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Abstract

This thesis deals with the improvement of the optimization process in the aerodynamic design
of aeronautical con�gurations. Nowadays, this topic is of great importance in order to allow the
European aeronautical industry to reduce their development and operational costs, decrease the
time-to-market for new aircraft, improve the quality of their products and therefore maintain
their competitiveness.

In particular, according to data collected in the report �European Aeronautics: A vision for
2020� published by the European Commission, it is expected that, in the next �fteen years, air
tra�c over the world will double. This increase in air tra�c must be considered in addition
to its foreseen environmental impact, since, currently, the aviation contributes signi�cantly to
the emission of carbon dioxide to the atmosphere. In view of this situation, the ACARE (Ad-
visory Council for Aerospace Research in Europe) has established several targets for 2020, as
for example, 50% reduction in carbon dioxide emissions, fuel consumption, perceived noise and
development time, as well as 80% reduction in emissions of nitrogen oxides.

The achievement of these challenges involves an unprecedented technological progress, not
being able to ful�l the objectives through small changes in the traditional aircraft con�gurations
and, therefore, making necessary to explore other unconventional settings and novel concepts
that have not been considered so far. To this end, improved aerodynamic and multidisciplinary
design phases will support the transition from the current aircraft con�guration into the future
aircraft.

Within this work, a study of the state-of-the-art of the aerodynamic optimization tools has
been performed, and several contributions have been proposed at di�erent levels:

• One of the main drawbacks for a fully industrial application of aerodynamic optimization
tools is the huge requirement of computational resources. In aerodynamic design optimiza-
tion problems, the �ow �elds are simulated using �ow solvers based on Computational Fluid
Dynamics (CFD) techniques. These high-�delity numerical simulation codes have proved
to be reliable and relatively cheap compared with experimental methods. But they are
computationally expensive, highly memory demanding, and time consuming. For example,
the simulation of a complete aircraft con�guration, even if built on simpli�ed models like
the Reynolds-Averaged Navier-Stokes (RANS) equations, requires, in the steady �ow case,
approximately half a day for each simulation point using a high performance cluster of 24
processors. These drawbacks of analysis codes become more severe when they are utilized
in the �eld of shape optimization since it requires rather more computations. For practical
optimization problems, in which at least 100 design variables are to be considered, current
methodological approaches applied in industry would need more than a year to obtain an

7



optimized aircraft (this is completely impractical for the aeronautical industry). For this
reason, one proposed contribution of this work is focused on reducing the computational
cost by the use of di�erent techniques as surrogate modeling, control theory, as well as other
more software-related techniques as code optimization and proper domain parallelization,
all with the goal of decreasing the cost of the aerodynamic design process.

• Other contribution is related to the consideration of the design process as a global op-
timization problem, and, more speci�cally, the use of evolutionary algorithms (EAs) to
perform a preliminary broad exploration of the design space, due to their ability to obtain
global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate
models), in order to substitute expensive CFD simulations. In this thesis, an innovative ap-
proach for the global aerodynamic optimization of aeronautical con�gurations is proposed,
consisting of an Evolutionary Programming algorithm hybridized with a Support Vector
regression algorithm (SVMr) as a metamodel. Speci�c issues as precision, dataset training
size, geometry parameterization sensitivity and techniques for design of experiments are
discussed and the potential of the proposed approach to achieve innovative shapes that
would not be achieved with traditional methods is assessed.

• Then, after a broad exploration of the design space, the optimization process is continued
with local gradient-based optimization techniques for a �ner improvement of the geometry.
Here, an automated optimization framework is presented to address aerodynamic shape
design problems. Key aspects of this framework include the use of the adjoint methodology
to make the computational requirements independent of the number of design variables, and
Computer Aided Design (CAD)-based shape parameterization, which uses the �exibility
of Non-Uniform Rational B-Splines (NURBS) to handle complex con�gurations.

The mentioned approach is applied to the optimization of several test cases and the im-
provements of the proposed strategy and its ability to achieve e�cient shapes will complete this
study.



Resumen en Castellano

Esta tesis tiene como objetivo introducir mejoras en el proceso de optimización del diseño aerod-
inámico de con�guraciones aeronáuticas. En la actualidad, este tema ha adquirido una gran
importancia, con el propósito de permitir que la industria aeronáutica europea pueda reducir
sus costes de desarrollo y operatividad, acortar el tiempo de lanzamiento al mercado de nuevos
aviones, mejorar la calidad de sus productos y, por tanto, mantener su competitividad.

En particular, según los datos recogidos en el informe �Aeronáutica Europea: Una visión
para el 2020�, publicado por la Comisión Europea, se espera que en los próximos quince años, el
trá�co aéreo en el mundo se duplique. En este aumento en el trá�co aéreo se debe considerar,
además, su impacto ambiental, ya que, actualmente, la aviación contribuye signi�cativamente a
la emisión de dióxido de carbono a la atmósfera. En vista de esta situación, ACARE (Consejo
Asesor para la Investigación Aeronáutica en Europa) ha establecido varios objetivos para el año
2020, como por ejemplo, el 50 % de reducción en las emisiones de dióxido de carbono, el consumo
de combustible, el ruido percibido y el tiempo de desarrollo, así como el 80 % de reducción de
las emisiones de óxido de nitrógeno.

La consecución de estos retos implica un progreso tecnológico sin precedentes, puesto que los
ambiciosos objetivos propuestos no podrían alcanzarse mediante pequeños cambios en las con-
�guraciones tradicionales de aeronaves, y, por tanto, resulta necesario explorar nuevos conceptos
y formas no convencionales. Con este �n, resulta necesaria la mejora de la aerodinámica y la
introducción de aspectos multidisciplinares en la fase de diseño, contribuciones que apoyarán el
proceso de transición desde la con�guración actual hasta el avión del futuro.

En este trabajo, se ha realizado un análisis del estado del arte de las herramientas de op-
timización aerodinámica que se utilizan actualmente, y se proponen varias contribuciones a
diferentes niveles:

• Uno de los principales inconvenientes para una completa aplicación industrial de las her-
ramientas de optimización aerodinámica es la fuerte demanda de recursos computacionales.
En problemas de optimización aerodinámica, los campos de �ujo son simulados utilizando
resolvedores basados en técnicas de Dinámica de Fluidos Computacional (en inglés, CFD).
Estos códigos de simulación numérica han demostrado ser métodos �ables y relativamente
baratos en comparación con los métodos experimentales. Pero son muy costosos computa-
cionalmente, exigentes en memoria, y requieren mucho tiempo de cálculo. Por ejemplo,
la simulación de una con�guración de avión completa, incluso si se realiza con modelos
como las ecuaciones �Reynolds-Averaged Navier-Stokes� (RANS), requiere, en el caso esta-
cionario, aproximadamente medio día si se utiliza un cluster de 24 procesadores. Este
inconveniente se acentúa cuando los códigos de análisis se utilizan en un ciclo de diseño
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aerodinámico, ya que se requiere una cantidad considerable de simulaciones. En la práctica,
en problemas de optimización, al menos 100 variables de diseño deben ser consideradas,
y, por tanto, si se utilizaran los enfoques tradicionales, se necesitaría más de un año para
obtener un avión optimizado (lo cual resulta totalmente inviable). Por esta razón, una
de las contribuciones de este trabajo se centra en la reducción del coste computacional
mediante el uso de diferentes técnicas como los metamodelos, la teoría de control, así como
otras técnicas más relacionadas con el software, como la optimización de código y la par-
alelización, todo ello con el objetivo de mejorar la e�ciencia computacional del proceso de
diseño aerodinámico.

• Otra contribución se centra en considerar el proceso de diseño como un problema de op-
timización global y utilizar algoritmos evolutivos para realizar una amplia exploración
preliminar del espacio de diseño. En esta etapa, los algoritmos evolutivos se acoplan con
metamodelos (o modelos de sustitución), a �n de sustituir las costosas simulaciones CFD.
En esta tesis se propone un novedoso enfoque consistente en hibridizar un algoritmo de
optimización global basado en programación evolutiva con un metamodelo basado en la
técnica de las Máquinas de Vectores Soporte (SVM). Se analizan cuestiones especí�cas
como la precisión, el tamaño del conjunto de datos de entrenamiento, la sensibilidad de
la parametrización geometrica, y se evalúa el potencial del enfoque propuesto para lograr
formas innovadoras que no podrían obtenerse utilizando los métodos tradicionales.

• Después de una amplia exploración del espacio de diseño, el proceso de optimización con-
tinua con la utilización de técnicas de optimización local basadas en gradientes, con el
objetivo de obtener una mejora más �na de la geometría resultante. En esta fase, se
presenta una herramienta de optimización automática para problemas de diseño aerod-
inámico. Los aspectos clave de esta herramienta incluyen el uso de la metodología adjunta,
que posibilita la independecia del coste computacional con respecto del número de vari-
ables de diseño, y una parametrización de la geometría utilizando �Non-Uniform Rational
B-Splines� (NURBS), lo que proporciona gran �exibilidad para manejar con�guraciones
complejas.

El enfoque mencionado se ha aplicado a la optimización de varios casos de prueba, analizando
las mejoras obtenidas de las contribuciones propuestas, así como la capacidad de la estrategia
para obtener nuevas formas e�cientes.
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Chapter 1

Introduction

1.1 Motivation

The challenges of the aeronautical industry in the near future will require new computational
tools for the design of the type of aircraft that will be demanded by the European industry,
according to the guidelines stated at the ACARE 2020 and 2050 �ight paths [aca20, aca50]. The
industry agrees that these objectives make necessary the design of an innovative aircraft shape.
E�cient and accurate shape design optimization tools, able to consider novel concepts through
the use of global optimization strategies and �exible geometry parameterizations, are becoming
a must for the aeronautical industry.

Aircraft have to acquire new shapes and sizes to achieve such targets and for this reason, the
VII European Framework Programme has de�ned three speci�c key objectives for Aeronautics
[com11] :

• The greening of air transport. This involves both the global issue of climate change and
the local issues of noise and air quality. The objective here is to halve the aircraft CO2

emissions and perceived noise.

• Improving cost e�ciency. This comprises all the costs that arise in the entire air system
design and operation. The development costs and time-to-market aim to be reduced by
50%.

• Pioneering the air transport of the future. An improvement in design capabilities and
design will allow industry to obtain better and more optimized airplanes than before.

The application of optimization in the �eld of aerodynamic design is progressively increas-
ing. Aerodynamic design optimization is gaining interest motivated by the demands of handling
sophisticated geometries, tackling realistic �ight conditions, and satisfying increasing design ob-
jectives. Since almost all modern aerodynamic design activities rely on numerical simulation
computer codes, the use of aerodynamic design optimization tools was strongly encouraged by the
increasing capabilities of modern computers and the continuously improving numerical schemes,
simulation, and optimization algorithms.

3
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To underline the importance of shape design optimization within the commercial air transport
industry, for example with the objective of drag reduction [eps09] , consider the task of delivering
a payload between two destinations. Based on the Breguet range equation, which applies to long-
range missions of jet aircraft, the airline could increase the payload by 7.6 %, and, therefore,
the bene�t, if the drag is decreased by 1%, while maintaining the same fuel consumption. This
example illustrates that a 1% delta in the total drag is a signi�cant change.

This is the reason why Computational Fluid Dynamics (CFD)-driven aerodynamic shape
design has gained increased interest in the last decade [moh01, vas02, eps05, eps04, pei04, vas06].
With the current maturity of the CFD codes, their contribution to aerodynamic shape design
has introduced a signi�cant value in the industry, although there are still some issues to solve,
specially related to their high computational cost and the limited capabilities of the automatic
aerodynamic design tools.

In addition, in order to achieve the mentioned objectives as the drastic reduction of the
fuel consumption and the CO2 emissions, innovative concepts have to be fully addressed within
the automatic design optimization process, going beyond current small modi�cations in the
traditional con�gurations. Moreover, for a shortening of the time-to-market in the case of these
advanced con�gurations, novel capabilities have to be integrated into the design tools and the
e�ciency of the design process has to be increased, in order to be exploited by the industry.
Therefore, this �eld constitutes an active research topic nowadays, and di�erent contributions
[bra05, buc05, car06, cas07, cat07, aso09, for09, bom10, mar10, kam11, nem11] are aiming to
extend the aerodynamic design capabilities, considering also multidisciplinarity, and the e�ciency
of the process.

1.2 State of the art

This section presents a description of the state-of-the-art in the technological �elds addressed
in this thesis. The structure of this section has been chosen to properly cover the main steps
of the aerodynamic shape optimization process, from geometry parameterization, coarse grain
surrogate-based global optimization to �ne grain local optimization using control theory, and
also to point out the main problems for the full application of these methods in an industrial
environment, as, for example, the high requirement of computational resources. Finally, some of
the current software tools used by industry for analysis will be commented.

1.2.1 High speed CFD simulations

In computer science, Moore's law predicts that the speed achievable on a single chip doubles ev-
ery 18 months, and this statement has held true for decades. But unfortunately, in a near future,
the increasing transistor density will no longer deliver comparable improvements in performance.
Until 2004, standard general purpose hardware was centered on single core CPUs, and a steady
growth of CPU frequency. From 2004, increased processor performance is a result of the introduc-
tion of multiple cores in CPU chips with little growth in CPU frequency [aer08]. Quad core CPUs
are today used in commodity PCs, eight and twelve core CPUs are soon expected to be shipped.
The proliferation of multicore processors and multi-processors computational platforms means
that the software developers must incorporate parallelism into their programming, in order to
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achieve increased application performance and scalability [int12] . The High Performance Com-
puting (HPC) community has detected the situation and new research lines in computer science
are being intensively explored. They include the e�cient management of multi-core systems,
but also specialized processors and hardware within heterogeneous computing architectures, in
which conventional and specialized processors work cooperatively.

For CFD applications, the increasing demands for accuracy and simulation capabilities pro-
duce an exponential growth of the required computational resources. In particular, the high
complexity of some of these processes frequently implies very long computation times. For ex-
ample, the analysis of a complete aircraft con�guration using a Reynolds-Averaged Navier-Stokes
(RANS) modeling, can require more than a day, even using modern high parallel computational
platforms. Furthermore, using CFD within a design optimization process, or increasing the
target precision through the use of Large Eddy Simulation (LES) models, usually increase the
computational requirements up to an una�ordable level. This situation calls for an e�cient
implementation of CFD codes and a proper handling of parallel platforms.

The performance capabilities of computational resources have increased rapidly over recent
years. In particular, the introduction of highly parallel systems has brought with it massive
increases in the number of processing units, where it is now common to have many tens of
thousands of cores available for users codes. This development raises a number of signi�cant
challenges for the parallel performance of CFD applications [ber87, hen93, kar98, ter04]. Recently,
new parallelization [gou09, alr05, mav07, mav02, sil05, and09] and optimization [gup06, pal07,
nak11] techniques have been introduced in order to address these challenges at several di�erent
stages of the calculation.

With respect to domain decomposition, there are several mesh partitioning software packages
available for a wide variety of problems as, for example, the well known sequential graph parti-
tioner MeTiS [met97]. As the mesh sizes that are to be partitioned reach up to several million
points, even the mesh generation has to be performed in parallel via parallel mesh generators.
Thus, both in order to adjust to memory constraints and to avoid migration of data, the par-
titioning has to be done in parallel as well. To �t such large meshes in the memory of cluster
nodes, the mesh has to be partitioned among a very large number of cores. Unfortunately the
partitioning performance of parallel graph partitioning packages such as Par-MeTiS [par02] and
PT-SCOTCH [pts06] decline with increasing number of cores used in the partitioning process.
Hierarchical partitioning scheme utilizing Zoltan [zol08] has demonstrated better results. Further
details can be found in 2.3.2

Furthermore, in addition to these improvements on the code execution time and parallel
scalability, it is also necessary to look for novel simulation platforms based on heterogeneous
architectures, in which conventional processors and speci�c hardware modules work together.
Some alternatives in HPC for scienti�c applications are the acceleration using Graphics Proces-
sor Units (GPUs) or Field Programmable Gate Arrays (FPGAs). Modern graphics hardware
outperforms the traditional desktop CPU in terms of computational processing power by sev-
eral orders of magnitude with a very attractive cost/performance ratio [nvi07], and have evolved
into high performance parallel architectures capable of executing fast computations in a wide
variety of �elds [kru03, bol03, bel08, mar08, har04], as will be described in 2.4.1. On the other
hand, recon�gurable computing, as FPGAs, is intended to bridge the gap between hardware and
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software. The performance data con�rm [che04, guo04, tod05] that recon�gurable systems can
deliver between 10x and more than 100x improvement in computational e�ciency (compared to
traditional processor based machines) for many problems. This is achieved by tailoring hardware
allocations to match the needs of applications. Dynamically recon�gurable supercomputers can
potentially contribute to important value metrics, including time-to-solution, by reducing de-
sign cycle time and porting costs [bon02, luk04, com02]. In particular, the application of GPUs
[bra08, jep09, kam10, aso11, aso12, sae12] and FPGAs [and08, fus08, sut11, san11] to accelerate
CFD simulations has been an increasing �eld of research in the last years, showing promising
results.

1.2.2 Geometry parameterization

The mathematical description of the aircraft components as wings, nacelles, fuselages and control
surfaces is a key decision during the design process of an aircraft. There are many di�erent ways
to describe and manipulate geometries, ranging from point de�nitions connected with straight
lines, through splines and polynomials, Hicks-Henne bump functions [hic78, ste03], Non-Uniform
Rational B-Splines surfaces (NURBS) [pie97, mar11], class/shape function transformation (CST)
[kul07], and free form deformation.

For example, Meaux et al[mea04] used NURBS to optimize complex 3D geometries. On the
other hand, Jameson et al[jam88] used surface mesh points and a gradient smoothing algorithm
to successfully improve the performance of aircraft wings. Although many works have been done
on aerodynamic shape optimization using various representation techniques, only a few have
studied the e�ect of shape parameterization on the design process [lep01, son04, mou07, sam08,
cat07, sri10] focusing on several key characteristics. For example, �exibility is interpreted as the
ability to represent a wide range of di�erent shapes, but the large number of design variables
and the design space complexity might prevent some optimization algorithms from locating the
global optimal solutions and/or making them poorly performing. On the other hand, methods
with fewer design variables may not be able to generate optimal shapes in all detail and the
optimal objective function value cannot be achieved. Most of these comparison conclude that
B-spline are capable of accurately representing a large family of airfoils with few control points.
B-spline and CST approaches o�er advantages such as reduced number of design variables and
continuous gradients over the mesh point approach, providing a crucial advantage also over the
bump function approach. An additional advantage of the B-spline approach is that it is used in
most CAD packages to represent the geometry. Therefore, it provides the most natural way to
integrate the CAD geometry into the design process.

In addition, the freeform deformation technique has been introduced successfully in many
shape optimizations [sam04, ron05] as a reliable technique for generating smooth surfaces with
a low number of lattice box points. The box points are used as design parameters directly
which can move independently. On the other hand, allowing more locality, the use of NURBS
has been suggested [lep00, pai04, ben05, mou07] as an e�cient and �exible parameterization,
able to represent complex con�gurations, giving the optimizer enough freedom to converge to a
wide range of possible optimal designs, and at the same time, preventing the risk of numerical
noise. Figures 1.1 and 1.2 show an example of FFD and NURBS parameterization and their
corresponding deformation for an ONERA M6 wing.
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Figure 1.1: Inital FFD (left) and NURBS (right) parameterization of an ONERA M6 wing.

Figure 1.2: Deformed FFD (left) and NURBS (right) parameterization of an ONERA M6 wing.

Even if the computational cost of solving the sensitivity derivatives is independent of the
number of design variables, the choice of the shape parameterization method is still extremely
important in any design problem. This choice greatly a�ects both the performance and the
accuracy of the shape optimization. Therefore, the initial parameterization of the geometry, i.e.
the selection of the design variables, is a crucial step within the optimization process because it
will determine the quality of the optimal solution to be found [and10].

As B-Spline parameterization, in particular NURBS, will be used for the �ne grain local
shape optimization in Chapter 4, the mathematical theory is brie�y explained here.

NURBS parameterization

3D geometries can be parameterized with NURBS functions. The design is accomplished by
directly moving the control points to modify the shape. The design variables are therefore the
x, y and z locations of the control points. Equation 1.1 gives the NURBS surface as a function
of the parameters η and ξ:

S(ξ, η) =

∑I
i

∑J
j Ui,p(ξ)Vj,q(η)wijCij∑I

i

∑J
j Ui,p(ξ)Vj,q(η)wij

(1.1)

where (ξ, η) are the parametric coordinates on the NURBS surface, C are the Cartesian
coordinates of the control points, w are the weights of the control points and U and V are the
basis functions that will be described in section 4.3.2.

Further details regarding NURBS and their use as parameterization for aerodynamic shape
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optimization with control theory will be described in Chapter 4.

1.2.3 Surrogate-based global aerodynamic shape optimization

Metamodel assisted evolutionary algorithms

The optimization methods, in general, can be classi�ed into two main categories: deterministic
and stochastic methods. Deterministic methods solve an optimization problem by generating a
deterministic sequence of points converging to a global optimal solution. These methods con-
verge quickly to the optimum, however they require the optimization problem having certain
mathematical characteristics that may not exist in most computer simulation based global opti-
mization problems. Therefore, global search methods are mostly based on stochastic optimization
techniques, some of them population-based. The most commonly used population-based meth-
ods are the Evolutionary Algorithms (EAs; including Genetic Algorithms-GAs and Evolution
Strategies-ES). However, there are also other alternatives, such as Particle Swarm Optimization
(PSO) [ken95] or Bacterial Foraging Optimization (BFO) [mul02], Di�erential Evolution (DE)
[sto97] etc...

Evolutionary algorithms (EAs) [duv04] are successful single- and multi-objective constrained
optimization methods that can handle any kind of objective function and may accommodate any
evaluation software as a black-box tool. Since, however, EAs ask for a large number of calls to the
evaluation software in order to reach the optimal solution, they become very costly in applications
with computationally demanding evaluation software. For this reason, EAs assisted by surrogate
evaluation models (metamodels) have been devised [aso09, gad11]. The Metamodel�Assisted
Evolutionary Algorithms (MAEAs) rely on inexpensive and, thus, approximate models of the
problem-speci�c evaluation model. Figure 1.3 shows the �owchart of MAEAs.

Figure 1.3: Flowchart of a Surrogate-based Global Optimization

Surrogate models are introduced as a cheap alternative that has a number of advantages,
especially concerning the computational cost, memory and time budgets. A surrogate model
replaces the simulation performed by computationally expensive codes in the sense that the
search is directly coupled with a data base with a limited number of (previously, o�-line, or
on-line performed) simulations or snap shots. There are di�erent kinds of surrogate modelling
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as for example Polynomial Regression (PR), Multivariate Adaptive Regression Splines (MARS),
Gaussian Processes, Kriging (KG), Cokriging [zho10], Arti�cial Neural Networks (ANN) [wee05,
mar10], Radial Basis Functions (RBF) [mor08] and Support Vector Machines (SVM) [and11],
among others. A reference for recent advances in surrogate-based optimization techniques can
be found in [for09], and a comparison of surrogate models for turbomachinery design in [pet07].
Also, surrogate modelling has been already applied for the design optimization of composite
aircraft fuselage panels [van10]. In addition, the use of Kriging surrogate model in combination
with evolutionary algorithms has been recently applied to the design of hypersonic vehicles
[ahm10]. Furthermore, the use of Support Vector Regression algorithms (SVMr) [smo98, smo99]
as metamodels has been applied to a large variety of regression problems, in many of them mixed
with evolutionary computation algorithms [che11, sal11, jia12].

In MAEAs with o�-line metamodels, the latter are trained beforehand, i.e. separately from
the evolution which is exclusively based on them [bul99, jin02, buc05, won05]. The collection of
the training data set requires the evaluation of a number of selected points in the search space,
which is the computationally expensive task. The selection of training patterns is usually based
upon systematic Design of Experiment techniques, such as factorial design, orthogonal arrays,
etc...(see 1.2.3). Once a global metamodel has been trained, this acts as the exclusive low�cost
evaluation tool during the EA�based search. Thus, the CPU cost of running an EA which relies
only upon the trained metamodel is negligible, compared to the CPU cost for collecting the
training samples and training the network. The optimal solution, according to the metamodel,
must be exactly re�evaluated and, depending on the deviation, the model is re-trained or not.
In MAEAs with on-line trained metamodels, the metamodel and the problem�speci�c model
are used in an interleaving way during the evolution [gia02, bra05, jin05, emm06, szo09]. The
training of metamodels is based on recorded (in a dynamically updated database) previously
evaluated individuals. Then, the selected members of each generation are exactly re-evaluated
in order to update the metamodel [kar06].

Apart from implementing metamodels which are capable of approximating the objective
function value, MAEAs or SBGO methods in general, may also accommodate metamodels which
provide information related not only to the objective function values predictions but also quantify
the con�dence of these predictions. This is the case of Gaussian Processes, including the widely
used Kriging method [emm06, jon98]. The idea is simple: at a reasonable extra cost, a model
such as Kriging provides also a measure of con�dence for its prediction. It is reasonable that
the con�dence is expected to be higher if the training point density in the neighborhood of a
newly proposed point is higher. Another important output of the metamodel is the variance of
the output values and the average correlation between responses at neighboring points.

Current research on MAEAs focuses on the improvement of metamodels (by using arti�cial
neural networks, Gaussian models, etc, or proposing metamodels variants [you08] based not only
on the responses but also on the gradients) and di�erent metamodels implementation schemes
within the MAEA [aso09, lim10].
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Model approximation

Approximation, or metamodeling, is the key in metamodel-based design optimization. The goal
of approximation is to achieve a global metamodel as accurate as possible, at a reasonable
cost. The most commonly used metamodeling techniques include Polynomials (linear, quadratic
or higher), Splines, Multivariate Adaptive Regression Splines (MARS), Kriging, Radial Basis
Functions (RBFs), Arti�cial Neural Networks (ANNs), Support Vector Machines (SVMs) and
hybrid methods. In the following, only the techniques related with the work performed within
this thesis are brie�y described. For the rest of the methods, the related literature can be
consulted [jin05].

• Neural Networks
Neural networks have shown to be e�ective tools for function approximation. Both feed-
forward multi-layer perceptrons and radial-basis-function networks have been widely used.

� Multilayer perceptrons [nor05]
An MLP with one input layer, two hidden layers and one output neuron can be
described by the following equation:

y =

L∑
l=1

vlf

(
K∑
k=1

w
(2)
kl f

(
n∑

i=1

w
(1)
ik xi

))
(1.2)

where n is the input number, K and L are the number of hidden nodes, and f(·) is
called activation function, which is usually the logistic function:

f(z) =
1

1 + e−az
(1.3)

where a is constant.

� Radial Basis Functions Networks [orr96]
The theory of radial basis function (RBF) networks can also be traced back to in-
terpolation problems. An RBF network with one single output can be expressed by
Equation 1.4.

y(x) =
N∑
j=1

wjϕ
(
∥ x− x(j) ∥

)
(1.4)

where ϕ(·) is a set of radial basis functions, ∥ · ∥ is usually a Euclidean norm, the
given samples x(j), j = 1, ..., N are the centers of the radial basis function, and wj are
unknown coe�cients. However, this model is expensive to implement if the number
of samples is large. Therefore, a generalized RBF network is more practical:

y(x) =

L∑
j=1

wjϕ
(
∥ x− µ(j) ∥

)
(1.5)

The main di�erence is that the number of hidden nodes (L) is ordinarily smaller than
the number of samples (N), and the centers of the basis functions (µ(j)) are also
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unknown parameters that have to be learned. Usually, the output of a generalized
RBF network can also be normalized:

y(x) =

∑L
j=1wjϕ

(
∥ x− µ(j) ∥

)∑L
j=1 ϕ

(
∥ x− µ(j) ∥

) (1.6)

• Support Vector Machines [cla05]
The theory of support vector machines is mainly inspired from statistical learning theory
[vap98]. Major advantages of the support vector machines over other machine learning
models such as neural networks, are that there is no local minima during learning and
the generalization error does not depend on the dimension of the space. Given l samples
(xi, yi), i = 1, ..., l, the construction of a model is reduced to the minimization of the
following regularized ϵ-insensitive loss function:

L =∥ w ∥2 +C · 1
l

l∑
i=1

max(| yi − f(xi) | −ϵ) (1.7)

where ϵ is the tolerable error, C is a regularization constant and f is the function to be
estimated:

f(x) = w · x+ b w, x ∈ Rn b ∈ R (1.8)

The minimization of Equation 1.7 is equivalent to the following constrained optimization
problem:
minimize

1

2
∥ w ∥2 +C · 1

l

l∑
i=1

(ξi + ξ∗i ) (1.9)

subject to

((w · xi) + b)− yi ≤ ϵ+ ξi

yi − ((w · xi) + b) ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., l (1.10)

Further details can be consulted in 3.2.3 .

Data sampling in Engineering Optimization (DOE)

Sampling, as the �rst step in design of experiments, is crucial in exploring the characteristics of
the physical system or black-box computer analysis and simulation model, in an e�cient way. In
general, experimental design techniques can be classi�ed into two categories: classical and space
�lling [gar06, you08].

• Classical methods
These methods focus on planning experiments so that the random error in physical exper-
iments has minimum in�uence in the approval or disapproval of a hypothesis. Widely used
classic experimental designs include factorial or fractional factorial [myr95], central com-
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posite design (CCD) [che95], Box-Behnken [myr95] and alphabetical optimal [mit74, giu97].
These classic methods tend to spread the sample points around boundaries of the design
space and leave a few at the center of the design space. As computer experiments involve
mostly systematic error rather than random error as in physical experiments, a good ex-
perimental design should tend to �ll the design space rather than to concentrate on the
boundary. Simpson et al. [jin01] stated that a consensus among researchers was that
experimental designs for deterministic computer analysis should be space �lling.

• Space �lling methods
Space �lling designs spread experiment points evenly throughout the design space. Four
types of space �lling sampling methods are relatively more often used in the literature.
These are orthogonal arrays [hed99], various Latin Hypercube Sampling (LHS) designs
[ye00], Hammersley sequences [mec02], and uniform designs [fan00].

A comparison of these methods can be found in [you08, gar06]. Following the conclusions
in [you08], LHS methods seem to be a good choice because of their good properties for
large scale problems, their capability to provide uniformity and �exibility on the size of
the sample, and their properties to handle sampling where input variables have speci�ed
probability distribution. In addition, they are often applied also in uncertainty analysis.

Validation of Surrogate models

Metamodels are to be validated before being used as a �surrogate� of the computation-intensive
processes [gar06]. Model validation has been a challenging task, and it shares common chal-
lenges with the veri�cation and validation of other computational models [roa98, obe00]. In
the following, the main approaches for accuracy validation of surrogate models are described
[gar06]. Meckesheimer et al. [mec01, kal97] studied the cross-validation method. One starts
with a dataset, S{X,Y }, consisting of N input-output data pairs (x, y), where y is the model
response at the design sample point, x, and N is the total number of model runs. In p-
fold cross-validation, the initial data set is split into p di�erent subsets, that is, S{X,Y } =

S1{X1, Y 1}, S2{X2, Y 2}, . . . , Sp{Xp, Y p}. Then, the metamodel is �t p times, each time leav-
ing out one of the subsets from training, and using the omitted subset to compute the error
measure of interest. A variation of p-fold cross-validation is the leave-k-out approach, in which
all possible (

N

k

)
subsets of size k are left out, and the metamodel is �t to each remaining set. Each time, the
error measure of interest is computed at the omitted points. This approach is a computationally
more expensive version of p-fold cross-validation.

Mitchell and Morris [mit92] described how the cross-validation error measure could be com-
puted inexpensively for the special case of k = 1; this is called leave-one-out cross-validation.
Based on the observations from the experimental study conducted to assess the leave-k-out cross-
validation strategy [mec02], a value of k = 1 was recommended for providing a prediction error
estimate for RBF and low order polynomial metamodels, but not for kriging metamodels. Choos-
ing k as a function of the sample size used to construct the metamodel (that is, k = 0.1N or
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k =
√
N) was instead recommended for estimating the prediction error for kriging metamodels.

Lin [lin04] found through intensive testing that the leave-one-out cross-validation is an in-
su�cient measurement for metamodel accuracy. The leave-one-out cross-validation is actually a
measurement for degrees of insensitivity of a metamodel to lost information at its data points,
while an insensitive metamodel is not necessarily accurate. With leave-one-out cross validation
we are in danger of rejecting an accurate metamodel that is also sensitive to lost information at
data points.

Given that cross validation is insu�cient for assessing models, employing additional points
is essential in metamodel validation. When additional points are used for validation, there are
a number of di�erent measures of model accuracy. The �rst two are the root mean square error
(RMSE, see Equation 1.11) and the maximum absolute error (MAX, see Equation 1.12), de�ned
below:

RMSE =

√∑m
i=1(yi − ŷi)2

m
(1.11)

MAX = max | yi − ŷi |, i = 1, ...,m (1.12)

where m is the number of validation points; ŷi is the predicted value for the observed value
yi. The lower the value of RMSE and/or MAX, the more accurate the metamodel. RMSE is
used to gauge the overall accuracy of the model, while MAX is used to gauge the local accuracy
of the model. An additional measure that can be also used is the R square value, de�ned by
Equation 1.13.

R2 = 1−
∑m

i=1(yi − ŷi)
2∑m

i=1(yi − ȳi)2
(1.13)

where ȳ is the mean of the observed values at the validation points. Variations of the three
measures exist in the literature [jin01] .

Comparison of surrogate models

There are several papers that compare the performance of di�erent approximation models [gar06,
jin05]. However, no clear conclusions on the advantages and disadvantages of the di�erent models
have been drawn. This is reasonable not only because the performance may depend on the
problem to be addressed, but also because more than one criterion needs to be considered. The
most important factors are accuracy, computational complexity and transparency. Although,
there is no conclusion about which model is de�nitely superior to the others, some insights have
been gained through a number of studies [sim01, jin01] .

Firstly, it is recommended to implement a simple approximate model for a given problem,
for example, a lower order polynomial model to see if the given samples can be �t reasonably.
If a simple model is found to under�t the samples, a model with higher complexity should be
considered, such as higher order polynomials or neural network models. However, if the design
space is high-dimensional and the number of samples is limited, a neural network model is
preferred. Secondly, if a neural network model, in particular a multi-layer perceptrons network
is used, it is necessary to consider regulating the model complexity and try e�cient training



14 Chapter 1. Introduction

methods.
In general, the Kriging models are more accurate for nonlinear problems but di�cult to

obtain and use. Kriging is also �exible in either interpolating the sample points or �ltering noisy
data. On the contrary, a polynomial model is easy to construct, clear on parameter sensitivity,
and cheap to work with but is less accurate than the Kriging model [jin01]. The RBF model can
interpolate sample points and at the same time is easy to construct. Recently, a new model called
Support Vector Regression (SVR) was used and tested [cla05] . SVR achieved high accuracy over
all other metamodeling techniques including Kriging, polynomial, MARS, and RBF over a large
number of test problems.

In [you08] a comparison between di�erent surrogate models is carried out, and the conclusions
for the behavior of ANNs and SVMs as metamodels are:

• Excellent for very high dimensional problems.

• Need for e�cient training algorithms or limited applications in case of expensive �tness
functions.

• Best suited for approximating functions in regression-type applications.

• Can model a combination of continuous and discrete numerical variables.

• Accuracy is based on the quality and quantity of the data used in modeling.

1.2.4 Local gradient-based aerodynamic shape optimization

In local gradient-based optimization techniques, the goal is to minimize a suitable cost or objec-
tive function with respect to a set of design variables using the gradient information for obtaining
the search direction. Nowadays, the gradients can be computed both e�ciently and accurately
with adjoint methods, and in that way, only a single adjoint �ow computation is required to
evaluate sensitivities of a cost function with respect to any number of design variables. In the
past, the �nite di�erences approach was used for gradient computation, and it implied a complete
�ow computation for the deformation of each design variable, which made the time required for
an industrial optimization process not suitable. There are two possible adjoint implementations,
using the continuous and the discrete formulations. In the continuous adjoint approach [cas07],
pioneered by Jameson [jam88], one �rst formulates the adjoint PDEs and boundary conditions,
which are then discretized. On the other hand, in the discrete adjoint method [ell97], the dis-
cretized governing equations are used to derive the optimality conditions. The main advantage
of this approach is that Automatic Di�erentiation (AD) techniques [gri00] can be used to gen-
erate adjoint codes with very little e�ort irrespective of the complexity of the �ow solver code
[gil03, nem11]. Yet another feature of discrete adjoints is that the discrete realizations of the tur-
bulence models are algorithmically di�erentiable. On the contrary, the constant eddy viscosity
or the so-called frozen turbulence assumption is a common practice in deriving the continuous
adjoint equations, which may result in inaccurate sensitivities and robustness problems. Just
recently, [zym09] presented, for the �rst time in the literature of continuous adjoint methods,
the full di�erentiation of one- and two-equation turbulence models such as the Spalart-Allmaras
(SA) and, later on, the k-w model with the wall-function technique [zym10]. It demonstrated
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and quanti�ed the gain by using the full di�erentiation approach or, equivalently, the error from
relying on the frozen turbulence viscosity assumption. Several researchers [zym09, pet10] have
used both the continuous and discrete approaches in a wide variety of applications ranging from
the design of two-dimensional airfoils to complex aircraft con�gurations.

Figure 1.4 shows the �owchart of the traditional local gradient-based optimization.

Figure 1.4: Flowchart of a Local Optimization

As this thesis will focus on the application of continuous adjoint method to e�ciently compute
gradients over the NURBS control points, as design variables, in the following, the mathematical
background for computation of gradients via continuous adjoint [cas07, bre09] will be described.

Gradients via adjoint approach

Primal approach

Let the optimization problem be stated as

min
D

I(w,X,D) (1.14)

subject to the constraint

R(w,X,D) = 0 (1.15)

where I is a cost function such as lift or drag, D is a vector of design variables that control
the shape of aircraft subject to aerodynamic design, w(X,D) the vector of �ow variables, X(D)

the computational mesh and R(w,X,D) the residuals of the �ow.

For a gradient based optimization strategy, the search for the minimum requires the total
derivative of the cost function I with respect to the design variables D. This total derivative,
also called the sensitivity, can be written as:

dI

dD
=

∂I

∂X

∂X

∂D
+
∂I

∂w

∂w

∂D
(1.16)
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The �rst term of 1.16 expresses the direct e�ect of the geometry perturbation and the second
term contains the e�ect of the �ow alteration caused by the geometry perturbation on the cost
function I. Solving the above equation can be done by applying �nite di�erences which requires
evaluations of the �ow solver on n perturbed geometries, with n the number of design parame-
ter. Alternatively, the adjoint approach allows a rapid evaluation of dI/dD for a large number
of design variables D, without computing the �ow solution on the perturbed geometry.

Dual approach

Instead of applying the chain rule to I, apply it to the Lagrangian:

L(w,X,D,Λ) = I(w,X,D) + ΛTR(w,X,D) (1.17)

where Λ are known as the adjoint variables. Since 1.15 holds for all D, L = I for all Λ and
all D. Hence,

dL

dD
=

dI

dD
∀Λ, D (1.18)

and so, applying the chain rule to L, the total derivative of I becomes:

dI

dD
=

(
∂I

∂X

dX

dD
+
∂I

∂w

dw

dD

)
+ ΛT

(
∂R

∂X

dX

dD
+
∂R

∂w

dw

dD

)
=

(
∂I

∂X
+ ΛT ∂R

∂X

)
dX

dD
+

(
∂I

∂w
+ ΛT ∂R

∂w

)
dw

dD
(1.19)

The unknown quantity dw/dD may be eliminated by choosing Λ such that(
∂R

∂w

)T

Λ = −
(
∂I

∂w

)T

(1.20)

This is the �ow adjoint equation, and must be solved only once to evaluate the gradient
of a single I with respect to any number of design variables. The resulting Λ allows rapidly
computing the total derivative using:

dI

dD
=

(
∂I

∂X
+ ΛT ∂R

∂X

)
dX

dD
(1.21)

Continuous adjoint approach of 2D Euler equations

The steady compressible Euler equations on the domain Ω may be written for 2D �ow:

∇ · F (w) = 0 (1.22)

where w = (ρ, ρu, ρv, ρE) is the vector of conserved quantities, and the �ux tensor F may be
written:



1.2. State of the art 17

F =


ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p

ρHu ρHv

 (1.23)

and ρ, u, v, E, p andH are the density, Cartesian components of velocity, total energy, pressure
and enthalpy respectively, and the ideal gas relations are assumed. This equation is subject to
slip boundary conditions on solid walls Γw ⊂ Γ

U · n = 0 on Γw (1.24)

where U = (u, v) and n is the surface normal vector. Furthermore we are interested in a cost
function I given by

I(w) =

∫
Γ
g(w)dΓ (1.25)

To derive the adjoint we multiply 1.22 by ψ ∈ V , where V is a Sobolev space containing the
solution of 1.22, linearize about a given �ow solution w0, w = w0 + ϕ, and integrate by parts∫

Ω
ψT∇ · (F ′ϕ)dΩ =

∫
Γ
ψTn · F ′ϕdΓ−

∫
Ω
∇ψT · F ′ϕdΩ (1.26)

where F ′ = F ′[w0] is the derivative of F with respect to w evaluated at w0. Therefore, the
variational formulation of the adjoint problem is given by: �nd adjoint solution Ψ such that
∀ϕ ∈ V ∫

Γ
(n · F ′ϕ)TψdΓ−

∫
Ω
(F ′ϕ)T · ∇ψdΩ = I ′[w0]ϕ (1.27)

The continuous adjoint problem is therefore

−F ′T∇ψ = 0 in Ω

(n · F ′)Tψ = g′T on Γ

The singularity of F ′ on slip walls leads to the well-known result that not all choices of g
result in a well-posed adjoint problem.

Given the adjoint �eld ψ the derivative of I with respect to any design variable D may be
written as in Equation 1.28

dI

dD
=

∫
Γ

∂g

∂D
dΓ +

∫
Ω
ψ
∂

∂D
∇ · FdΩ (1.28)

which is notable for not containing any total derivatives of the �ow solution dw/dD and,
therefore, it makes the computation of the sensitivities essentially independent of the number of
design variables.

Further details, as well as the formulation of adjoint sensitivities over the NURBS control
points, can be read in 4.4.
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1.2.5 Hierarchical optimization strategy for aerodynamic design

In order to exploit the advantages of both global and local search optimization methods, a
hierarchical strategy can be employed. In a �rst stage, global optimization techniques, such
as Evolutionary Algorithms (EAs), supported by surrogate models, search the whole design
space for one or several viable global optimum designs. In a second stage, the optimization
process is carried out with local gradient-based optimization techniques (i.e. adjoints) for a
�ner improvement of the geometry. Figure 1.5 shows the �owchart of a hierarchical global/local
optimization.

Figure 1.5: Flowchart of a Hierarchical Global/Local Optimization

The term �hierarchical� is used to denote the combined use of heterogeneous search meth-
ods (for instance, stochastic methods for the exhaustive search of the design space along with
gradient-based methods for the re�nement of promising solutions) [kam11]. Metamodel-assisted
memetic algorithms [ong03, ong06, zho07, kon11] are also hybrid schemes that combine the use
of global and local optimization methods [car06, bom10, kam11].

The �rst steps in the combination of this two stage global-local optimization strategy for a
wing-body con�guration, employing Response Surface (RS) and Kriging methods, in conjunction
with EAs, have been carried out in [yim08]. Also, [iul09] o�ers an example of stochastic opti-
mization, for global approach, and local re�nement with gradients for the design of supersonic
transport jet.

1.2.6 Software tool for aerodynamic analysis: The unstructured DLR TAU

code

The DLR TAU [ger97, sch06] code is a modern software system for the prediction of viscous and
inviscid �ows around complex geometries from low subsonic to hypersonic �ow regime, employing
hybrid unstructured grids composed of tetrahedrons, pyramids, prisms and hexahedrons. The
system, in the following just called TAU, is composed of a number of modules and libraries to
allow easier development, maintenance and reuse of the code or parts of it. The main modules of
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TAU can both be used as stand-alone tools with corresponding �le I/O or within a Python [pyt08]
scripting framework allowing for inter-module communication without �le-I/O. In addition, to
allow e�cient simulation of complex con�gurations with several ten million grid points, TAU has
been parallelized based on domain decomposition by using the message passing concept MPI.

The most signi�cant modules of TAU are, �rstly, the pre-processing which is used to prepare
the metric of the grid. This edge-based data structure makes the solver independent of the
element types in the primary grid and enables the use of a multi-grid technique based on the
agglomeration approach.

Secondly, the �ow solver is based on the compressible Navier-Stokes equations, employing Low
Mach number pre- conditioning to extend its use into the incompressible �ow regime. The spatial
�nite volume discretization is second-order accurate both for the viscous and inviscid terms,
where the latter are computed based on central or a variety of upwind schemes. Steady solutions
are obtained via time integration based either on explicit Runge-Kutta schemes or an implicit LU-
SGS scheme, both with additional convergence acceleration by multi-grid. The turbulence models
implemented include linear and non-linear eddy viscosity models (EVM) spanning from one- and
two-equation EVM through Reynolds-stress models to hybrid RANS-LES models. The standard
turbulence model used is the Spalart-Allmaras [spa92] model yielding highly satisfactory results
for a wide range of applications while being numerically robust. The two equation models are k-ω
based, with the Menter SST [men94] model being most popular. For time accurate computations,
the dual time stepping approach of Jameson [jam91] is employed.

Finally modules are available for grid adaptation, which re�nes and de-re�nes the computa-
tional grid with di�erent indicator functions, grid deformation to propagate the deformation of
surface grid points to the surrounding volume grid and many more.

1.3 European e�orts in improving the aerodynamic shape design

Table 1.1 shows a summary [gad11] and a short description of previous EC-funded projects
focusing on improving the aerodynamic analysis and design capabilities and Figure 1.6 shows
the roadmap of previous EU e�orts regarding shape design.

With respect to the aerodynamic design process, the achievements of AEROSHAPE and
INGENET constituted the baseline for methods. With respect to the design of novel con�gu-
rations and concepts, there were important outputs and recommendations from HELIX, NEFA,
VELA and NACRE projects, as well as the achievements of EUROLIFT, DESIREH and AWAHL
for designing high lift devices. Regarding surrogate models, ALEF and ACFA 2020 produced
interesting outcomes, the latter in the application of neural networks for active control. In
addition, di�erent strategies for the industrial design process were evaluated in VIVACE and
CRESCENDO.

1.4 Objectives and main contributions of this work

This thesis focuses on the aerodynamic design of aeronautical shapes using an advanced strategy
through e�cient global and local search methods enhanced with high performance computing
techniques. The objective is to enrich the current design capabilities by exploring extensively
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Figure 1.6: Roadmap of previous EU projects

the design space and providing new con�gurations, with improved aerodynamic e�ciency.

The strategy for obtaining an e�cient aerodynamic design process will involve three key
stages:

• CFD acceleration: First, the improvement of the process e�ciency is addressed through
code optimization and parallelization using a balanced domain decomposition. At �rst,
a pro�ling analysis of the most time-consuming processes of a RANS �ow solver on a
three-dimensional unstructured mesh is performed. Then, a study of the code scalability is
considered and new partitioning algorithms are tested to show the most suitable algorithms
for the selected applications.

• Coarse grain surrogate-based global optimization (SBGO): Second, the design space will
be broadly analyzed to get the global optimal con�guration. In this phase, the use of
global optimization techniques will be considered due to their ability to work with noisy
objective functions without assumptions on continuity and their high potential to �nd the
global optimum of complex problems. In addition, the inherent parallelization of these
algorithms will provide additional key advantages.

• Fine grain local optimization (FLO): An initial con�guration will be also analyzed within
a �ner design phase. In this step, local optimizations will be performed in order to locally
improve the design, and methods for saving of computational e�ort, as adjoints, will be
applied.

Contributions to the state-of-the-art are:
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• Novel approach for an e�cient aerodynamic optimization of aeronautical wing pro�les,
consisting of an Evolutionary Programming algorithm hybridized with a Support Vector
regression algorithm (SVMr) as a metamodel.

• Assessment of speci�c issues as precision, dataset training size and feasibility of the com-
plete approach and the potential of global optimization methods (enhanced by metamodels)
for aerodynamic shape design of aeronautical con�gurations.

• CFD acceleration through code optimization techniques and e�cient domain decomposition
algorithms.

• Application of a NURBS parameterization in the �ne grain aerodynamic design coupled
with control theory.

1.5 Structure of this thesis

The rest of this thesis is organized in three technical parts:

• First, in Chapter 2, the numerical simulation tool, in this case the CFD TAU code, key
piece in the optimization process, is analyzed in order to �nd computational bottlenecks
and several acceleration techniques are applied to reduce the time required for computing
the solution for each design variable.

• Second, in Chapter 3, a coarse grain global optimization, surrogate-based, is performed.
The design space is broadly analyzed to get a �rst approximation to the global optimal
con�guration.

• Third, in Chapter 4, a �ne grain gradient-based local optimization is performed in order
to locally improve the initial design.

The �nal assessment of results is done within each chapter by applying the proposed ap-
proach to the aerodynamic design optimization of di�erent con�gurations. Finally, Chapter 5
will summarize the main outcomes of this research work.
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Table 1.1: Related funded projects in the European Framework Programme

Acronym Objective

AEROSHAPE Multi-point aerodynamic shape optimization. Increase e�ciency by intro-
ducing e�cient techniques for aerodynamic shape optimization (adjoint for-
mulation, evolutionary algorithms, surrogate-based optimization, . . . )

EPISTLE European project for improvement of supersonic transport e�ciency.

HELIX Innovative aerodynamic high lift concepts. Explore new approaches to gen-
erate su�cient low speed aerodynamic performance

INGENET Evolutionary Computing for Industrial Design. Promote interactions be-
tween Evolutionary Methods and Industrial Applications by evaluating and
comparing di�erent methodologies

NEFA Assess V-empennage type on aircraft

VELA Very E�cient Large Aircraft. Innovative transport aircraft concepts and
associated development tools for Very E�cient Large Aircraft

EUROLIFT Investigation of design optimization for high-lift con�gurations.

HISAC Establish the technical feasibility of an environmentally compliant super-
sonic small size transport aircraft.

NACRE New Aircraft Concepts Research. Develop solutions at a generic aircraft
component level (cabin, wing, power plant system, fuselage), which will
enable the results to be applicable for a range of new aircraft concepts

NODESIM-
CFD

Research on uncertainties within the Computational Fluid Dynamics (CFD)
simulation process

VIVACE Development of methodologies in aeronautic engineering and aircraft and
aero-engine design.

ACFA 2020 Innovative active control concepts for e�cient 2020 aircraft con�gurations
like the blended wing body (BWB) aircraft

ALEF Aerodynamic loads estimation at extremes of the �ight envelope. Enable
the aeronautical industry to create complete aerodynamic data sets.

AWAHL Advanced Wing And High-Lift Design. Wing/pylon/nacelle/HLD for ad-
vanced regional TF A/C con�guration by multidisciplinary design

CRESCENDO Collaborative and Robust Engineering using Simulation Capability En-
abling Next Design Optimization.

DESIREH Development of numerical design tools and experimental measurement tech-
niques with the objective to improve the industrial process for the design
of high lift devices

FFAST Development of reduced order modeling strategies for unsteady aerody-
namic and aeroelastic simulation

NOVEMOR Novel Air Vehicles Con�gurations: From Fluttering Wings to Morphing
Flight. Investigation on novel air vehicle con�gurations

SUPERTRAC SUPERsonic TRAnsition Control. Explore the possibilities of viscous drag
reduction on supersonic aircraft wings by delaying transition
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Chapter 2

Achieving High Speed CFD simulations

2.1 Introduction

Scienti�c computing with its core ingredients, modeling, simulation and optimization, is regarded
by many as the third pillar of science, complementary to experiment and theory. In aeronautical
engineering, the consistent use of mathematical and computational methods to simulate complex
processes has become indispensable to save energy, reduce costs and pollution, and to increase
safety. However, the high complexity of some of these processes frequently implies very long
computation times. In particular, the analysis of a complete aircraft con�guration including all
relevant payload elements and �ight components, even using a Reynolds-Averaged Navier-Stokes
(RANS) modeling, at present still requires a huge computational e�ort, even using the modern
high parallel computational platforms. Thus, reducing the time for aerodynamic analysis is one
of the most important challenges of current research in CFD.

An e�cient implementation for codes based on unstructured meshes is still a challenging task.
In comparison to structured solvers [kro01], with their lower memory usage and block-structured
data, their computational rates and scalability were for many years out of reach for any un-
structured solvers. Through the use of e�ective edge-based structures, the memory requirements
were reduced, and by using grid data-reordering techniques for a banded matrix, the e�ciency
was increased remarkably. Especially edge-based data structures enabled a homogeneous data-
structure independent on the grid volume elements. Additionally, a cache optimization for PCs
successfully increased the throughput. With all these improvements, unstructured solvers have
matured enough to be applied for industrial applications [mav07, mav02, sch06, alr05].

Apart from these advantages, improvements in the computational speed can also be addressed
on many levels. In this work, three di�erent strategies are proposed, ranging from the basic code
optimization to parallelization up to a new hardware architecture.

Code optimization is one of the �rst objectives in performance improvement, and it is often
less considered with respect to other important goals such as stability, maintainability, and
portability. This simple level of optimization is bene�cial and should be always applied including
an e�cient implementation, reduction of operations, pre-computation of expensive variables and
non-redundant interfaces. Code optimization is based on execution pro�ling while performing a
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time measurement of bottlenecks in the code. Applying optimization strategies over the most
time consuming algorithms of the code can provide important reductions of the execution time
[wyl07, gro00].

In recent years, much of the attention has been focused on methods for parallel computers to
reduce the computation time by taking advantage of concurrent processing of data in di�erent
regions of the domain, and to increase the resolution of the model by using the larger memory
available in parallel computers. To e�ectively exploit the current capabilities that parallel com-
puters o�er, with several hundreds or even thousands of processing units, it is important that
the data has to be distributed over the processors in a balanced manner, so that each processor
will complete its workload at approximately the same time to prevent idling of processors.

This distribution must be in the manner that the number of assigned elements to each
processor is the same, and the number of adjacent elements assigned to di�erent processors is
minimized. The goal of the former condition is to balance the computations among the processors.
The goal of the latter condition is to minimize the communications resulting from the placement
of adjacent elements to di�erent processors. Therefore, e�cient partitioning algorithms for highly
unstructured graphs are crucial for gaining fast solutions in a wide range of applications areas on
parallel computers, and, particularly, in large-scale CFD simulations [mav07, mav02, zol08, sil05].

In addition, adaptive scienti�c computations require that periodic repartitioning, known as
load balancing, occur dynamically to maintain load balance. A classic example is the simulation
based on adaptive mesh re�nement, in which the computational mesh changes between time
steps. The di�erence is often small, but over time, the cumulative change in the mesh becomes
signi�cant. An application may therefore periodically re-balance, that is, move data among
processors to improve the load balance. This process is known as dynamic load balancing or
repartitioning and should be considered in modern applications.

Furthermore, a new alternative to boost the performance is to consider new heterogeneous
architectures for high performance computing [put03, mah04, and08], combining conventional
processors with speci�c hardware to accelerate the most time consuming functions.
Hardware acceleration gives best results, in terms of overall acceleration and value for money,
when applied to problems in which:

• Condition A. A great amount of the computational e�ort is concentrated in a small portion
of the whole code, and the computations have to be performed several times for a huge set
of data.

• Condition B. The communication and I/O times are small with respect to the total com-
putational cost [str06].

CFD simulations seem to gather all these desirable characteristics since:

• The numerical solution of the �ow equations is based on a �ux interchange between the
discrete volumes that represent the physical domain. The numerical �ux computation for
each discrete volume requires several hundred �oating-point operations, and each operation
is repeated several million times in a real aeronautical simulation (Condition A).

• On the other hand, the numerical solution of the �ow has data locality. This means that
the computation to be performed at a certain location of the domain depends only on data



2.2. Optimization: Analysis and remodeling of most time consuming algorithms 27

that is located in a small neighborhood around it. Communication between the processors
is required because the solutions on the subdomains depend on each other, but only on the
subdomain boundaries. This is the reason why communication costs are small with respect
to the overall cost (Condition B).

Therefore, CFD simulations are suitable to be executed, with expected performance acceleration,
on a platform with a heterogeneous architecture [and08], where a speci�c hardware module is con-
�gured to perform the most time-consuming tasks, in order to decrease the overall computation
time.

Figure 2.1: Scheme of the three-level code optimizations proposed for CFD

In this section, the performance of the DLR TAU code is analyzed and optimized. The
improvement of the code e�ciency is addressed through three key activities: Optimization, par-
allelization and hardware acceleration. At �rst, a pro�ling analysis of the most time-consuming
processes of the Reynolds Averaged Navier Stokes �ow solver on a three-dimensional unstruc-
tured mesh is performed. Then, a study of the code scalability with new partitioning algorithms
are tested to show the most suitable partitioning algorithms for the selected applications. Fi-
nally, a short feasibility study on the application of FPGAs for the hardware acceleration of
Computational Fluid Dynamics (CFD) simulations is presented.

2.2 Optimization: Analysis and remodeling of most time con-

suming algorithms

In the following, a performance analysis of the most time consuming functions in the �ow solver
will be outlined. This preliminary step, before considering any partitioning algorithm, is relevant
to determine the �ow solvers bottlenecks. It is important to be aware of computational routines
which might hinder any e�ort in applying sophisticated grid partitioning. A �ow solver is com-
posed of very di�erent algorithms for e.g. residual computation, boundary conditions treatment
and pseudo-time integration. But the management of parameter settings, memory allocation
and freeing and creating solution output can become additionally crucial if not well considered.
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A �ow solver pro�ling determines which algorithms are lacking in their e�ciency. First, the �ow
solvers equations and discretization are presented in order to illustrate the various routines from
the pro�ling later on.

2.2.1 Governing equations

The considered equations are the mass-weighted (Favre) averaged three-dimensional unsteady
Navier-Stokes equations with a Spalart-Allmaras one equation turbulence model [spa92] with
Edwards [edw96] modi�cation (SAE). They may be written for an open physical domain Ω ⊂ R3

enclosed by a smooth boundary ∂Ω under the time-independent coordinate x within a velocity
�eld of

U(x) = [u(x), v(x), w(x)]T , x = [x, y, z]T ,

in integral and conservative form like∫
Ω

∂w

∂t
d|Ω|+

∫
∂Ω

(Fc · n− Fv · n) d|∂Ω| =
∫
Ω
Qd|Ω|, (2.1)

where n denotes the face normal vector and w is the conservative state variables vector

w = [ρ, ρu, ρv, ρw, ρE, ρν̃]T . (2.2)

The �ux density vectors of convective Fc and viscous Fv �uxes are given by:

Fc · n =



ρVn
ρuVn + pnx
ρvVn + pny
ρwVn + pnz
ρHVn
ρν̃Vn


, Fv · n =



0

τxj
τyj
τzj
Θj

τ tj


· n, (2.3)

including Vn = ⟨U,n⟩ the normal velocity over domain boundary ∂Ω. Assuming a calorically
perfect gas, the relation between the static pressure and temperature follows from the equation
of state p/ρ = RT , R is the speci�c gas constant, which closes the system. With the total
enthalpy H and the relationship between static pressure and state variables by

H = E + p/ρ, p = (γ − 1)ρ

(
E − |U|2

2

)
, (2.4)

the speci�c total energy E can be described. The viscous �uxes can be expressed by introducing
the viscous shear-stress tensor τ(U,∇U) together with the rate-of-strain tensor S which is

τij = 2µeffSij ,

Sij(U,∇U) =
1

2
(∇U+∇UT )− 1

3
∇UI. (2.5)
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The corresponding viscous energy �ux Θ is then

Θ =

(
3∑

k=1

Uτjk

)
+ κeff

∂T

∂x
, j = 1, 2, 3, (2.6)

µeff and κeff represent the e�ective viscosity and e�ective thermal conductivity given by their
sums of laminar and turbulent parts

µeff = µl + µt and κeff = cp

(
µl
Pr

+
µt
Prt

)
, (2.7)

where Pr denotes the Prandtl number which for air is 0.92, Prt is the turbulent Prandtl number
speci�ed as relation between apparent turbulent shear stress and apparent turbulent heat �ux
and cp is the speci�c heat capacity at constant pressure. µl, laminar viscosity, can be evaluated
with a further relationship provided through Sutherland's law for molecular viscosity and is
de�ned by

µl = µl,ref

[
T

Tref

] 3
2
[
Tref + TS
T + TS

]
, (2.8)

with the Sutherland temperature TS = 110.4K for air. Modeling the turbulent viscosity µt =
µt(ρν̃) mainly involves a wall damping function based on empirical investigations with depen-
dency on unknown turbulent quantity ν̃. Turbulent di�usion indicated by τ ti being obtained
based on Spalart-Allmaras one equation model and their contribution will read

τ ti =
(µeff + ρν̃)

σ

∂ν̃

∂xi
, (2.9)

with the constant coe�cient σ = 2/3. Finally, the missing source term Q occurring on the right
hand side of (2.1) can be further split into

Q(x) = Pr(x)−De(x) +Di(x), (2.10)

where Pr corresponds to production, De is destruction and Di is the non-conservative di�usion
term. These three terms are then deduced by the particular turbulence model used, in this case
Spalart-Allmaras one equation model with Edwards modi�cation.

2.2.2 Finite volume discretization

Applying an unstructured edge-based cell-vertex �nite-volume discretization, (2.1) is solved using
a spatial central numerical �ux to compute the residual R

R(w(x)) =

∫
∂Ω

(Fc · n− Fv · n) d|∂Ω| −
∫
Ω
Qd|Ω|, (2.11)

with mixed second- and fourth-order dissipation operators after the scheme of Jameson, Schmidt,
Turkel (JST) [jam81] . The convective �ux Fc over a domain boundary ∂Ω of a control volume
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Ω, which are formed by a median dual grid approach, is written

Fc,JST · nij =
1

2
(Fc(wi) · nij + Fc(wj) · nij)−

1

2
|Aij |[wi −wj ], (2.12)

where |Aij | is, in case of scalar dissipation, the maximum absolute convective eigenvalue described
as

|Aij | = |Vn|+ c|∂Ω|, c =
√
γ
p

ρ
, (2.13)

with c the speed of sound. The neighbors of point i are described by N(i) and the face between
the points i and j is ij with its adjacent normal vector nij . Arti�cial dissipation is added with
expression [wi −wj ] = Dij and is computed as

Dij = ϕ2(wj −wi)− ϕ4(Lj(w)− Li(w)) (2.14)

Li(w) =
∑

j∈N(i)

(wj −wi), (2.15)

ϕ2 = ϕ2(pij , λ, ϵ2), ϕ4 = ϕ4(ϵ2, ϵ4, λ) (2.16)

ϕ2 acts as shock switch and ϕ4 guarantees stability of the scheme in smooth regions. The coef-
�cients are computed from pressure ratio pij , convective eigenvalues λ and constant coe�cients
ϵ2 = 1/2 and ϵ4 = 1/64. (2.14) is displayed simpli�ed in contrast to the one used in TAU which
further includes scaling factors for ϕ2,4 to increase robustness. (2.15) represents an undivided
Laplacian from conservative variables and is evaluated over the immediate neighbors j of node i
in a previous step before actual �ux integration is performed.

Viscous �ux Fv contributions are discretized in the same straightforward manner and read sim-
pli�ed as

Fv · nij =
∑

j∈N(i)

(Fv · nij)(wi,wj ,∇wi,∇wj). (2.17)

Required gradients from the �ow variables ∇w in (2.17) can be computed using the Green-Gauss
method

∂

∂x
wGG ≈ 1

vol(Ωi)

∑
j∈N(i)

1

2
(wi +wj)nij |∂Ω|, (2.18)

where |∂Ω| is the area from domain boundary ∂Ω or with a thin shear layer (tsl) approximation:

∂

∂x
wTSL ≈

∑
j∈N(i)

wj −wi

xj − xi
. (2.19)

The last part to discretize concerns about turbulent source terms in (2.11). Again they are
obtained similarly and can be written as

|Ωi|Q = |Ωi|Q(wi,∇wi), (2.20)
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where dependency from gradients occurs forDi(x, t) representing di�usion and for computing the
vorticity magnitude for production term Pr, respectively. In fact, noteworthy is that turbulence
models are strongly coupled to the mean �ow equations, for further details see [lan11] . In
principle, evaluating R is split into routines for convective and viscous part of the solution
system. Furthermore, in case of turbulent �ows, point sources Q and di�usion �ux τ ti are added
in a separate function. In addition, routines have to be taken into account for pre-computing
convective eigenvalues, residual smoothing steps and helper functions for conversions between
primitive and conservative variables.

Using a multi-step discretization in time, a large set of nonlinear equations is formed and marched
to steady state in pseudo time using an agglomerated multi-grid algorithm [mav98] within each
time step. Two pseudo time integration schemes are implemented in the TAU code. The explicit
Runge-Kutta based time integration scheme [jam81] is applied like:

∆wn = − ∆t

vol(Ω)
R (2.21)

w(0) = wn

w(a) = w(0) − αa∆t(vol(Ω)R)a−1

wn+1 = w(a) (2.22)

where n and n+ 1 are the actual and next integration points and a is related to the number of
Runge-Kutta steps. The semi-implicit LUSGS scheme [jam87, dwi05] is applied in the manner:(

vol(Ω)
∆t

+
∂R(wn)

w

)
∆wn = −R(wn), (2.23)

and the term in parenthesis before∆wn is called the implicit operator. Later on, the computation
of the implicit operator will be referred as implicit_time_integration. Due to the iterative process
the most often used algorithms are usually performed during the �ow residual R evaluation and
pseudo-time integration. Another feature of TAU is the storage of primitive variables instead of
conservative variables. This may have advantages and/or disadvantages but will be taken into
account with the keyword additional_state_variables, implied with (2.4).

2.2.3 TAU pro�ling and subroutines optimization

The computational grid used for this investigation is an Onera M6 [sch79] Navier-Stokes grid
that has 450.634 points and 1.509.834 elements and contains a prismatic layer around the surface
and tetrahedrons in the far �eld. The conditions are a free-stream Mach number of 0.8395 and
an angle of attack of 3.06 degrees. For completeness, both implemented pseudo time integration
schemes, an explicit Runge-Kutta and a semi-implicit LUSGS method, were pro�led. The results
for the pro�ling obtained with the sequential �ow solver using an explicit Runge-Kutta and
a semi-implicit LUSGS method are displayed in Table 2.1. The percentages shown in Table
2.1 are related to a simulation performed for 100 iterations using no multi-grid scheme and
without performing any solution output. The abbreviations used are tsl for thin shear layer
approximation, see (2.19) and sae for the Spalart-Allmaras one equation turbulence model
with Edwards [edw96] modi�cation. The most time consuming routine for both pseudo time
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Table 2.1: Pro�ling results with a Runge-Kutta (left) and LUSGS (right) for the Onera M6

Function % of time

viscous_�uxes_tsl (2.17),(2.19) 39.2%
di�usion_�uxes_tsl (2.9) 10.0%
GreenGauss_gradients (2.18) 6.8%
scaling_factor_dissipation (2.16) 6.0%
central_�ux (2.12) 5.4%
convective_eingenvalues (2.13) 4.7%
turb_sae_sources (2.20) 3.5%
additional_state_variables (2.4) 2.7%
scalar_dissipation (2.14) 2.0%
convert_consvar_to_primvar 1.6%
laplacian_consvar (2.15) 1.5%
RK_timestepsize (2.21) 1.5%

Function % of time

viscous_�uxes_tsl (2.17),(2.19) 21.6%
additional_state_variables (2.4) 10.4%
convective_eingenvalues (2.13) 7.9%
GreenGauss_gradients (2.18) 7.4%
scaling_factor_dissipation (2.16) 6.6%
di�usion_�uxes_tsl (2.9) 5.6%
implicit_time_integration (2.23) 4.8%
convert_consvar_to_primvar 4.7%
turb_sae_sources (2.20) 4.5%
central_�ux (2.12) 2.9%
linear_solver_lusgs 2.9%
scalar_dissipation (2.14) 2.2%

integration schemes is the evaluation of the viscous �uxes, i.e. left table shows for the explicit
Runge-Kutta scheme an overhead of 40% during a �ow simulation. The second most expensive
routines are di�usive �uxes (2.9) for Runge-Kutta and for the LUSGS scheme the evaluation of
additional state variables (2.4), respectively. Every other routine is at or below 10 % time per
execution and is not further considered for that investigation.

During that investigation it became practicable to perform improvements in two ways. At �rst to
perform pre-computation of variables in routines locally which appeared often inside of expensive
loops like di�erences for conservative variables w between two points, see nominator of (2.19).
The second step considers the pre-computation of global constant variables which are independent
of �ow variables w, such as point distance evaluations from the grid metrics, see denominator
of (2.19). These variables are then computed once at the initialization step of the �ow solver
and kept stored in memory during a �ow simulation. Specially for (2.19), the inverse grid point
distance is stored and will be introduced into (2.19) as a multiplication �nally. This approach
becomes important whenever divisions or square root operations are involved. On the other hand
more memory is needed and it becomes evident if computation time or memory is preferred but,
�nally, the total memory increase was about 3% of the total memory used from the code without
optimization.

After optimizing the code, the obtained results are shown in Table 2.2 for either the Runge-
Kutta and LUSGS time integration schemes. The modi�cations result in an improvement for
the viscous �ux, viscous_�uxes_tsl see (2.17) with gradient approach (2.19), and for the di�usion
�ux, di�usion_�uxes_tsl see (2.9) again using (2.19). The computation time was reduced more
than half as without the proposed optimizations. In case of the LUSGS scheme, it can be easily
seen that the �rst �ve main routines are approximately consuming the same amount of time
now. This is preferable for a good distribution of workload during the evaluation of the residual
R. The �rst proposed optimization procedure was introduced in many other routines and it can
be seen that the order has changed considerably for the functions.

Improving functions like gradient computation, indicated as GreenGauss_gradient or state vari-
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Table 2.2: Pro�ling results after optimization using an explicit Runge-Kutta (left) or LUSGS
(right) for the Onera M6 wing.

Function % of time

viscous_�uxes_tsl (2.17) 18.1%
GreenGauss_gradients (2.18) 10.6%
scaling_factor_dissipation (2.16) 9.3%
central_�ux (2.12) 8.3%
convective_eingenvalues (2.13) 7.2%
turb_sae_sources (2.20) 5.5%
additional_state_variables (2.4) 4.1%
di�usion_�uxes_tsl (2.9),(2.19) 3.1%
scalar_dissipation (2.14) 3.1%
convert_consvar_to_primvar 2.4%
laplacian_consvar (2.15) 2.4%
RK_timestepsize (2.21) 1.6%

Function % of time

additional_state_variables (2.4) 12.8%
convective_eingenvalues (2.13) 9.7%
scaling_factor_dissipation (2.16) 9.3%
GreenGauss_gradients (2.18) 9.2%
viscous_�uxes_tsl (2.17), (2.19) 8.0%
implicit_time_integration (2.23) 5.7%
convert_consvar_to_primvar 5.6%
central_�ux (2.12) 3.6%
linear_solver_lusgs 3.6%
scalar_dissipation (2.14) 2.7%
turb_sae_sources (2.20) 5.6%
di�usion_�uxes_tsl (2.9) 1.4%

able computation as additional_state_variables is much more di�cult. These functions are al-
ready optimized due to their wide range of application areas. Usually, such an approach should
be applied for each function introduced in any code but developers have to be aware to follow
optimization guidelines carefully.

Finally, the impact of these improvements for a whole simulation is shown to present the com-
putational gain. Table 2.3 and Table 2.4 show the wall clock time (WCT) on an i386 32 bit
and a x86 64 bit Linux based machine for an Onera M6 wing simulation for the original and the
optimized code using Runge-Kutta and LUSGS time integration schemes. The tables include the
resulting global force coe�cients lift (CL) and drag (CD) and the pitching moment coe�cient
(CMY ) to attest no physical change during a simulation.

Table 2.3: WCT for the Onera M6 test case to steady state for 32 and 64 bit
Linux machines using an explicit Runge-Kutta method.

Architecture Code version CL CD CMY Time Gain

32 bits
original 0.26933 0.015774 8.1587 7178 s. -
optimized 0.26933 0.015774 8.1587 5178 s. 27.9 %

64 bits
original 0.26932 0.015778 8.1585 4169 s. -
optimized 0.26932 0.015778 8.1585 3701 s. 11.2 %
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Table 2.4: WCT for the Onera M6 Testcase to steady state for 32 and 64 bit
Linux machine using a semi-implicit LUSGS method.

Architecture Code version CL CD CMY Time Gain

32 bits
original 0.26927 0.015787 8.1569 5657 s. -
optimized 0.26927 0.015787 8.1569 5487 s. 3.0 %

64 bits
original 0.26925 0.015791 8.1562 4222 s. -
optimized 0.26925 0.015791 8.1562 4043 s. 4.2 %

The comparison was made with the same C-compiler version gcc 4.2.3 using the optimization
level -O2. One thousand iterations were performed for each simulation to ensure either well
converged force coe�cients like drag and lift and substantial time to measure the optimizations
during the iterative process apart from additional time used for setup and IO.

To sum up, using the explicit Runge-Kutta time integration scheme on a 32 bits system, the
WCT is decreased by 27.9 % and on the 64 bit system it decreased by about 10 %. These time
reduction is mainly caused due to the improvements of the viscous and di�usion �ux routines.
In case of the semi-implicit LUSGS scheme, the WCT is decreased by 3% and 4.5% on a 32
and 64 bits machine respectively. In this situation, the improvements are smaller, compared to
the previous case, because the functions viscous_�uxes_tsl and di�usion_�uxes_tsl were not
as time consuming as in the Runge-Kutta time integration scheme. In addition, an important
percentage of time, more than 10% is spent within the additional_state_variables function.

2.3 Parallelization: Solver scalability using di�erent partitioning

algorithms

The second point of activity for improving the application performance is an e�cient paralleliza-
tion. For parallel computing on large unstructured grids, domain decomposition is a powerful
concept: Given a number P of computational cores, the whole computational grid is decomposed
into P subgrids. Each of the P computational cores computes on one of the subgrids. Usually
communication between these cores is required because the solutions on the subgrids depend on
each other. In this section, a computational core will be also referred to as processor unit or
simply processor. The solver operates in di�erent ways on two sets of data:

• Operations that compute point variables directly from one or more point variables. For
these operations, no data of other points is required to compute on one point.

• Operations that need data of neighboring points to compute the result for one point. For
these operations connectivity information is required. The main kind of connectivity data
used in the solver are the edges. Other connectivity data is given by the boundary faces
where a near point is connected to a boundary point. More connectivity data is de�ned by
the grid to grid connections of the di�erent grid levels from the multigrid algorithm. As
many as possible of these operations should be performed on one subdomain of the grid
without communication.
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In the following, the current partitioning status of the TAU-Code is �rst introduced, then
advanced partitioning algorithms are explored and, �nally, they are applied to complex industrial
applications.

2.3.1 Current partitioning status of the DLR TAU Code

Parallelization in TAU is based on domain decomposition and the message passing concept using
MPI. For parallel computations, the grids are partitioned in the requested number of domains
at the beginning of the �ow simulation. Up to now, a simple bisecting algorithm (referred here
as geometric) is employed. The load balancing is performed on point weights which are adjusted
for the needs of the solver, which is the most time consuming part of the simulation system. The
edge cuts are computed directly according to the coordinates.

This geometric partitioning algorithm behaves in the following way: If two partitions have to
be computed, �rst it is compared if the partitioning at x = const (const is the position on half the
way between x-max and x-min) requires less cuts of edges than parallelization cut at y = const
or z = const. The option that requires less edge cuts is selected and the partition is performed
following this axis. If three domains have to be computed, the partitioning is performed by di-
viding �rst in 2 subdomains weighted with 1/3 and 2/3. The second subdomain is then divided
again in 2 partitions with equal weights. All other numbers of subdomains are computed using
the same algorithm recursively; e.g. 7 subdomains are obtained by dividing �rst in 2 domains
weighted with 3/7 and 4/7. The �rst is then partitioned in 3; the second is two times divided
in 2 partitions. The load balancing is performed on point weights based on the amount of edges
which �nish on each point. These weights try to represent the computation cost of each point in
the �ow solver. The main drawbacks of this algorithm are that the communication cost is not
properly represented, and it is not possible to establish several point weights (multi-weighted or
multi-constrained load balance) to deal with di�erent aspects.

For testing purposes, the DLR F6 con�guration is used. The mesh decomposition into di�er-
ent domains achieved with the TAU geometric partitioning algorithm is shown in Figures 2.2 and
2.3. Using this domain decomposition, the parallel scalability and speedup of the TAU �ow solver
for the F6 con�guration, either for an Euler grid with about 1 mill. points (tetrahedrons only)
and a Navier-Stokes grid with about 6 mill. points (prismatic boundary layer and tetrahedrons)
can be observed in Figure 2.4.

The speedup values are computed using as the starting point the execution time for 8 proces-
sors. In these cases, it is considered a saturated speedup whenever its value from one computation
(using n processors) to another computation (using 2n processors) is less than 1.5, which means
that at least half of the new computational resources will be used making e�ective operations
instead of waiting for communication. The speedup of the Euler test-case saturates when using
more than 64 processors which implies that the acceptable minimum of points per domain should
be more than around 16.000 points. The Navier-Stokes test-case becomes ine�cient using more
than 256 processors, so the number of points per processor should be higher than approximately
23.500 points.
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Figure 2.2: Volume view of the partitioned
F6 grid into 8 domains.

Figure 2.3: Surface view of the partitioned
F6 grid into 8 domains.

2.3.2 Exploring di�erent partitioning algorithms for the DLR TAU Code

To extend the parallelization study, additional partitioning algorithms are included into the
TAU code using the package ZOLTAN. This section brie�y describes the main features of the
additional partitioning algorithms to be analyzed. More information can be obtained in the
ZOLTAN documentation [zol08] .

Recursive Coordinate Bisection (RCB)

RCB was �rst proposed as a static load-balancing algorithm by Berger and Bokhari [ber87] , but
it is attractive as a dynamic load-balancing algorithm because it implicitly produces incremental
partitions. In RCB, the computational domain is �rst divided into two regions by a cutting
plane orthogonal to one of the coordinate axes so that half the workload is in each of the sub-
regions. The splitting direction is determined by computing in which coordinate direction the set
of objects is most elongated, based upon the geometric locations of the objects. The sub-regions
are then further divided by recursive application of the same splitting algorithm until the number
of sub-regions equals the number of processors. By adjusting the partition sizes appropriately,
any number of equally-sized sets can be created. If the parallel machine has processors with
di�erent speeds, sets with nonuniform sizes can also be generated.

Recursive Inertial Bisection (RIB)

RIB was proposed as a load-balancing algorithm by Williams [she94] and later studied by Taylor
and Nour-Omid [tay95], but its origin is unclear. RIB is similar to RCB. It divides the domain
based on the location of the objects being partitioned by use of cutting planes. In RIB, the
computational domain is �rst divided into two regions using a bisection line orthogonal to the
principal inertial axis, so that half the workload is in each of the sub-regions. The sub-regions are
then further divided by recursive application of the same splitting algorithm until the number



2.3. Parallelization: Solver scalability using di�erent partitioning algorithms 37

(a) Parallel scability. (b) Parallel speedup.

Figure 2.4: Parallel performance of the TAU code over the number of processors.

of sub-regions equals the number of processors. RIB in ZOLTAN does not support multiple
weights, as in RCB.

Hilbert Space-Filling Curve (HSFC)

The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensions
into the interval [0,1]. The Hilbert functions that map [0, 1] to normal spatial coordinates are
also provided in the ZOLTAN library. (The one-dimensional inverse Hilbert curve is de�ned here
as the identity function, f(x) = x for all x). The HSFC partitioning algorithm seeks to divide
[0,1] into P intervals each containing the same weight of objects associated to these intervals
by their inverse Hilbert coordinates. N bins are created (where N > P) to partition [0,1]. The
weights in each bin are summed across all processors. A greedy algorithm sums the bins (from
left to right) placing a cut when the desired weight for current partition interval is achieved.
This process is repeated as needed to improve partitioning.

Graph partitioning

Graph partitioning is a di�cult, long-standing computational problem. It has applications to
VLSI (Very Large Scale Integration) design, sparse matrix-vector multiplication, and parallelizing
scienti�c algorithms. The general partitioning problem is described by a graph G(V,E,WV ,WE)

where WV and WE are vertex and edge weights respectively. The output of partitioning G
consists of subsets of vertices, V1, V2, ...Vk where Vi

∩
Vj = Φ. The goal is to balance the sum of

vertex weights for each Vi, and minimize the sum of edge weights whose incident vertices belong
to di�erent partitions. Graph partitioning can be used to successfully compute high quality
partitions by �rst modeling the mesh by a graph, and then partitioning it into equal parts.

Figure 2.5 shows the volumetric and surface mesh decomposition into four domains achieved
with the Geometric, RCB, RIB, HSFC and the Graph partitioning algorithms. From the top
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(a) Geometric (b) RCB (c) RIB (d) HSFC (e) Graph

(f) Geometric (g) RCB (h) RIB (i) HSFC (j) Graph

Figure 2.5: Volume view (top) and surface view (bottom) of the partitioned Onera M6 grid into
4 domains.

row in Figure 2.5 looking at the symmetry plane the extensions of the partitioned grid into the
volume can be seen.

2.3.3 Runtime performance analysis for di�erent partitioning algorithms.

A comparison between the di�erent partitioning algorithms is performed using complex air-
craft con�gurations to gather experience for industrial applications. First, a high-lift wing-body
con�guration has been selected. This con�guration was investigated in the European project
HiRett [kru08, rak05] , see Figure 2.6 . In addition, a high-lift wing-body-pylon-nacelle con�gu-
ration with fully operable engines, an ALVAST [sch95, kio96] con�guration, see Figure 2.7, has
been also selected for this study. Both grids contain a structured prismatic boundary layer region
for a viscous �ow simulation. The computational grid around the HiRett con�guration has about
13.6 mill. points with approximately 35.2 mill. volume elements. The grid around the ALVAST
con�guration contains about 13.2 mill. points with approximately 45.3 mill. volume elements.
Both con�gurations, HiRett and ALVAST, have deployed slats and �aps and are validation test
cases for take-o� conditions at low speed.

The main amount of the execution time in a CFD computation is spent in the �ow solver. In
TAU, a pre-processing step is necessary before running any �ow simulation. The pre-processor
generates the dual mesh and metric information, like face normals from the primary grid. The
data is then stored in an edge-based structure which is used for evaluating the �uxes indepen-
dently of the di�erent primary volumes used. However, the pre-processing time needs only once
or twice the time of one �ow solver iteration, so it is usually a negligible amount in comparison
to the �ow solver execution time in which this section is focusing on.

As the pre-processing step is necessary, it was also studied how the domain decomposition
a�ects its execution time. Based on the performed tests, it can be stated that there is an
improvement when using graph instead of geometric partitioning algorithms especially with a
high number of processors.

Figures 2.8 and 2.9 show the di�erences between the volumetric mesh decomposition for
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Figure 2.6: HiRett wing-body con�guration
with high-lift devices and ailerons.

Figure 2.7: ALVAST high-lift con�guration
with fully operable turbines.

Figure 2.8: Volume view of the partitioned
ALVAST grid into 8 domains using a Geo-
metric partitioner.

Figure 2.9: Volume view of the partitioned
ALVAST grid into 8 domains using a Graph
partitioner.

the ALVAST con�guration using both geometric and graph partitioning. The surface mesh
decomposition can be seen in Figure 2.10 and 2.11. The critical part in the ALVAST grid
is the decomposition of the in�ow and out�ow of the engines. In order to keep the physical
behavior of fan turbines e�ective, a mass �ow coupling is needed which introduces an increased
communication. Focusing on this subject, it can be observed for low domains that the geometric
partitioner divides the in�ow and out�ow area into di�erent domains while the graph partitioner
keeps the in�ow and the out�ow in one domain.

Regarding the �ow solver, the computations were performed with a Spalart-Allmaras one-
equation turbulence model with Edwards modi�cation (SAE) and the central spatial discretiza-
tion scheme with scalar dissipation and a 4w multigrid cycle. The �ow conditions of the con-
sidered con�gurations are displayed in Table 2.5 . While both con�gurations were created for

Table 2.5: Flow conditions for ALVAST and HiRett con�gurations.

Mach number Reynolds number Angle of Attack

HiRett 0.2 25 mill. 19.0◦

ALVAST 0.182 1.66 mill. 4.3◦

take-o� conditions, the purpose of each one was very di�erent, as may be seen from the �ow
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Figure 2.10: Surface view of the partitioned
ALVAST grid into 8 domains using Geomet-
ric partitioner.

Figure 2.11: Surface view of the partitioned
ALVAST grid into 8 domains using a Graph
partitioner.

conditions. The HiRett model simulates an airplane shortly before reaching the maximum an-
gle of attack in authentic �ow conditions, while the ALVAST model was used in a wind tunnel
experiment with a substantial reduced Reynolds number.

Since the solver seems to react in a di�erent way to the many possible time and spatial inte-
gration schemes and unfortunately testing all these possibilities would incur a certain expense,
the study will be concentrated on an explicit Runge-Kutta and a semi-implicit LUSGS scheme.
The approach for speedup was done in the same manner as in section 2.3.1, where a decom-
position on eight grid partitions was taken as the �rst point for linear speedup comparisons.
The results in Figure 2.12 show that improvements in the solver speedup using a Runge-Kutta
(left) and a LUSGS (right) time integration schemes can be obtained through graph partitioning
algorithms for the HiRett test-case.

(a) Runge-Kutta (b) LUSGS

Figure 2.12: Speedup of the TAU Solver using di�erent partitioning algorithms for the HiRett
test-case
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Table 2.6: Solver execution time per iteration using di�erent partitioning algorithms for
HiRett with Runge-Kutta and LUSGS.

Partitioner Time integration 8 16 32 64 128 256 512 1024

Geometric
RK 31.42 16.03 8.49 4.68 2.57 1.74 1.39 0.93

LUSGS 30.15 15.09 8.22 4.58 2.54 1.6 1.22 0.81

RCB RK 33.45 17.82 9.4 5.4 3.12 1.98 1.65 0.83
RIB RK 32.11 17.64 8.46 4.74 2.64 1.73 1.18 0.72
HSFC RK 34.01 17.13 9.8 4.87 2.69 1.74 1.2 0.85

Graph
RK 32.91 16.37 8.76 4.56 2.45 1.51 0.95 0.44

LUSGS 31.89 15.95 8.4 4.41 2.39 1.39 0.87 0.39

Analyzing Table 2.6, a trend can be observed. Below 128 processors, the time per iteration for
the geometric partitioner is smaller in comparison to the graph partitioner while it becomes, as
expected, vice versa from 128 up to 1024 processors. It shows the importance of communica-
tions when using a high number of processors, and therefore, the need of e�cient partitioning
algorithms able to represent and minimize the communication between computational domains.

The performance results for the ALVAST case, Figure 2.13, show the achieved improvements
in the solver speedup using a graph instead of geometric partitioner for Runge-Kutta (left) and
LUSGS (right).

(a) Runge-Kutta (b) LUSGS

Figure 2.13: Speedup of the TAU Solver using di�erent partitioning algorithms for the ALVAST
test-case.
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Table 2.7: Solver execution time per iteration using di�erent partitioning algorithms for
ALVAST with Runge-Kutta and LUSGS.

Partitioner Time integration 8 16 32 64 128 256 512 1024

Geometric
RK 32 16.56 8.57 4.56 2.68 1.63 1.22 0.98

LUSGS 31.59 16.16 8.45 4.58 2.59 1.62 1.11 0.63

RCB RK 32.73 17.9 10.05 5.6 3.17 1.94 1.53 1.14
RIB RK 32.08 16.61 8.74 4.71 2.7 1.66 1.04 0.54

Graph
RK 33.07 17.83 8.92 4.91 2.81 1.65 0.95 0.57

LUSGS 32.67 17.51 8.77 4.77 2.78 1.51 0.92 0.44

In comparison to the HiRett case (Figure 2.12), the speedup of the ALVAST case (Figure 2.13)
shows a visible lack of scalability due to the additional communication for the engine mass
coupling. Concerning the time used in parallelization mode, there are two main parts which
rely �rstly on setting up the communication between two processors and the time used for
transferring an amount of data. These two times may vary enormously between few to many
partitions. Partitions with a very low number of points per partition spend a high amount of time
setting up the complex socket communication. Engine mass coupling introduces in a simple way
only one integral value or in a more complex way a partial mass �ow over the in�ow and out�ow
faces. This very small amount of data which have to be sent over domains is predominately
driven by setting up the additional communication for a high number of processors.

The maximum allowable CFL number for the explicit three stages Runge-Kutta scheme with
a 4w multigrid cycle remained unchanged throughout all simulations for both cases. Unlike the
semi-explicit LUSGS scheme for the ALVAST computations for 512 and 1024 partitions. The
CFL number had to be decreased by half of the CFL number as used for 8 domains to maintain
a converging simulation. From the execution times obtained in Tables 2.6 and 2.7, it can be
observed that even slight improvements per iteration could provide a signi�cant enhancement in
case of complete simulations over a huge number of processors.

Finally, the convergence history obtained for the HiRett case, using 8 and 64 processors is
seen in Figure 2.14 on the facing page. Independently of the number of processors, the density
residual and integral force coe�cients should converge to the same values when using the same
�ow parameters for the simulation. The lift and drag coe�cients are the same which is reassuring
but the density residual exhibits a slightly non matching behavior between di�erent processors.
Flow phenomena, like separation or shocks are very sensitive with respect to slight but unfore-
seen algorithmic changes on partitioned boundaries.

To sum up, it has been observed that, as expected, graph partitioners show, even for a
high number of processors, a speedup closer to the linear one, while the geometric partitioners
saturate very soon at around 200 processors for HiRett and around 250 processors for ALVAST.
All of the new partitioning algorithms used with TAU have some important features that can
be adapted for complex applications. RCB, RIB and graph permit dynamic load balancing and
graph permits also multi constrained partitioning to partition a graph in the presence of multiple
balancing constraints. The idea is that each vertex has a vector of weights of size m associated



2.4. Acceleration: FPGAs and GPUs for CFD Simulations 43

Figure 2.14: Solution comparison using Geometric (left) and Graph (right) for 8 and 64 proces-
sors.

with it, and the objective of the partitioning algorithm is to minimize the edge-cut subject to
the constraints that each one of the m weights is equally distributed among the domains.
This feature is important when the architecture of the computation platform is heterogeneous,
as occurs in hardware acceleration and will be subject of further investigations.

2.4 Acceleration: FPGAs and GPUs for CFD Simulations

The aeronautical industry requirements in the near future will not be accomplished by the usual
evolution of current processors and architectures. Indeed, it is estimated that, in order to obtain
�engineering-accuracy� predictions of surface pressures, heat transfer rates, and overall forces on
asymmetric and unsteady turbulence con�gurations, the grid size will have to be increased to a
minimum of 50-80 million nodes. This means that the simulation of a complete aircraft con�gu-
ration will require several days to obtain solutions in a high performance cluster with hundreds
of processors, so an exponential increment of the computational requirements is estimated.
Therefore, the improvements expected at optimization and parallelization levels are not enough,
and it will be necessary to introduce new concepts in typical simulation platforms in order to
satisfy these demands and to face more complex challenges.

As hardware acceleration is a very innovative task, in this chapter, some ongoing activities
and feasibility studies in several projects will be introduced. Two alternatives to speed up the
performance of PC clusters are quickly emerging due to recent technological advances.

The �rst one is based on Graphics Processing Units (GPU) [bra08, mar08, bol03] as com-
puting resources that complement the processors in the PCs. These general-purpose devices
have evolved to constitute powerful pipelined vector processors capable of delivering very high
throughputs in optimal conditions at a relatively low cost.

The second alternative is based on recon�gurable hardware, in particular, Field Programmable
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Gate Arrays (FPGA) as computing resources in accelerator boards connected to the PCs of the
cluster. This technology uses a completely di�erent approach to the problem. Instead of general-
purpose resources, FPGAs provide application-speci�c data paths that are optimized to compute
the critical parts of the CFD algorithms. The optimization includes the possibility of both, space
and time parallelism so the implemented circuits are capable of delivering throughputs well above
those provided by general-purpose processors [fus08] . The overall idea with FPGAs is to in-
troduce a new level of parallelism in the system architecture. While the PCs in the cluster
implement coarse grain parallelism resulting from partitioning the dataset, the specialized hard-
ware in the accelerators implements �ne grain parallelism at the operation level, accelerating the
set of operations assigned to each local processor (parallelism in the hardware functional units
that provide several results at the same time) [and08] .

One main idea is that all the computational nodes in the cluster are FPGA-powered, so load
balance has to be taken into account. This means that the subdomain decomposition process
has to assign to the FPGA-powered computational nodes an adequate workload in order to
support e�cient synchronization in the overall system. Due to the heterogeneous nature of the
architectures existing in a cluster platform, including di�erences in performance between the
general-purpose CPUs, special considerations about global synchronization have to be explored.
The partitioning algorithm has to allow a multiconstraint domain decomposition with at least
2 weights per mesh node, one related to each level of paralellism. The new graph partitioning
algorithm that has been linked to be used in TAU, permits also multiconstraint partitioning to
partition a graph in the presence of multiple constraints. Each vertex can have a vector of weights
of size m associated with it, and the objective of the partitioning algorithm is to minimize the
edgecut subject to the constraints that each one of the m weights is equally distributed among the
domains. It is assumed that at least two weights should be considered (for the �ne and coarse
level of parallelism) in the case of homogeneity between the type of processors and hardware
accelerators.

Of course, porting a critical part of an algorithm to an FPGA implies a complete design
cycle, but once completed, the design is ready to be loaded at any time in any FPGA. Since
FPGAs are recon�gurable, di�erent designs can be loaded at di�erent times depending on the
application needs, making FPGAs very interesting devices to act as coprocessors in computation
intensive applications.

FPGAs have also some limitations. In particular, there is a limit on the amount of computa-
tions that can be performed in an FPGA at maximum throughput, depending on the available
resources in the FPGA. When this limit is exceeded, resources must be shared among compu-
tations and performance reduces. Also, the communications interface between the PC memory
and the FPGA is a major concern as the available bandwidth, for CPU-FPGA communications,
can limit the e�ective global performance. From these considerations, it can be observed that
FPGAs are best adapted to applications where most computational e�ort concentrates on a small
portion of the code which is repeatedly executed for a large dataset. In addition, the I/O com-
munication load has to be small when compared to the computational load, to avoid saturating
the CPU-FPGA interface. CFD codes seem to ful�l these requirements and, therefore, appear
as good candidates to bene�t from FPGA-based accelerators.

In this section, a preliminary feasibility analysis is carried out for di�erent scenarios, based
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on precision analysis and FPGA syntheses.

2.4.1 The architecture: A cluster of PCs with accelerator boards

This subsection is a short review of the state of the art of the speci�c technologies involved
in the architecture. First, the families of high-performance FPGAs available in the market are
presented. Second, the interface between the PC and the FPGA is shown and �nally, the main
characteristics of today's GPUs are brie�y introduced.

Field Programmable Gate Arrays (FPGAs)

A �eld-programmable gate array (FPGA) is a semiconductor device that can be con�gured by
the customer or designer after manufacturing, hence the name "�eld-programmable". FPGAs
are programmed using a logic circuit diagram or a source code in a hardware description language
(HDL) to specify how the chip will work. They can be used to implement any logical function
that an application-speci�c integrated circuit (ASIC) could perform, but the ability to update
the functionality after shipping o�ers advantages for many applications. With the addition of
high-speed I/O and highly-e�cient embedded processing and memory blocks, FPGAs are also
gaining acceptance as relatively low-cost devices in production systems where high-performance,
and not only �exibility, is required. Xilinx and Altera have been, in the last years, the FPGA
market leaders and long-time industry rivals. Together, they control over 80 percent of the
market, with Xilinx alone representing over 50 percent.

Xilinx has two main FPGA families: the high-performance Virtex series and the high-volume
Spartan series. It also manufactures two Complex Programmable Logic Devices (CPLDs) lines,
the CoolRunner and the 9500 series. Each model series has been released in multiple generations
since its launch.

The latest Virtex-7 is said to consume 50 percent less power, cost 20 percent less, and have
up to twice the logic capacity of previous generations of FPGAs

Table 2.8 summarizes the characteristics of the latest families of FPGAs from Xilinx.

Table 2.8: Characteristics of the latest Xilinx FPGAs.

Family Logic cells (x103) Memory (Mb) Interface blocks for PCI-e

Virtex-5 LX 30.7-331.7 Up to 10,3 1
Virtex-5 LXT 19.9-331.7 Up to 11,6 1
Virtex-5 SXT 34.8-94.2 Up to 8,8 1
Virtex-6 LXT 74,5-758,7 Up to 22,7 2
Virtex-6 SXT 314,8-476,16 Up to 38,2 2

Virtex-7 864-1955 Up to 85 3x8

As the FPGAs are usually integrated into a bigger system is important to consider all the
available technology for obtaining higher communication bandwidths [fus08] .

Table 2.9 shows a summary of the available interfaces nowadays.



46 Chapter 2. Achieving High Speed CFD simulations

Table 2.9: Summary of current high-speed communication
interfaces.

Interface Capacity (Gbps)

PCI Express (8 lane) 16.000
HyperTransport (1 GHz, 16-pair) 32.000
PCI Express (16 lane) 32.000
PCI Express (32 lane) 64.000
PCI Express 2.0 (32 lane) 128.000
HyperTransport (2.8 GHz, 32-pair) 179.200

Peripheral Component Interconnect(PCI) and the express version (PCI-e) are the most widely
used I/O buses (peripheral buses). Used in computers of all sizes, provide a shared data path
between the CPU and peripheral controllers, such as networks, graphics cards, or FPGAs boards.
PCI and PCI-e are the most suitable interfaces in the architecture for CFD acceleration. The
main reason for this, is the availability of FPGA development boards with these technologies in
the market. However, it is necessary to comment here that bandwidth requirements are going
to be a performance bottleneck with current technologies. Therefore, it is important to achieve
a good balance between bandwidth requirements and performance and latest technologies as
HyperTransport will have to be considered in the near future, and the development tools will
have to be prepared for achieving high communication bandwidths.

Graphics Processor Units (GPU)

Nowadays, modern graphics hardware outperforms the traditional desktop CPU in terms of com-
putational processing power by several orders of magnitude with a very attractive cost/performance
ratio. Commodity graphics processing units (GPUs) have evolved into high performance parallel
architectures, driven by multiple cores and very high memory bandwidths. With the increasing
programmability and �exibility of graphics processing units, this hardware is capable of per-
forming not only computations for image rendering applications, but also computations in a
wide variety of �elds: from sparse matrix multiplications techniques [kru03] to multigrid, con-
jugate gradient solvers for systems of partial di�erential equations [bol03], N-body simulations
[bel08] and physical simulations such as �uid mechanics solvers [mar08, har04].

Although using consumer-level graphics hardware for general computation is not a new idea,
the architecture of previous generations of graphic cards (those based on NVIDIA's 7900 model or
Ati's X1900 and previous ones) were strongly oriented to graphic applications and were not �ex-
ible enough for some scienti�c applications as CFD simulation. However, the latest generations
of graphic cards has overcome most of the drawbacks and, recently, this hardware has acquired
interesting levels of both raw performance and programmability. In this context, a major step
forward in graphic cards programming is the development of new programming languages and
compilers for general purpose applications. Recently NVIDIA has released the Compute Uni�ed
Device Architecture (CUDA) software platform.

NVIDIA is the major manufacturer today in the market. Table 2.10 summarizes the charac-
teristics of some of the most relevant GPUs. NVIDIA uses two clocks: One for the general speed
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at which the GPU operates (Core Clock) and other that dictates how fast the shaders operates
(for example to perform texture render), independent of the GPU core. The bandwidth between
the core and the main memory is usually referred as "Clock Memory".

Table 2.10: Main characteristics of GPU devices from NVIDIA source

GPU Clock Core Clock Shader Clock Memory Memory Size
(MHz) (Mhz) (Mhz) (MB)

GeForce 8800 GTX 575 1,350 1,800 768
GeForce 8800 Ultra 612 1,500 2,160 768
GeForce 9800 GTX 675 1,688 2,200 754
GeForce 9800 GX2 600 1,500 2,000 2 × 754

Tesla D870 2 × 600 2 × 1,350 1,600 3,000
Tesla S870 4 × 600 4 × 1,350 1,600 6,000

2.4.2 Preliminary precision analysis

The main goal of this study, apart from establishing the technological feasibility of FPGA-based
hardware accelerators for CFD applications, is to determine the precision requirements, in the
case of a �oating point data representation.

Precision analysis

FPGA performance depends on the latencies of their functional units, and it is related with
the word-lengths assigned to their operands in the quantization design phase. Therefore, it is
necessary to make an analysis of the precision obtained with di�erent data formats to �nd out a
minimum word-length that full�ls the precision requirements in the speci�c CFD applications.

Here, it is considered only the �oating point data representation due to its large range rep-
resentation capability. The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the
most widely-used standard for �oating-point computation, and is followed by many hardware
and software implementations. Most of the computer languages allow or require that some or all
arithmetic are carried out using IEEE 754 formats and operations. The current version is IEEE
754-2008, published in August 2008; it includes nearly all of the original IEEE 754-1985 (pub-
lished in 1985) and the IEEE Standard for Radix-Independent Floating-Point Arithmetic (IEEE
854-1987). The standard de�nes arithmetic formats, interchange formats, rounding algorithms,
operations, exception handling, etc.

Most of the major FPGA manufactures o�er nowadays Intellectual Property (IP) cores for
�oating point operations (with a custom number of exponent and mantissa).

As �oating point representation is coming into the FPGA technology (due to the larger
FPGA devices and the availability of IP cores for the most common operations in the market),
an analysis about how the selection of a �oating point format (single 32 bits or double 64 bits)
a�ects the integral coe�cients of lift (CL) and drag (CD) has been performed within this work.
Further analysis about a custom (determined number of bits of the exponent and mantissa)
�oating point format will be performed in the near future.
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The tests performed and the �ow conditions are shown in the Table 2.11.

Table 2.11: Tests performed for single versus double �oating point
comparison ("-" indicates Euler computations)

Mach number Reynolds number Angle of Attack

NACA0012 0.8 - 1.25o

ONERA M6 0.84 - 3.06o

RAE2822 0.75 6.2× 106 2.8o

F6 0.749 3× 106 1o

The results of the convergence histories of the density residual, lift coe�cient and drag
coe�cient for all the test cases are displayed in Figures 2.15 and 2.16.

Tables 2.12, 2.13, 2.14 and 2.15 show the di�erences in the solution (�fth decimal digit in
drag and lift coe�cients) for the NACA0012, ONERAM6, RAE2822 and DLR-F6 con�gurations,
respectively.

Table 2.12: Results for the NACA0012 Euler �ow precision study.

Residual Cl Cd

single (32 bits) 3.97131316277e-06 0.343801110983 0.0244647357613
double (64 bits) 9.7957943602e-13 0.343800099497 0.0244645519529

Table 2.13: Results for the ONERAM6 Euler �ow precision study.

Residual Cl Cd

single (32 bits) 2.65640096586e-07 0.288318365812 0.0123302051798
double (64 bits) 1.21071858268e-08 0.288318825812 0.0123301392507

Table 2.14: Results for the RAE2822 viscous �ow precision study.

Residual Cl Cd

single (32 bits) 1.65293609816e-06 0.749991750526 0.0252934138158
double (64 bits) 1.65323609682e-06 0.750008681358 0.0252944455683

Figure 2.16 shows the convergence history and the global force coe�cients for the RAE2822
and the DLR-F6 [bro99, bro01] con�guration. The DLR-F6, see Figure 2.2, is a simpli�ed wing-
fuselage geometry which has been used in the past for validation of CFD codes at the second
[laf05] and third [vas07] AIAA sponsored Drag Prediction Workshops. The computational grid
around the F6 Navier-Stokes grid has 5.8 mill. points and 16.1 mill. elements. The �ow
conditions are a free-stream Mach number of 0.749 and a �xed angle of attack at 1 degree
with a Reynolds number of 3× 106. Figure 2.16 does not show any signi�cant di�erences in the
solution, only the �fth decimal digit (in drag and lift coe�cients) is a�ected by the numerical error
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due to the operand representation. This comparison has shown that single or double precision
computation has to be further considered which is mainly driven by the accuracy requested from
CFD engineers, usually less than one drag or lift count and will have mainly an important impact
for any hardware-software platform like FPGAs. For bigger and complex con�gurations usually
the double �oating point format is required to permit the convergence of the solver, but this
requirement comes from the geometric data of the grid representation. Future work will address
the possibility of a mixed (single, double) precision or a custom �oating point precision.

Table 2.15: Results for the DLR-F6 viscous �ow
precision study.

Residual Cl Cd

single (32 bits) -5.6701 0.62095 0.032841
double (64 bits) -5.671 0.62098 0.032844

Table 2.15 shows the results of lift and drag coe�cients for single and double precision
calculation in the DLR-F6 viscous case.

FPGA synthesis results

The data word-length a�ects obviously to the precision in the solution obtained, but also to the
area requirements in terms of hardware implementation into an FPGA.

Table 2.16 summarizes the reported synthesis values of the �oating-point designs.

Table 2.16: Design synthesis results for maximum
throughput using a �oating point format.

Word-length Bit slices DSP cores Max Frequency

24/8 69,772 0 263.8
24/8 56,960 42 249.3
24/8 62,860 64 244.1
54/10 185,452 0 208.2

The advantages of using shorter word-lengths are clearly shown. Not only higher processing
speeds are obtained, but reduced I/O rates are required for such maximum speeds.

Future developments should continue studying the possibilities of di�erent types of data
representation for hardware acceleration in CFD applications, because both precision and per-
formance depend on it. Some analysis have shown [and08, fus08] that the speedup could be
even greater than two orders of magnitude, but speci�c implementations have to be performed
to obtain the real advantages of this new programming paradigm.

2.5 Conclusions

The improvement of the code e�ciency has been addressed through optimization by applying
di�erent tuning strategies to reduce the execution time of the unstructured DLR TAU solver.
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Signi�cant computational gains (around 11% for RK and 4% for LUSGS for a 64 bits machine)
have been achieved and it makes clear the necessity of code pro�ling and optimization involving
multidisciplinary knowledge to reduce the execution time and memory consumption. Regarding
value precision, a study of single 32 bits and double 64 bits precision has shown an impor-
tant improvement (specially in memory consumption) using a reduced precision if there are not
signi�cant di�erences in the solution.

Additionally, the analysis of di�erent algorithms for parallelization to make a more e�cient
grid partitioning has been performed together with a feasibility study of the e�ective performance
of the hardware acceleration. Several partitioning algorithms have been included in the TAU
code, and highly parallel simulations using up to 1024 processors have been performed to test
the e�ciency and scalability of the selected new algorithms for industrial con�gurations. The
conclusion here is that the graph partitioner algorithm maintains the speedup much closer to the
linear one for a high number of processors in all the tests performed.

Moreover, the current state-of-the-art of the development of mixed hardware-software com-
putational platforms for simulation has been presented focusing in precision and area estimations
which shows a promising technology when the data representation format required is limited.
Word-lengths must be determined by error analysis and precision requirements and they will
a�ect the �nal speedup achieved. Future e�orts in hardware acceleration will be performed to
achieve a complete implementation with optimal balance between area and performance and a
mixed hardware-software cluster architecture to test the e�ective acceleration into a simulation
platform.

This chapter has focused on the acceleration of the CFD codes, which are a key part of
the aerodynamic shape design process, and therefore, improvements on their e�ciency are also
improvements on the process e�ciency. However, even with the proposed contributions, the
full applicability of aerodynamic shape optimization tools in the industry is far from being in
a mature stage. In order to reach such maturity, further contributions are needed, not only for
decreasing the computational requirements, but also to allow a global optimization independent
from initial shapes. Chapter 3 focuses in such global aerodynamic optimization phase, proposing
the use of a hybrid Evolutionary Programming (EP) and Support Vector Machines (SVMs) with
the aim of both allowing a broad design exploration and reducing the computational cost.
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(a) Residual (b) Residual

(c) CL (d) CL

(e) CD (f) CD

Figure 2.15: NACA0012 (left) and ONERA M6 (right) Euler �ow precision studies. Convergence
history of the density residual (a) and (b), lift coe�cient (c) and (d), and drag coe�cient (e)
and (f) with respect to the time iterations of the CFD solver.
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(a) Residual (b) Residual

(c) CL (d) CL

(e) CD (f) CD

Figure 2.16: RAE2822 (left) and DLR-F6 (right) viscous �ow precision studies. Convergence
history of the density residual (a) and (b), lift coe�cient (c) and (d), and drag coe�cient (e)
and (f) with respect to the time iterations of the CFD solver.



Chapter 3

Coarse grain surrogate-based global

aerodynamic optimization

3.1 Introduction

The aerodynamic design problem can be solved using either deterministic or non determinis-
tic methods. Deterministic approaches often require the gradient information of the objective
function. These gradient-based methods have been broadly used but they need a continuous
evaluation function and have a weak performance in a noisy environment. In addition, they are
strongly dependent on the initial con�guration and could get trapped into a local minimum.
On the other hand, non-deterministic methods such as evolutionary algorithms (EA) have the
ability to work with noisy objective functions, without assumptions on continuity [lia10]. They
also have a high potential to �nd the global optimum of complex problems involving a large
amount of design parameters. However, they require a vast number of evaluations to obtain the
optimum solution, even for a small number of design variables.

In the case of aerodynamic design, each evaluation of an individual in the EA requires a
complete CFD analysis which makes the method unfeasible, in terms of computational cost, even
when applying the contributions proposed in the previous chapter. To overcome this problem
there are di�erent approaches in the literature, such as the use of powerful processing machines,
such as Graphic Processing Units [kam10] or, more frequently, the use of surrogate models or
metamodels [zho10, jin05]. A metamodel is an inexpensive and approximate model of a costly
evaluation method. Regarding the aerodynamic design using EAs, the metamodel technique
could be used to calculate the �tness of the candidate solutions by replacing the time demanding
CFD tools, as previously shown in the literature [gia06, lia08]. For this purpose, regressors based
on neural computation could be used as metamodels, once they have been trained based on
previous evaluations.

There are well-documented examples of the applicability of soft-computing approaches (Neu-
ral networks and Evolutionary-based techniques) in a broad range of prediction and optimization
problems including some parts of aerodynamic or multidisciplinary optimization processes. The
majority of published studies uses some type of evolutionary algorithms hybridized with neu-
ral networks as metamodels: In [gia06] a complete study of di�erent types of neural networks
working as metamodels in an aerodynamic shape design problem is carried out. The study

53
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includes multilayer perceptrons and Radial Basis Functions networks. In [lia08] a grid-based
hierarchical evolutionary algorithm hybridized with a Radial Basis function network is proposed
also in di�erent parts of aerodynamic design problems. There are more recent works discussing
di�erent aspect of hybridizing evolutionary algorithms and neural networks as metamodels for
airfoil design [ste03, san08, aso09, bom10, coh12]. Other perspectives of the problem are also
discussed in the literature, such as in [jah11], where an approach based on evolutionary algo-
rithms directly hybridized with an unstructured CFD solver and a neural network (multi-layer
perceptron) as metamodel for the �rst step of the approach is proposed. Other authors have
tested the performance of alternative evolutionary approaches such as Particle Swarm Optimiza-
tion [khu09, pra09]. Furthermore, other methods applied to aerodynamic shape design, such
as fuzzy logic approaches [hos11], multiobjective algorithms [kam08], works involving cokriging
techniques [zho10], and papers that describe computation frameworks developed to enhance the
design process [kim09].

This chapter focuses on the �rst phase of the aerodynamic design process, i.e., obtaining an
approximation to the best candidate from a broad design space (dataset of di�erent geometries,
including unconventional ones). The main contribution of this work is to study the performance
of an Evolutionary Programming (EP) approach hybridized with a Support Vector regression
algorithm (SVMr) as metamodel in a problem of optimal airfoil design. To our knowledge, this
important regression technique has not been extensively applied to aerodynamic design, and may
have important advantages over previously mentioned metamodels, such as neural networks. It
will be showed that the proposed approach is able to obtain preliminary airfoil designs which can
be used, at a later stage, as input for a �ner design process using methods which require more
computational resources, such as CFD.

This chapter is structured as follows: next section describes the proposed hybrid EP - SVMr
approach, giving details on the EP and SVMr algorithms. Then, the experimental part of the
work is explained, where di�erent results on the SVMr performance as a metamodel are displayed.
Finally, remarks on the feasibility of the proposed approach in case of industrial con�gurations
are outlined.

3.2 Proposed approach

The process of the proposed approach for aerodynamic shape optimization is shown in Figure
3.1. The objective is the shortening of the design cycle through a combined approach, where
the �rst stage makes use of evolutionary algorithms together with metamodels to estimate the
aerodynamic data. In this phase, the inputs to the process are the target design point (�ow
conditions), the objective function and the constraints. The output is an approximation to
the global optimal solution. As evolutionary algorithm, an Evolutionary Programming approach
[xin99] is proposed, which will evolve di�erent airfoil geometries, in terms of an objective function,
given by the metamodel. The use of a Support Vector Regression (SVMr) is proposed to this
end. In this section, the EP algorithm used to tackle the optimal evolution of airfoil geometries
is explained, together with a detailed description of the EP encoding and the SVMr, which will
be applied to obtain the aerodynamic coe�cients associated to each geometry, in a fast and
accurate way.



3.2. Proposed approach 55

Fitness

Evaluation

Initial design space

Evolutionary Optimization

Best candidate

Gradient-based

Optimization (CFD)

Optimal design }
} P

re
lim

in
ar

y 
d

e
si

gn

CFD

DB

Best individuals

Population

SVM metamodel

Training

Prediction

GA

CFD

O
p

ti
m

a
l 

d
e

si
g

n

Figure 3.1: Proposed two-step design cycle: �rst step using evolutionary algorithms together
with metamodels and �nal step for �ne optimization.

3.2.1 EP encoding: airfoil parameterization

Sobieczky parameterization [li98] is used, which can represent a wide variety of airfoils with a
reasonable number of parameters. This parameterization employs mathematical expressions for
the proper representation of generic airfoil geometry (shape functions). This is accomplished by
the use of polynomial functions for the airfoil thickness (yt) and camber (yc) lines:

yt = a1
√

(x) + a2x+ a3x
2 + a4x

3 + a5x
4 (3.1)

yc = b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 (3.2)

The upper- and lower-side y-coordinates at a given chord location are given by:

yu = yt + yc (3.3)

yl = yt − yc (3.4)

The geometric parameters de�ning the airfoil are: position of the leading edge control point,
position and airfoil maximum thickness, trailing edge thickness line angle, trailing edge thickness,
leading edge camber line angle, camber at maximum thickness, position and maximum camber,
camber at maximum thickness, trailing edge camber line angle and trailing edge camber. Figure
3.2 shows the parameters used for airfoil de�nition. Note that the mean curvature line (colored
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in red) has been multiplied by 10 only for representation purpose.
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Figure 3.2: Sobieczky's parameterization for airfoil de�nition.

It is possible to link an and bn coe�cients in Equations (3.1) and (3.2) to the geometric
variables described in Table 3.1 as it is shown from Equation (3.5) to (3.14). Using this param-
eterization, an airfoil shape is de�ned by basic geometric parameters, instead of the coe�cient
of shape functions directly. This provides more knowledge about the �ow around the airfoil and
therefore, about the aerodynamic performance.

Table 3.1: Variables for airfoil geometry parameterization and their values' range.

Short name Variable for geometry parameterization Min Max

xtle X Position for leading edge control point 0.015 0.015

ytle Y Position for leading edge control point 0.036 0.036

xtth X position for maximum thickness 0.300 0.450

ytth Maximum thickness 0.100 0.170

atte Trailing edge thickness line angle -10.000 -4.500

ytte Trailing edge thickness 0.006 0.006

acle Leading edge camber line angle -7.500 5.000

ycth Camber at maximum thickness -0.008 0.005

xcmc X position for maximum camber 0.700 0.800

ycmc Maximum camber -0.010 0.020

acte Trailing edge camber line angle -15 0

ycte Trailing edge camber 0 0

To obtain the an coe�cients related to thickness distribution Equations (3.5) to (3.9) are
used:
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0 =
a1

2
√

(xtth)
+ a2 + 2a3xtth+ 3a4(xtth)

2 + 4a5(xtth)
3 (3.5)

ytth = a1
√

(xtth) + a2xtth+ a3(xtth)
2 + a4(xtth)

3 + a5(xtth)
4 (3.6)

atte =
a1
2

+ a2 + 2a3 + 3a4 + 4a5 (3.7)

ytte = a1 + a2 + a3 + a4 + a5 (3.8)

ytle = a1
√

(xtle) + a2xtle+ a3(xtle)
2 + a4(xtle)

3 + a5(xtle)
4 (3.9)

Equations (3.10) to (3.14) are used to compute the bn coe�cients for camber:

acle = b1 (3.10)

ycth = b1xtth+ b2(xtth)
2 + b3(xtth)

3 + b4(xtth)
4 + b5(xtth)

5 + b6(xtth)
6

(3.11)

0 = b1 + 2b2xcmc+ 3b3(xcmc)
2 + 4b4(xcmc)

3 + 5b5(xcmc)
4 + 6b6(xcmc)

5

(3.12)

acte = b1 + 2b2 + 3b3 + 4b4 + 5b5 + 6b6 (3.13)

ycte = b1 + b2 + b3 + b4 + b5 + b6 (3.14)

The geometries used for training and validation, are generated from variation of these design
variables, within the considered ranges displayed in Table 3.1. As it can be observed in the
table, the leading edge control point, the trailing edge thickness and the trailing edge camber
are maintained constant in order to compare the results with previous work [san08]. Therefore,
two or three values in the range of each of the remaining eight geometric variables are used
to generate a database of 5000 geometries. Figure 3.3 (left) shows the airfoils de�ned by the
minimum, maximum and averaged value in each of the geometric variables. A huge set of airfoils
are included in the database in order to exploit the potential of the evolutionary optimization
methods to broadly explore the design space and �nd the global optimum. Unconventional
airfoils are also included in the database to be considered in the optimization process. Figure
3.3 (right) shows examples of ten of the airfoils included in the data base and their geometric
variables are displayed in Table 3.2.

3.2.2 Evolutionary Programming algorithm

Evolutionary algorithms [xin99, fog94], are robust problems' solving techniques based on nat-
ural evolution processes. They are population-based techniques which codify a set of possible
solutions to the problem, and evolve it through the application of the so called evolutionary

operators [gol89]. Among EAs, Evolutionary Programming (EP) approaches are usually applied
to continuous optimization problems. This algorithm is characterized by only using mutation
and selection operators (no crossover is applied). Several versions of the algorithm have been
proposed in the literature: The Classical Evolutionary Programming algorithm (CEP) was �rst
described in the work by Bäck and Schwefel in [bac93], and analyzed later by Yao et al. in
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Figure 3.3: Examples of airfoils in the training database; (left) Maximum and minimum con�g-
urations in the data base; (right) Example of ten airfoils in the database.

Table 3.2: Geometric variables of di�erent airfoils in the training database.

Geometry xtth ytth atte acle ycth xcmc ycmc acte

0 0.337 0.117 -8.625 -4.375 -0.004 -0.725 -0.002 -11.250

500 0.337 0.117 -5.875 -4.375 -0.004 -0.750 -0.005 -3.750

1000 0.337 0.135 -7.250 -4.375 -0.001 -0.725 -0.002 -7.5

1500 0.337 0.152 -8.625 -4.375 -0.001 0.750 0.012 -11.250

2000 0.337 0.152 -5.875 -4.375 -0.001 0.725 -0.002 -3.750

2500 0.375 0.117 -7.250 -4.375 -0.001 0.750 0.012 -7.5

3000 0.375 0.135 -8.625 -1.250 -0.004 0.725 0.005 -11.250

3500 0.375 0.135 -5.875 -1.250 0.004 0.750 0.012 -3.750

4000 0.375 0.152 -7.250 -1.250 0.001 0.725 0.005 -7.500

4500 0.412 0.117 -8.625 -1.250 0.001 0.775 -0.002 -11.250

5000 0.412 0.117 -5.875 -1.250 0.001 0.725 0.005 -7.5

[xin99]. It is used to optimize a given function f(x), i.e. obtaining xo such that f(xo) < f(x),
with x ∈ [lim_inf, lim_sup]. The CEP algorithm performs as follows:

1. Generate an initial population of µ individuals (solutions). Let t be a counter for the
number of generations, set it to t = 1. Each individual is taken as a pair of real-valued
vectors (xi,σi), ∀i ∈ {1, · · · , µ}, where xi's are objective variables, and σi's are standard
deviations for Gaussian mutations.

2. Evaluate the �tness value for each individual (xi, σi) (using the problem's objective func-
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tion).

3. Each parent (xi, σi), {i = 1, · · · , µ} then creates a single o�spring (x′
i, σ

′
i) as follows:

x′
i = xi + σi ·N1(0,1) (3.15)

σ′
i = σi · exp(τ ′ ·N(0, 1) + τ ·N(0,1)) (3.16)

where N(0, 1) is an unidimensional normal distribution with mean zero and standard de-
viation one. The parameters τ and τ ′ are commonly set to (

√
2
√
n)−1 and (

√
2n)−1,

respectively [xin99], where n is the length of the individuals.

4. If xi(j) > lim_sup then xi(j) = lim_sup and if xi(j) < lim_inf then xi(j) = lim_inf .

5. Calculate the �tness values associated with each o�spring (x′
i,σ

′
i), ∀i ∈ {1, · · · , µ}.

6. Conduct pairwise comparison over the union of parents and o�spring: for each individual,
p opponents are chosen uniformly at random from all the parents and o�spring. For each
comparison, if the individual's �tness is better than the opponent's, it receives a �win�.

7. Select the µ individuals out of the union of parents and o�spring that have the most �wins�
to be parents of the next generation.

8. Stop if the halting criterion is satis�ed, and if not, set t = t+ 1 and go to Step 3.

A second version of the algorithm is the so called Fast Evolutionary Programming (FEP).
The FEP was described and compared with the CEP in [xin99]. The FEP is similar to the CEP
algorithm, but it performs a mutation following a Cauchy probability density function, instead
of a Gaussian based mutation. The one-dimensional Cauchy density function centered at the
origin is de�ned by:

ft(x) =
1

π

t

t2 + x2
(3.17)

where t > 0 is a scale parameter, see [xin99]. Using this probability density function, the FEP
algorithm is obtained by substituting step 3 of the CEP, by the following equation:

x′
i = xi + σi · δ (3.18)

where δ is a Cauchy random variable vector with the scale parameter set to t = 1.

Finally, in [xin99] the improved FEP (IFEP) is also proposed, where the best result obtained
between the Gaussian mutation and the Cauchy mutation is selected to complete the process.

Note that, in the design problem to be considered in this case, each vector x is composed
by a given parameterization of an airfoil geometry, i.e., x = [xtle, ytle, xtth, ytth, atte, . . . , ycte].
On the other hand, the objective function f to be optimized is given by the airfoil performance,
that in this case will be modeled using a Support Vector Machine approach (that acts as a
meta-model), as it is described in the next subsection.
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3.2.3 Objective function approximation with a SVMr algorithm

One of the most important statistic models in the �eld of prediction are the Support Vector
Regression algorithms (SVMr) [smo98, smo99]. The SVMrs are appealing algorithms for a large
variety of regression problems, in many of them mixed with evolutionary computation algorithms
[che11, sal11, jia12]. Although there are several versions of SVMr, in this case the classic model
presented in [smo98] will be described.

The ϵ-SVMr method for regression consists of training a model of the form y(x) = f(x)+b =

wTϕ(x)+ b, given a set of training vectors C = {(xi, yi), i = 1, . . . , l}, to minimize a general risk
function of the form

R[f ] =
1

2
∥w∥2 + C

l∑
i=1

L (yi, f(x)) (3.19)

where w controls the smoothness of the model, ϕ(x) is a function of projection of the input
space to the feature space, b is a parameter of bias, xi is a feature vector of the input space
with dimension N , yi is the output value to be estimated and L (yi, f(x)) is the loss function
selected. In this case, it is used the L1-SVMr (L1 support vector regression), characterized by
an ϵ-insensitive loss function [smo99]

L (yi, f(x)) = |yi − f(xi)|ϵ (3.20)

In order to train this model, it is necessary to solve the following optimization problem
[smo99]:

min

(
1

2
∥w∥2 + C

l∑
i=1

(ξi + ξ∗i )

)
(3.21)

subject to

yi −wTϕ(xi)− b ≤ ϵ+ ξi, i = 1, . . . , l (3.22)

− yi +wTϕ(xi) + b ≤ ϵ+ ξ∗i , i = 1, . . . , l (3.23)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l (3.24)

The dual form of this optimization problem is usually obtained through the minimization of
the Lagrange function, constructed from the objective function and the problem constraints. In
this case, the dual form of the optimization problem is the following:

max

−1

2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj)−

−ϵ
l∑

i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

)
(3.25)

subject to
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l∑
i=1

(αi − α∗
i ) = 0 (3.26)

αi, α
∗
i ∈ [0, C] (3.27)

In addition to these constraints, the Karush-Kuhn-Tucker conditions must be ful�lled, and
also the bias variable, b, must be obtained [smo99] . In the dual formulation of the problem the
function K(xi,xj) is the kernel matrix, which is formed by the evaluation of a kernel function,
equivalent to the dot product ⟨ϕ(xi), ϕ(xj)⟩. A usual selection for this kernel function is a
Gaussian function, as follows:

K(xi,xj) = exp(−γ · ∥xi − xj∥2). (3.28)

The �nal form of function f(x) depends on the Langrange multipliers αi, α
∗
i , as follows:

f(x) =

l∑
i=1

(αi − α∗
i )K(xi,x) (3.29)

In this way it is possible to obtain a SVMr model by means of the training of a quadratic
problem for given hyper-parameters C, ϵ and γ. However, obtaining these parameters is not a
simple procedure, being necessary the implementation of search algorithms to obtain the optimal
ones or the estimation of them [ort09].

The selection of hyper-parameters for SVMs is a key point in the training process of these
models when applied to regression problems. Unfortunately, an exact method to obtain the opti-
mal set of SVM hyper-parameters is unknown, and search algorithms are usually applied to obtain
the best possible set of hyper-parameters. In general, these search algorithms are implemented
as grid searches, which are time-consuming, so the computational cost of the SVM training pro-
cess increases considerably. The search algorithms used to obtain SVM hyper-parameters can
be divided in three groups. The �rst group of algorithms for SVM hyper-parameters is based
on grid search [aka98], where the search space of parameters is divided into groups of possible
parameters to be tested, usually in a uniform fashion. The second group of search algorithms is
formed by local search type approaches, such as pattern search proposed in [mom02]. Finally, the
third group is based on metaheuristic, or global optimization algorithms, such as evolutionary
computation [wan05]. All these search algorithms have similar problems: �rst, the selection of
the initial ranges of parameters, which limit the search space. In most cases, these initial ranges
are selected by experience of the researcher, or using large ranges of parameters. The former
case is highly dependent on the regression problem studied, and it is a very di�cult and speci�c
task, not useful in the majority of occasions. In the latter case, the usage of large parameter
ranges implies the increasing of the search space, and thus the training time of the SVM.

In [ort09], a novel e�ort to improve the SVM training time through the reduction of the
search space is presented. The objective is to reduce the training time necessary to �nd the �nal
parameters of the SVM model, while maintaining the performance of the models. This search
space reductions are generated by bounding the SVM hyper-parameters, mainly parameter C.
This parameter is bounded by taking to account its relation with parameters γ and ϵ, through an
approximation of the SVM model. Parameter γ is bounded using characteristics of the Gaussian
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kernel function used, and �nally parameter ϵ bound is constructed basing on some previous
results in the literature [kwo03]. All these reductions are applied to a grid search algorithm, in
order to �nd the parameters which obtain the best SVM performance, reducing the computation
time of the full search space case.

Given the amount of aerodynamic data available to train the SVMr-based model, it was
necessary to split them into several groups, each corresponding to a di�erent value of the angle
of attack. Subsequently, each of these datasets is employed to train a di�erent model, which will
be associated to its corresponding angle. In case of values di�erent from those 24 angles existing
in the original data, a linear interpolation of the two nearest models has been carried out. Figure
3.4 shows the architecture of the proposed SVMr model. Note that the problem is tackled with
a network of SVMr banks, de�ning a single SVMr for each angle of attack, both in the train and
test periods.
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Figure 3.4: SVMr banks architecture applied in this work.

3.3 Experiments and results

3.3.1 Experiments on the metamodel obtention (SVMr)

In this section, only subsonic computations are considered for both prediction and airfoil design
optimization. The panel code XFOIL [dre89] was used to generate the necessary data. In
addition, the �rst steps in the prediction of aerodynamic coe�cients of transonic con�gurations
have been performed using the RANS TAU code and preliminary results will be mentioned. The
data base is comprised of 5000 geometries and their related aerodynamic coe�cients (drag, lift
and momentum coe�cients). In particular, 4000 geometries and their related data were used for
training, and the other 1000 geometries were used as validation tests to measure the precision.
The chosen Mach and Reynolds numbers for the dataset samples are 0.3 and 107 respectively.
The angle of attack is ranging from 4o to 14o and free transition is used.
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Once the network has been trained, a set of 1000 geometries is used for validation purposes.
The airfoil geometries used in the validation were obtained in a random way from the initial
data set. Figure 3.5 shows a comparison of lift (Cl) curve (left) and drag polar (right) predicted
and the ones calculated with XFOIL for two of the validation geometries. Note that there is a
very good agreement between the predicted and calculated curves. Indeed, these values could be
predicted by the neural network with a small mean error as it is showed in the next section.

XFOIL

SVM

AoA

0 5 10

1.5

1

0.5

0

C
l

0 0.5 1 1.5

C
d

0.006

0.008

0.012

0.014

0.01

0.016

0.018

XFOIL

SVM

Cl

Figure 3.5: Coe�cients prediction for the displayed airfoils; (left) Lift (Cl) curve prediction;
(right) Drag (Cd) polar prediction.

The error of the network in the prediction of the aerodynamic coe�cients (drag, lift and
momentum) was analyzed with all the geometries selected for validation. Table 3.3 shows the
Root Mean Square Error (RMSE) and the Maximum Error for each coe�cient. At a �rst glance,
the error seems to be high because the maximum error for the lift coe�cient reaches a value
higher than 200 lift counts, but the RMSE provides a more reasonable value. It is clear that
all the errors could be reduced by increasing the training dataset size, but precision should be
balanced together with time constraints. The relation between the training dataset size and
precision is brie�y analyzed later.

Table 3.3: Maximum error and RMSE for lift, drag and momentum coe�cients in subsonic
con�gurations.

RMSE Maximum Error

Cl 0.00475 0.20473

Cd 0.00055 0.03380

Cm 0.00099 0.00756
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Figure 3.6 (left) shows the histogram of the error in predicting the drag coe�cient, and re-
�ects how most of the samples have an error close to zero, and only isolated samples have a
signi�cant error. Figure 3.6 (right) shows the RMSE for the prediction of drag, lift and momen-
tum coe�cients when using di�erent angles of attack. It can be observed that the maximum
RMSE occurs for lift coe�cient prediction in high angles of attack (10-14 degrees), close to the
stall, but the values are still lower than 9 · 10−3 which could be considered reasonable for a fast
prediction method.
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Figure 3.6: Coe�cients prediction characteristics; (left) Histogram of the error in predicting the
drag coe�cient; (right) RMSE for the prediction of drag, lift and momentum coe�cients when
using di�erent angles of attack.

Regarding the precision of the proposed approach, several experiments have been carried out
in order to analyze how the obtained results depend on the training data size. As it could be
expected, the achieved accuracy is reduced to some extent as the number of patterns employed to
train the network decreases. To illustrate this e�ect, Figure 3.7 represents the performance pro-
vided by the metamodel (SVMr) respect to the training data size. Speci�cally, the ratio between
the RMSE produced at each point and the best RMSE value (achieved with the maximum num-
ber of patterns, 4000) is plotted. It is interesting to note how each of the considered aerodynamic
coe�cients behaves on a di�erent way when the number of training samples decreases. While Cl

maximum error only increases about 15 times as training data sets are shortened, Cmy seems to
be much more sensitive to reductions in the amount of patterns, since RMSE is increased by a
factor of 230 in this case.

3.3.2 Inverse airfoil design given subsonic �ow conditions

In this section, the proposed approach given in Figure 3.1 is applied to the preliminary opti-
mization phase of airfoils. The �ow conditions are set to Mach=0.3, AoA=2o, Re = 106 and the
network is asked for the optimal airfoil in such design point. The objective function has been set
as the e�ciency (Cl/Cd) to be maximized. This optimization problem could be considered as
an inverse design, in the sense that the evolutionary approach returns an approximation to the
optimal airfoil for certain �ow conditions. The precision of this approximation will be related
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Figure 3.7: SVMr performance in terms of the training data size.

to the precision of the SVMr used as the metamodel to estimate the objective function of the
evolutionary algorithm (Cl/Cd). Comparing the airfoil provided by the SVMr model to those
airfoils employed along the training phase and their Cl/Cd XFOIL values (the best of them are
drawn in Figure 3.8), only 0.15% of these were able to outperform the proposed pro�le. This
point agrees with the distribution function of the training pro�les and its corresponding cumu-
lative distribution, which are shown in Figure 3.9. Both plots include a red arrow, indicating
the value Cl/Cd = 88.72, which corresponds to the XFOIL computation of the airfoil obtained
through the evolutionary method (the SVMr predicted value was Cl/Cd = 96.60). As can be
seen, this value is placed at the end of the distribution tail, whereas there exist a 99.85% of
training patterns providing lower performance, when considering XFOIL computations.

A further �ow analysis, around the optimal geometry, returned by SVMr, provides the results
in Table 3.4. Figure 3.8 shows the best 5 geometries for the considered target (including the
one returned from the SVM model) and their XFOIL Cl/Cd value. These geometries have the
same value for all the design parameters, except for the trailing edge thickness line angle, leading
edge camber line angle and position for maximum camber which di�er slightly. Therefore, the
returned airfoil, whose geometric parameters are displayed in Table 3.5, could be a good starting
point, close to the optimal solution, for detailed design.

Table 3.4: Aerodynamic results for the returned airfoil after the optimization process.

Cl Cd Cm L/D Trans. x/c upper part Trans. x/c lower part

0.495 0.0056 -0.0748 88.7 0.2889 0.4941
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Figure 3.8: Best 5 geometries obtained in the optimization process (including the one returned
from the SVMr model) and their XFOIL Cl/Cd value.

Table 3.5: Geometric variables for the returned airfoil after the optimization process.

xtth ytth atte acle ycth xcmc ycmc acte

0.347 0.152 -6.166 1.384 0.001 0.770 0.011 -7.446

This approach allows extensively exploring the design space, without any dependence on an
initial solution and expensive CFD computations, but as it uses a metamodel to estimate the
aerodynamic coe�cients, the return geometry is also an approximation to the optimal geometry,
and therefore, a further detailed design using gradient-based methods should be applied (see
next chapter). For completeness purpose, the �ow conditions are set to Mach=0.3, Re = 106,
as in the previous case, but now the angle of attack is varying from 0o to 10o, and the network
is asked for the optimal airfoil in each of the design points. The objective function was again
the e�ciency (Cl/Cd) to be maximized. Figure 3.10 shows the returned airfoils for each of the
angles of attack and their aerodynamic properties are displayed in Table 3.6. It can be observed
that the returned airfoil for angles of attack 4o and 6o and for 8o and 10o are quite similar, and
due to the small di�erences with airfoils from previous angles of attack were not visible in this
�gure. Table 3.7 shows the geometric variables for these returned airfoils.

As it was mentioned previously, speed and broad exploration of the design space are usually
more important than precision in a preliminary design phase. Therefore, it is necessary to
evaluate the computational cost of the proposed approach, in order to support its applicability
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Figure 3.9: Distribution function of the training pro�les and its corresponding cumulative dis-
tribution; (left) Distribution function; (right) Cumulative function.

Table 3.6: Aerodynamic results of several returned airfoils for di�erent angles of attack.

AoA Cl Cd Cm L/D Trans. x/c upper part Trans. x/c lower part

0o 0.209 0.006 -0.069 34.83 0.1813 0.3517

2o 0.495 0.005 -0.074 88.7 0.2889 0.4941

4o 0.642 0.007 -0.061 86.58 0.0255 0.5200

6o 0.881 0.008 -0.061 103.02 0.0175 0.5554

8o 1.106 0.010 -0.070 103.19 0.0124 0.5865

10o 1.305 0.013 -0.056 99.71 0.0077 0.7262

in such a design step. For the SVM network used as a metamodel to estimate the objective
function, an initial training phase is necessary. It is important to remark that this phase is only
performed at the beginning of the process and, once the network is trained, it can be used for
optimization without any additional cost. Table 3.8 shows the computational time for each phase
of the proposed approach. Note that once the network is trained, it is only 32 seconds to return
the optimized geometry for a given condition.

3.3.3 A short note on predicting coe�cients in transonic con�gurations

In order to provide a complete overview of the prediction capabilities of the network, the analysis
could not be limited to subsonic cases, and therefore, transonic con�gurations were also prelimi-
nary considered. For that purpose, a training data set of around 100 samples was obtained using
the DLR TAU code for the NACA0012 pro�le with Mach ranging from 0.5 to 0.8, angle of attack
ranging from 0 to 12 degrees and Reynolds number of 6 ·106. Given the short number of samples
considered, a 5-fold cross validation procedure was applied over this set to ensure a meaningful
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Table 3.7: Geometric variables of several returned airfoils for di�erent angles of attack.

AoA xtth ytth atte acle ycth xcmc ycmc acte

0o 0.338 0.118 -8.625 -1.477 -0.001 0.724 0.008 -9.266

2o 0.347 0.152 - 6.166 1.384 0.001 0.770 0.011 -7.446

4o 0.412 0.129 -5.874 1.875 -0.003 0.724 0.012 -3.936

6o 0.412 0.129 -5.874 1.874 -0.003 0.725 0.012 -3.936

8o 0.412 0.150 -8.576 -4.374 -0.004 0.765 0.010 -9.978

10o 0.412 0.150 -8.576 -4.374 -0.004 0.765 0.010 -9.978

X

Y

AoA0    Cl/Cd=34.83

AoA2    Cl/Cd=88.72

AoA4    Cl/Cd=86.58

AoA6    Cl/Cd=103.19

10.80.60.40.20

0.05

-0.05

0

Figure 3.10: Several returned airfoils for di�erent angles of attack.

error value. This method consists in splitting the available data in 5 sets, after having randomly
shu�ed them. Each of these sets is employed once to test the performance of the prediction
model that is obtained from the other 4 sets. Then, the �nal error is obtained by averaging the
error values related to each of the 5 models.

Table 3.9 shows the RMSE and the Maximum Error for each aerodynamic coe�cient predic-
tion. The error measures are one order of magnitude higher compared to the previous case. This
is mainly due to the training data set size and these errors could be lowered by increasing the
size or redistributing the initial samples. An RMSE of 16 lift counts or 37 drag counts could be
reasonable or not, depending on the particular application and its requirement. If computational
time constraints are much higher than accuracy constraints, as actually occurs in the preliminary
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Table 3.8: Computational time of each phase.

Phase Time

Initial training of the SVM network 11300 s.

Evaluation of the objective function(Cl/Cd) 1.42 ms.

Optimization 32 s.

Table 3.9: Maximum error and RMSE for lift, drag and momentum coe�cients in transonic
con�gurations.

RMSE Maximum Error

CL 0.0166 0.0562

CD 0.0037 0.0093

CM 0.0056 0.0137

design, then the prediction could be reasonable and accepted. The maximum error is lower than
the previous case because the geometry is kept constant.

In addition, as the objective of this phase is to provide an initial shape for a �ner design
phase, to be detailed in the next chapter, this level of accuracy can be considered acceptable.

3.4 Conclusions

This chapter has focused on the preliminary design step of the aerodynamic shape optimization
process. The main contribution is the application of an hybrid EP+SVMr approach showing
promising results. The evolutionary algorithm and the Support Vector Regression algorithm
used in the process have been detailed. The good performance of the complete approach has
been shown in di�erent experiments for subsonic and transonic con�gurations. Future work will
address the design of 3D transonic con�gurations, through the use of the proposed combined ap-
proach where the savings in computational time would be relevant. Furthermore, future activities
will also consider other disciplines in addition to aerodynamics, in order to exploit the poten-
tial of metamodel assisted evolutionary techniques to perform multidisciplinary optimizations
(MDO).

Next chapter focuses on the �ne design phase, which will evolve an initial con�guration,
provided from the application of the proposed approach for global optimization, into the �nal
optimized geometry.





Chapter 4

Fine grain CAD based aerodynamic

design

4.1 Introduction

With the improving capabilities of computational �uids dynamics for the prediction of aerody-
namic performance, CFD tools are now being increasingly used for aerodynamic design opti-
mization in the aerospace industry. In this chapter, an automated optimization framework is
presented to address inviscid aerodynamic �ne grain design problems. Key aspects of this frame-
work include the use of the continuous adjoint methodology to make the computational require-
ments independent of the number of design variables, and Computer Aided Design (CAD)-based
NURBS shape parameterization, which uses the �exibility of Non-Uniform Rational B-Splines
(NURBS) to handle complex con�gurations.

Within a gradient-based optimization approach, the use of the adjoint methodology [jam03,
ell95, jam98, mav06, and99, nad07] has been introduced during the last decade and it has demon-
strated to be an e�cient method to compute the gradients of an objective function with a cost
which is essentially independent of the size of the parameter space of the geometry.

In addition to gradient based methodologies, there are many methods for various optimal
design applications. Gradient-based methods are very e�cient if a well formed objective function
is employed, but require the determination of the derivatives of the objective function with respect
to shape variations. A comparison of common and recently introduced global optimization
methods can be found in [you08].

The adjoint approach yields the �ow sensitivities for a set of design variables at a cost which
is independent of the size of the design space. The most obvious strategy is to directly employ the
surface grid points as design variables. These methods are referred as CAD-free [stu11], since the
optimization is done using the computational mesh and the original geometry parameterization is
no longer involved. One of the main problems of using the grid points directly as design variables
is the appearance of surface bumps during the optimization process, which requires a smoothing
algorithm [sch08]. The presence of bumps usually produces a geometry which is optimized for a
speci�c �ight condition, but which behaves very poorly for o�-conditions.

In order to solve these problems, a higher-level parameterization should be considered, such
as Hicks-Henne functions [hic78], global shape functions or analytic descriptions of foil sections

71
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[kul06, kul07] associated to a set of prede�ned parameters, or as the PARSEC method [sob98],
which uses eleven geometric parameters to manipulate the shape of an airfoil. The computational
cost to calculate the derivatives of the objective function using the �nite di�erence method make
parameterizations with few design variables attractive, but these parameterizations are usually
restricted for a particular design problem and 3D geometries may not be properly represented.
The use of NURBS has been suggested in [lep00, ben05, mou07] to represent irregular and com-
plex geometric forms, which is not limited to aerodynamic. Moreover, CAD-systems predomi-
nantly use NURBS as a general and �exible parameterization scheme for representing surfaces.

The main advantages of the approach considered for shape optimization in this work are:

• The use of the adjoint methodology based on boundary integrals for fast gradient compu-
tation at a cost which is essentially independent of the number of design variables.

• The use of Computer Aided Design (CAD)-based parameterization via NURBS represen-
tation of the geometry. This is of particular interest, as it enables the fast incorporation
of the optimization procedure into existing design chains within the aerospace industry.

The proposed approach combines the adjoint methodology for calculating the gradients of
the cost function with a NURBS representation of the geometry. Independently, both have been
the focus of recent research for optimal design, but the application of both techniques has not
been deeply considered so far. The essential piece that links both methodologies is the so-called
"point inversion problem" (the computation of the parametric coordinates , which are calculated
as the projection of a surface grid points onto the NURBS).

The organization of this chapter is as follows: First, the proposed CAD-based aerodynamic
shape optimization process is described to introduce all the steps involved. Then, the NURBS
parameterization and the approach employed for the point inversion problem are explained. The
continuous adjoint formulation, as well as the procedure to obtain the gradients with respect
to the position of the control points of the NURBS, are described in section 4. Finally, the
optimization framework is applied to several 2D and 3D con�gurations and the numerical results
are explained.

4.2 CAD-based aerodynamic shape optimization process

As has been mentioned above, the proposed approach is a combination of the continuous adjoint
methodology for gradient computation with a NURBS-based parameterization for the geometry.
The CAD-based shape optimization process thus comprises the following steps, displayed in
Figure 4.1. In the following, each of the steps involved in the process will be brie�y described:

4.2.1 CAD geometry and parameterization

The original geometry is an input to the process, and it can be obtained directly from CAD
applications such as, for example, CATIA (in IGES or STEP formats). In shape design, the
best representation of the geometry remains an open problem. In the current study, geometries
are modeled with NURBS, which o�er great �exibility in the representation of surfaces. The
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Figure 4.1: CAD-based optimization process. D stands for design variable, while OF stands for
objective function.

design variables are the coordinates (x,y,z) and weights of the NURBS control points, so for
each control point there are four design variables (this is also the case in 2D, where obviously,
design variables corresponding to spanwise deformations are not considered in the optimization
process). The main advantage of using NURBS is that they provide a global parameterization
with a smooth surface and a better control of the curvature while still maintaining the locality
in the deformation. In addition, the optimized surface at the end of the process has the correct
format to be fed directly to CAD and grid generation applications. Having the possibility to
handle di�erent NURBS patches for each part of an aircraft, as for example the wing and fuselage,
this parameterization is able to represent almost any kind of surface of industrial interest. While
this feature allows di�erent levels of optimization, working with several NURBS patches requires
nevertheless a correct treatment of the intersections, particularly with regard to the continuity
between patches.

In practice, the NURBS description provided directly by CAD tools is not usually appropriate
for an optimization process and has to be modi�ed, for example, by changing the order of the
NURBS or by setting a more uniform distribution of the control points, in order to improve the
chances for a successful optimization.

4.2.2 Objective functions and constraints

The most common objective functions such as, for instance, those aiming at drag minimization at
constant lift, have been implemented in the optimization framework. An analysis of the e�ciency
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of each objective function has been performed and the results will be presented later. During
the optimization, the following constraints can be applied:

• Fixed control points in all directions.

• Fixed control points in one direction.

• Fixed control points weights.

For wing sections, it is a common practice to �x the control points located at both the trailing
and leading edges, thus keeping the chord length constant. Volumetric and other geometric
constraints can also be applied, but the objective function of such problems is strongly non-
linear, so that the optimization most likely converges towards a local minimum that is similar to
the original con�guration.

4.2.3 TAU Flow and Adjoint solver

The simulation of the �ow and the surface cost function sensitivities are calculated using the
TAU solver. The continuous adjoint approach yields sensitivities which depend only on surface
data [cas07]. TAU �ow and adjoint solver modules are executed to obtain local surface sensitivity
values for the selected cost function over the boundary grid points. As it will be shown later,
the computation of the �ow and adjoint solutions consumes most of the required computational
time in the whole process.

4.2.4 Gradient computation over the NURBS control points

A perturbation δD of a given design variable D gives rise to a perturbation δx of the geometry
X as well as a perturbation δw of the �ow variables w. The gradient of a cost function I with
respect to D can then be obtained, within the continuous adjoint framework [cas07], as the
boundary integral displayed in Equation 4.1

δI =

∫
S
(δx · n)G(w,Λ)ds, (4.1)

where the local surface sensitivity G is a computable function of the �ow w and adjoint Λ

variables and their derivatives on the surface S, δx = (∂x/∂D)δD, are the geometric sensitivities,
which can be analytically calculated from the NURBS equations, n is the surface normal and ds
is the surface measure.

Figure 4.2 (right) shows a plot of the local sensitivity G for the drag coe�cient for the inviscid
transonic �ow around a RAE2822 airfoil (left). Notice that the gradient in equation 4.1 does
not depend on the tangent part of the geometric sensitivities, whose contribution to the integral
vanishes identically in the continuous limit. However, it remains to be seen whether this is also
the case at the numerical level, especially at or near geometric singularities such as the trailing
edge of wings or airfoils.

4.2.5 Surface and volume deformation

A simple steepest descent optimization algorithm has been implemented into the framework for
testing purposes. The design variables are the {x, y, z} coordinates and weight w of the NURBS
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Figure 4.2: Mach number (left) and C-drag surface sensitivity (right) along an RAE2822 airfoil
at �ow conditions M = 0.729 and α = 2.31o.

control points. In practice, however, the weight is rarely used. Variations of the knots distribution
and of the basis functions are not considered. For each design variable, the desired surface
deformation is achieved by the perturbation of the NURBS control points and the regeneration
of the surface grid using the parametric coordinates calculated from the point inversion algorithm.
Figure 4.3 (left) shows the surface deformation for a RAE2822 pro�le. In this process, a point
on the previous (or initial) surface is assumed to move to the new surface while remaining at
�xed values of the NURBS parametric coordinates. This guarantees that the surface grid points
always remain on the NURBS surface. Furthermore, as the same parametric values are used
throughout the optimization process, the point inversion step needs only to be done once and
its contribution to the computational cost is independent of the number of optimization steps of
the process.

Once the new surface grid is obtained, the volume grid is deformed with an advancing front
algorithm [dlr94] using the TAU deformation module, as can be observed in Figure 4.3 (right).

Figure 4.3: Surface (left) and volume (right) grid deformation for a RAE2822 pro�le.
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4.3 Shape parameterization

4.3.1 NURBS for the optimization process

The geometry parameterization is crucial in an automatic aerodynamic design optimization prob-
lem. NURBS have demonstrated to be able to accurately represent a large family of geometries;
furthermore, they are also the standard for geometry de�nition and representation in IGES (In-
ternational Graphics Exchange Speci�cation) [ige06]. In addition, from a practical point of view,
using the same CAD format signi�cantly reduces the integration e�ort necessary to carry out
multidisciplinary design of complex con�gurations. In general, NURBS provided directly by the
CAD applications are designed to accurately describe the geometry, but they are usually not the
most appropriate as the initial parameterization in an optimization process. Numerical testing
suggests that optimizations tend to work better with a low number of control points and high
order NURBS [mag11]. There is then a trade-o� between the number and distribution of the
control points, the accuracy of the geometric representation and the range of possible shapes the
optimization can reach. In all the tests presented in this work, the maximum error between the
NURBS parameterized shape and the reference geometry is lower than 0.5%, although this error
can be obviously reduced by increasing the number of control points.

NURBS ensure good smoothness properties [mou07], reducing the risk of numerical noise,
while the parameterization is still local, which means that when a control point is perturbed,
only a portion of the surface is modi�ed, leaving the rest intact, and gives enough freedom for
the optimizer to converge to an optimal design [and10].

4.3.2 Brief mathematical background of Non Uniform B-Splines (NURBS)

From a mathematical point of view, a surface S(ξ, η) can be described with a NURBS function
de�ned by equation 4.2

S(ξ, η) =

∑I
i

∑J
j Ui,p(ξ)Vj,q(η)wijCij∑I

i

∑J
j Ui,p(ξ)Vj,q(η)wij

(4.2)

where (ξ, η) are the parametric coordinates on the NURBS surface, C are the Cartesian
coordinates of the control points, w are the weights of the control points and U and V are the
basis functions which are given by expression 4.3:

Ui,k=1(ξ) =

{
1 if ui 6 ξ < ui+1,

0 otherwise.

Ui,k(ξ) =
(ξ − ui)Ui,k−1(ξ)

ui+k−1 − ui
+

(ui+k − ξ)Ui+1,k−1(ξ)

ui+k − ui+1
(4.3)

(and an analogue expression for Vj,m) in which i corresponds to the i-th control point and
k corresponds to the degree of the basis function. The parameters ui are the knots, which are
conventionally assembled into a knot vector U as Equation 4.4.

U = {0, ..., 0︸ ︷︷ ︸
p+1

, up+1, ..., ui, ..., uI , 1, ..., 1︸ ︷︷ ︸
p+1

} (4.4)
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The basis functions are zero everywhere except for an interval delimited by the order of the
NURBS, de�ning the area of in�uence of each control point. A more extended reference for
NURBS can be found in [pie97].

4.3.3 Point inversion algorithm

Starting from a given CAD geometry, a NURBS representation and a discrete surface grid are
independently derived. To proceed with the optimization algorithm, the surface grid points have
to be projected onto the original CAD geometry which is stored as a set of NURBS. In practice,
this requires the assignment of the corresponding parametric coordinates (ξ, η) to each point of
the surface grid. In this way, during the optimization process, using the parametric coordinates
(ξ, η) it is easy to map the vertices of the computational grid onto the deformed NURBS surface
and obtain the new spatial coordinates. The process R3{x, y, z} → R2{ξ, η} to assign space
coordinates to parametric coordinates of the NURBS is usually referred to as the point inversion
problem. The parametric values are not provided by the grid generator application and therefore
the point inversion is necessary. Furthermore, the NURBS provided by CAD applications are
usually not suitable for an optimization process, as was observed in 4.3.1, and therefore a new
NURBS, based on the original one, is required to represent the geometry. This new NURBS
is usually obtained by reducing the number of control points and increasing the order of the
NURBS.

Various iterative point inversion algorithms are available [hu05, lia03, sel06, red09], all of
which su�er from the same problem: they perform well only if an appropriate interval or initial
value is provided. To make the problem even harder, the vertices of the grid do not always
exactly lie on the NURBS surface, and the presence of discontinuities, intersections and kinks is
also frequent. The approach followed seeks to provide an initial estimate of the solution to the
point inversion problem and then improve the accuracy by using an iterative Newton-Raphson
method. Two algorithms were developed for the initial estimation. The source code of these
algorithms can be requested at DOMINO Project [dom11].

First method, based on the normals

In this approach, the initial estimate for the point inversion algorithm is obtained by projecting
the surface grid points onto a simpler, second-order NURBS, along the local vertex normal vector
N . At each surface grid point P , the normal projection equations are calculated using Equation
4.5

I∑
i=I−1

J∑
j=J−1

Ui,2(ξ)Vj,2(η)Gi,j = ϕ(r ·N + P ) (4.5)

which have to be solved for r and (ξ, η), where Ui,2 and Vj,2 are the basis functions for the
reduced-order NURBS (which has order 2), Gi,j are the weighted control point coordinates,

Gi,j = Ci,jwi,j (4.6)

and ϕ is the normalization factor in the NURBS equation
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ϕ =

I∑
i

J∑
j

Ui,2(ξ)Vj,2(η)wi,j = uivjwi,j + ui+1vj+1wi+1,j+1 −

ui+1vjwi+1,j − uivj+1wi,j+1 (4.7)

The most common situation occurs when all control points have the same weight, in which
case ϕ is a constant. Expanding Equation 4.5 yields the following second order system of equa-
tions

āξη + b̄ξ + c̄η + d̄r + ē = 0 (4.8)

where

ā = Gi−1,j−1 +Gi,j −Gi−1,j −G1,j−1

b̄ = vjGi−1,j + vj+1Gi,j−1 − vj+1Gi−1,j−1 − vjGi, j

c̄ = ui+1Gi−1,j + uiGi,j−1 − ui+1Gi−1,j−1 − uiGi,j

d̄ = −ϕ(ui+1 − ui)(vi+1 − vi)N

ē = ui+1vj+1Gi−1,j−1 + uivjGi,j − ui+1vjGi−1,j −
uivj+1G1,j−1 − ϕ(ui+1 − ui)(vi+1 − vi)P (4.9)

Since this is a second order NURBS, each knot sequence is paired with one control point.
Each combination of {i, j} represents a knot interval; therefore there is one system of equations
for each combination of {i, j}. A second order NURBS can be considered as a composition of
linear polypanels for each {i, j}. Solving this system for all possible combinations of pairs {i, j}
results in several candidate parametric values ξi,j and ηi,j .

Usually only one valid solution is obtained from the above equations, or two if the NURBS is
a closed surface, except if the solution is close to an intersection of the linear polypanels, where
more solutions could appear. For a solution to be valid it must ful�l the condition of belonging
to the knot interval. Among all possible 'valid' solutions the one closest to the vertex P is more
likely to be the correct solution, all of which amounts to the following conditions:

{ξ∗i,j , η∗i,j} = min{∥ S(ξi,j , ηi,j)− P ∥2} (4.10)

with

Ui − σ∗u ≤ ξ∗i,j < Ui+1 + σ∗u

Vi − σ∗v ≤ η∗i,j < Vi+1 + σ∗v (4.11)

where σ∗u and σ
∗
v are relaxation factors, which virtually extend the coverage of the polypanels,

e.g.,
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σ∗u = γ(Ui+1 − Ui)

σ∗v = γ(Vi+1 − Vi) (4.12)

Possible values of γ could be 0.01, 0.1, 0.25, 0.5, and even higher. A value of zero is possible,
but not recommended. High relaxation values will provide more valid solutions and, depending
on the complexity of the inversion problem, such values could be actually necessary. As assumed
above, the parametric values obtained from a second order NURBS are close to the real values,
or at least close enough to be valid initial values to be used in iterative methods. Additionally,
the above approach provides several alternative candidate values in case the iterative method
fails to converge with one particular solution.

Second method, based on minimum distance

The previous method, based on the normals, is considered very robust, because the vertex normal
provides additional information to obtain the inversion. However, situations arise in which the
normal vectors can not be properly calculated, e.g. along edges or kinks, or they are simply not
available. One can then use a second approach based on distance minimization. The equation
to be solved is

min[∥ S(ξ, η)− P ∥2] = min
∑

[(S(ξ, η)− P )2] (4.13)

The left hand side of Equation 4.13 denotes the square of the Euclidean norm, while the right
hand side denotes the arithmetic addition of the square of the vector components. As in the
previous case, a valid initial solution can be obtained by specializing to a second order NURBS
surface, for which Equation 4.13 takes the form:

min

[∑
(
āξη + b̄ξ + c̄η + ē

ϕ
− P )2

]
(4.14)

where the notation is the same as in Equations 4.7 and 4.8. Equation 4.14 is solved by setting
to zero the (ξ, η) derivatives of the distance function, which yields

F1 =
∂[
∑

(S(ξ, η)− P )2]

∂ξ
= 2

∑
[(āη + b̄)(āξη + b̄ξ + c̄η + ē− P )] = 0

F2 =
∂[
∑

(S(ξ, η)− P )2]

∂η
= 2

∑
[(āξ + c̄)(āξη + b̄ξ + c̄η + ē− P )] = 0 (4.15)

This leads to a third order equation. The roots can be calculated very e�ciently using a
Newton-Raphson method.

{ξ, η}n+1 = {ξ, η}n − [f ′]−1 · f
{ξ, η}0 = {ui, vj} (4.16)

where
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f =

[
F1

F2

]
(4.17)

and

f ′ =

[
∂F1
∂ξ

∂F1
∂η

∂F2
∂ξ

∂F2
∂η

]
(4.18)

Just as with the method of the normals explained before, the above equations are to be
solved for each combination of pairs {i, j}, discarding those solutions that do not comply with
the condition in Equation 4.10. It is also advisable to use the relaxation factor de�ned in Equation
4.11.

4.4 Fast computation of the gradients

4.4.1 Continuous adjoint methodology

The computation of the gradients or sensitivity derivatives of the cost function, such as drag
or aerodynamic e�ciency, is carried out using the continuous adjoint formulation introduced in
section 1.2.4. The total derivative of a cost function I with respect to a design variable D can
be written as:

dI

dD
=

∂I

∂D
+
∂I

∂w

∂w

∂D
(4.19)

where w denotes the vector of �ow variables. Upon deformation of the surface, the cost func-
tion varies due to a variation of the geometry and the �ow solution. In aerodynamic optimization
problems, suitable cost function examples include aerodynamic coe�cients such as drag and lift,
which are directly calculated from the pressure distribution over the aerodynamic surface S.

I =

∫
S
f(w)dS (4.20)

It is assumed that the cost function f is di�erentiable. Even though this assumption may not
be valid in the presence of shock waves or other discontinuities, numerical dissipation is generally
enough to mitigate this e�ect and provide an approximate solution.

In the cases considered in this work, f does not depend on the time variable or the time
derivatives of the �ow variables w. Hence, Equation 4.19 can be written as:

dI

dD
=

∫
δS
f(w)ds+

∫
S

∂f

∂w

∂w

∂D
ds (4.21)

The Equation 4.21 includes a term related to the geometric variation of the surface and a
second term related to the �ow variation. Cost functions such as drag or lift are composed of
terms that involve non-geometric and geometric quantities such as the surface normal n. Hence,
the �rst term can be expanded as follows [and99, cas07]
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∫
δS
f(w)ds =

∫
S

∂f

∂w

(
∂X

∂D
· ∇w

)
ds+

∫
S

∂f

∂n

∂n

∂D
ds+

∫
S
f
∂ds

∂D
(4.22)

where ∂X
∂D is the geometric sensitivity of the surface points, ∂n

∂D is the sensitivity of the normal
vector, and ∂ds

∂D is the sensitivity of the measure.

The term
∫
S f

∂ds
∂D is usually referred to as the curvature term, and has the form:∫

S
f
∂ds

∂D
=

∫
S
fKds (4.23)

with

K =

{
∂tg(

∂x
∂D )tg − k( ∂x

∂D )n if 2D
∇tg · ( ∂x

∂D )tg − 2Hm( ∂x
∂D )n if 3D

in which k and Hm are the curvature of the pro�le and mean curvature of the surface,
respectively.

To account for the �ow sensitivities, one introduces the adjoint state Λ, subject to the adjoint
equations (

∂F

∂w

)T

· ∇Λ = 0 (4.24)

where F is the inviscid �ux vector, together with the appropriate adjoint boundary conditions
on S so as to allow the computation of the �ow sensitivities [jam98, and99, cas07]. Optimization
is possible in this case with respect to any functional that depends on the distribution of the
pressure on the aerodynamic surface. For drag and lift optimization problems the functional is
de�ned by the following expression:

I =

∫
S
Cp(n · d)ds (4.25)

where

d =

{
(cosα cosβ, 0, sinα cosβ) for drag coe�cient

(− sinα, 0, cosα) for lift coe�cient

where Cp is the pressure coe�cient, d is the force direction vector, α is the angle of attack
and β is the sideslip angle. By de�ning

Ψ = ρλ1 + ρv1λ2 + ρv2λ3 + ρv3λ4 + ρHλ5 (4.26)

where ρ is the density, v1, v2, v3 are the Cartesian components of the �uid velocity, H is the
enthalpy, λi are the adjoint variables, and by separating the normal and tangent parts of the
deformation, compact expressions result for the gradients of the drag and lift coe�cients from
Equation 4.21:

δI =

∫
S
(d · ∇Cp + (∇ · v)Ψ + (v · t)∂tgΨ)δxnds (4.27)
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where n and t are the normal and tangent vectors to the surface element respectively, and
v is the velocity vector of the �uid. The equation above only considers deformations through
the normal direction, which is accurate in most cases with the exception of kinks and geometries
with strong curvatures, such as the trailing edge of a wing pro�le [loz11] .

In those situations where the tangential component is required, the extended formulation can
be employed:

δI =

∫
S
(d⃗ · n⃗)δx ·∇Cpds+

∫
S
(d⃗ · n⃗)Cpδds+

∫
S
(d⃗ · δn⃗)Cpds+

∫
S
(((δx ·∇)v)n⃗+v · δn⃗)Ψds (4.28)

The TAU code provides the �ow and adjoint solutions and the surface sensitivity. The
computation of the gradients as per equation 4.27 requires knowledge of the grid sensitivities ∂X

∂D

for the surface grid points.

The geometric derivatives corresponding to a displacement of the position of the control point
through a Cartesian direction ek are exactly the basis coe�cients:

∂x

∂Ck
ij

=
Ui,pVj,q e⃗k

ϕ
(4.29)

while the geometric derivative related to the weight of the control point is calculated with
the following expression:

∂x

∂wij
=
Ui,pVj,q(Cij − x)

ϕ
(4.30)

where x and Cij are the spatial coordinates of the surface vertex and control point respectively.

4.4.2 Validation using �nite di�erences

For validation purposes, the gradients have also been calculated using �nite di�erences. The
�nite-di�erence gradients should be similar to those computed with the adjoint methodology.
However, insu�cient grid resolution and inaccurate normal calculation may degrade the solution
leading to a failure in the optimization process. Figure 4.4 shows the gradients computed for
the lift and drag coe�cients for the inviscid �ow around a NACA0012 airfoil with M = 0.8 and
α = 1.25o. The geometry is parameterized by a NURBS curve with 18 control points depicted in
Figure 4.7. As can be observed in Figure 4.4, the adjoint gradients are fairly accurate, although
there are important discrepancies in the gradients of the design variable which corresponds to
a vertical displacement of the control point located at the trailing edge of the airfoil. Design
variables 1-18, 19-36, 37-54 and 55-72 correspond, respectively, to changes in x, y, z coordinates
and weight w of each of the 18 control points depicted in Figure 4.7.

Figure 4.5 (left) shows the lift gradients for design variables 37-54 (which correspond to
vertical displacements of the control points). Figure 4.5 (right) indicates that the derivatives are
fairly accurate except for design variable 46, which corresponds to a vertical translation of the
control point at the trailing edge.

These discrepancies indicate that the assumption underlying Equation 4.1 is failing, that is to
say, that the contribution of the tangent part of the geometric sensitivities to the cost function
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Figure 4.4: Adjoint vs. �nite-di�erence gradients for lift (left) and drag (right) coe�cients for a
NACA0012 at M = 0.8 and α = 1.25o.

Figure 4.5: Close-up view of lift gradients (left) and surface deformation for design variable 46
(right) in a NACA0012 at M = 0.8 and α = 1.25o.

derivative does not vanish at the numerical level [loz09, loz12]. This issue can be tackled by
incorporating those tangent contributions, but it will not be of concern here as the control point
located at the trailing edge will be �xed throughout the optimization process. If that were not
the case (if, say, one would wish to optimize the relative position of the di�erent elements of a
multi-element airfoil), it would be necessary to take this problem into consideration.

For that reason, formulations 4.27 and 4.28 have been compared with �nite di�erences for a
NACA0012 airfoil at M = 0.8 and α = 1.25o as shown in Figure 4.6. The gradients obtained
were almost exactly the same, with the exception of the trailing edge, where major discrepancies
are encountered, and where the extended formulations is necessary to provide an acceptable
accuracy.
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Figure 4.6: Comparison of sensitivities between �nite di�erences and two boundary formulations
for a NACA0012 at M = 0.8 and α = 1.25o.

4.5 Application to �ne grain aerodynamic shape optimization

In this section, the methodology introduced in the present work is applied to the inviscid aero-
dynamic optimization of 2D NACA0012 and RAE2822 airfoils and a 3D ONERA M6 wing
con�gurations.

4.5.1 Optimization of a 2D NACA0012 pro�le

The �rst design case is drag minimization for a single airfoil. The initial geometry is an
NACA0012 airfoil [mar09] at Mach number M = 0.8 and angle of attack α = 1.25o. The
geometry is described by a NURBS curve with 18 control points, which is depicted in Figure 4.7.

Figure 4.7: Computational grid around NACA0012 airfoil (left) and corresponding NURBS
parameterization (right) described with 18 control points.
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The design optimization problem selected is the minimization of the drag coe�cient holding
the lift coe�cient constant with a 10% tolerance. Hence, the cost function is de�ned as

min{Cd + 10(CL − CT
L )

4} (4.31)

where Cd and CL are the drag and lift coe�cients, respectively, and CT
L is the target lift. The

optimization algorithm used is a simple descent method in which small steps are taken in the
negative gradient direction [ger97], as it can be observed in Equation 4.32. During the whole opti-
mization process the maximum deformation is held constant at approximately 1% of the camber.

δ = −{ċd + 4 · 10 · ċL(CL − CT
L )

3} (4.32)

where ċd and ċL are the normalized values of drag and lift coe�cients.

During the process, the following constraints are applied:

• The control points situated on the leading and trailing edge are held �xed in order to
maintain the chord length and angle of attack.

• All control point weights are kept �xed.

Figure 4.8 shows the evolution of the force coe�cients and aerodynamic e�ciency throughout
the optimization process. All the coe�cients are normalized to their initial values.

Figure 4.8: Evolution of the aerodynamic coe�cients within the optimization process for a
NACA0012 airfoil at M=0.8, α=1.25o

After 70 optimization cycles the drag improvement was of 70%, which was obtained with a
lift decrement of 5%, well within the speci�ed range. It can be observed in Figures 4.9 and 4.10
that the optimization process has largely reduced the strong shock on the suction side of the
airfoil.
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Figure 4.9: Change of airfoil shape (left) and pressure distribution Cp (right) for the initial and
optimized NACA0012 airfoil at M = 0.8 and α = 1.25o

Figure 4.10: Distribution of the Mach number for the initial (left) and optimized (right)
NACA0012 airfoil at M = 0.8 and α = 1.25o

The weak shock that appears near the leading edge, after the optimization, seems to be
a consequence of the formulation used to compute the sensitivities. This fact will be further
studied, and the tangential component of the derivatives will be included in the formulation to
improve the solution.

4.5.2 Optimization of a 2D RAE2822 pro�le

The methodology is also applied to a RAE2822 airfoil [coo79] at M = 0.729 and α = 2.31o. The
geometry is described by a NURBS curve with 14 control points depicted in Figure 4.11. The
computational grid has 10.600 points and 10.500 elements, and the NURBS is composed of 14
control points. For this case, it has also been checked the extent to which the di�erence between
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the initial geometry and the one obtained from the NURBS parameterization which is used for
optimization, a�ects the aerodynamic coe�cients and the di�erences found were not signi�cant.
However, as was previously mentioned, if necessary, the error could be even further reduced by
increasing the number of control points, which would make the geometry to be closer to the
original one, along with its aerodynamic properties.

Figure 4.11: Computational grid around RAE2822 airfoil (left) and NURBS parameterization
with 14 control points (right)

The objective function selected is the same as in the previous case: minimization of the drag
coe�cient maintaining the lift coe�cient within a 10% range of its initial value.

During the optimization, the following constraints are applied:

• The control point situated at the trailing edge is �xed in all directions.

• All control points are �xed in X and Y directions, only Z (vertical) displacements are
allowed, therefore the chord is kept constant.

• Control points weights are held �xed.

Figure 4.12 shows the evolution of the force coe�cients and the aerodynamic e�ciency (lift
/drag ratio) throughout the optimization process. All the coe�cients are normalized to their
initial values.

After 35 optimization cycles the drag improvement was of 60%, which was obtained with a
lift decrement of 1.5%, well within the speci�ed range.

As can be observed in Figures 4.13 and 4.14, the shock has almost disappeared, as it was
expected for an inviscid case, after the optimization process; however a new weak shock has
appeared near the leading edge.

4.5.3 Optimization of a 3D ONERA M6 wing

The methodology is also applied to optimize a three dimensional ONERA M6 wing at inviscid
�ow conditions ofM = 0.8395 and α = 3.06o, described by a NURBS surface (for both the upper
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Figure 4.12: Evolution of the aerodynamic coe�cients within the optimization process for the
RAE 2822 airfoil at M = 0.729 and α = 2.31o.

Figure 4.13: Change of airfoil shape (left) and pressure distribution Cp (right) for the initial and
optimized RAE2822 airfoil at M = 0.729 and α = 2.31o.

and lower wing surfaces) with 25×18 control points depicted in Figure 4.15. The computational
grid has 40.000 points and 205.000 elements.

For the optimization process, the control points located at the trailing edge of the wing are
held �xed in all directions.

In this case, after 35 optimization cycles the drag coe�cient has been reduced by 15%, while
the lift coe�cient is only reduced by 1%. Figure 4.18 shows a comparison between the original
and optimized section shapes and corresponding Cp distributions at various locations along the
wing, while Figure 4.17 shows the comparison of the surface Mach number distribution between
the original and the redesigned con�gurations. From these �gures it can be seen that the lambda



4.5. Application to �ne grain aerodynamic shape optimization 89

Figure 4.14: Distribution of the Mach number for the initial (left) and optimized (right) RAE2822
airfoil at M = 0.729 and α = 2.31o.

Figure 4.15: Surface grid around Onera M6 wing (left) and control points (right)

shock across the upper surface has been considerably weakened after the optimization process.

4.5.4 Considerations regarding execution time

In order to measure the e�ciency of the proposed methodology in terms of computational time,
a pro�ling has been performed for one optimization cycle of the ONERA M6 wing con�guration.
The results are displayed in Table 4.1
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Figure 4.16: Evolution of the aerodynamic coe�cients for the ONERA M6 optimization.

Figure 4.17: Mach number distribution for the initial (left) and optimized (right) ONERA M6.

Table 4.1: ONERA M6 drag minimization: execution-time breakdown for
one optimization cycle.

Step Time (s.) %

Point inversion (only once for the whole process) 142 -
Preprocessing 1 0.18 %
Flow Solver 314 58.97 %

Adjoint Solver for drag coe�cient 110 20.66 %
Adjoint Solver for lift coe�cient 106 19.90 %

Gradient computation 0.5 0.1 %
Surface deformation 0.01 <0.01 %
Volume deformation 1 0.18 %
TOTAL per cycle 532.51 -
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As can be concluded from the above table, the most time-consuming steps are the �ow and
adjoint solver executions, which together amount to 99% of the computational time per cycle.
The computational requirements of the rest of the process are almost negligible in comparison
to it.

In the above computations, the �ow solver residual has been reduced by 11 orders of mag-
nitude, while for the adjoint solver it has been reduced by 3 orders of magnitude, which has
been shown to be enough for obtaining good quality gradients [loz09]. The total execution time
for 50 optimization cycles in the 2D NACA0012 pro�le was 3000 seconds (50 min.), while the
optimization of the 3D ONERA M6 wing took 26000 seconds (7h), using a single processor on a
Linux x86 computer.

4.6 Conclusions

This chapter has presented an e�cient approach for �ne grain CAD-based shape aerodynamic
design under inviscid �ow conditions. It is important to stress here that the aim of the work is
to develop a shape optimization method which can be incorporated into the design chain of the
aerospace industry. With that premise in mind, the proposed optimization methodology o�ers
two key capabilities:

• Fast computation of the gradients through the use of the adjoint methodology based on
boundary integrals. This allows independency from the number of design variables, and,
therefore, the possibility to use �ne grain geometry parameterization, involving a high
number of design variables, without a prohibitive computational cost.

• The use of NURBS parameterization, that allows a local shape optimization for �ner im-
provement of the aerodynamics e�ciency. It also allows the representation of complex
geometries, and enables the fast incorporation of the optimization procedure into existing
design chains within the aerospace industry.

This approach has been implemented and is fully integrated within the TAU code [dlr94], being
able of performing optimizations by considerably reducing the drag for airfoils and wings in
transonic �ows.
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(a) Residual (b) Residual

(c) CL (d) CL

(e) CD (f) CD

Figure 4.18: Comparison of section shapes (left) and pressure distributions Cp (right).
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Final remarks

This thesis deals with the improvement of the optimization process in the aerodynamic design of
aeronautical con�gurations, proposing several contributions at three di�erent levels: �rst, code
optimization and e�cient parallelization of the most time-consuming step in the design process,
the CFD analysis tool; second, coarse grain surrogate-based global optimization, through the use
of a novel EP-SVMr approach, and, �nally, �ne grain local optimization, involving the applica-
tion of a framework with key ingredients as adjoint methods, for fast gradient computation, and
NURBS for a �exible parameterization of complex geometries.

From the results of the research activity developed within this work, several conclusions can
be extracted and those of main signi�cance are summarized in this chapter.

• An hybrid EP+SVMr approach for coarse grain surrogate-based global shape optimization
has been proposed and tested for the aerodynamic design of airfoils, showing promising
results. This approach strongly bene�ts from the key features of global optimization meth-
ods, allowing a broad exploration of the design space, i.e. including also unconventional
airfoil shapes within the optimization process. In addition, the e�ciency of the process has
been improved through the use of SVMr as metamodels to substitute the expensive CFD
code, and the capability of these models to make accurate predictions of the aerodynamic
coe�cients has been demostrated.

• A SVMr network has been built and trained as metamodel for lift (CL) curves and polar
prediction of subsonic and transonic airfoils. The inputs of the network were the geometry,
de�ned by a Sobieczky parameterization composed of 12 parameters, the �ow conditions
and the aerodynamic coe�cients of the training samples, evaluated with a CFD tool.

• The sensitivity of the training data size in the case of the proposed SVMr metamodel has
been assessed and results have shown that the RMSE measurements are of around few
lift and drag counts for coe�cients prediction, which is acceptable for an initial extensive
exploration of the design space.

• The SVMr network has been coupled to an Evolutionary Programming algorithm, and the
complete approach has been applied to the inverse design of subsonic airfoils. The obtained
results demonstrated the feasibility of this methodology to obtain good approximations
close to the global optimal shapes, with a very reduced computational time of 32 seconds
for the whole optimization process.
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• Regarding �ne grain CAD-based aerodynamic shape optimization, an e�cient approach
has been applied to the design of airfoils and wings in transonic �ow conditions, with the
aim of drag reduction. The approach couples a fast computation of the gradients, through
the adjoint methodology based on boundary integrals, with the use of NURBS geometry
parameterization.

• The framework has been validated in the optimization of two inviscid con�gurations, a 2D
NAC0012 airfoil and a 3D ONERA M6 wing. The approach was able to reduce the drag
considerably, 60% for the NACA0012 and 15% for the ONERA M6, mainly by eliminating
the shock wave on the upper part of the con�gurations.

• Regarding code optimization, an improvement of the code e�ciency has been addressed
through optimization by applying di�erent tuning strategies to reduce the execution time
of the unstructured DLR TAU solver. Signi�cant computational gains (around 11% for
RK and 4% for LUSGS for a 64 bits machine) have been achieved and it makes clear
the necessity of code pro�ling and optimization involving multidisciplinary knowledge to
reduce the execution time and memory consumption.

• With respect to parallel scalability, di�erent algorithms for domain decomposition to make
a more e�cient grid partitioning have been implemented and tested in TAU for high par-
allel simulations, using up to 1024 processors, showing that the graph and hypergraph
partitioner algorithms maintain the speedup much closer to the linear one for a high num-
ber of processors in all the tests performed. Moreover, the current state-of-the-art of the
development of mixed hardware-software computational platforms, using GPUs or FPGAs,
for simulation has been presented focusing in precision and area estimations which shows
a promising technology when the data representation format required is limited.

The results achieved in this research work have been presented at several international events
and accepted for scienti�c publications. In particular, during the last months, 3 papers have
been accepted for publication in relevant international journals, and during the realization of
this thesis, 8 papers have been presented in international congresses. A complete list of the
papers related to the research work performed in this thesis can be seen in IV.



Future research lines

Despite the di�erent results obtained from this research work, there are still several directions
in which subsequent studies could progress. Some of the detected areas to be addressed more
deeply in near future include:

• The �rst natural extension of the research regarding global optimization is the validation
of the proposed approach for the shape optimization of 3D con�gurations, where the com-
putation of the aerodynamic data for the training samples will be more time consuming,
and e�cient techniques for on-line training should be considered to build the metamodel.

• Another extension of this work is the application of di�erent levels of parameterization,
from few to many design variables, to study the behavior of each optimization step, coarse
and �ne grain.

• This thesis focuses on the optimization of aeronautical shapes, considering only aerody-
namics, but not other disciplines such as structures or acoustics. However, nowadays,
multidisciplinary design optimization (MDO) is a very active �eld of research. The pro-
posed global shape optimization approach could be extended to deal with other disciplines.
In particular the SVMr network, used as metamodel for substituting CFD, would have
to be trained to replace Computational Structure Mechanics (CSM) and Computational
Aeroacoustics (CAA) codes, but the strategy and the Evolutionary Programming technique
to be applied would remain the same.

• With respect to geometry parameterization, the management of intersections between dif-
ferent NURBS patches, needed for representation of complex geometries, still requires
further research work. In addition, the sensitivity of the NURBS parameterization within
the optimization process should be more deeply studied. The capability to automatically
obtain optimal NURBS (with a proper number and distribution of control points) from
the original CAD de�nition (for instance an IGES or STEP �le) is still missing and it is
of high interest for the industry. Moreover, a tool for extracting the NURBS de�nition
from a given computational mesh would allow to recover the geometry at any time of the
optimization process.

• Regarding gradient-based optimization using adjoints, there are still some e�orts required
for industrialization of the whole process. In particular, the continuous adjoint solver lacks
robustness for 3D complex viscous con�gurations.
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