of algorithms to real strategic decision making in the region- and nation-wide management of
firefighting vehicles and aircrafts.

The chapter is structured as follows: first the reader is introduced to the system model and its
corresponding notation in Section 4.1, which is done in the context of the simplistic approach to
the problem mentioned above. Next, Sections 4.2 delves into the description of the proposed HS
heuristic, addressing the solution encoding, searching operators and the greedy repair procedure
for handling the capacity constraints. After validating the performance of the meta-heuristic
solver in a set of synthetic scenarios, Sections 4.3 and 4.4 elaborate on two incremental exten-
sions of the simplistic problem formulation and their algorithmic implications in the design of the
designed reallocation method.

4.1 A Simplistic Problem Formulation

The system model under consideration is depicted in Figure 4.2, where M airport facilities are
deployed over a certain area A c R2, with locations {pm}]n"f:1 assumed to be known a priori for the
operations commander. The same assumption holds for the number N of firefighting aircrafts,
where a function A:{1,...,N}— {1,...,M} denotes the assignment of every aircraft n € {1,...,N}
to an airport m € {1,...,M}. However, the location of the aircrafts is not fixed and can hence be
selected according to a criteria which, as anticipated in the introduction of this Chapter, depends
on predictive indicators of the fire risk associated to the area at hand. Without loss of generality
the FWI index is hereafter adopted, which is computed over a number Z of points arranged on
a square lattice grid over A. Therefore, FWI, will stand for the FWI value associated to point
z belonging to the aforementioned grid. The aircraft capacity B(m) will be measured in terms
of allocatable aircraft slots — a total of B(m) aircrafts can be assigned to airport m — and may
vary between different aerodromes, but for any given aerodrome B(m) falls within the integer
range [0, N]. This capacity per airport reflects the maximum operational budget assigned to each
aerodrome to cover maintenance, fuel distribution and facilities for the pilots in charge for the
firefighting fleet. For the sake of feasibility of the problem, it is assumed that Z%ZIB(m) <N,
i.e. there are enough aircraft slots to accommodate the N aircrafts to be allotted. Besides, each
aircraft is characterized by an coverage radius R(n) equal to half its range with maximum fuel,
which reflects its finite fuel autonomy and restricts the number of grid points it could eventually
support if an eventual wildfire initiated therein.
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In this first formulation of the problem the utility function of each aircraft with respect to
every single point z of the risk grid is assumed to depend exclusively on the Euclidean distance
dm, from the assigned aerodrome m to the point itself. This being said, it is important to point
out that the fire risk FWI, should be considered pivotal when quantifying the potential fitness
of the position assigned to a certain aircraft with respect to the grid point at hand. Intuitively,
the higher the fire risk at z is, the closer the aircraft should be to z, with more emphasis if a
higher risk comes along with an expectedly increased severity of the wildfire upon its occurrence.
Consequently, a crucial conclusion stems from this reasoning: the fitness criterion to be optimized
should be an increasing function of the fire risk in range for every aircraft, as well as a decreasing
function of the distance d,,, from the airport where the aircraft is deployed to the point z at
hand. Operationally speaking, setting this relative dependence on distance and risk ensures that
aircrafts are assigned to those airport sites where they could eventually contribute better (faster,
as the distance is minimized) to extinction duties of fire events of potentially higher severity.

This being said, the combinatorial optimization problem under study can be summarized as to
maximize the aggregate fire risk covered by the allocated aircrafts subject to resource and budget
constraints, which can be mathematically cast as follows:

N (Z
Maximize FWI,-J(d , 4.1
Maximiz n; Z; 2 J(dyn),2) (4.1)
M
subjectto Y [A71(m)| =N, (4.2)
m=1
|A"Ym)|<B(m) vm=1,...,M, (4.3)

where A(n) denotes the airport to which aircraft n is assigned; A~ :{1,...,M} — N c{1,...,N}
denotes its inverse function indicating the subset of aircrafts assigned to a given aerodrome; |- |
returns cardinality of the argument set; and J(d,, ) stands for a strictly decreasing function
accounting for the utility of an aircraft deployed on airdrome m with respect to a given point z at
a distance d, ; (J(dn ) =0 Ydp, ; > R(n), where R(n) denotes the coverage radius of aircraft n
that fulfills A(n) = m).

The optimization variable of this problem is the assignment function A(-) that maps aircrafts
to aerodromes. However, in this initial formulation all such aircrafts will be assumed to be equal
to each other, which entails R(n) = R and enables the chance to reformulate the problem by using
the number of aircrafts 6, assigned to aerodrome m as the decision variable. This results in

Z M
Maximize FWI, - ( Z Hm-J(dm,Z)), 4.4)
61,00 = oy
M
subject to Z 6, =N, (4.5)
m=1
0,<B(m) Vm=1,....M. (4.6)

which can be regarded as an equivalent — yet more restricted — problem formulation featur-
ing a better readability of the constraints than the above formulation. Nevertheless, as shown
throughout the following sections the consideration of the aircraft-to-aerodrome assignment vec-
tor {1(1),...,A(IN)} as the solution encoding approach allows generalizing the proposed meta-
heuristic to extensions of this scenarios in a more straightforward manner.
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Figure 4.2: Example of the considered scenario for M = 3 airport facilities and N = 8 aircrafts. In the
plot three different grid points are highlighted: z; and z9, which are in range of the aircrafts deployed
in aerodrome m = 1 and which may contribute to the fitness depending on the values of their FWI
indicators; and z3, which is beyond the coverage radius of such aircrafts and does not contribute to the
fitness at all disregarding its FWI value.

4.2 Proposed Meta-heuristic Allocation Algorithm

The heuristic utilized for efficiently solving this optimization problem grounds on the HS algo-
rithm [14], which is combined with a greedy method to account for the capacity/budgetary cons-
traints in Expression (4.6) and equivalently, (4.3). As detailed previously in Section 2.4 of Chapter
2, the algorithm operates on a set of ¥ candidate vectors or harmonies representing candidate
solutions or harmonies, which are iteratively refined by successive applications of HS and the
aforementioned greedy procedure, and evaluated so as to select and filter the worst harmonies
out from the W-sized population according to the metric in Expression (4.4). The solution enco-
ding for the evolutionary process is set to be {A(1),...,A(N)}, i.e. the vector of N integer variables
corresponding to each aircraft, whose value indicates the aerodrome to which the aircraft at hand
is assigned. A slight notation abuse permits to denote the y-th solution within the memory of
harmonies as {A(y,1),...,A(y,N)}. It is important to note that this encoding implicitly makes
the iteratively produced solutions meet the resource constraint in Expressions (4.5) and (4.2).
Therefore, the greedy algorithm is used to repair the solutions that do not comply with the capa-
city/budget constraints, whereas the HS plays the role of a global search procedure driven by its
constituent improvisation operators, namely:

¢ The Harmony Memory Considering Rate operates as in its nominal definition, i.e. by set-
ting the probability HMCR € [0,1] that the new value for a certain note A(y,n) is drawn
uniformly from the values of this same note in all the remaining melodies. Formally,

HMCR £ Pr{A(y,n) ~> Ouycz} » (4.7
where wyycr 18 a discrete random variable uniformly distributed in

{A@,n),... . My —1,n), My +1,n),...,\(¥,n)}.

This operator works in a per note basis through % € {1,...,K} and v € {1,..., ¥} by properly
varying the alphabet over which the values of wyycr are drawn.

¢ The Pitch Adjusting Rate is identical to its naive form in regards to its basic working proce-
dure: it sets the probability PAR € [0, 1] that the new value for A(w,n) is given by a random
perturbation centered on its value. Since the support of the constituent decision variables
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is discrete, the random perturbation reduces to the change of the note at hand by any of its
neighboring values with equal probability. However, a subtle, yet relevant change is done at
this point: the vicinity relationship criterion for a given value of A(w,n) (namely, the airport
to which aircraft n is assigned within the w-th solution produced by HS) is given by the
indexes of the rest of airports sorted in increasing order of their distance to the A(y,n)-th
aerodrome. Furthermore it is permitted that the PAR operates over a wider (> 2) range
of neighboring airports in order to attain higher levels of explorative randomization and
dismiss the need for any further diversifying operators (e.g. RSR).

During the evolutionary process, aircrafts are assigned to aerodromes in a directed yet random
fashion, which may go against the imposed maximum budget constraints {B(m)}%zl. Assuming
that all aircraft models and their associated operational costs are equal, it does not matter which
aircraft is assigned to which aerodrome, but it all depends on the amount of aircrafts assigned to
each aerodrome. Based on this rationale, budget constraint B(m) establishes how many aircrafts
could eventually be assigned to aerodrome m. If any airport happens to be over its capacity, the
first aircraft assigned to this aerodrome is swapped to the nearest airport whose occupancy (.e.
number of assigned aircrafts) falls below its capacity.

Random
Initialization

Fitness evaluation

HM sorting

& Filtering Fitness evaluation T

HMCR —» PAR {—» Greedy

Return best harmony

Figure 4.3: Diagram flow of the proposed meta-heuristic allocation process for the simplistic scenario.

The overall flow diagram of the algorithm is depicted in Figure 4.3: first the whole harmony
memory is randomly filled with values drawn from {1,..., M} without considering, at this moment,
any capacity constraints. Next the greedy repair method is executed by going through the airport
indexes m € {1,..., M} and checking whether the inequality constraint in Expression (4.3) is met. If
positive, the verification process proceeds with the next value of m. If negative, the rest of airports
{1,...,m—-1,m+1,...,M} are ordered increasingly with respect to their distance to airport m, and
the aircrafts in excess assigned to airport m are reallocated to those airports with enough space
subject to the distance-based ordering criterion previously performed. Once this has been made,
the search procedure iterates similarly to the nominal HS algorithm in Section 2.4, except for the
inclusion of the greedy method right after the improvisation stage.

4.2.1 Numerical Experiments for the Simplistic Scenario

In order to assess the performance of the proposed heuristic solver, different synthetically gen-
erated scenarios have been arranged over a 500 x 500 rectangular area A, built on combinations
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of the number of aircrafts (IN) and aerodromes (M) jointly with 5 different risk estimation maps
composed by distinct values for {FWIz}le. The objective is to lay a sufficiently diverse simula-
tion benchmark from where to extract well-reasoned generalized conclusions on the performance
and scalability of the proposed algorithm. To this end, simulation scenarios will be denoted by
[N,M,R], where R indexes the risk estimation grid under consideration: namely, {[4,9,r]}§:1,
{[7,16,r1}>_;, {10,25,r1}>_,, {13,36,71}°_, and {16,49,7]}>_,. Statistics (minimum, maximum, stan-
dard deviation, mean) of the value of the best fitness after 150 iterations of the solver are com-
puted over 20 independent runs over each of such scenarios. In particular, the value obtained
for the fitness standard deviation will shed light on the stability of the algorithm as the scales of
the underlying optimization problem increase. Regarding the budget constraint B(m) per airport,
all have been assigned the same budget without loss of generality. Considering that the cost per
aircraft is also assumed to be constant, the maximum number of aircrafts per airport is B(m) =3
for all the scenarios. Based on a previous simulative optimization stage, the parameters control-
ling the HS solver are set to HMCR = 0.5, PAR = 0.05 and ¥ = 25 for all the simulated scenarios.
As for function J(d,, ), it is assumed to decrease linearly from the center to the boundary of a

circular coverage area with radius R = 100.

’ [N,M,R] \ Minimum \ Maximum \ Standard Deviation \ Mean ‘
[4,9,1] 2613.60 2613.60 4.6656-10713 2613.60
[4,9,2] 3112.10 3112.10 9.3312:10713 3112.10
[4,9,3] 3928.40 3928.40 1.8662-10712 3928.40
[4,9,4] 3615.20 3615.20 1.3997-107 2 3615.20
[4,9,5] 4220.50 4220.50 0.00 4220.50
[7,16,1] 4535.90 4535.90 1.8662-10712 4535.90
[7,16,2] 6401.90 6642.30 53.75 6630.30
[7,16,3] 7663.20 7748.50 19.07 7744.20
[7,16,4] 7166.90 7185.20 5.36 7182.00
[7,16,5] 7688.50 7709.20 4.62 7708.20

[10,25,1] 6970.60 7042.50 22.41 7.027.40
[10,25,2] 8006.70 8059.70 23.18 8.041.20
[10,25,3] 9639.50 9668.60 6.52 9.667.20
[10,25,4] 9356.50 9400.00 15.37 9.391.00
[10,25,5] | 11447.00 11447.00 3.7325.10712 11447.00
[13,36,1] 9731.50 9736.50 1.47 9734.90
[13,36,2] | 10461.00 10506.00 15.62 10493.00
[13,36,3] | 13255.00 13646,00 116.79 13559.00
[13,36,4] | 13171,00 13360,00 49.25 13329.00
[13,36,5] | 14974,00 14987,00 3.73 14985.00
[16,49,11 | 11762.00 11967.00 46.28 11943.00
[16,49,2] | 14173.00 14306.00 50.14 14250.00
[16,49,3] | 17370.00 17460.00 25.08 17431.00
[16,49,4] | 15772.00 16022.00 65.73 15972.00
[16,49,5] | 17778.00 17953.00 64.24 17927.00

Table 4.1: Results’ statistics computed over 20 runs of the algorithm for each scenario.

Having said this, the obtained statistics are summarized in Table 4.1. It can be observed that
the proposed algorithm renders a very stable performance behaviour for the simulated scenarios
of lowest dimensionality, showing a negligible (even null, in some instances) standard deviation
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of the fitness over the executed 20 runs of the algorithm. Noteworthy is to mention that for the
scenarios with highest dimensionality, the scale order of the resulting standard deviation is well
below that of the average metric value, which further buttresses the conclusion that the HS-based
solver results to be quite stable. Not shown for the sake of clarity in the explanation, it has been
noted that in the easiest scenarios the results converge very quickly. The convergence speed slows
down for the complex scenarios, but as mentioned before, the variance between the results in each
run is negligible with respect to the obtained mean.
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Figure 4.4: Assignment of aircrafts to aerodromes for a [16,49] risk estimation map.

Figure 4.4 exemplifies one of the produced solutions for the [16,49,1] scenario, that is, the
scenario consisting of N = 16 aircrafts and M = 49 aerodromes. The risk map is plotted as a
two-dimensional contour map, where coloured lines indicate the boundaries between regions with
different risk level, from red (boundary between FWI, =5 and FWI, = 4) to orange (FWI, =4
and FWI, = 3), green (FWI, =3 and FWI, = 2) and blue (FWI, = 2 and FWI, = 1). Black crosses
identify those points where aerodromes are located in the area, whereas airdromes with aircrafts
assigned are surrounded with a circle along with a number denoting their number. As can be seen
from the plot, the assignment is correctly realized: airports close to risk peaks are assigned more
aircrafts, always respecting their budget-driven capacity constraints.

4.3 A Problem Extension: Reallocation and Cost

An explicit assumption within the formulation of the firstly studied problem is the consideration
of a unique aircraft model. In practice, however, firefighting fleets are extremely heterogeneous,
not only in regards to the type of apparatus (ranging from airtankers to single- or dual-turbine
helicopters), but also between aircrafts of the same type. For instance, the AT-802 model manu-
factured by Air Tractor spans a whole family of variants of similar capacity specifications. As
such, those versions specially designed for fire extinguishing assistance (namely, AT-802F/AF and
the AT-802 “Fire Boss”) can drop a similar amount of retardant (around 820 US Gallons or equiva-
lently, 3104 litres [224]) over a given wildfire. However, the “Fire Boss” variant is equipped with
amphibious floats and a computerized fire gate that allows recharging water in lakes and wide
rivers. Further differences also arise between models in what relates to their autonomy (fuel tank
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capacity and fuel consumption), as well as on the economical costs incurred by their operation and
maintenance.

Following this reasoning, an interesting extension can be made by considering a portfolio of
different aircraft models, each characterized by distinct values for their coverage radius and cost.
This change reflects a more realistic scenario where aircrafts of different sizes and firefighting ca-
pabilities eventually coincide in the extinction of the same wildfire. Mathematically this extension
requires the definition of a 7-sized coverage vector {R1,Rg,...,R;} and an equally dimensioned cost
vector {C1,Cs,...,C;}, where T denotes the number of different models. By defining the mapping
9:{1,...,N} —{1,...,1}, the model for aircraft n will be given by 9(n), being correspondingly its
coverage radius and cost given by R(n) and C(n).

However, it is on the airport budget where this first extension of the problem becomes even
more relevant: if different budgets {B(m)}%:1 are assigned to the available airports, one could
straightforwardly model the scenario where the ownership/management of the airport is not ne-
cessarily the same over all the existing facilities. For instance, civil airports can be thought of as
incurring significant economical losses if part of their resources are redirected towards managing
and assisting firefighting aircrafts, hence the value of their budgets B(m) should be set low to
reflect these losses. On the contrary, military aerodromes do not necessarily suffer from these
high costs, as firefighting is among the duties for their troops and vehicles; therefore, the budget
for firefighting operations should be made high enough to accommodate preventive logistics as
the ones studied in this Chapter. By inserting different airport models the problem gets even
more involved due to a solution space of finer granularity. In summary: the fleet of heterogeneous
aircrafts should be deployed over the set of available airports by considering their budget as hard
constraints to be met by their aggregated costs.

Before reformulating the problem, another interesting aspect arises when reallocating the
aircrafts rather than assigning them to airports without any a priori consideration of their initial
position (i.e. what has been assumed so far). When this is the case, the cost of reassigning
a given aircraft must also include the fuel price paid by the operator to move a given aircraft
from one airport to another. In other words, under this approach the reassignment between
physically distant airports could be avoided by an eventual optimization solver due to the high
associated costs of this operation. If one increases the admissible budget, the overall cost of
the reassignment and in general, of the operation itself would be relaxed and hence permit long
aircraft movements provided that the effectiveness of this preemptive logistic operation is high
enough. Algorithmically this problem can be tackled by means of a bi-objective solver capable of
estimating the dominant [cost,effectiveness] Pareto front, as this trade-off results to be crucial for
a good, timely decision making by commanders.

Based on the above extensions, the reformulation of the problem must start by redefining
the wildfire combating potential of a certain resource allocation strategy so as to accommodate
the newly introduced aircraft model heterogeneity, which yields the distance and risk-dependent

fitness function N

Z
YAQ),...,AN)E Y | Y. FWL, - J(d )z, ) |, (4.8)

n=1\z=1
where it should be remarked that {9(1),...,9(N)} are fixed parameters that participate in the
utility function but are not to be subsequently optimized. In other words, aircraft models are
given as a priori static parameters for the optimization algorithm, similarly to the vector S of
static variables used in Expression (1.1) of Chapter 1. On the other hand, J(d ()., 9(n)) abuses
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notationally the former definition of J(d () ;) to stress on the aircraft dependency of the coverage
radius R(n), i.e. J(dpz,t) =0 VYdp, > R;, where R; denotes the coverage radius for model ¢ €
{1,...,7} and aircraft n fulfills A(n) =m and 9(n) =t¢.

Different cost concepts are considered in the second objective function of the reformulated
problem. To begin with, each aircraft model will be assumed to feature a distinct fuel consumption
rate Q; [litres per kilometer]. By denoting as d:}f’m, the distance traveled by an aircraft that is
reallocated from airport m to m/, the cost of a given reallocation strategy due to fuel expenditure
is given by

N
WeAD, ..., AN),d(D),..., 00N E Y Qo) Pedr iy Ay (4.9)
n=1

where A¢(n) stands for the initially assigned airport of aircraft n and p. is the unitary price
of a fuel litre. At this point it is important to point out that when the reallocation distance
for aircraft n results to be higher than their maximum autonomy, i.e. when d/’l‘;(n)’ A 2R(n), a
constant cost penalty AWy is further added to the overall cost so as to emulate the costs associated
to intermediate refueling stops. Other operational cost sources considered in this new problem
formulation refer to 1) usage fees imposed by airport authorities when allocating aircrafts coming
from other administrative regions; 2) economical compensations to the operators of commercial
airports for the maintenance of the firefighting airplanes deployed in their facilities. Such other

costs are given by
Wr(Ao(1),A(1),...,L1o(N),AMN)) and Wc(A1o(1),A(1),...,A0(N),AN)),

respectively; the former depends on the regional belonging of the geographical location of Ag(n)
and A(n), whereas the latter will be nonzero whenever the aircraft n under consideration is reallo-
cated from a military to a commercial airport.

With these definitions in mind, the optimization problem considering operational costs, poten-
tial firefighting utility and reallocation aspects is given by

Maximize Y (A(1),...,AN), (4.10)
Minimize Wy (A(D),..., AN+ We (AD),...., AN + Wr (A(D),...., AN, (4.11)
M
subjectto Y. [A71(m)| =N, (4.12)
m=1
N
Y C(m)<B(m), Vmefl,...,M}, (4.13)
n=1
Mn)=m

i.e. as a bi-objective problem formulation whose Pareto set is built by cost-constrained aircraft
deployments optimally balancing fire combating potentiality and operational cost based on the
models of the aircrafts and their previous locations {/lo(n)}ilvzl.

Such Pareto front will be estimated by means of a similar HS meta-heuristic solver to the one
proposed for the simplistic problem statement. However, the greedy algorithm must be modified
so as to account for aircraft models rather than units. To this end, let m denote the index of a
saturated airport in terms of budget, i.e. } C(n) Vn : A(n) = m is higher than B(m). In such a case,
not any of such aircrafts is selected at random and reallocated to other nearby airport within its
coverage radius, but the choice is driven by the cost C(n) associated to them and its similarity to
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the excess budget ). C(n)— B(m). Thereby, the aircraft n’ whose associated cost C(n') is closer to —
yet higher than — the excess budget is chosen and reallocated to the closest airport with enough
budgetary capacity to host it. If no such aircraft n exists due to all costs C(n) falling below the
excess budget ) C(n)—B(m), the procedure is repeated to reallocate as many aircrafts as required
to fulfill the budgetary constraint. The same assumption hold in regards to the cost penalty AW
for reallocation in an beyond the autonomy of the selected aircraft.

The bi-objective solver also differs from its single-objective counterpart in terms of the selec-
tion of the fittest candidate harmonies between iterations, which must be now done under Pareto
optimality criteria. Therefore, the single-objective fitness sorting and harmony memory filtering
method is replaced with the ordered dual selection based on rank and crowding distance exposed
in Chapter 2 and used in the bi-objective algorithm in Chapter 3. Each newly improvised har-
mony {AMy,1),...,A(y,N)} is assigned a numerical rank representing its Pareto dominance level
(namely, 1 for the best non-dominated level, 2 for the next best level, and so forth). After iden-
tifying and scoring all fronts, the computation of the crowding distance establishes an ordering
among solutions belonging to a given rank. The memory is then filled with the best ¥ harmonies
considering dominance rank as the primary criteria and crowding distance as the secondary one.

4.3.1 Numerical Experiments for the Problem Extension

In order to shed light on the performance of the designed bi-objective solver when tackling the
above extension of the aircraft reallocation problem, numerical experiments have been carried out
over the synthetic scenario [16,49,5] generated previously, from which the risk values {FWIZ}ZZZI,
the number of aircrafts (N = 16) and the positions of the M =49 airports are utilized. The initial
positions {/lo(n)}],:’:1 of the aircrafts are generated at random from the alphabet {1,..., M}, whereas
their types are set to

{1_‘)(n)},116:1 ={1,1,2,2,3,3,1,1,1,1,3,2,2,2,1,1}, (4.14)

i.e. T = 3 aircraft models are considered with coverage radii {R t}§:1 = {250,500, 750}, costs {Ct};?’:1 =
{0.5,0.75,1.0} and fuel consumption rates {Q,f}?:1 ={1,1.3,1.5}. The price per litre of fuel is set to
Ppe =0.499 Euros per litre, which is a realistic value given the U.S. Gulf Coast Kerosene-Type Jet
Fuel Spot Price averaged over the first semester of 2013 (approximately 2.14 US dollars per gallon
[225]). The military/ commercial character of each airport and its regional belonging are drawn at
random by considering 16 administrative regions in which the deployment area is divided, along
with associated cost penalties AWr = 3000, Wr = 600 and W¢ = 400 Euros per penalized airplane.
The budget imposed to the airports are taken randomly from the set {1,2, 3}, e.g. if B,, = 3, airport
m may host 3 aircrafts of type ¢ =3 (C3 = 1.0), 6 aircrafts of type ¢ =1 (C; = 0.5) or any other
combination provided that the budget constraint is satisfied.

A total of 20 runs of the reallocation algorithm are performed keeping the above set of pa-
rameters fixed. Each of such experiments produced an estimation of the Pareto front between
the operational cost and firefighting potentiality fitness metrics given in Expressions (4.11) and
(4.10), respectively. The underlying HS meta-heuristic features a memory size of ¥ = 50 har-
monies, which are iteratively refined by the constituent HS operators with parameters equal to
HMCR = 0.5 and PAR =0.1. The maximum number of iterations is set to I = 150.

The discussion starts by analyzing the produced estimation of the overall Pareto front de-
picted in Figure 4.5, where the horizontal axis denotes the increase in firefighting potentiality
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metric (normalized with respect to its value when no reallocation is performed) and the vertical
axis reflects the cost associated to each of the produced solutions. Here, V markers are used to
represent the obtained Pareto front approximation, whereas @ markers stand for the Pareto front
dominating the produced solutions of all Monte Carlo realizations. Points in this dominant set
have been linked with a dashed line for clarity. The overall Pareto front approximation provides
a wide range of solutions (i.e. 243 points belonging to the overall estimated front), differently tra-
ding cost for the firefighting contribution increase of the deployment. By using the information
provided in this plot an operations commander would be able to e.g. find the allocation strategy
rendering the best responsiveness against wildfires for a given cost or, alternatively, infer the
minimum funds required to achieve a certain figure of the firefighting potentiality increase.
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Figure 4.5: Estimated Pareto front for the extended problem formulation using the risk grid and
airport positions of the [16,49,5] scenario.

Two extreme points of the estimated Pareto front are highlighted and marked with arrows:
the allocation strategy featuring the minimum non-null cost (leftmost point of the Pareto set),
and the solution yielding the highest value of the firefighting potentiality metric (rightmost point,
correspondingly). The specific solutions of these two extremal Pareto points are depicted in Figu-
res 4.6.b and 4.6.c, jointly with the initial allocation of aircrafts to airports (Figure 4.6.a). It can
be verified in these plots that the minimum cost solution in Figures 4.6.b features less reallo-
cated aircrafts that the maximum potentiality solution in Figure 4.6.c (5 versus 12, respectively).
Besides, the average distance taken by such reallocations result to be shorter for the minimum
cost deployment (159.613 versus 243.743), which evinces the capability of the proposed meta-
heuristic solver to adaptively vary the reallocation distances and consequently, the value of the
fuel consumption cost Wg(-) defined in Expression (4.9). Finally, it is important to note that in
the solution with higher firefighting potentiality (Figure 4.6.c), almost all available aircrafts are
located around areas of high wildfire risk value FWI,, yielding a firefighting potentiality increase
close to 47% at the overall cost of approximately 13800 Euros for the deployment.
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Figure 4.6: Solutions obtained by the proposed meta-heuristic allocation algorithm: (a) initial de-
ployment (or equivalently, zero-cost solution); (b) cost-minimizing Pareto extreme solution; (c) fire-
fighting potential maximizing Pareto extreme solution. Airport locations are indicated with x mar-
kers, whereas aerodromes hosting at least one aircraft are marked with B and a boxed string indica-
ting the number of aircrafts with model ¢ =1, t =2 and ¢ = 3 (in this order).
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4.4 A Realistic Fitness Metric Definition: Water Resources

The above extended model for large-scale aircraft reallocation based on predictive fire risk es-
timations can be further enhanced if the firefighting potentiality metric in Expression (4.8) in-
corporates analytic means to consider the effect of the relative location of water resources with
respect to any eventual wildfire. Many aircraft models used in practice for fire extinction (also
referred to as air tankers or water bombers) are fixed-wing aircraft equipped with tanks that can
be filled on the ground at an air tanker base or by skimming water from lakes and reservoirs. The
same holds for some helicopter models resorting to refillable buckets for delivering water in aerial
firefighting campaigns. For these classes of aircrafts the proximity from the wildfire location to
water resources should play a central role in its firefighting potentiality assessment: the shorter
this relative distance is, the more times these aircrafts are able to replenish their water tankers
without refueling, and the more effective their operations are with respect to the wildfire at hand.

Based on this argument, a more realistic definition for the aircraft model should incorporate
the capacity of its water tanks, which will be hereafter denoted as V; [litres], with ¢ € {1,...,1}.
Likewise, let d2’} denote the distance from grid point z to the closest water resource compatible
with aircraft ty;,>e t; intuitively an air tanker might not be able to restock water from as many
resources as an helicopter due to the distance requirements of landing and take-off maneuvers.
Therefore, the amount of water V(n,z) eventually dropped by an aircraft n with type 9(n) and
assigned airport A(n) in point z is given by

V(n,2) = (N (800, A(n),d%5, | + 1) - V), (4.15)

where V(n) is the capacity of the water tank of aircraft n. It should be clear that V(n) = V; if
9(n) = t. The newly introduced function N,(¢,m,d) denotes the number of water reloads that an
aircraft model ¢ could attain when departing from airport m to z bearing in mind that the closest
compliant water resource is at distance d from the grid point under consideration. It is assumed
that the aircraft departs from its assigned aerodrome with their tanks filled, being this the reason
for the +1 term in the above expression.

Figure 4.7: Diagram of the steps considered in the firefighting operations of an aircraft.

The computation of N,(-) can be done based on the coverage radius already utilized in the defi-
nition of the aircraft models and Figure 4.7, where a schematic diagram of the distances involved
in this metric is provided. As shown, the steps involved in the firefighting service of a type-¢
aircraft n include 1) traveling to the area where the fire has originated; 2) inspect the area and
drop the initial water charge on critically affected zones; 3) repeatedly recharge water from the
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nearest water reservoir, lake or river compatible with their restocking specifications; and 4) travel
to the closer airport to point z for refueling. All such steps are subject to the fuel autonomy of the
aircraft at hand, which is given by twice! its coverage radius R;. Besides the relevance of the rela-
tive distances in this setup, the number of water recharges is further restricted by an additional
penalizing factor y; = 1 that accounts for the higher fuel consumption due to the increased weight
of the aircraft when transporting water and refilling landing and take-off maneuvers.

Based on the above observations one obtains, for aircraft n, the inequality
2R 9n) = Y on) - AAm),z + Y00 A gy " N (ﬁ(n), Mn), d;‘jg(n)) +min [{dm,z}ﬁ‘,{:l] , (4.16)

where the first term is the distance from the assigned airport to the grid point z, the second term
collects the aggregated distance of all penalized water recharges that the aircraft can perform,
and the third term denotes the distance from the last water drop to the airport nearest to z. By
isolating and casting the sought function one obtains

(4.17)

2R 9(n) — Yo(n) " AA(n),. —Min {dm,Z}M_
Ny (8, A, 4%, ) = { =00 d ~min (0] |

Yon) " d:j:;)(n)

where |-] returns the largest positive integer less than or equal to its argument. By inserting this
computed function and the capacity of the water tank V(n) in Expression (4.10), a more realistic
firefighting potentiality metric results as

N ( Z N ( Z

Y(AQ),..., AN =Y ( FWIZV(n,z)) =y (Z FWI, (N, (ﬁ(n),un),dgjg(n))+1)V(n)), (4.18)
n=1\z=1 n=1\z=1

which can directly replace the former definition of Y(-), giving rise to a third reformulation of

the problem under study. Since the cost metric in Expression (4.11) and the budget constraints

remain untouched, the meta-heuristic solver and the greedy repair method capable of efficiently

solving this new problem formulation are kept the same as the one used for the first extension.

4.4.1 Numerical Experiments for the Realistic Model

In this last set of Monte Carlo experiments real information of the aircrafts and aerodromes
operated by the Ministry of Agriculture, Nutrition and Environment (Ministerio de Agricultura,
Alimentacién y Medio Ambiente) has been collected from [226], which contains up-to-date in-
formation on the characteristics, models and allocation policies of the Spanish national aerial
firefighting fleet. A total of T =5 aircraft models are currently used by this authority for fire risk
suppression task, whose characteristics of relevance for the problem are summarized in Table 4.2.
The fleet is composed by N = 55 aircrafts which, during the summer fire campaign, are statisti-
cally deployed over a subset of M = 58 available airports ranging from small-sized aerodromes
(with low capacity B,,) to large airports such as Barajas (Madrid) or El Prat (Barcelona). Table
4.3 lists all such facilities along with their budget and the number of assigned aircrafts per model
type t. Regional belonging of each airport is also inferred from its location and the current Spa-
nish administrative map. The rest of parameters for the scenario are left unchanged with respect
to the simulations in Subsection 4.3.1, except for the distribution of models

{19(n)}ff;1 ={rep(16,1),rep(6,2),rep(9,3),rep(7,4),rep(17,5)}, (4.19)

1As defined previously, the coverage radius is defined as half the maximum travel distance permitted by the fuel
tank capacity of the aircraft due to the implicitly assumed need for refueling at the airport to which it is assigned.
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with rep(x,#) returning a set with x repetitions of value ¢. Again, I = 150 iterations of the meta-
heuristic allocator are run for 20 independent Monte Carlo experiments aimed at providing a wide
and diversely populated estimation of the Pareto front.

Table 4.2: Aircraft types based on the information from [226].

t | Aircraft description Ye | Belkm] | Vi1l | Q¢ [Vkm] | C; [ud]
1 | CL-215T/CL-415 4 1130 5500 1.5 1.3

2 | Air Tractor 802 “Fire Boss” | 4 644 3100 1.3 1

3 | Air Tractor 802 3.3 644 3100 1.3 1

4 | Kamov K32A 11 BC 2.8 490 4500 0.9 0.6

5 | SOKOL/BELL 412 2.2 244 1500 0.5 0.4

Table 4.3: Summertime deployment for aerodromes based on the information in [226]. Fields indica-
ting the aircrafts assigned to every airport denote the number of allocated units per type.

m | Location Aircrafts | B,, m | Location Aircrafts | @,
1 | Labacolla (A Coruiia) 2,0,0,0,0 | 2.5 30 | San Javier (Murcia) 0,0,0,0,0 | 2.5
2 | Albacete 2,0,0,0,0 | 2.5 31 | Palma de Mallorca 0,0,0,0,0 | 2.5
3 | Alicante 0,0,0,0,0 | 2.5 32 | Pamplona 0,0,1,0,0 | 2.5
4 | Almeria 0,0,0,0,0 | 2.5 33 | Reus (Tarragona) 0,2,0,0,0 | 2.5
5 | Gijén 0,0,0,0,0 | 2.5 34 | Sabadell 0,0,0,0,0 | 2.5
6 | Talavera la Real (Badajoz) | 2,0,0,0,0 | 2.5 35 | Salamanca 2,0,0,0,0 | 2.5
7 | Barcelona 0,0,0,0,0 | 2.5 36 | Donostia-San Sebastian 0,0,0,0,0 | 2.5
8 | Bilbao 0,0,0,0,0 | 2.5 37 | Santander 0,0,0,0,0 | 2.5
9 | Burgos 0,0,0,0,0 | 2.5 38 | Santiago 0,0,0,0,0 | 2.5
10 | Rota (Cadiz) 0,0,0,0,0 | 2.5 39 | Sevilla 0,0,1,0,0 | 2.5
11 | Cérdoba 0,0,0,0,0 | 2.5 40 | Moron (Sevilla) 0,0,0,0,0 | 2.5
12 | Ampuriabrava (Girona) 0,0,2,0,0 | 2.5 41 | Manises (Valencia) 0,2,0,0,0 | 2.5
13 | Armilla (Granada) 0,0,0,0,0 | 2.5 42 | Valladolid 0,0,0,0,0 | 2.5
14 | Jaén 0,0,0,0,0 | 2.5 43 | Vigo 0,0,0,0,2 | 2.5
15 | Huesca 0,0,0,1,0 | 2.5 44 | Vitoria 0,0,0,0,0 | 2.5
16 | Ibiza 0,0,0,0,0 | 2.5 45 | Zaragoza 2,0,0,0,2 | 2.5
17 | Jerez 0,0,0,0,0 | 2.5 46 | Rosinos (Zamora) 0,2,0,0,0 | 1.5
18 | Leo6n 0,0,0,0,2 | 2.5 47 | Xinzo de Limia (Orense) 0,0,2,0,0 | 1.5
19 | Alguaire (Lleida) 0,0,0,0,0 | 2.5 48 | Huelma (Jaen) 0,0,0,1,0 | 0.6
20 | Logrono 0,0,2,0,0 | 2.5 49 | La Almoraina (Cadiz) 0,0,0,1,0 | 0.6
21 | Barajas (Madrid) 0,0,0,0,0 | 2.5 50 | Plasencia (Caceres) 0,0,0,1,0 | 0.6
22 | Cuatro Vientos (Madrid) 0,0,0,0,0 | 2.5 51 | Ibias (Asturias) 0,0,0,1,0 | 0.6
23 | Getafe (Madrid) 0,0,0,0,0 | 2.5 52 | Villares (Guadalajara) 0,0,0,1,0 | 0.6
24 | Torrején (Madrid) 2,0,0,0,0 | 2.5 53 | Tabuyo del Monte (Leon) 0,0,0,0,2 | 0.8
25 | Malaga 2,0,0,0,0 | 2.5 54 | Pinofranqueado (Caceres) | 0,0,0,0,2 | 0.8
26 | Pollensa (Mallorca) 2,0,0,0,0 | 2.5 55 | La Iglesuela (Toledo) 0,0,0,0,2 | 0.8
27 | Son Bonet (Mallorca) 0,0,1,0,0 | 2.5 56 | Cuenca 0,0,0,0,2 | 0.8
28 | Menorca 0,0,0,0,0 | 2.5 57 | Puerto del Pico (Avila) 0,0,0,0,1 | 0.8
29 | Alcantarilla (Murcia) 0,0,0,1,0 | 2.5 58 | Lubia (Soria) 0,0,0,0,2 | 0.8

As for the location of water resources, geographical information about the position of rivers,
ponds, lakes and the coast of the Spanish peninsula is added to the simulation setup, each being
assumed to be compliant with specific aircraft models. As such, rivers, lakes and the sea are sup-
posed to be compliant with helicopters (¢ € {4,5}), whereas model ¢ = 3 (namely, the Air Tractor
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802) reloads water exclusively on the ground, thus imposing that the only compliant water re-
source is the closest airport facility to the grid point z being attended. Likewise, relatively large
airplane models (¢ € {1,2}) may skim water from ponds, lakes and the sea, but not from rivers.

(a) (b)

(d) (e) ®

Figure 4.8: Pictures of the real aircrafts used in the simulations: (a) CL-215; (b) CL-415; (c) Air
Tractor 802 “Fire Boss”; (d) Air Tractor 802; (e) Kamov K32A 11 BC; (f) SOKOL/BELL 412.

Before proceeding to the discussion on the obtained simulation results, it is important to no-
tice that given the aggregation over n done in the definition of the firefighting potentiality metric
Y(-), the reallocation priority contributed by high fire risk points located close to the coast could
be masked by the null fire risk characterizing such surrounding points falling on the sea. Conse-
quently, Y(-) is normalized by the number of grid points with nonzero fire risk FWI,, yielding a
measure of the firefighting potentiality averaged over all grid points that could eventually benefit
from the proposed deployment strategy.

Having said this, Figure 4.10 depicts the overall estimated Pareto front after running the
proposed algorithm over the risk grid {FWI,} of Figure 4.1, which comprises Z = 47367 points
arranged in a regular lattice within the longitude and latitude ranges [-10,5] and [35,44] [deci-
mal degrees], respectively. It is important to a priori pinpoint the fact that the risk distribution
depicted in this figure falls within the typical set of risk predictions for the Spanish summertime,
lacking of any meteorological incident that could drive the predicted grid towards atypical dis-
tributions. If current aerial resource allocation strategies have so far hinged on the long-term
observation and study of typical weather conditions during summertime, it is expected that low
firefighting potentiality increases are provided by the developed meta-heuristic allocator. This is
indeed what can be observed in the obtained Pareto front (firefighting potentiality improvements
between 0 and 7%). This can be regarded as a technical proof of the suitability of current re-
source allocation strategies under typical weather conditions, but definitely puts to question the
effectiveness of such static procedures when non-typical weather forecasts (e.g. lightning storms
in combination with severe droughts or heat waves) come into play. There lies the contribution
of the proposed tool, which can dynamically compute and provide decision makers with the most
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Figure 4.9: Map of the Spanish peninsula with real data on the location and type of water resources
(ponds, lakes and rivers) and the geographical position of airports (circle colored markers discrimi-
nating between civil or military owned facilities). This information, jointly with the FWI index repre-
sented in Figure 4.1, lay the basis for a realistic assessment of the derived meta-heuristic solver.

cost-effective reallocation strategies subject to the characteristics of the operated airports and the
specifications of the available aircrafts. For the sake of coherence with previously discussed simu-
lations, Figure 4.11.a to 4.11.c show the solutions of the algorithm corresponding to those points
featuring null cost, minimum non-zero cost and maximum firefighting potentiality increase.
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Figure 4.10: Estimated Pareto front for the realistic problem formulation using real data for the
Spanish aerial firefighting fleet.
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Figure 4.11: Solutions obtained by the proposed meta-heuristic allocation algorithm in the realis-
tic simulation scenario over the Spanish peninsula: (a) initial deployment (or equivalently, zero-cost
solution); (b) cost-minimizing Pareto extreme solution; (c) firefighting potential maximizing Pareto ex-
treme solution. Airport locations hosting at least one aircraft are marked with B, along with string
indicating the number of aircrafts with models ¢t =1 to ¢ =5 (in this order).




CHAPTER 5

CONCLUDING REMARKS AND FUTURE
RESEARCH LINES

“Enough research will tend to support your conclusions.”

- Arthur Bloch

From a general standpoint, the motivation for the research work carried out within this The-
sis can be recapitulated in the appreciation of the increased complexity of the management of
large-scale disasters when several criteria are involved in decision making processes. This com-
plexity increase is not only a matter of the limited reasoning capabilities of the human being when
encountering decisional scenarios of high dimensionality (as argued by the cross-national scales
of lately occurred disasters), but is also a consequence of the confluence of diverse, yet conflicting
criteria in the decision processes. In particular, cost implications are indeed severely restricting
the amount of resources available for preventive campaigns and reactive procedures against wild-
fire, which eventually impacts on the coordination in the allocation and management of resources
and ultimately, on the effectiveness of the prompted initiatives.

The above motivation being noticed, this dissertation has conjectured on the design of modern
meta-heuristic algorithms to efficiently deal with optimization problems that model the allocation
of resources in wildfire disasters. The selection of this class of stochastically-driven optimization
approaches is founded on their well-known capabilities to explore continuous and discrete multi-
variable search spaces at a reduced computational cost when compared to analytical approxima-
tions. However, the contributions of this Thesis are not uniquely restricted to the formulation
and naive application of such meta-heuristics to practical scenarios springing from the manage-
ment of firefighting resources. The derived solvers also incorporate novel, distinctive algorithmic
ingredients aimed at addressing particularities and constraints in the problem formulations at
hand, as exemplified by the greedy repair procedure designed in Chapter 4 to fulfill the capacity
constraints of the airports under consideration. It is indeed in these ad-hoc procedures where the
main technical added value of the proposed research resides, further shielded by the innovative,
more realistic problem models tackled via the developed optimization tools.

More specifically, several interesting conclusions can be drawn from the two application sce-
narios where Harmony Search heuristics have been proven to yield an efficient optimization solver
for strategic and operational resource allocation against wildfire events:

¢ In Chapter 3 a novel hybrid meta-heuristic algorithm specially tailored for dealing with an
extension of the dynamic relay deployment problem for large-scale wildfire disasters. The

71
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scenario consists of the dynamic deployment of heterogeneous wireless communication re-
lays (each featuring distinct coverage radius and cost) in such a way that the connectivity
between the firefighting resources deployed on site and the command center is maximized
while, at the same time, yielding a minimum cost of the deployment. From a mathematical
perspective this resource allocation paradigm has been shown to ground on a modification
of the so-called disk covering problem where, in its seminal form, the locations of a num-
ber of relays over a certain area so that the surface covered on such an area is maximized.
This classical optimization problem is extended by also optimizing the number and model
(namely, coverage radius and cost) of the deployed relays. The heuristic solution proposed
to efficiently tackle this novel problem statement resorts to Harmony Search as a global
searching strategy, which is hybridized with a modified version of the K-means clustering
algorithm so as to refine the location of the relays. By deriving both single- and bi-objective
versions of the heuristic solver, its applicability has been extended beyond emergency relay
deployments towards tactical communications planning, where a wide spectrum of different
optional network topologies is required by the operations commander. Two different simula-
tion scenarios have been analyzed for assessing the efficiency of the proposed scheme when
compared to two different extensions of the K-means approach — X-means and G-means —
where the number of clusters (i.e. relays) is estimated based on different model scoring cri-
teria. In all the performed experiments, the proposed algorithmic solutions have obtained a
better balanced trade-off between coverage and cost (number, model) of the deployed relays
with respect to its aforementioned counterparts, results that pave the way towards their
applicability to scalable communication deployments over wide-area disasters.

* The scenario addressed in Chapter 4 capitalizes on the availability of localized predictive
fire risk rating indicators to drive the optimal deployment of firefighting aircrafts (i.e. air-
planes and helicopters) over airports and aerodromes. The hypothesis buttressing this re-
search line hinges on the fact that if a priori information on the probability of fire igni-
tion of large-scale areas is supplied in the form of an quantifiable index to the decision
maker, this stakeholder in the fire logistics chain should adopt this index as a leverage for
subsequent allocation procedures of firefighting resources based on effectiveness and cost
criteria. To algorithmically support this decision making procedure, several single- and bi-
objective problem formulations have been derived so as to realistically model the allocation
of resources in this envisaged scenario. The resulting series of combinatorial optimization
problems has been efficiently solved by means of a combination of the HS meta-heuristic
algorithm and a greedy repair procedure to account for airport capacity constraints, both
of which constitute the algorithmic core of the derived single- and bi-objective optimization
tools. Numerical experiments have been first carried out in a set of synthetically-generated
scenarios to validate the performance of the proposed hybrid optimizer in a controlled sce-
nario. The obtained results confirm that the performance of the meta-heuristic solver scales
up nicely. A second set of simulations has considered real fire risk estimations based on the
Forest Weather Index system over the Spanish peninsula, as well as real positions of aero-
dromes, airports and water resources in this geographical area. The range of deployments
efficiently furnished by the application of the proposed bi-objective solver to this realistic
experiment serves as a scalable, near-optimal decisional basis for commanders and decision
makers in preventive operations planning against large-scale wildfires.

Despite the fact that the two addressed application setups detailed above have gravitated on
the management of firefighting resources, the derived algorithms might be directly extrapolated
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to the allocation of resources in disasters of different nature and characteristics. The flexibility
of the Harmony Search heuristic solver lying at the heart of the derived methods to efficiently
deal with continuous and discrete-variable (i.e. combinatorial) optimization paradigms makes
it suitable for alternative problem formulations involving e.g. emergency health logistics, field
hospitals or supply chains, among many others. As has been overseen in Chapter 4, this becomes
even more relevant when one notices that the risk ascribed to other classes of disasters (especially
those strongly affected by weather conditions such as tropical cyclones, tornadoes, droughts, se-
vere thunderstorms and lightening) can be predictively quantified in the form of geolocalized
indicators similar to the FWI utilized in this dissertation. This two-fold appreciation unchains a
promising line of future research aimed at predictively optimizing the effectiveness of deployed
resources for the management of disasters by means of hybrid Harmony Search heuristics and
other approximative solvers alike.

5.1 Publications and Merits

The scientific contributions and merits achieved by the author of this Thesis during her academic
track include 1 book chapter and 4 articles in journals with JCR index related to the application
of Harmony Search to different scenarios (among which those tackled in Chapters 3 and 4 can be
found), 5 contributions to international and national conferences and 1 edited lecture notebook.
Theses. A list of these publications and merits is next provided:

* Books and book chapters:

1. M. N. Bilbao, D. Gallo-Marazuela, S. Salcedo-Sanz, J. Del Ser, C. Casanova-Mateo, “A
Meta-Heuristic Approach for the Optimal Deployment of Firefighting Aircrafts based
on Fire Risk Predictions”, chapter accepted for its inclusion in New Perspectives on
Stochastic Modeling and Data Analysis, edited by C. H. Skiadas, V. Girardin and dJ.
Bozeman, pp. 300-360, November 2013.

* Articles in refereed international journals:

1. M. N. Bilbao, S. Salcedo-Sanz, J. Del Ser, C. Casanova-Mateo, “Design and Application
of Single and Multi-objective Harmony Search to the Predictive Deployment of Fire-
fighting Aircrafts: a Realistic Case Study”, invited paper for its inclusion in Interna-
tional Journal of Bio-Inspired Computation, special issue on “Theory and Applications
of the Harmony Search Method” by X.-Z. Gao and Z. W. Geem, 2014 (JCR: 1.351).

2. M. N. Bilbao, S. Gil-Lépez, J. Del Ser, S. Salcedo-Sanz, M. Sanchez-Ponte, A. Arana-
Castro, “Novel Hybrid Heuristics for an Extension of the Dynamic Relay Deployment
Problem over Disaster Areas”, TOP, accepted (published on line), November 2013
(JCR: 0.765).

3. D. Manjarrés, I. Landa-Torres, S. Gil-Loépez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz,
Z. W. Geem, “A Survey on Applications of the Harmony Search Algorithm”, Engineering
Applications of Artificial Intelligence, Vol. 26, N. 8, pp. 1818-1831, September 2013
(JCR: 1.625).

4. J. Del Ser, M. N. Bilbao, S. Gil-Lopez, M. Matinmikko, S. Salcedo-Sanz, “Iterative
Power and Subcarrier Allocation in Rate-Constrained OFDMA Downlink Systems based

on Harmony Search Heuristics”, Engineering Applications of Artificial Intelligence,
Vol. 24, N. 5, pp. 748-756, August 2011 (JCR: 1.665).
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¢ International and national conference proceedings:

1. M. N. Bilbao, D. Gallo-Marazuela, S. Salcedo-Sanz, J. Del Ser, C. Casanova-Mateo,
“A Meta-Heuristic Approach for the Optimal Deployment of Aerial Firefighting Fleets
based on Predictive Fire Risk Estimations”, International Conference on Applied Sto-
chastic Models and Data Analysis, Mataré, Spain, June 2013.

2. dJ. Del Ser, M. N. Bilbao, S. Gil-Lépez, M. Matinmikko, S. Salcedo-Sanz, “Resource Al-
location in Rate-limited OFDMA Systems: A Hybrid Heuristic Approach”, IEEE /ITG
Workshop on Smart Antennas, pp. 1-5, Aachen, Germany, February 2011.

3. M. N. Bilbao, L. Aginako, O. Lazaro, T. Hof, C. Bonnet, F. Filali, P. Vaquero, S. De la
Maza, R. Atkinson, B. Molina, J. O’Flaherty, R. Mazza, “MULTINET: Enabler for Next
Generation Enterprise Wireless services”, eChallenges2007, published in Expanding
the Knowledge Economy: Issues, Applications and Case Studies, The Hague, Nether-
lands, October 2007.

4. 1. Echave, J. I. Goirizelaia, M. Huarte, M. Madarieta, M. N. Bilbao, “Implementation
of a Sure and Auditable System of Vote through Internet”, VOTOBIT II, Leén, Spain,
October 2004.

5. M. Madarieta, M. Huarte, I. Echave, M. N. Bilbao, J. I. Goirizelaia, “Using Virtual
Learning Asynchronous Tools as an Efficient Help to Traditional Learning Environ-
ments”, IADAT-e2004 (International Conference on Education), Bilbao, July 2004.

¢ Educational material:

1. M. N. Bilbao, C. Perfecto, G. Abaroa, “Programazioaren Oinarriak: C-ko eta Java-
ko Praktikak” (in Basque), edited by the publishing services of the University of the
Basque Country, ISBN 978-84-694-1991-5, 2011.

5.2 Future Research Lines

The promising results obtained in this work pave the way towards future research lines of interest
within the overall scope of the Thesis: the cost-efficient management of resources in wildfires
and, in general, large-area disaster events. Such research directions are hereafter broken down
in specific aspects applicable to each of the scenarios tackled through the Thesis — namely, the
allocation of communication and aerial firefighting resources —, followed by a research topic that
could hold for both considered setups. Here is a brief sketch of such lines:

¢ As for the system model formulated in Chapter 3, it has been implicitly assumed that com-
munications between the firefighting crew — the deployed communicating nodes — and the
relays are established under a star-like topology, i.e. a direct link between each of such nodes
and the serving relay is imposed so as to guarantee that no crew happens to be in radio iso-
lation while undertaking field operations. While this may yield a relatively straightforward
approach to set direct error-free communication links between nodes and relays, in practice
radio paths are subject to failures as a result of 1) the mobility of nodes; 2) the orographic
characteristics of the area; and 3) the low received power at the relay due to the limited
transmit power on the node side and the wide distances at which the crew operate.
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This observation motivates conducting further research aimed at cost-efficient radio re-
source allocation in large-area disasters with faulty communications. In this context, multi-
hop networking is envisaged as an effective alternative since:

— Setting multiple communication paths between source and destination decreases the
link failure probability exponentially with the number of redundant links.

— When the link failure probability is sufficiently low, multi-hop networking may serve as
an energy-efficient coverage extension scheme, as the effective radii of the areas cove-
red by the deployed relay are increased by virtue of several nodes acting themselves
as local relays.

T
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Relay node <——» : direct communication link
< - — —» : redundant communication link
Crew unit 6
'f \ (x6,56) _
Crew unit 3 -
Crew unit 1
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Figure 5.1: Extension of the system model in Chapter 3 considering multi-hop communications.

In regards to the system model, the adoption of multi-hop links would modify substantially
the star-like topology to yield a multiple-tree-like network as shown in Figure 5.1, where
cost and coverage considerations would be imposed on the root and the intermediate nodes
(global and local relays). It is important to note that link redundancy between a certain node
and different root nodes could be established by simply defining interconnections between
the corresponding trees and/or parallel trees sharing the same root node. The underlying
optimization problem would address the estimation of the position, number and model of
relay nodes and the tree topology interconnecting the covered mobile nodes under cost and
coverage criteria for which the application of meta-heuristic algorithms as the one used
in this Thesis along with encoding strategies well suited for tree network topology (e.g.
Dandelion encoding [227]) would unchain a new operations research area gravitating on
resource allocation paradigms modeled by tree-like data structures (from the here exposed
communications network deployment to vehicle routing in ground logistics).

¢ Again in connection to Chapter 3, the criteria driving the optimization problems defined in
Expressions (3.3) and (3.4) focus strictly on coverage and cost, the latter finding its rationale
in the need for including cost aspects in the optimization of resources that motivates the
whole Thesis. In this context, it would be interesting to explore, from an optimization point
of view, how the battery lifetime of mobile nodes becomes affected in long-term disaster
events. In these situations it results impractical to replace or recharge batteries on site,
whose eventual depletion could lead to a risky radio isolation of the deployed firefighters. To
avoid this potential danger, the deployment of relays should take into account the unequally
lasting battery lifetime of relay (higher and more easily rechargeable) and mobile nodes
(lower), in such a way that the effective radii of the coverage ranges would vary in time
depending on the relative position and battery left of the covered mobile nodes. Studying
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how the problem could be reformulated to consider the maximization of the average battery
lifetime as another (if not the main) optimization criterion — along with the algorithmic
consequences of its efficient resolution — is definitely a research line to be pursued.

* The successive problem formulations in Chapter 4 have been kept restricted to the allo-
cation of aerial firefighting resources. Consequently, the metric involved therein consi-
ders effectiveness against wildfires as directly dependent on the effective amount of water
dropped by the aircraft at hand during the time taken by its fuel deposit to deplete. A
immediate research line arising from this problem would aim at the inclusion of ground
vehicles in the ecosystem of firefighting resources being optimally allocated by the derived
optimization tool. A redefinition of the metric in Expression (4.18) would be required to
reflect the fact that 1) ground vehicles can be allocated, in general, to developed city areas;
2) they can refill their water tanks in fire hydrants, whose number happens to be much
higher that lakes and rivers; 3) the time taken by a ground vehicle to reach a certain area
affected by a wildfire is longer than that of any aircraft model and subject to geographical
constraints, implying the need for including in the metric the time of arrival as a key factor
in the effectiveness against a fire; and 4) the potential risk for firefighting crews operat-
ing ground vehicles are several orders of magnitude higher than those driving firefighting
aircrafts, which would come along with an interesting algorithmic synergy of this problem
with the allocation of communication resources in Chapter 3. Regarding the latter, commu-
nications relays would embody another resource model to be preventively allocated through
the optimization solver in Chapter 4.

¢ As shown in Appendix A, the FWI utilized as an indicator of the probability of occurrence
and potential severity of a given wildfire is computed exclusively by resorting to the fire
behavioral characteristics of generic soil layers against different weather characteristics.
This computation is made under a geographically agnostic fashion, i.e. the specific soil
properties of a certain area are not taken into account, but the method assumes instead
that all areas under study are made of the three soil layers specified in Figure A.1. In other
words: the FWI only reflects the climatological fire risk of a given zone disregarding its
particular soil characteristics. To circumvent this issue, alternative fire risk scores could be
certainly developed by exploiting already available geolocalized information about soil type
and characteristics. However, a first approach to leverage the already developed algorithms
towards a more realistic model of fire risk and severity would be to include, in the defined
metric of Expression (4.18), information about the position of cities, villages and in general,
human settlements whose proximity to an eventual wildfire should increase dramatically
its firefighting resource requirements.

Finally, a line of future research applying to both scenarios considered in this dissertation lies
at the algorithmic heart of the proposed resource allocation methods: it has been argued through
the Thesis that since its invention [14], Harmony Search has excelled in the literature related
to meta-heuristic optimization as one of the most utilized schemes in a wide portfolio of appli-
cation fields surveyed in [127]. However, recently a number of novel meta-heuristic approaches
have been proposed by combining innovative perspectives based on the observation of different
phenomena in the literature. In this context, future research will be devoted to the consideration
of Coral Reefs Optimization (CRO, [111]), which is based on the simulation of the reproduction,
colonization and depredation processes of coral reefs thanks to which it has been recently proven
to outperform Harmony Search in the optimal deployment of mobile networks under electromag-
netic pollution criteria [228].




APPENDIX A

PRINCIPLES AND COMPUTATION OF THE
FIRE WEATHER INDEX (FWI) SYSTEM

“Humor starts like a wildfire, but then continues on, smoldering, smoldering for years.”

- Robert Orben

The relevance of forests for the whole Earth has been highlighted frequently throughout this
Thesis, due to their essential role in 1) the carbon dioxide cycle; 2) the soil conservation and
3) the survival of animal and plant species. This utmost importance of preserving forest areas
motivates the need for quantitatively estimating the likelihood of fires starting in forests, as well
as the velocity at which they spread geographically.

On this purpose, one of the most utilized risk assessing systems for forest fires is the so-called
Forest Weather Index (FWI), which was originally developed by the Canadian Forest Service
(CFS) [223] after years of forestry research [229]. In essence the FWI comprises a series of es-
timates for the moisture content of three different fuel classes using daily weather observations,
including temperature, relative humidity, wind speed, and 24-hour accumulated precipitation
measured at noon Local Standard Time (LST). The reason for selecting these specific weather
data for the computation of the FWI lies on their impact on the fire ignition potentiality, inten-
sity, and fuel consumption of a fire event located in the area where such indicators are recorded.
As such, it is well known that air temperature affects the drying rate of fuels and therefore de-
termines the heating of fuels to ignition temperature. Likewise, a higher value of the relative
humidity involves a slower drying of fuels since in this case, more moisture will be contained in
the air and hence available to the fire for its absorption. Fire spread, however, gets strongly bi-
ased by the wind speed as it also contributes to the oxygen supply to the burning fuel, and drives
flames towards unburned areas [230]. Finally, precipitation rules the wetting dynamics of fuels.
The moisture content estimates resulting from the processing of weather data are then elaborated
to quantify the potential, intensity and fuel consumption of a location at 4:00 pm LST.

As shown in Figure A.1, the FWI System builds upon three fuel codes representing the mois-
ture content of the organic soil layers of forest floor, and three fire indexes that model the fire
behavior. In general, the forest soil can be stratified in five different layers, each featuring dis-
tinct types of fuels for forest fires which are in turn reflected in the FWI System. This fuel
categorization hinges on the drying rate or time lag at which the fuel loses moisture as a result
of combustion, and on the fuel loading metric, which describes the average density (in tons per
hectare) of the fuel at hand over a certain area. Three codes result from the processing of these
weather indicators within the FWI system, which are described as follows:
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* Fine Fuel Moisture Code (FFMC): this numeric rating reflects the moisture content of litter

and fine fuels of around 2 cm deep, a typical fuel density of 5 tons per hectare and 16-hour
time lag. Due to these characteristics, the FFMC code is a quantitative indicator of the
probability (ease) of ignition.

Temperature (T) —p»
Humidity (H) —»f

’ Moisture Code
Rain (r) —»| (FFMC)

Fine Fuel

Wind speed (W) Initial
Spread Index
(ISI)
Temperature (T) —» Duff Fire Weather Index
Humidity (H) — Moisture Code (FWI)
Rain (r) —» (DMC)
Build Up
Index
(BUI)
Temperature (T) —» Duff
) Moisture Code
Rain (r) —» (DMC)

Figure A.1: Computation flow of the FWI index system.

Mathematically speaking and following the notation from [231], the computation of this
code and those considered within the FWI system requires the definition of several weather
parameters: temperature, relative humidity and wind speed measured at noon will be de-
noted as T [°C], H [%] and W [km per hour], respectively. Likewise, rainfall measured in an
open environment at the same time of the day will be given by ro [mm]. With this notation
in mind, the fine fuel moisture content m( from the previous 24 hours is estimated for the
FFMC code as

mo =147.2-(101 - F)/(59.5 + Fy), (A1)

where F is the value of the FFMC index corresponding to the day before the computation
is made. If the effective rainfall r [mm] is given by ro — 0.5, then the fine fuel moisture
content after rain m, is defined as

{ mo +42.5r (e 100/(251-mo)y(1 _ o=6.93/ry) if mg < 150,
e =

_ 2
mo +42.5r (e 100ELm) (1 — g=693rr) o MgZld0- 105 if my > 150,

(A.2)

whereas the equilibrium moisture content (EMC) for drying (E ;) and wetting (¥ ,,) relate to
temperature and humidity as

E;=0.942H%570 1 11100710 4 § 18(21.1 — T')(1 — e~ 1158, (A.3)
E, =0.618H%7%3 1 10 H~100/10 4 ( 18(21.1 - T')(1 — ¢~ *-115H), (A.4)

By defining intermediate variables x, and x; required to compute the log drying and wetting
rates kg and x,, [log;y m per day] as

Ko 2 0.424(1 — (H/100)17) + 0.0694W°-3(1 — (H/100)?), (A.5)
Kgq = %,0.5810-0365T (A.6)
100 - H\17 100-H )8
K1 é0.424(1— (—) )+O.0694W0'5(1— (—) ) (A.7)
100 100

Ky = x10.581¢0-0365T (A.8)
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the fine fuel moisture content after drying m,4 and the value of the FFMC code result in

E;+(m,—Eg)107% ifm,>E,,
Mag =4 Ey—(Eyp-m)10%w ifm, <E,, (A.9)
m, iwaSmrSEd,
9250 —
FFMC = 59.5———_ad (A.10)
1472+ moy

which rates, in a 0-99 scale [%], the likelihood of fire ignition in a geographical location.

Duff Moisture Code (DMC): this code attempts at quantifying the combustion properties
of moisture contained in loosely compacted organic matter subject to decomposition, which
usually lies in substrates 5-10 cm deep, at a density of approximately 50 tons per hectare.
Although rainfall, temperature and humidity are still relevant factors for the behavioral
features of this moisture under fire, its constituent fuels lie below the floor surface (particu-
larly for forest terrains) and is kept isolated from wind bursts. Hence DMC fuels yield
a slower drying rate than their FFMC counterparts, with a typical time lag of 12 days.
Given this deeper location of the involved substrates, the DMC code can be interpreted as
the probability of fire ignition due to lightning, as well as the fuel consumption rate for
moderately deep organic layers and medium sized woody material.

The formulae required for the computation of the DMC index relies on the definition of the

effective rainfall for this type of moisture, which will be hereafter referred to as r, [mm]
and relates to the total amount of rain r( as

re =0.92r9—1.27. (A.11)

On the other hand, the duff moisture content My from the day prior to the computation is
given by
My =20+ e(5.6348—P0/43.43) (A.12)

where P denotes the DMC corresponding to the previous day. The moisture content after

rain M, results from
1000r,

48.77+b-r,’
with b denoting the so-called slope variable that establishes the relation between these two
variables (M, and r.) through the initial value of the DMC code Py. This slope is determined
by a set of empirical equations for different ranges of Py, namely

{ 100/(0.5+0.3Pg) if Py <33,
b=

M,=My+ (A.13)

14-1.31nP, if 33 < Py < 65, (A.14)
6.2InPy—17.2  if Py > 65,

which give rise to the value of the DMC after rain (DMC,) and the value of the DMC index
itself as

DMC, =244.72 —43.431n(M, — 20), (A.15)
DMC = DMC, +1.894-10"*4(T + 1.1)(100 - H)L,, (A.16)
where L, is the effective length of the day for which the DMC is computed, which is tabu-
lated in the FWI system as shown in Table A.1. It should be noted that the practical value
range of the DMC code is upper bounded by 40, i.e. a DMC beyond 30 is dry, whereas inten-

sive, complexly extinguishable burning will occur in the duff and medium fuels if the DMC
value falls above 40.
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* Drought Code (DC): this last fuel code quantifies the moisture content of deep layers of com-
pacted organic matter lying 10—-20 cm deep and containing a fuel density of approximately
440 tons per hectare. This depth is enough to isolate the layer from wind speed and relative
humidity, but temperature and precipitation do still impact on their combustion properties.
Consequently, fuels with significant DC render a very slow drying rate (time lag of 52 days),
which sheds light on the resistance to extinguishing of a given fire.

Table A.1: Values of L, and L¢ for the computation of DMC and DC.

Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
L, 65 | 75| 90 | 128 139|139 |124 109 | 94 | 80 | 7.0 | 6.0
Lg -16|-16|-16 | 09 | 38 | 58 | 64 | 50 | 24 | 04 | -16 | -1.6

The computation of this last fuel rating index grounds on the determination of the potential
evapotranspiration of the layer, denoted as V and measured in units of 0.254 mm water
per day, as well as on the definition of a day length factor L/ to reflect seasonal effects
on the noon temperature that leads to the aforementioned evapotranspiration (Table A.1).
Rainfall rg is first reduced to an effective rainfall r4 as ry = 0.83rg— 1.27, which is added to
the existing moisture equivalent @ to provide the effective @, as

Qo = 800e D400, (A.17)
Q,=Q,+3.937ry, (A.18)

where Dy is the value of the DC index of the day prior to the computation. The evotranspi-
ration of the layer is then given by

V =0.36(T+28)+L, (A.19)

which leads to the actual value of the DC code through the intermediate estimation of this
parameter after rain (DC,), i.e.

DC =DC, + 0.5V =400In(800/Q ) + 0.5V . (A.20)

The typical range of values for the DC rating is [0,350]; a value above 300 is deemed ex-
treme indicating that fire will involve deep sub-surface and heavy fuels. In this situation no
burning-off initiatives should be triggered nor permitted due to their lack of effectiveness.

Once the above codes have been computed, the computation flow proceeds by computing the
intermediate Initial Spread Index (ISI) and Build Up Index (BUI), which indicate the rate of fire
spread immediately after ignition and the total amount of fuel available for consumption, respec-
tively. Intuitively the ISI index is strongly biased by the wind speed and the FFMC, whereas the
BUI index is affected by the DMC and DC codes differently depending on the relative values of
these codes with respect to each other: the DMC code features the most influence on the BUI
value, but DC dominates the BUI value at high DMC values. Such indexes are computed as

ISI=0.208- 009039 . 91 g¢~0-1386mad (1 4 1y 531/4.39.107)), (A.21)

0.8.DMC-DC if DMC =< 0.4DC,

BUI= DMC+0.4DC
D) (092 +(0.0114DMC)L7)  if DMC > 0.4DC,

(A.22)
DMC - (—DMC+0.4DC
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Table A.2: Summary of features of the FWI moisture code system [232].

FFMC DMC DC

Fuel type Litter, cured | Loosely-compacted organic | Deep, compact or-
fine fuels layers of moderate depth ganic layers

Interpretation | Ease of ig- | Probability of lightning | Resistance to extin-
nition and | fires; fuel consumption in | guishing; fuel con-
flammability moderate duff sumption of deep or-
of fine fuels ganic material

Depth 1-2 cm 5-10 cm 10-20 cm

Fuel density 5 tons per | 50 tons per hectare 440 tons per hectare
hectare

Time lag 16 hours 12 days 52 days

Parameters T HW,r T H,r T, r

Value range 0-99 0-350 0-1200

where myqy, DMC and DC are given by Expressions (A.9), (A.16) and (A.20), respectively. The
Fire Weather Index (FWI) is calculated from the above expressions to yield an estimate of the
intensity of a spreading fire, for which it combines the rate of fire spread and the amount of fuel
being actively consumed by the fire itself. Specifically,

2.72(0.434InFWIL,)0-647 . .
e i if FWI; <1
FWI = Lo A2
w { FWI; if FWI; = 1, (4.23)
where FWI; denotes an intermediate FWI index that depends on ISI and DC as
0.1DC (0.626-BUI*®% +2)  if BUI <80,
FWI; = { 1000/(25 + 108.64¢~0-023BUL)  if BUT > 80, (A-24)

which renders a risk index whose range value can be discretized and classified as shown in Table
A.3. This classification rules out the FWI indexes used in the realistic simulations of Chapter 4.

Table A.3: Categorization of the Fire Danger based on the FWI index [223].

FWI class | Value range | Type of fire Potential danger

Low 0-5 Creeping surface fire Fire will be self extinguishing
Moderate | 5-10 Low vigor surface fire Easily suppressed with hand tools
High 10-20 Vigorous surface fire Power pumps and hoses are needed
Very high | 20-30 Very intense surface fire | Difficult to control

Extreme | >30 Developing active fire Immediate, strong action required

In general the FWI index can be exploited to assess fire suppression requirements and to drive
early resource allocation procedures (as done in Chapter 4 of this Thesis), but also provides a easi-
ly understandable indicator of the fire risk that can be utilized for awareness rising campaigns.
Last but not least, it should be noted that the FWI index is not directly calculated from weather
data, but rather depend on such data indirectly through the ISI and BUI indicators.
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