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Abstract

Today, link-state routing protocols that compute multiple shortest paths predominate in data center and campus
networks, where routing is performed either in layer three or in layer two using link-state routing protocols. But current
proposals based on link-state routing do not adapt well to real time traffic variations and become very complex when
attempting to balance the traffic load. We propose All-Path bridging, an evolution of the classical transparent bridging
that forwards frames over shortest paths using the complete network topology, which overcomes the limitations of the
spanning tree protocol. All-Path is a new frame routing paradigm based on the simultaneous exploration of all paths of
the real network by a broadcast probe frame, instead of computing routes on the network graph. This paper presents All-
Path switches and their differences with standard switches and describes ARP-Path protocol in detail, its path recovery
mechanisms and compatibility with IEEE 802.1 standard bridges. ARP-Path is the first protocol variant of the All-Path
protocol family. ARP-Path reuses the standard ARP Request and Reply packets to explore reactively the network and
find the fastest path between two hosts. We compare its performance in terms of latency and load distribution with
link-state shortest-path routing bridges, showing that ARP-Path distributes the load more evenly and provides lower
latencies. Implementations on different platforms prove the robustness of the protocol. The conclusion is that All-Path
bridging offer a simple, resilient and scalable alternative to path computation protocols.
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(the so-called Top-of-Rack (ToR) switches), such as folded
Clos/Fat Tree topologies [3], with routing technologies able
to exploit this multiplicity of paths. In general, paths are
assigned to flows according to a hash computation based
on the parameters identifying the flow. The blind nature
of this assignment regarding path utilization and flow size

1. Introduction

Today Ethernet networks pose stringent functional and
performance requirements like low latency, effective net-
work utilization (load distribution [1]), self-configuration,
scalability, transparency to existing hosts and routers,

compatibility with existing protocol layering and topol-
ogy independence. The challenge to fulfill these require-
ments is aggravated by the high variability of the traffic
transported by the network [2]. In this scenario, being
able to efficiently use the available communication capac-
ity, especially in the case of data centers, requires traffic
engineering techniques different from those applied to cor-
porate networks or ISPs, since there are no applicable (sta-
ble) traffic matrices [3]. Standard solutions combine phys-
ical topologies, which naturally provide multiple equal-
cost paths among source/destination pairs of edge switches
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makes this assignment strategy suboptimal in terms of net-
work utilization.

The need for a new type of switches providing shortest
paths to overcome the limitation of the Spanning Tree Pro-
tocol (STP) led to the creation, by 2004 /2005, of two stan-
dardization groups: Shortest Path Bridges (SPB) [4, 5]
and Transparent Routing Bridges (TRILL RBridges) [6].
These two proposals aimed, among other objectives, to
build switched networks of big size, organized as a single IP
subnet while allowing full utilization of infrastructure links
to obtain shortest paths. The basic routing paradigm in
both proposals is to hybridize bridges into routing bridges
by using a layer-two variant of the proven link-state rout-
ing protocol (IS-IS) to compute shortest path routes be-
tween switches. This dominance has inhibited the re-
search on new bridging paradigms. In the absence of novel
proposals, path computation is by far the dominant ap-
proach for shortest path bridging in large Ethernet net-
works [3, 7, 8] and, surprisingly, path exploration as a form
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of finding routes has been scarcely used in networks, only
for on-demand routing in Ad-Hoc networks [9]. Path com-
putation protocols involve, due to the huge size of current
networks, significant complexity both in terms of compu-
tation and control message exchange, and additional loop
control mechanisms because link-state database may tem-
porarily be not consistent (synchronized) between nodes.
Moreover, additional complexity is added to obtain path
diversity between switches by computing multiple symmet-
ric equal-cost paths for load balancing [10].

Looking for alternatives to the current link-state rout-
ing paradigm we propose and implement All-Path [11, 12],
an evolution of the new family of classic backward learn-
ing transparent bridging paradigm that is based on path
exploration and it is suitable for data center, campus and
enterprise networks. The key advantages of All-Path are
simplicity, low latency, self-configuration and native distri-
bution of load. The first All-Path protocol, named ARP-
Path, relies on the standard ARP Request packet (Neigh-
bor Solicitation for IPv6) to explore multiple paths simul-
taneously and to select the one with the lowest latency. In
this way, it selects a path according to an instantaneous
indication of the load in all the possible paths between
the sender of the ARP Request and the destination. A
path is set up for every pair of nodes for which an ARP
Request/Reply exchange is performed, and it is refreshed
each time the ARP exchange proceeds. Similar to swarm
routing, used paths are also self-maintained via forward
refreshing of learnt MAC addresses. Unused paths (MAC
addresses) expire as in standard switches.

The main contributions of this paper are as follows:

e We present All-Path switches and their differences
with standard switches and describe ARP-Path pro-
tocol in detail, its path recovery mechanisms and
compatibility with IEEE 802.1 standard bridges.

e We compare ARP-Path with ECMP routing regard-
ing scalability and fault tolerance.

e We perform a comparison of load distribution and
latencies through simulation in a scenario especially
suited for SPB due to the evenly used traffic distri-
bution.

The remainder of the paper is structured as follows.
Section 2 presents a description of how path exploration
mechanisms work for later defining the conditions of loop
freeness in section 3. We compare the proposed protocols
with the path computation paradigm in sections 4 and
5. We briefly describe an experimental testbed and the
protocol family evolution in sections 6 and 7, respectively.
Finally, in section 8 conclusions are provided.

2. All-Path Bridging

With the intention of going beyond link-state routing
for shortest path bridging, we have explored an alterna-

tive, based solely on the mechanisms of transparent bridg-
ing: frame flooding, filtering and address learning. The
predecessor of our loop free path exploration mechanism
is Reverse Path Forwarding (RPF) [13]. In a sense, we
have moved this mechanism from layer three (source IP
address and routing tables at routers) to layer two (source
MAC address and port-MAC forwarding tables of switches
via learning).

2.1. All-Path Switches vs. Standard Switches

All-Path switches do not differ very much from classi-
cal standard switches, but we can point out three differ-
ences between them: first, source addresses are only learnt
from specific frames; second, but essential, the learning
of source address at the port of first arrival (of broad-
cast frames) blocks further learning (for a short time) of
the same source address at other switch ports in order
to prevent loops; and third, frames destined to unknown
MAC unicast addresses, i.e. addresses for which the switch
has no port associated to the destination MAC addresses,
are not flooded. A path recovery mechanism is used in
case of link or switch failure. All-Path switches can imple-
ment link aggregation, 802.1Q VLAN tags, and in general
all other IEEE standard features because the forwarding
mechanism is fully independent of them.

2.2. Basic ARP-Path protocol description

ARP-Path is the first protocol of a new family of trans-
parent switches that we identify as All-Path switches. The
basic idea behind All-Path switches is to explore simulta-
neously all possible network paths between a given pair
of nodes with a broadcast frame while at the same time
preventing frame loops with the locked association on first-
arrival-port to the MAC source address of the frame (for a
detailed study of loop prevention, see section 3). The path
is built by processing in a special way the IP to MAC ad-
dress resolution packets (either IPv4 or IPv6) generated
by the source host. We are focusing on the IPv4 to MAC
address resolution protocol: ARP. Every switch forwards
the ARP Request broadcast message through all its output
links, except the one that received the packet. A deeper in-
sight through an example is given in the next subsections.
In subsections 2.2.1 and 2.2.2 we describe how the path to
destination is created by the ARP Request message and
how it is created towards the source by the ARP Reply
message, respectively. In subsection 2.2.3 we summarize
the operation of ARP-Path, including its pseudocode. Fi-
nally, in subsection 2.2.4 we include the procedure used for
path recovery after link failures.

2.2.1. Path exploration (ARP Request)

The process, described in Fig. 1 (left), works as fol-
lows: whenever a source host S wants to communicate
with a destination host D and there is not a valid en-
try for D in its ARP cache table, the host sends an ARP
Request broadcast packet to resolve the IP address of D.
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Figure 1: Path discovery: S to D (left), D to S (right).

The ingress switch of S receives the frame from this host
and associates the MAC address of S to the port through
which it has (first) received the message, temporarily lock-
ing the learning (the association) of S address to this port,
and preventing all other ports of the ingress switch from
learning and also from forwarding further received broad-
cast frames from source address S during the lock timer
interval. Thus, frames with source address S arriving to
other ports of the switch will be discarded as late frames.
Then, the ingress switch in the group of ToR switches for-
wards the ARP Request frame to all ports except the one
where it was received. Aggregation switches behave as
ToR switches, associating address S to the port that first
receives the frame. Afterwards, aggregation switches also
broadcast the frame through all other ports except the
port where it was first received. The same happens at
the core switches, which will broadcast the frame to the
other aggregation switches and will receive late copies that
will be discarded as well. Therefore, the ARP Request is
broadcasted through all the switches in the network and
reaches all the servers with no loops.

Hence, the temporary association (locking) of address
S to a port at every switch is propagated across the net-
work as a tree rooted at host S, until the network edge
switches and their hosts are reached, including the host D,
destination of the ARP Request. A chain of switches with
an input port locked to S is now in place between S and
D.

2.2.2. Path completion (ARP Reply)

The mechanism for path set up in the opposite direc-
tion is shown in Fig. 1 (right). The ARP Request from
S is followed by the corresponding ARP Reply from D.
The reply is transported in a unicast frame, sourced at
D and addressed to S, and it will follow back the branch
of the sink tree that was selected in the previous phase,
that is, the fastest branch reaching from source to desti-
nation. Thus, ARP-Path switches take advantage of the
ARP Reply processing to learn the port to reach D (i.e.
the receiving port of the ARP Reply). As the ARP Re-

ply is transported in a unicast frame, only the switches
located in the branch connecting S to D will learn about
D location. The ARP Reply frame also refreshes the path
from S to D.

2.2.8. ARP-Path basic forwarding pseudocode

Figure 2 presents the pseudocode associated to the pro-
tocol forwarding operation. It introduces two implemen-
tation tables: the Learning Table (LT) and the Block-
ing/Broadcast Table (BT), designed to maintain the for-
warding state and to avoid loops in the network, respec-
tively. LT keeps forwarding entries with the mapping of
unicast addresses to their output ports. LT entries have a
long expiration timeout (over 10s) and may be refreshed
in two ways: in the forward direction by unicast frames
and in the backward direction by ARP Request and Re-
ply messages. Note that refresh in the forward direction
implies to update the entry associated to the output port
of the frame while refresh in the backward direction is its
equivalent for the input port. BT is linked to the loop-free
forwarding mechanism and every table entry represents a
temporal lock of a given unicast address (the source of the
broadcast addressed frame) to an input port in the switch.
BT entries have a short expiration timeout (see section 3)
and they are refreshed by new broadcast frames received
from the same unicast source address at the same input
port.

2.2.4. Path recovery

Given that every link in a network connects two ports
(one at each end of that link), when a link fails, both ports
become no longer valid for forwarding packets, so their
associated entries in LT must be updated accordingly for
ARP-Path. When a node fails, the same happens for all
the links connected to that node.

In ARP-Path, when a switch detects that a port is
down the recovery procedure is triggered, whose objective
is to update LT in every switch belonging to the broken
path. With this purpose, ARP-Path switches create and
broadcast a LinkFail packet with its own MAC address as



ARP-Path Forwarding Operation

1: if dst_mac is BROADCAST or MULTICAST then

if (src_mac is not in BT) || (srcomac is in BT && input_port == BT _port) then
if (ARP Request && src_mac is not in LT) then
Update LT (new src_mac and input_port entry)

Broadcast frame (through all ports but the incoming one)

else
: Discard frame
: else if dst_mac is UNICAST then
10: if (ARP Reply && src_mac is not in LT) then

11: Update LT (new src_mac and input_port entry)

12: Update LT (refresh timer of dst_mac)

13: Forward frame (through port associated to LT entry of dst_mac)

2
3
4
5: Update BT (new src_mac and input_port entry, or refresh timer)
6
7
8
9

Figure 2: Pseudocode of the ARP-Path protocol.

source address and with the multicast A RP-Path_Multicast
MAC address as destination address. The content of this
LinkFail packet is a list of all the MAC addresses affected
by the link or node failure in its LT. Afterwards, the switch
deletes all those entries from its LT. The ARP-Path recov-
ery operation is sketched in Fig. 3a.

Every switch receiving the LinkFail message checks if
it is the edge switch of any of the flushed host addresses
encapsulated in that LinkFail packet (i.e. if the host is
directly connected to the switch). In this case the edge
switch responds with a unicast LinkReply, whose source
address is the MAC address of the directly connected host,
that is, the MAC address being repaired, and whose desti-
nation address is the source MAC address of the LinkFail
packet. In this way, the path is recreated as usual. An ad-
vantage of this procedure is that this unicast message only
repairs the section of the path needed and not the whole
path, which requires less messages and less time. The
number of broadcast messages needed to repair all paths
in the network will be usually two (single link failure).
The forwarding operation including the recovery messages
is shown in Fig. 3b, where bold text highlights the differ-
ences respect to the normal operation shown in Fig. 2.

2.3. Coexistence with standard switches IEEE 802.1 and
802.1Q

ARP-Path switches may coexist with standard
switches in core-island mode. A core of ARP-Path
switches may interconnect islands of standard switches
running the Rapid Spanning Tree Protocol (RSTP), as
described in [14].

Regarding the coexistence of VLANs and our proposal,
it must be noted that ARP-Path has the advantage of be-
ing fully architecturally independent of VLANSs, as ARP-
Path does not need to assign a VLAN ID to every edge
switch to create separated forwarding domains to prevent
broadcast loops. Therefore, VLAN IDs can be used for

traffic separation and security and do not interfere with
the basic ARP-Path forwarding mechanisms.

3. Loop-free broadcasting

The proposed ARP-Path protocol is a novel yet simple
mechanism that provides path exploration capabilities and
obtains the fastest path in a network in conjunction with
load balancing. However, it is necessary to assure that
this mechanism is loop-free to avoid packet storms and
undesired misbehaviours. This characteristic is achieved in
regular Ethernet switches using STP. In order to prevent
loops, STP is used to block all redundant links by creating
a single tree but destroying the possibility of a pure layer-
two shortest path bridging protocol.

The ARP-Path protocol is based on the simultaneous
exploration of all paths in a network with a broadcast
frame, which is a simple and efficient mechanism to find
shortest paths without blocking links. Unlike STP, ARP-
Path is not limited to just one tree, using a locking mech-
anism for avoiding loops instead. In this section we show
the conditions for loop freeness in ARP-Path.

Constraint 1. All connections among switches are dedi-
cated point-to-point links.

Constraint 2. The timer for lock removal must be greater
than the slowest loop path in the network.

Property 1. When constraints 1 and 2 are fulfilled, loop-
free transmission is assured in any network topology.

Proof. There are two kind of possible loops than can oc-
cur in any switch. The first kind is the case when the
frame arrives on the same port that triggered the locking
mechanism. The second kind is the case when the frame
arrives on a different port from the port that triggered the
locking mechanism. Constraint 1 inherently removes the



ARP-Path Recovery Operation

1:

if link fails and switch detects that port down then
Create LinkFail packet with:
src.mac = switch_id or switch_mac (current switch)
dst_mac= arppath_mcast
encapsulated data = mac addresses in LT associated to down port
Broadcast frame through all ports
Erase all entries in LT associated to down port

(a)

ARP-Path Forwarding Operation including Path Recovery

= =
= o

12:

if dst_mac is BROADCAST or MULTICAST then
if (src_mac is not in BT) || (src.mac is in BT && input_port == BT _port) then
if ((ARP Request && src_mac is not in LT) || LinkFail) then
Update LT (new src_mac and input_port entry)

Update BT (new src_mac and input_port entry, or refresh timer)
if LinkFail && encapsulated mac directly connected then
Create LinkReply packet with:
src_mac= encapsulated mac directly connected (mac being repaired)
dst_mac=src_mac of LinkFail
Forward frame (through input_port)
else
Broadcast frame (through all ports but the incoming one)

else
Discard frame

. else if dst_mac is UNICAST then

if ((ARP Reply && srcmac is not in LT) || LinkReply) then
Update LT (new src_mac and input_port entry)

Update LT (refresh timer of dst_mac)
Forward frame (through port associated to LT entry of dst_mac)

(b)

Figure 3: Pseudocode of the ARP-Path protocol including Path Recovery.




(a) Constraint 1: Only point-to-point links
are permitted between switches (not compliant
scheme).

] <O

(b) Constraint 2: Tjocr > LoopDelay.

“==’: ARP-Path switch.

Figure 4: Contraints for loop-free broadcasting

possibility of the first kind of loops. Constraint 2 removes
the possibility of the second kind of loops since the lock-
ing mechanism will remain active until the slowest frame
arrives. O

Property 2. The upper bound for the minimum locking
time in a network with N switches is as follows:

N

Tlock = Z (dproc,n + dqueue,n + dtrans,n + dprop,n) 7(1)

n=1

where dproc, dgueues Gtrans and dprop stand for the pro-
cessing, queueing, transmission and propagation delays,
respectively.

Proof. The worst case of a loop in any network occurs
when all switches participate in the loop. In any switch a
packet must go through the processing time, the queueing
time, the transmission time and the propagation time.

O

Property 3. The upper bound for the minimum locking
time in a network with N switches where all of them share
the same processing, queueing, transmission and propaga-
tion times 1s:

T’lock =N- (dproc + dqueue + dtrans + dprop) . (2)

Proof. If all terms in the summary are the same, the sum-
mary can be replaced by a product of the number of
switches.

O

Figure 4a illustrates how switches must not be con-
nected since only point-to-point connections must be al-
lowed between switches. Figure 4b illustrates a valid topol-
ogy fulfilling loop-free conditions; switches are only con-
nected via point-to-point links and Tj,.; is greater than

the loop delay, which shows that replicated packets will
not be forwarded, avoiding packet storms. Considering
the case of Fast Ethernet switches with transmission buffer
of 4MB (hence, dirqns = 4 -22° - 8/10% s), a propagation
delay in copper of 5 ps (dprop), neglecting the processing
and queueing delays (dproc and dgyeue) and applying corol-
lary 3, we have Tjocr, = N - 0.336s, which implies a short
timer in the order of a few seconds.

4. Comparison with link-state protocols

In this section we qualitatively compare the ARP-Path
protocol with a link-state protocol like SPB (next section
contains a numerical evaluation by simulation). Notice
that the comparison with link-state routing is difficult be-
cause the two paradigms differ drastically: proactive com-
putation of paths between switches versus reactive (on the
fly) path set up by the standard ARP dialog between hosts.
Intuitively, opposite to path computation protocols, where
increasing the number of network nodes exponentially in-
creases the complexity of route computation, the scalabil-
ity of path exploration protocols like ARP-Path protocol
is only limited by the size of forwarding tables and the
amount of broadcast traffic injected to the hosts.

We consider a network of b switches, F links between
switches (edges) and H final physical hosts. We assume
that H > b (H between one and two orders of magni-
tude bigger than b). For the case in which hosts have one
or more virtual machines installed, we consider h as the
total number of virtual machines in the network (being
X = h/H the average number of virtual machines per final
physical host). Note also that not every virtual machine
will be active at every moment, so we define h, as the
mean number of active virtual machines, which is a frac-
tion of h, i.e. hy = ah = axH. For example, a = 0.5
represents the case when half of the total virtual machines
are active.

In the next subsections we compare different aspects
of the ARP-Path protocol versus a link-state protocol like
SPB. Moreover, we also include Table 1, which shows the
summary of this comparison.

4.1. Forwarding state

At every switch, a link-state protocol needs a routing
table entry per switch or virtual machine of the entire net-
work, i.e. b+ h = b+ xH. ARP-Path creates an entry
per active virtual machine in the network (h,) but only
at switches located in active paths. Active paths depend
on two parameters, s and s., being the former the average
number of switches that form a path for a flow or couple
of virtual machines and the latter the average number of
switches that also share the path to the same destination
from different sources (note that s. switches are not in-
cluded in s). ARP-Path depends on the addition of s and
Se because paths are shared, i.e. when a flow creates a
path (defined by s switches on average), different sources



Table 1: ARP-Path vs. SPB comparison.

SPB ARP-Path
Forwarding state per switch b+ xH axH - (s+se)/b
Number of messages for routing b-E -
Number of broadcast replicas b—1+H 2-E—(b-1)+H

Computational complexity

Proportional to b2 -

Computational complexity for path diversity ~Proportional to b3 -

Messages after link failure

[2-E, b-E]

2:(2-E=(b=1))+¢,2-(2-E—(b—1)) +ep-¢]

can join the already existing paths just by adding branches
(defined by s. switches on average), thus defining a tree
in the end (s + s¢). Finally, we have to divide the total
amount of entries in the network by the total number of
switches (b), as we are comparing the number of table en-
tries per switch. Concluding, for the ARP-Path protocol
the forwarding states that must be stored at each switch
are hg - (s 4 8¢)/b=axH - (s+ s.)/b.

It is important to note that the forwarding state in a
link-state protocol depends on the number of virtual ma-
chines (h), unlike ARP-Path, which only depends on the
current active virtual machines (h,) that are a fraction
of h. For that reason, let us consider the worst case for
ARP-Path, which is an extreme situation that requires: 1)
all virtual machines are active (h = h, and a = 1), ii)
each host has an active communication with every other
host of the network at the same time and iii) when there
are several possible paths, all of them are used. In that
very unlikely scenario and for ARP-Path, all the network
is in a tree (s + s, = b) and therefore each switch must
store hy - (s+ 8¢)/b = hy -b/b = h forwarding states, which
is still lower, but very similar, than the required forward-
ing states in a link-state protocol (b + h &~ h, as b < h).
However, as usually o < 1 and especially, s + s, < b, the
number of table entries per switch in ARP-Path is tipi-
cally much lower in ARP-Path than in SPB (as it will be
numerically studied in Section 4.5).

4.2. Number of messages

To compute routes, SPB broadcasts link-state packets
and the list of connected hosts to every switch, i.e. the
number of messages is b+ E. Obviously, the route compu-
tation cost is null for ARP-Path since it does not compute
paths, leveraging the ARP Request and Reply messages
instead, previously emitted in every communication. As
the ARP procedure appears in both link-state and ARP-
Path protocols, we have not included these ARP messages
in the comparison.

The number of broadcast replicas is slightly higher in
ARP-Path than in SPB. SPB broadcasts messages only
through trees (from RSTP, b — 1 + H). ARP-Path not
only uses tree-links but also cross-links, there is one copy in
each link (E+H), plus an additional copy in each cross-link
(E—(b—1)) thus resulting in a total of (2- E—(b—1)+H).
However, the number of ARP Request messages forwarded

to hosts can be greatly reduced using ARP proxies at edge
switches if needed [15]. Moreover, an interesting variant
for the ARP-Path protocol that prevents the ARP Request
messages reaching the hosts at low processing effort in ToR,
consists of ToR intercepting all ARP Request messages to
their directly connected hosts. Other methods to reduce
broadcast messages are centralized or distributed directory
systems where the host is registered by its edge switch. For
example, TRILL edge switches periodically exchange their
lists of attached hosts by using multicast communication.
This last method could be applicable to ARP-Path as well.

4.8. Computational complexity

SPB uses the link-state protocol IS-IS to acquire the
network topology and then applies the Dijkstra shortest
path algorithm to compute routes [5]. The time needed to
execute the Dijkstra algorithm, for a network of b switches,
is proportional to b% [16]. However, there are multiple im-
plementations of the Dijkstra algorithm and some of them
are able to reduce the execution time by using Fibonacci or
binary heaps based implementations [17]. As ARP-Path
does not compute routes, its computational complexity is
null.

If path diversity is desired, IS-IS for SPB implements
hash-based ECMP multipath routing between switches to
distribute load [10, 18, 19], but at the cost of requiring
that paths must be congruent, i.e. paths must coincide in
the two unicast directions. To achieve this, SPB computes
all shortest paths of all nodes at every node, so the com-
putational complexity of the Dijkstra algorithm is then
multiplied by b. On the other side, the ARP-Path proto-
col sets up on-demand paths between hosts that diversify
naturally according to instantaneous path latency at set-
up time, so load distribution is natively achieved without
any computational complexity.

Although computational complexity does not apply
strictly to ARP-Path because there is no computation of
routes, ARP-Path will take some time to work properly
due to the need of exchanging messages. However, it is
important to note that SPB will also require time to ex-
change the needed messages, in addition to the time re-
quired to compute routes. The study of the time required
by ARP-Path to exchange messages is conducted by con-
sidering both path set up and path repair times.



In ARP-Path, path set up time is near zero, because
the standard ARP dialog is used to simultaneously estab-
lish the path, which is a hardware learning and locking
process only slightly different (the locking function and
the absence of links blocked by the spanning tree protocol)
than the process at standard switches. The ARP messages
are standard, so no additional effort is spent on messages
exchange for normal path set up. This is confirmed by
the measured path set up time in hardware implementa-
tions (NetFPGA) which was very similar to the standard
ARP Request/ARP Reply process (10 to 60 microseconds
depending on frame size, similar to a commercial switch
D-Link DS-1008-A. It must be also emphasized that there
is not any convergence procedure in path set up, as it is
just a simultaneous race of ARP Request replicas that set
up a tree rooted at source host, and the fastest branch is
selected for the MAC learning and final path definition.

Regarding the time needed to repair a path, it is the
sum of two contributions: failure detection and failure re-
covery. As failure detection does not depend on the pro-
tocol, we focus on failure recovery. The time required by
this procedure will be the RTT of the fastest available
path from source to destination plus the time needed by
switches to process the required and abovementioned mes-
sages.

4.4. Fault tolerance

ARP-Path shows high resiliency because the path for
every destination host is created just at the time when it is
needed, not computed in advance. This means that even
if there is only a single path available in the network, it
will be found.

With link-state protocols like IS-IS, used by SPB, if
a link fails, the adjacent nodes will redistribute the new
link state to all switches over all E links since all paths
might be recomputed. Thus, the number of messages to
recover from a link failure is b- E. However, the number of
broadcast messages could be sent just by the edge nodes
of the failed link, being in the best case 2 - E. Hence, the
number of messages after a link failure is in the range of
[2-E,b- E].

In ARP-Path, with the repair procedure, the two
switches connected to the failed link broadcast a LinkFail
packet. These packets are forwarded until they reach edge
bridges. That will be a total of 2-(2- E — (b — 1)) mes-
sages, considering the formula given in section 4.2 minus
the links to the hosts, since LinkFail packets are not sent
to them. Then, affected edge bridges will reply with a uni-
cast LinkReply packet directed to the switch originating
the LinkFail packet. There will be at least two edge bridges
replying, thus at least ¢ unicast messages are needed, be-
ing ¢ the network diameter. Notice that the path reaching
from one end to that switch plus the path from the other
end traverse ¢ nodes, independently of where the failure
occurred. Also, and being e, the number of edge bridges,
a maximum of e - ¢ messages are needed when every edge
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Figure 5: Clos network structure used in VL2 [3].

bridge is affected by the link failure and all unicast mes-
sages sent in reply need to go across the whole diameter
of the network to reach the switch that emitted the Link-
Fail. Therefore, the total number of messages produced in
ARP-Path to repair the paths affected by a link failure is
in the range: [2-(2-E—(b—1))+¢,2-(2-E—(b—1))+ep- ).

4.5. Bvaluation in VL2 data center scenario

We evaluate the previous subsections for a represen-
tative current data center network topology. More pre-
cisely we use the VL2 Clos network topology (Fig. 5) pro-
posed in [3], having 10Gbit/s links, D,/2 core switches,
D, aggregation switches, (D, - D;)/4 ToR switches and
20 servers per ToR switch. That results in a bisection
bandwidth of 5 - D, - D; Gbit/s. In order to accomodate
H = 25000 servers (medium-sized data center), we have
selected D, = 50 and D; = 100, while the number of
ToR switches is b, = 1250, the number of aggregation
switches is D; = 100 and the number of core switches is
D,/2 = 25. Thus, b = D,D;/4+ D; + D,/2 = 1375
switches and the number of links between switches is the
number of aggregation switches multiplied by the num-
ber of links that every aggregation switch has, i.e. F =
D;(D,/2+D,/2) = D;-D, = 5000 links. The table sizes of
ARP-Path edge switches depend on the number of active
hosts per ToR. We consider (from the measurements in [3])
a ratio of o -y = 5 simultaneous active virtual machines
per physical host as a representative average. This may
vary widely depending on the traffic matrix characteristics,
including its locality properties, sometimes promoted by
network administrators to optimize network performance.
Unlike SPB, ARP-Path only depends on the number of
active virtual machines, which is usually a small portion
of the total number of virtual machines. However, for the
comparison we are considering the worst scenario for ARP-
Path (see section 4.1), where & = 1 and s+ s, = b. This is
a very unreal scenario, as it is not usual that all virtual ma-
chines are active (usually @ < 1) and communicating with



Table 2: ARP-Path vs. SPB comparison in a VL2 Clos network assuming b = 1375 and e;, = 1250 switches, x = 5 virtual machines per final
physical host, H = 25000 servers, a« = 1, ¢ =4, s+ s = b and E = 5000 links.

SPB ARP-Path
Forwarding state per switch 126375 < 125000
Number of messages for routing 6875000 -
Number of broadcast replicas 26374 33626

Computational complexity

Proportional to 13752 -

Computational complexity for path diversity —Proportional to 13753 -

Messages after link failure

[10000, 6875000] (17256, 22252]

all the rest of virtual machines at the same time (usually
s+ se < b). With all these considerations, we include a
comparison of a link-state protocol like SPB versus ARP-
Path for the above-mentioned features in Table 2. As the
comparison of the number of forwarding states per switch
is very limited in the table (only the very unlikely worst
case of ARP-Path is included), in Fig. 6 we include a com-
parison in a wider range of scenarios, considering x = 5
and for several values of « (fraction of active virtual ma-
chines respect to the total number of virtual machines).
In the y-axis we represent s + s, ranging from s, = 0
(best case for ARP-Path since there are no extra branches
added to the path) to s + s, = b (worst case for ARP-
Path, since every switch belongs to the tree, as defined in
Table 2). It must be noted that we have chosen s = 5,
i.e. a pesimistic scenario that considers that every path
traverses the core switches (see Fig. 5). From Fig. 6 and
considering that usually s + s, < b, we can conclude that
the number of forwarding states per switch in ARP-Path
is usually several orders of magnitude lower than those
required in SPB.

A key aspect for scalability is the type of memory hard-
ware used for forwarding tables: Ternary CAM (TCAM)
or L2/Eth (SRAM). Whilst TCAM are typically limited
to 2000 — 4000 entries, L2/Eth tables can reach up to 10°
entries [20]. TCAM memories are used when wildcard se-
lection (longest prefix match) is needed, but SRAM suf-
fices to forward frames based only on exact matching of
the tuple <MAC address, VLAN ID>, as is the case for
All-Path protocols. As we can use state-of-the-art L2/Eth
(SRAM) switches like BCM56648 with 10° entries, Fig. 6
also includes that value, showing that, for the scenario
under consideration, SPB cannot be implemented using
BCM56648 switches because they require more than 10°
forwarding states per switch, although there exist alter-
natives like bloom filters focused on reducing the size of
forwarding tables [21]. However, except in a very lim-
ited number of extreme scenarios, ARP-Path can be im-
plemented in switches like BCM56648, as the number of
forwarding states per switch is lower than 10°.

To evaluate ARP-Path scalability, let us assume a data
center with 800000 servers and 3 active virtual machines
per server. Such a data center may be implemented with
the Clos network shown in Fig. 5 with different combina-

tions of D; and D,. Let us choose D, = 640 and D; = 250.
This means 320 (D,/2) core switches and 250 aggrega-
tion switches plus 40000 ToR switches. Total number of
bridges is then 40570. Let us compute a more realistic
value for S., the number of extra bridges participating in
a path that create the tree rooted at a server. Assuming
Se = 0.03-b means that three per cent of all bridges (1217)
will also participate in the paths to the server (this offers
a wide margin because the ToR of this server is carrying
only 1/40000 of the data center traffic on average). The
forwarding state obtained by the formula for this value is
72290 entries, still an acceptable value for tables in SRAM
in switch chips (note that SRAM based storage is much
less limited in size, power and cost than TCAM based ta-
ble storage).

Regarding the time needed to establish a path in such
a large datacenter network, it will be the same that it
takes for the ARP Request/Reply dialog to complete (i.e.
Round Trip Time, RTT). In these topologies and in normal
load conditions (where queueing delay does not vary a lot
with load) maximum RTT is independent of the network
size in terms of number of servers, e.g. in VL2, the number
of links to be traversed is six and the number of traversed
switches is five (two ToRs, two aggregation and one core
switch). As stated in section 4.3, the processing time per
switch is quite similar to standard bridges, performed also
in hardware.

5. Simulation Results

We have implemented both SPB and ARP-Path in
OMNeT++, focusing the comparison on load distribution
capabilities and latencies for both protocols. Some prelim-
inary results can be found in [11, 14]. The topology under
study is shown in Fig. 7. We have chosen this network
scenario as it is expected that SPB ECMP performs very
well due to the even traffic distribution used. It comprises
a core section of four meshed switches and ten ToR or ac-
cess switches (five at each side of the core) connected to
the two core switches facing each access side (there are four
3-hop paths reaching from every access switch in one side
to every switch at the opposite access side). We have con-
sidered 250 servers, having 25 servers connected to each
access switch. All links are 100 Mbit/s and switches have
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Figure 6: Comparison in the number of table entries (x = 5).

2us processing time. A single flow generator (with expo-
nentially distributed flow interarrival times with rate M)
installs new flows in the network by randomly selecting
a pair of source and destination servers. Flow sizes are
Pareto distributed with mean 35Mbytes [22]. Each sim-
ulation runs for 10000 s. SPB routes were pre-computed
by evenly assigning each source/destination server pair to
one of the four possible shortest paths. It must be noted
that, given the random distribution of traffic source and
destination, the scenario depicted takes full advantage of
SPB-ECMP multipath capabilities, i.e. in the chosen sce-
nario SPB is expected to behave very well.

5.1. Load distribution

The first analysis is about the load distribution capa-
bilities of both SPB and ARP-Path. In Fig. 7 we show the
loads at the different links for both protocols for the spe-
cific case of A™! = 0.4s, although other values of )\ studied
produced similar results. As the links are 100Mbit /s each,
that number can be interpreted as either the load of the
link in Mbit/s or in percentage. The values show the in-
coming load at each port. Analyzing those figures, we can
conclude that load is more evenly distributed in ARP-Path
than in SPB. It is also important to note that SPB does
not use some links (links S1-S2 and S3-S4 are empty).

5.2. Packet latency

The second analysis deals with the end-to-end delay
experienced by packets. For each host we compute the
average delay experienced by packets sent to that host,
but also the maximum delay measured at this node with
Al =0.4s.

At first glance, average delays seem similar for both
protocols, as shown in Fig. 8a and Table 3. Moreover, as
the scenario chosen is tailor-made for SPB, it was not ex-
pected that ARP-Path could improve SPB performance.
However, we noticed that a small number of destinations
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Figure 7: Load distribution for A=1 = 0.4s.

showed a noticeable higher average delay in SPB than in
ARP-Path. To study this behavior in detail, in Fig. 8b we
show a Q-Q plot that shows the percentiles of the average
delay, where a point in the figure represents the n-th per-
centile for the average delay in ARP-Path (SPB) in the
x-coordinate (y-coordinate). This figure shows that most
of the percentiles are very similar for both protocols (they
are very close to the line with slope equal to one), but
there are some percentiles that fall far from this line, be-
cause they are higher in SPB than in ARP-Path. For that
reason, we can conclude that the average delay in SPB
for some destinations is undesirably higher than in ARP-
Path, even in a scenario that is considered to be especially
suited for SPB.

Figure 9 depicts the probability density function of the
maximum delays experienced by packets for each destina-
tion. It can be concluded that the maximum delays in SPB
are much higher than those obtained in ARP-Path (more
than an order of magnitude). Moreover, maximum delays
in ARP-Path are bounded, so it is more appropriate for
time-sensitive applications. While for SPB the delay can
become very high for some packets, which may be unac-
ceptable for certain applications. Even when the number
of packets that present this undesirable behavior is small,
we show that ARP-Path does not present this drawback.

We have also studied the scenarios with A=! = 0.8s



Table 3: Comparison of delays in SPB and ARP-Path (expressed in milliseconds).

A1 =0.4s A1 =0.8s A7 =1.6s
SPB  ARP-Path SPB ARP-Path SPB ARP-Path
Mean 0.43 0.43 0.39 0.39 0.34 0.34
Average delay Std dev 0.06 0.05 0.07 0.06 0.07 0.07
95th percentile  0.51 0.51 0.49 0.49 0.46 0.47
Mean 58.12 1.32 18.15 0.95 1.88 0.81
Maximum delay Std dev 60.77 0.13 27.34 0.08 2.42 0.07
95th percentile 158.4 1.58 48.41 1.10 5.46 0.92
Probability Density Function Probability Density Function
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Figure 8: Average delay for A~! = 0.4s.

and A~! = 1.6s (being A the flow arrival rate) obtaining
similar results. For the sake of brevity, we summarize those
results in Table 3.

6. Experimental testbed

Any protocol enabling all redundant links at layer two
must verify its robustness against path fails and broadcast
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Figure 9: Maximum delay for A= = 0.4s.

loops, which can produce network meltdown. ARP-Path
has been succesfully implemented in a variety of platforms
such as Linux using ebtables [23] and OpenFlow [24], and
validated in real world scenarios with hosts connected to
Internet via university campus networks. After validation
in the previous platforms, ARP-Path protocol was imple-
mented on NetFPGA [12]. The internal latencies obtained
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Figure 10: Four All-Path switches network on NetFPGAs.

are those typical of a switch implemented on a NetFPGA,
and similar to commercial switches, such as D-link DGS-
1008A.

The effect of load distribution has been verified in a sin-
gle square four-switch network (Fig. 10). UDP and TCP
flows from hosts connected at one switch to hosts attached
to the opposite switch were established with iperf [25].
More precisely we have done an experiment sending two
UDP flows (one flow from the upper host in the left to the
upper host in the right and another flow from the lower
host in the left to the lower host in the right) and another
similar experiment but with TCP flows. It is important to
note that flows were generated at 1 Gbit/s each and the
NetFPGA model is 1G (supports up to 1 Gbit/s), however
hosts limit the maximum throughput to around 800 — 950
Mbit/s. According to Fig. 11a, load can reach the maxi-
mum link limits with ARP-Path without significant packet
loss (0.12%), being that possible as flows go through par-
allel paths in the network and do not compete for band-
width. On the other side, when STP is used, one link is
disabled to prevent loops, cutting one of the two parallel
paths and thus limiting the maximum per flow capacity
approximately to half (500 Mbit/s) as bandwidth must be
shared between the two server links. For that reason in
the scenario using STP and UDP packet losses probabili-
ties are around 44% at each host. Similar results to those
obtained for UDP but for TCP are shown in Fig. 11b.
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Figure 11: Throughput at each receiver host over time using ARP-
Path and STP.

7. Protocol Evolution and Variants

In this paper, we have focused our research, analysis
and experiments on the first protocol of the All-Path fam-
ily: ARP-Path. The ARP-Path protocol implements path
set up at host level, that is, for each host we explore all
possible paths and select one by snooping the information
conveyed in the ARP messages exchanged previously to
any communication. This selected path is the fastest one
since slower copies of the ARP messages are blocked. At
the same time, ARP-Path distributes load in the network
because paths will usually be created over the most under-
utilized network resources (switches and links), which will
provide the lowest latencies. In ARP-Path and as men-
tioned in section 4.1, paths to a destination host are also
shared for different source hosts (once a path is created,
new paths will just join it as if branches to a tree were
added).



After implementing ARP-Path, several variants have
been explored by changing different characteristics of
ARP-Path. One of this variants is the second protocol
of the All-Path family: Flow-Path. Flow-Path also learns
from the exchange of ARP messages, but it creates unique
paths per couple of hosts or per flow, that is, in Flow-Path
paths to a destination host from different sources are not
shared anymore and can be completely disjoint. This is an
advantage of Flow-Path respect to ARP-Path which can
be of great interest in networks with hot spots (i.e. hosts
with high traffic or heavily loaded servers), but at the same
time it requires a higher number of table entries because
granularity in Flow-Path is higher than in ARP-Path.

The third protocol of the All-Path family is Bridge-
Path, which creates paths per edge or ToR switch. Its
main objective is reducing the number of table entries in
the network, especially when the number of host per edge
switch is very high. In Bridge-Path it is necessary to dis-
tinguish the edge switches with some identifier or MAC
address, and to use some type of encapsulation. In this
case we have designed Path-Moose [26], which uses hierar-
chical switch addressing of the form switchID:hostID, and
MiM-Path, which uses MAC-in-MAC encapsulation as in
SPBM [4]. In Bridge-Path, specific broadcast or multi-
cast messages can be sent to create the paths between
edge switches (instead of the ARP messages), so that edge
switches can act as ARP proxies saving broadcast mes-
sages, and therefore only emitting the necessary messages
to explore and build the paths.

8. Conclusions

All-Path bridging is a new routing paradigm for cam-
pus and data center networks based on simultaneous ex-
ploration of all network paths. Compared with path com-
putation protocols, ARP-Path is simple, scalable and re-
silient. We have shown that the number of forwarding
states per switch in ARP-Path respect to a link-state pro-
tocol is usually one or more orders of magnitude lower,
so its implementation requirements are lower. Moreover,
ARP-Path, without any additional load balancing mecha-
nism, naturally distributes traffic among alternative paths
more precisely than SPB and ECMP and with better av-
erage and maximum delays.

Path-probing mechanisms like ARP-Path for routing
in layer two create a new design space for the evolution of
switches focused on the simplicity of probing the network
either reactively or proactively. Their simplicity, perfor-
mance and resiliency make them attractive in a variety
of scenarios like audio video bridges, enterprise and data
center networks.
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